
Original Investigation | Neurology

Longitudinal Associations of Clinical and Biochemical Head Injury Biomarkers
With Head Impact Exposure in Adolescent Football Players
Taylor R. Zuidema, MS; Jeffrey J. Bazarian, MD; Kyle A. Kercher, PhD; RebekahMannix, MD; Reuben H. Kraft, PhD; Sharlene D. Newman, PhD; Keisuke Ejima, PhD;
Devin J. Rettke, MS; Jonathan T. Macy, PhD; Jesse A. Steinfeldt, PhD; Keisuke Kawata, PhD

Abstract

IMPORTANCE Consequences of subconcussive head impacts have been recognized, yet most
studies to date have included small samples from a single site, used a unimodal approach, and lacked
repeated testing.

OBJECTIVE To examine time-course changes in clinical (near point of convergence [NPC]) and
brain-injury blood biomarkers (glial fibrillary acidic protein [GFAP], ubiquitin C-terminal hydrolase-L1
[UCH-L1], and neurofilament light [NF-L]) in adolescent football players and to test whether changes
in the outcomeswere associatedwith playing position, impact kinematics, and/or brain tissue strain.

DESIGN, SETTING, AND PARTICIPANTS This multisite, prospective cohort study includedmale
high school football players aged 13 to 18 years at 4 high schools in theMidwest during the 2021 high
school football season (preseason [July] and August 2 to November 19).

EXPOSURE A single football season.

MAINOUTCOMES ANDMEASURES Themain outcomes were NPC (a clinical oculomotor test) and
serum levels of GFAP, UCH-L1, and NF-L. Participants’ head impact exposure (frequency and peak
linear and rotational accelerations) was tracked using instrumentedmouthguards, andmaximum
principal strain was computed to reflect brain tissue strain. Players’ neurological function was
assessed at 5 time points (preseason, post–training camp, 2 in season, and postseason).

RESULTS Ninety-ninemale players contributed to the time-course analysis (mean [SD] age, 15.8 [1.1]
years), but data from 6 players (6.1%) were excluded from the association analysis due to issues
related tomouthguards. Thus, 93 players yielded 9498 head impacts in a season (mean [SD], 102
[113] impacts per player). There were time-course elevations in NPC and GFAP, UCH-L1, and NF-L
levels. Compared with baseline, the NPC exhibited a significant elevation over time and peaked at
postseason (2.21 cm; 95% CI, 1.80-2.63 cm; P < .001). Levels of GFAP and UCH-L1 increased by 25.6
pg/mL (95% CI, 17.6-33.6 pg/mL; P < .001) and 188.5 pg/mL (95% CI, 145.6-231.4 pg/mL; P < .001),
respectively, later in the season. Levels of NF-L were elevated after the training camp (0.78 pg/mL;
95% CI, 0.14-1.41 pg/mL; P = .011) and midseason (0.55 pg/mL; 95% CI, 0.13-0.99 pg/mL; P = .006)
but normalized by the end of the season. Changes in UCH-L1 levels were associated with maximum
principal strain later in the season (0.052 pg/mL; 95% CI, 0.015-0.088 pg/mL; P = .007) and
postseason (0.069 pg/mL; 95% CI, 0.031-0.106 pg/mL; P < .001).

CONCLUSIONSANDRELEVANCE The study data suggest that adolescent football players exhibited
impairments in oculomotor function and elevations in blood biomarker levels associated with
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Abstract (continued)

astrocyte activation and neuronal injury throughout a season. Several years of follow-up are needed
to examine the long-term effects of subconcussive head impacts in adolescent football players.

JAMA Network Open. 2023;6(5):e2316601. doi:10.1001/jamanetworkopen.2023.16601

Introduction

Repetitive subconcussive head impacts in sports have gained the spotlight in the field of neurology
due to their potentially insidious, long-term effects on the brain.1,2 Because these head impacts are
often asymptomatic, many contact-sport athletes sustain hundreds of head impacts in a single
season.3 Yet, it remains uncertain whether there is a limit of tolerance to subconcussive head impacts
and whether neurological effects of head impacts are dose- and intensity-dependent.4-6

The quest to explore highly sensitive measures to inspect brain health has yielded several
candidate biomarkers, such as clinical oculomotor testing (near point of convergence [NPC]) and
brain-derived blood biomarkers, including glial fibrillary acidic protein (GFAP), ubiquitin C-terminal
hydrolase-L1 (UCH-L1), and neurofilament light (NF-L). Thesemeasures have been shown to elevate
in concert with head impact exposure during acute and subacute phases,7-13 suggesting that NPC is
one of themost sensitive clinical tools to detect subconcussive brain injury,14 whereas GFAP, UCH-L1,
andNF-L are useful to gauge the severity ofmicrostructural injury and inflammatory responses after
head impacts.15,16

Despite a decade of effort, research in subconcussive brain injury remains inconclusive due to
several limitations, ranging from a small-scale, single-site studywith a limited number of time points17

to head impact sensors not reflecting strains in the brain tissue, which is a missing component when
studying the associations between biomechanical forces and neurobiological responses.18 Finite
element modeling can estimate the extent of brain tissue strain, as described bymaximum principal
strain (MPS).19,20 The recent evolution inmachine learning and computationalmodeling techniques
has begun suggesting that strain-derived metrics may better capture the brain tissue deformation
upon head impacts than do head or skull accelerationmetrics like peak linear acceleration (PLA) and
peak rotational acceleration (PRA).21 However, to our knowledge, MPS has not been studied in the
context of repetitive subconcussive head impacts.

We conducted a prospective, multisite, longitudinal study to evaluate time-course neurological
responses in 1 season of high school football. We further explored the associations of players’
position, head impact kinematics (frequency, PLA, and PRA), and strain metrics (MPS) with time-
course changes in NPC and GFAP, UCH-L1, and NF-L levels. Our hypothesis was that there would be
significant elevations in NPC and levels of all 3 blood biomarkers over time, by which the elevations
would intensify later in the season but show slight recovery at postseason. Time-course changes in
the outcomes were further explored in relation to players’ position, head impact kinematics, and
brain tissue strains to identify factors associated with brain response to subconcussive head impacts.

Methods

Participants
This multisite cohort study included 99male high school football players from 4 high schools in the
Midwest. The studywas conducted during the 2021 preseason (July) for baseline assessment, as well
as throughout the 2021 football season, fromAugust 2 to November 19. Inclusion criteria were being
a current member of the high school football team and aged 13 to 18 years. All participants and their
legal guardians provided informed consent online, and the Indiana University institutional review
board approved the study protocol. This study followed the Strengthening the Reporting of
Observational Studies in Epidemiology (STROBE) reporting guideline.
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Study Procedures
Data collection took place during preseason in July (T1 [baseline]), after training camp in August (T2),
at 2 in-season time points (September [T3] and October [T4]), and postseason in November or
December (T5). The training camp, which consisted of a high-intensity training period to prepare for
the upcoming season, took place from the start day of the season (August 2) until the first game later
in August. For T2, T3, and T4, there was an interval of at least 24 hours between the last contact
practice and data collection. For T5, there was an interval of at least 14 days since the final game
(eFigure in Supplement 1). Data collection was conducted in a large group setting at each school, and
blood samples and NPCwere collected at each time point. During preseason data collection, all
participants were fitted with an Impact Monitor Mouthguard (Prevent Biometrics, Inc) to measure
head impact kinematics from every practice and game. For the exploratory analysis, based on playing
positions, participants were categorized as linemen (offensive and defensive), hybrid (tight ends,
running backs, and linebackers), or skill groups (wide receivers, cornerbacks, safeties, and
quarterbacks). Race and ethnicity data were ascertained by participant report; race categories were
American Indian or Alaska Native, Asian, Black/African American, Native Hawaiian or Pacific Islander,
White, or multiracial, and ethnicity categories were Latino/Hispanic or not Latino/Hispanic.

Head ImpactMeasurement
The Impact Monitor Mouthguard incorporates data from a triaxial accelerometer (ADXL372) and
gyroscope (BMG250) to provide 6-df spatial and temporal estimates of linear and rotational head
accelerations during impact. When an axis of acceleration exceeds a preset threshold of 10g, an
impact event triggers data collection. The sampling rate is 3.2 kHz, and impact data are collected for
50milliseconds.22,23 Cumulative frequency, PLA, and PRAwere used in our analyses.

VideoValidation of Head ImpactMeasures
The film analysis was conducted by research assistants who were blinded to research outcomes.
Interrater reliability was assessed and resulted in excellent reliability, with an intraclass correlation
coefficient (ICC) of 0.96 (95% CI, 0.94- 0.99; P < .001). Randomly stratified head impact data (1785
impacts) derived from both practices and games were assessed and classified as either a true-
positive or false-positive impact. An impact could be to an athlete’s head or body, because both can
induce a head acceleration event.24 Positive predictive values were then computed.

MaximumPrincipal Strain
We used the Brain Simulation Research Platform,25 established by 1 of the authors (R.H.K.), to
estimate brain tissue strain, as reflected in MPS, using the finite element method. The code for a
finite element model was validated against widely accepted codes, such as Abaqus and LS-DYNA,
and resulted in tight coupling for tension, compression, and shear simulations. The detailed coding
and processing were described previously.26 Maximum principal strain is computed by solving the
equation of motion dynamically using the explicit dynamic finite element method,19 which
incorporates the combination of linear and rotational accelerations from 6 axes. The Green-
Lagrangian strain26 is computed for each element. Once the strain value is found, the MPS value is
the largest eigenvalue of the strain matrix. The highest MPS value over both time and elements
represents the maximum strain experienced by the brain during the head impact. Cumulative MPS
and the number of head impacts with MPS of 10 or greater, which is classified as medium or greater
strain, were used in our analyses.

NPC
The NPCwas assessed based on our established protocol.7-9 In brief, a target was moved down the
length of the accommodation ruler toward the participant’s eyes. The NPC was taken when eye
misalignment was observed by the tester or when the participant verbally signaled once they
experienced diplopia. The assessment was repeated twice, and themean NPCwas then used for
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analyses. Three examiners (T.R.Z., K.A.K., and D.J.R.) whowere blinded to head impact exposure had
excellent intrarater (ICC, 0.94; 95% CI, 0.89-0.95) and interrater reliabilities (ICC, 0.90; 95% CI,
0.83-0.94).

Blood SampleObtainment andAssays
At each time point, 1.2 mL of capillary blood was collected from the upper arm using a noninvasive
Tasso serum sampling kit (Tasso Inc). Serum was separated by centrifugation and stored at −80 °C
until analysis. The GFAP, UCH-L1, and NF-L measurements were performed using the Human
Neurology 4-Plex A assay on a Quanterix SR-X system. During the validation processes, GFAP,
UCH-L1, and NF-L resulted in nearly identical expressions (coefficient of variation, <2.0) between
venous blood samples and capillary blood samples via the Tasso device. However, tau levels in the
capillary samples were consistently higher (approximately 2- to 10-fold) than in the venous samples;
thus, tauwas not included in the study. The same board-certified personnel (T.R.Z.), whowas blinded
to players’ positions and head impact kinematics, performed all assays. Themean (SD) intraassay
coefficients of variation for the samples were 8.3% (6.0%) for NF-L, 3.7% (2.7%) for GFAP, and 8.2%
(7.1%) for UCH-L1. The lowest detection limit of the assay was 0.024 pg/mL for NF-L, 0.221 pg/mL
for GFAP, and 1.740 pg/mL for UCH-L1. All samples from each participant were assayed on the same96-
well plate.

Statistical Analysis
To examine the time-course changes in neurological outcomes, we conducted a series of
multivariable mixed-effects regressionmodels (MMRMs) on the primary outcomes (NPC and GFAP,
UCH-L1, and NF-L levels). The first MMRM evaluated the time effects by analyzing the degrees of
changes in outcomes over time relative to baseline (T1). Given that we used 1 MMRM per outcome
(n = 4), we considered 2-sided P < .01 as statistically significant. The second MMRM focused on
group differences to assess whether the trajectory of time-course changes differed among linemen,
hybrid, and skill groups. A subclass ofMMRMwas used to account for both individual differences at
baseline and over time to estimate the effects of group (linemen, hybrid, and skill), time (T1 to T5),
and group-by-time interactions. Age, number of previous concussions, and years of tackle football
experience were included as covariates in these time-course analyses.

Linear regressionmodels were used to examine whether the changes in outcome variables at
each time point were associated with cumulative subconcussive head impacts. Head impact
kinematic (frequency, PLA, and PRA) and simulation (sumofMPS andMPS�10) data up to each time
point were organized, and changes in neurological outcomeswere regressed against impactmetrics
(factors). The significance level was set at 2-sided P < .01 to reflect 1 regressionmodel per factor. All
analyses were conducted using R, version 3.4.1 (R Project for Statistical Computing) with the
package nlme.

Results

Demographics andHead Impact Kinematics
Ninety-nine high school football players were initially enrolled in the study. Data from these 99
players (mean [SD] age, 15.8 [1.1] years) were used for the primary analysis on the time-course
changes in neurological outcomes. The sample consisted of all males. None of the players were
American Indian, Alaska Native, Asian, Native Hawaiian, or Pacific Islander; 9 (9.1%) were Black/
African American; 87 (87.9%) wereWhite; and 3 (3.0%) weremultiracial. A total of 6 players (6.1%)
were Latino/Hispanic, and 93 (93.9%) not Latino/Hispanic. Ninety-three players yielded 9498 head
impacts in the season (mean [SD], 102 [113] impacts per player). Demographics and head impact
kinematics are summarized in the Table. Data from 6 players (6.1%) were excluded from the
association analysis due to lack of head impact data (eg, mouthguard adherence, breakage). There
were missing samples at each follow-up time point (T2 to T5) due to either no-show during data
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collection (4 at T2, 2 at T3, 4 at T4, and 3 at T5) or insufficient blood volume (4 at T2, 3 at T3, 2 at T4,
and 1 at T5). Figure 1 shows the study flow.

VideoValidation of Head Impacts
Of the 1785 head impacts that were selected to be reviewed for video validation, 1670 (93.6%) were
visually confirmed while 115 (6.4%) were not. This equates to a positive predictive value of 93.6%.

Time-Course Changes in NPC andBlood Biomarker Levels
There were statistically significant time-course elevations (worsening) in NPC during the season. The
NPC distance changes increased sharply after the training camp (T2), continued to worsen toward
the end of the season (T4), and peaked at postseason (T5) compared with the preseason baseline
(T2: 1.74 cm [95% CI, 1.32-2.16 cm; P < .001]; T3: 1.69 cm [95% CI, 1.27-2.11 cm; P < .001]; T4: 2.03 cm
[95% CI, 1.61-2.45 cm; P < .001]; and T5: 2.21 cm [95% CI, 1.80-2.63 cm; P < .001]) (Figure 2A).

All 3 blood biomarkers showed statistically significant time-course changes. Gradual elevations
in GFAP level were found as the season progressed, and the level peaked at T4 and declined at T5.
At peak, the mean GFAP level increased by 25.6 pg/mL (95% CI, 17.6-33.6 pg/mL) (P < .001)
(Figure 3A) compared with baseline. Substantial increases in UCH-L1 levels were found earlier in the
season, then plateaued thereafter (T3, T4, and T5). At peak (T4), UCH-L1 level increased by 188.5
pg/mL (95% CI, 145.6-231.4 pg/mL; P < .001) (Figure 3B) compared with baseline. The time-course
change in NF-L levels was modest, such that significant elevations were observed at T2 (0.78 pg/mL;
95% CI, 0.14-1.41 pg/mL; P = .011) and T3 (0.55 pg/mL; 95% CI, 0.13-0.99 pg/mL; P = .006) but not
at T4 and T5 (Figure 3C). eTable 1 in Supplement 1 shows mean values and eTable 2 in Supplement 1
shows changes in outcome variables.

Table. Group Demographics and Head Impact Kinematics

Variable

Playersa

Overall (N = 99) Linemen (n = 38) Hybrid (n = 31) Skill (n = 30)
Age, mean (SD), y 15.8 (1.1) 15.9 (1.1) 15.8 (1.1) 15.6 (1.1)

BMI, mean (SD) 26.2 (5.5) 31.6 (6.3) 24.9 (3.1) 22.0 (2.2)

Previous concussions, No.

0 83 (83.9) 33 (86.6) 27 (87.1) 23 (76.7)

1 13 (13.1) 5 (13.4) 4 (12.9) 4 (13.3)

2 3 (3.0) 0 0 3 (10.0)

Years of tackle football experience,
mean (SD)

5.1 (2.9) 5.0 (3.0) 6.0 (2.9) 4.0 (2.6)

Race

American Indian or Alaska Native 0 0 0 0

Asian 0 0 0 0

Black/African American 9 (9.1) 3 (7.9) 1 (3.2) 5 (16.7)

Native Hawaiian or Pacific Islander 0 0 0 0

White 87 (87.9) 34 (89.5) 29 (93.6) 24 (80.0)

Multiracial 3 (3.0) 1 (2.6) 1 (3.2) 1 (3.3)

Ethnicity

Latino/Hispanic 6 (6.1) 3 (7.9) 1 (3.2) 2 (6.7)

Not Latino/Hispanic 93 (93.9) 35 (92.1) 30 (96.8) 28 (93.3)

Impact kinematics for season,
mean (SD)

Cumulative impact count 102 (113) 115 (124) 112 (93) 74 (115)

Cumulative PLA, g 1641.6 (1856.2) 1748.5 (1915.6) 1899.3 (1632.2) 1244.3 (2069.7)

Cumulative PRA, krad/s2 32.5 (39.4) 35.4 (42.9) 34.2 (31.5) 27.5 (45.0)

MPS for season, mean (SD)

Sum of MPS per player 816.05 (926.71) 826.91 (895.66) 973.03 (876.45) 646.71 (1009.99)

Hits ≥10 MPS per player, No. 22.89 (29.29) 17.91 (21.54) 30.62 (32.24) 20.83 (33.06)

Abbreviations: BMI, bodymass index (calculated as
weight in kilograms divided by height in meters
squared); MPS, maximum principal strain; PLA, peak
linear acceleration; PRA, peak rotational acceleration.
a Data are presented as the number (percentage) of
players unless otherwise indicated.
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Association of Players’ PositionsWith Changes in NPC andBlood Biomarker Levels
There were no statistically significant group differences in mean (SD) head impact exposures during
the season among position groups (linemen, 115 [124] hits; hybrid, 112 [93] hits; skill, 74 [115] hits;
P = .71). This translated into no clear differences in the time-course changes in NPC (Figure 2B) and
blood biomarker levels among positions (Figure 3D-F), in which all groups increased at similar
degrees. However, the lineman group showed lower levels of GFAP and NF-L levels at various time
points comparedwith the other 2 groups (Figure 3D and E). For instance, comparedwith the lineman
group, the hybrid and skill groups showed 17.4 to 43.2 pg/mL higher mean GFAP levels and 1.1 to 1.9

Figure 1. Study Flowchart

169 Individuals contacted for recruitment

99 Enrolled

T1: Preseason baseline
99 With NPC data
99 With blood data

T2: After training camp
94 With NPC data
91 With blood data

6 Excluded
4 Broke or lost multiple mouthguards
2 Nonadherent to mouthguard use

8 Excluded
4 No-show during data collection
4 Insufficient blood volume

T3: In-season (September)
97 With NPC data
94 With blood data

5 Excluded
2 No-show during data collection
3 Insufficient blood volume

T4: In-season (October)
95 With NPC data
93 With blood data

6 Excluded
4 No-show during data collection
2 Insufficient blood volume

T5: Postseason
96 With NPC data
95 With blood data

Time-course analysis
99 With NPC data
99 With blood data

Association analysis
93 With NPC data
93 With blood data

4 Excluded
3 No-show during data collection
1 Insufficient blood volume

NPC indicates near point of convergence.
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pg/mL higher mean NF-L levels during the season. The extent of the group differences is detailed in
eTable 3 in Supplement 1.

Associations BetweenHead Impact Kinematics and Changes in NPC
andBlood Biomarker Levels
There were no notable associations of NPC, GFAP, and NF-L with any kinematic variables at any time
point. However, the changes in UCH-L1 level were positively correlated with kinematic variables
(frequency of hits: B = 0.494 [95% CI, 0.200-0.788; P = .001]; PLA: B = 0.030 [95% CI,
0.012-0.047; P = .001]; PRA: B = 0.376 [95% CI, 0.140-0.612; P = .002]) at postseason (T5).
Moreover, both the sum of MPS and anMPS of 10 or greater were significantly correlated with
changes in UCH-L1 levels at T4 (cumulative MPS: B = 0.052 [95% CI, 0.015-0.088; P = .007]; MPS
�10: B = 1.601 [95% CI, 0.468-2.734; P = .006]) and T5 (cumulative MPS: B = 0.069 [95% CI, 0.031-
0.106; P = .001]; MPS �10: B = 2.525 [95% CI, 1.297-3.753; P = .001]). Figure 4 shows the visual
output and eTable 4 in Supplement 1 shows the statistical output.

Discussion

The novelty of this study was its assessment of longitudinal multimodal associations between NPC,
blood biomarker levels (GFAP, NF-L, and UCH-L1), head impact kinematics (frequency, PLA, and
PRA), and an estimated strainmeasure (MPS). There were 4 primary findings. First, there was a sharp
increase in NPC during the training camp; then, NPC gradually increased as the season progressed.
Second, all 3 blood biomarkers, particularly GFAP and UCH-L1, showed significant elevations across
the season and either peaked or plateaued toward the end of the season. Third, there was a time
trend in all markers by player position despite no significant position differences in the degrees of
changes in NPC and GFAP, NF-L, and UCH-L1 levels. Lastly, both impact kinematics andMPSwere
associated with changes in UCH-L1 level later in the season, particularly MPS. Collectively, these data
suggest that adolescent football players may accumulate neuronal cellular and functional
impairments during a season and that the impact kinematics and degree of brain tissue strain may
reflect the extent of subconcussive neural stress.

Contrary to our hypothesis, the degree of increases in the neurological outcomes was
independent from players’ positions. There has been a long-standing societal perception that
linemen have greater risks for developing neurodegenerative conditions compared with those in
other positions. In fact, linemen in all levels (eg, high school,27 college,28,29 and professional30) have
been shown to sustain the greatest number of head impacts because of the nature of their task on
the field. However, the number of head impacts does not necessarily predict neurological outcomes,

Figure 2. Time-Course Changes in Near Point of Convergence (NPC) Overall and by Player Position
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such that high-speed skill position players (eg, defensive back, running back) have shown greater
cortical strain rates31 and higher serum expressions of GFAP, NF-L, and tau at postseason compared
with players in hybrid and linemen positions.32 This evidence suggests that despite linemen typically
incurring a high dose of head impacts, player positionmay not be indicative of neurological outcomes
after a football season.

The role of head impactmagnitudewas explored through kinematic and strainmetrics, inwhich
MPSused linear and rotational acceleration data to estimate degrees of brain tissue deformation.
Greater brain strains (MPS) oftendependon an impact location (eg, lateral hit), high rotational head
acceleration,33,34 and level of play (eg, college greater than varsity greater than junior varsity).35,36 A
study using diffusion tensor imaging in youth football players found that changes in diffusion tensor
imagingmetrics (eg, fractional anisotropy) at postseason comparedwith preseasonbaselinewere bet-
ter explainedby strain-basedmetrics, such as tensile, compressive, and shear strain, thanby kinematic-
basedmetrics like PLA andPRA.37Oneof the reasonswhy correlationswithMPSwere unique toUCH-
L1maybe thatMPS reflects strains and stretching forces at the tissue level insteadof cellular compo-
nents, such as axonalmicrostructure or glial activations. SinceUCH-L1 is abundantly present in all types
of neurons andparticipates in neuronal function and survival,38 changes inUCH-L1may surrogate an
injury to diffusive areas of the brain. For example, UCH-L1 levels are elevatedby 73%after a football
game39 andby 200% in an emergency department setting after subconcussive injury.40 Furthermore,

Figure 3. Time-Course Changes in Blood Biomarker Levels Overall and by Player Position
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Joseph et al17 reported thatUCH-L1 levels acutely increasedby 738% in athletes sustaining a highmag-
nitude of head impacts (PLA >95g, PRA>3760 rad/s2) andmean (SD)UCH-L1 levels increased (144 [56]
pg/mL) postseason comparedwith the preseasonbaseline,which is in linewith our results. Our data
expandon these studies by finding thatUCH-L1 showedgradual elevations during the first 2months of
the season andplateaued thereafter at 2-fold higher levels than thebaseline, and the correlations be-
tweenUCH-L1 andMPSportendpotential brain tissue damage.

The clinical finding of this study is also noteworthy. The NPC displayed chronic and lingering
impairments without normalizing to baseline levels even at postseason. Impairment in the
oculomotor system has been recognized as a hallmark clinical outcome of concussion and
subconcussive head impacts.14 For example, NPCwas able to distinguish concussed athletes from
healthy controls with 73% accuracy.41 Nearly half of concussed patients in athletic andmilitary
populations showed at least a 2-fold worsening in NPC.42,43 As few as 10 acute soccer headings have
yielded a 17% to 24% increase in NPC, and the impairment in NPC persisted even after 24 hours.9,10

In our study, NPC sharply increased during the training camp, and the elevations lingered throughout
the season and peaked at the postseason. These data suggest that when evaluating a suspected
concussion case, it may be important to account for 30% to 40%of NPC increase frombaseline if the
patient is exposed tomany subconcussive head impacts prior to a concussion.

Figure 4. Associations Between Changes in Ubiquitin C-Terminal Hydrolase-L1 (UCH-L1) and Tissue Strain and Kinematic Variables
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Limitations
This study has several limitations. While this is one of the largest football studies in adolescents, it
would have benefited from amore racially and ethnically diverse sample. Given that there are
extraneous factors (eg, exercise, heat, and hydration) inherent to field studies, it would be beneficial
to investigate chronic head impact effects in more controlled settings, such as the use of a soccer
headingmodel.13 Additionally, the data cannot address any long-term (multiyear) effects of
subconcussive head impacts, yet we are currently conducting a study with longer-term follow-ups
with noncontact controls from various sports.

Conclusions

Data from this cohort study suggest that adolescent football players experience oculomotor
impairments and elevations in blood biomarker levels associated with astrocyte activation and
neuronal injury. Changes in serumUCH-L1 levels were associatedwith the extent of brain tissue strain
and kinematic variables, but no longitudinal association was observed between head impact
kinematics or strain measures and NPC or GFAP and NF-L levels. Assessment of long-term effects of
subconcussive head impacts in adolescent football players will require at least several years of
follow-up within longitudinal studies.
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