
Computer Methods and Programs in Biomedicine 233 (2023) 107470 

Contents lists available at ScienceDirect 

Computer Methods and Programs in Biomedicine 

journal homepage: www.elsevier.com/locate/cmpb 

A sensor-enabled cloud-based computing platform for computational 

brain biomechanics 

Ritika R. Menghani a , Anil Das a , Reuben H. Kraft a , b , c , ∗

a Department of Mechanical Engineering, The Pennsylvania State University, University Park, 16802, USA 
b Department of Biomedical Engineering, The Pennsylvania State University, University Park, 16802, USA 
c Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, 16802, USA 

a r t i c l e i n f o 

Article history: 

Received 27 October 2022 

Revised 24 February 2023 

Accepted 6 March 2023 

Keywords: 

Brain biomechanics 

Cloud computing 

Nonlinear finite element modeling 

Integrated mouthguard sensors 

a b s t r a c t 

Background and Objectives: Driven by the risk of repetitive head trauma, sensors have been integrated 

into mouthguards to measure head impacts in contact sports and military activities. These wearable 

devices, referred to as “instrumented” or “smart” mouthguards are being actively developed by various 

research groups and organizations. These instrumented mouthguards provide an opportunity to further 

study and understand the brain biomechanics due to impact. In this study, we present a brain model- 

ing service that can use information from these sensors to predict brain injury metrics in an automated 

fashion. 

Methods: We have built a brain modeling platform using several of Amazon’s Web Services (AWS) to 

enable cloud computing and scalability. We use a custom-built cloud-based finite element modeling code 

to compute the physics-based nonlinear response of the intracranial brain tissue and provide a frontend 

web application and an application programming interface for groups working on head impact sensor 

technology to include simulated injury predictions into their research pipeline. 

Results: The platform results have been validated against experimental data available in literature for 

brain-skull relative displacements, brain strains and intracranial pressure. The parallel processing capabil- 

ity of the platform has also been tested and verified. We also studied the accuracy of the custom head 

surfaces generated by Avatar 3D. 

Conclusion: We present a validated cloud-based computational brain modeling platform that uses sensor 

data as input for numerical brain models and outputs a quantitative description of brain tissue strains 

and injury metrics. The platform is expected to generate transparent, reproducible, and traceable brain 

computing results. 

© 2023 Published by Elsevier B.V. 

1. Introduction 

Brain modeling has been an active area of research in the last 

40 years, with millions of dollars invested by the US government. 

It is difficult to determine when the first US government grant was 

awarded specifically for brain modeling, but notable related studies 

were two seminal works from Chan in 1974 and Ward and Thomp- 

son in 1975 [ 6 , 62 ]. Since those early effort s, brain modeling has 

been driven by advances in computer architectures and availabil- 

ity, brain imaging, experimental measurements, and injury biome- 

chanics. In the future, the field may be further transformed by arti- 

ficial intelligence and deep learning [ 15 , 65 , 70 ]. Despite the steady 

increase in the capabilities of computational brain biomechanics, 
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the modeling community has failed to transition the technology ef- 

fectively into medical diagnostic tools (e.g., for physicians and ath- 

letic trainers). In addition to regulatory approvals, a primary reason 

for the low application of brain modeling is the lack of access and 

technical abilities to perform high-performance numerical simula- 

tions. Meanwhile, the modeling community has consistently pri- 

oritized linking computationally predicted metrics, such as strain, 

with the incidence of injury [16 , 20 , 25 , 64 , 68 , 70] that may be clini- 

cally transformative. The modeling community should make a bet- 

ter effort at expanding the usage and accessibility of their tools to 

fully elucidate the true value and efficacy of the tools. 

Wearable sensor technology aimed at measuring head impact 

kinematics has advanced alongside brain modeling [ 24 , 32 , 50 ]. Re- 

cently, the use of instrumented mouthguards has been a major fo- 

cus in the head injury biomechanics community. Similarly, sensor 

technology is also being developed to measure blast overpressure 

in military environments [ 9 , 45 ]. With the steady increase in the 
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number of wearable sensors for measuring head impact kinematics 

[ 4 , 8 , 12 , 19 , 23 , 25 , 27 , 29 , 33 , 38 , 40 , 48 ], the modeling community could 

help transform the collected sensor data into predictive measures 

of intracranial brain strain which in turn may be useful to med- 

ical professionals. One future potential scenario is that trustwor- 

thy wearable sensor data combined with predictive brain simu- 

lation data could be used for diagnosing traumatic brain injuries. 

If medical practitioners intend to combine wearable sensors and 

brain modeling (referred to as sensors + simulations), certain criti- 

cal practical and physiological questions must be examined, includ- 

ing the following: 

• What is the accuracy of wearable sensor data? What is the as- 

sociated error? 
• How can individual-specific computer models be created at 

scale? There could be thousands of impacts globally at a given 

time. As practitioners would ideally desire prompt simulation 

feedback, how can numerous simulations be run simultane- 

ously? 
• Can the modeling and simulation be presented in a way that 

practitioners find useful? Stress and strain contours are useful 

to an engineer, but they can be difficult to understand for non- 

engineers. 
• What are the critical metrics to examine? Do the metrics hold 

any clinical relevance given the uncertainty and wide range of 

biovariability (material properties, geometry, injury tolerances, 

etc.)? 
• How is the data organized for rapid identification of the most 

critical information? 
• How can computational modeling experts increase collabora- 

tion, which will drive improvement in the quality of the mod- 

els? 

This paper aims to present a new open-source cloud-based 

platform, referred to as the Brain Simulation Research Platform, for 

brain modeling and simulation. The platform may help to answer 

a few of the questions raised above. We present a cloud-based ar- 

chitectural framework that can simultaneously run thousands of 

individual-specific brain simulations. Creating such a framework 

does not address questions related to clinical relevance, but the 

framework can be used to create large, diverse datasets (big data), 

where relationships might be identified and yield a capability of 

using sensors paired with simulations for diagnosing brain injuries. 

This paper primarily focuses on the development and archi- 

tectural components of the platform. In Section 2 , we provide 

the technical details of the framework design and describe the 

platform in detail. We present results of using the platform in 

Section 3 , followed by discussions and scope for future research 

on the platform in Section 4 . Finally, we state our conclusions in 

Section 5 . Due to the length restrictions of the journal, extensive 

details about the platform can be found in the Appendix. Readers 

are encouraged to look at Appendix C for a demonstration of the 

platform with a test case. 

2. Platform details 

2.1. Broad overview 

The Brain Simulation Research Platform is hosted at https:// 

www.brainsimresearch.io and was built using Amazon Web Ser- 

vices (AWS). The current state of the platform is a result of several 

iterations of computing architectures and tools that have been ex- 

plored over the last few years. Fig. 1 illustrates the general system 

design, which includes three important pillars: a persistent inter- 

face, a persistent database for storage, and flexible or temporary 

computational capability. 

Users can interact with the system through a persistent ‘fron- 

tend’ web application, from which they can interact with the data 

and run individual-specific brain simulations with just a few clicks. 

An application programming interface (API) also exists to provide a 

‘command-line’ option for submitting finite element simulations or 

retrieving deep-learning and artificial intelligence predictions. The 

frontend web application and API server are referred to as ‘persis- 

tent’ (continuously operational). 

To store all the data and access it quickly, the database (i.e., 

the ‘backend storage’) is also a persistent component of the sys- 

tem. Items such as simulation results, user data, and finite element 

meshes are files that need to be sent to or retrieved from a long- 

term storage system. 

The final component is the temporary compute framework (i.e., 

the ‘backend computing’). The cloud offers ‘elasticity,’ meaning 

computers (also referred to as instances) can be started and shut 

down dynamically. Elasticity saves cost and enables the platform to 

handle the computing load. Amazon offers many types of instances 

(AWS EC2) that can be used for high-performance computing. 

2.2. Detailed technical description 

Any study using the platform is deemed IRB (Institutional Re- 

view Board) exempt by the Pennsylvania State University as long 

as de-identified sensor data is used (approved via Penn State IRB 

STUDY0 0 017175). The components comprising the Brain Simula- 

tion Research Platform are presented in Fig. 2 , which shows that 

different AWS services are used for a) access and security, b) 

user interface and application programming interface, c) finite el- 

ement model creation, d) encrypted data storage, e) simulation 

pre-processing, f) simulation execution, and g) simulation post- 

processing. The components are assembled such that the system is 

highly scalable and cost effective. Each subcomponent is described 

below. 

2.2.1. Access and security 

Access to the system is controlled by AWS Cognito, a service 

that enables user sign-up, sign-in, and access control. More details 

can be found in the appendix Section A.1. 

2.2.2. User interface 

The user interface is a progressive web application written in 

React.js with Redux (JavaScript Redux); hence, the interface works 

on desktop, tablet, and mobile hardware. Additional information 

about the interface is available in the appendix Section A.2. 

2.2.3. Model creation 

Creating a brain mesh is time-consuming because of the com- 

plexity of the structure [ 3 , 42 ]. An objective of this platform is to 

provide a process that enables automatic generation of individual- 

specific brain meshes without the need to manually re-create a 

mesh each time. This objective is achieved by first creating a 3D 

head surface of the user with technology developed by Avatar SDK 

using a picture of their face. This is followed by the generation 

of a custom mesh by morphing the template brain mesh to the 

head. The template brain meshes (“coarse” and “fine”) have been 

created using 3D geometry from a male head model ( https: 

//www.turbosquid.com/3d- models/male- head- 3d- model/701148 , 

https://blog.turbosquid.com/turbosquid- 3d- model- license/ ). The 

morphing technique uses a radial basis function [57] to fit the 

brain mesh to the user’s head shape and size. The individual 

specific meshes are generated fairly quick; a user can create the 

mesh in a few minutes and it is then stored and can be used for 

any subsequent simulations for that user. 

This two-step process is presented in further detail in the ap- 

pendix (Section A.3). The entire process of the custom mesh gen- 

eration is illustrated in Fig. 3 . 
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Fig. 1. Persistent and temporary framework structure. The frontend and the database are persistent, whereas the compute capability is temporary i.e. the instances are 

generated only when simulations are submitted. The computations are also scalable, so multiple instances can be generated at the same time if multiple jobs are submitted. 

Fig. 2. System design showing different services used for different com ponents of our platform. We use AWS cognito for user sign-in, AWS elastic beanstalk for the frontend, 

AWS lambda functions for different pre and post processing steps, AWS batch for job scheduling and AWS S3 and mongoDB for data storage. 

2.2.4. Encrypted data storage 

Owing to the potentially sensitive nature of the data, we aim 

to provide a platform that is compliant with the Health Insur- 

ance Portability and Accountability Act (HIPAA). Although HIPAA 

compliance is not claimed (nor is the system a medical device), 

the system employs best practices for encrypted data storage and 

database tools that enable rapid data access and reporting. We use 

MongoDB to manage the database for the platform. Additional de- 

tails about data storage for our platform are presented in the ap- 

pendix ( Section A.4 ). 

2.2.5. Pre-processing of simulations 

When a simulation is submitted, several actions are taken prior 

to running the simulation. First a check is performed to identify an 

existing simulation: each impact is assigned a unique ID using the 

sensor ID and the time of impact which is resolved down to mil- 

liseconds. These impacts have unique time traces of accelerations 

that are used as boundary conditions. The platform uses serverless 

lambda functions to determine if a directory exists for that impact 

based on this ID. If no directory exists, one is created for the im- 

pacts to store the meshes for the user and all the relevant results. 

Based on the results of the check, users can choose to either cancel 

that simulation or overwrite the results. 

Next, the size of the job list is checked. If the size is less than 

300 simulations, then serverless lambda functions are used to fur- 

ther preprocess and submit jobs. If the size is greater than 300, 

then a batch process is created to monitor job flow. If an account 

ID exists, then the mesh is identified and used in the simulation; if 

no account ID exists, then a new account is created. At the time of 

submission, the user can upload a profile picture of an individual 

3 
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Fig. 3. Process of generation of custom brain mesh: once user uploads a selfie, it is first converted to a PLY file and then an STL file. A python script is then used to extract 

control points from the STL file and generate a parameters file. The parameters file is used as input for the Radial Basis Function (RBF) code and a custom brain mesh is 

created for the user and saved in the VTK file format. We convert the VTK to an INP format which can then be directly used in our finite element code. 

wearing the sensor, and a custom finite element mesh is created 

and used in the simulation. Once all the checks are performed, a 

custom input file is written based on the sensor brand and simu- 

lation type. Finally, the mesh is saved, and the initial file is sub- 

mitted. Custom materials files can also be specified, but all simu- 

lations are currently assigned the same material properties. 

2.2.6. Simulation execution 

The calculation of brain response and injury is carried out 

on a non-linear finite element code that has been developed for 

this platform. This code was developed using parallel computing 

techniques to improve runtime. Details about the formulation and 

implementation of the code can be found in Appendix B . The 

finite element code can take kinematic boundary conditions as 

well as pressure conditions. This enables overpressure simulations 

[ 7 , 55 , 56 ] to be conducted as well. In order to easily build the code 

on any instance, docker containerization along with AWS’s Elastic 

Container Registry (ECR) are used. This enables a cross platform 

computing environment that can be used on many different types 

of compute instances. 

AWS batch processing is used to automatically allocate in- 

stances to jobs when running multiple simulations at the same 

time. This enables scalability of the platform as AWS does the dy- 

namic load balancing to efficiently run several simulations at once. 

The platform employs both ‘on-demand’ and ‘spot’ instances to 

further balance computing time versus cost. More information on 

containerization and batch processing is available in the appendix 

Section A.5. 

2.2.7. Post-processing of simulation 

To avoid moving large files across the cloud infrastructure, we 

use the simulation batch instance to post-process the results. Once 

the results are obtained in the desired format, they are transferred 

for storage into S3, a storage service offered by AWS. The results 

are then dynamically shown on the front-end web app for the user 

to visualize. Post-processed results are also available via the API. 

Further details about post-processing can be found in the appendix 

(Section A.6). 

3. Results 

As this platform relies on a custom-built finite element code, 

results are presented pertaining to its accuracy and performance. 

3.1. Verification and validation 

We rely on a new open-source finite element code, FEMTech 

( https://github.com/PSUCompBio/FemTech ), and a new set of open- 

source brain and skull finite element meshes ( https://github.com/ 

PSUCompBio/brain-meshing ). Hence, our verification and valida- 

tion (V&V) strategy is critical to examine. 

For verification, we compared single and simple multi-element 

finite element problems with commercially available and widely 

accepted codes, such as Abaqus and LS-DYNA. We compared the 

models in tension, compression, and shear for relevant material 

models. Our verification results are shown on the Brain Sim- 

ulation Research Platform website at https://brainsimresearch.io/ 

verification . 

Our validation strategy examines pressure, relative displace- 

ments between the brain tissue and skull, and intracranial strain 

using a quantitative comparison technique (i.e., Correlation and 

Analysis (CORA) [58] ) to test the predictive capability of the model. 

The recommended settings for each metric [17] were used to eval- 

uate CORA ratings. Each validation metric is presented in detail in 

the appendix Section B.5. Summary CORA scores for all metrics 

are presented in Fig. 4 and Fig. 5 . For all validation cases for both 

meshes, the CORA ratings were above the marginal 0.26 value, and 

most of the cases were in either the ‘fair’ or ‘good’ categories. 

3.2. Processing speed on AWS 

The computation time of a simulation can differ significantly 

depending on the type of instance and number of processors used. 

To compare the simulation speed across different instances offered 

by AWS, we conducted a speed benchmarking test. Fig. 6 illustrates 

the computation time to run a sample job on different AWS in- 

stances while using a different number of virtual CPUs (vCPUs). 

This sample job has a total run time of 4 9.6 875 ms (milliseconds) 

and uses the coarse brain with reduced integration elements. The 

estimate time step for the simulation using an explicit dynamics 

solver is 1.78e −6 s. It should be noted that in we are only con- 
sidering the actual runtime for the simulations; the pre and post- 

processing times are excluded. 

The instances tested were C6g (AWS Graviton2 based on 64bit 

Arm), C6i (3rd generation Intel Xeon Scalable processors), C5 (2nd 

generation Intel Xeon Scalable processors), C5a (2nd generation 

AMD EPYC processors) and C5ad (2nd generation AMD EPYC pro- 

cessors with additional local SSD storage). The secondary portion 

of the instance name contains an “nxlarge”, which indicates that 

4 
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Fig. 4. CORA scores for the fine and coarse brain meshes for the brain-skull relative displacements cases from groups 1 and 2. 

Fig. 5. CORA scores for the fine and coarse brain meshes for intracranial pressure and brain strain validation cases. 

the number of vCPUs (threads) used are “n” times 4 (this number 

corresponds to the “large”); therefore, a 4xlarge instance uses 16 

vCPUs. All these instances are recommended by AWS for compute- 

intensive workloads 

The different instance types can be compared by observing 

their performance while using 4xlarge instances. C6g.4xlarge takes 

the shortest amount of time: ∼24 s, whereas C5ad.4xlarge takes 
the longest amount of time: ∼39 s. An observation of the C6g and 
C5a instances shows that when using 4 vCPUs, the job took longer 

to run on the C6g instances; however, when comparing the run- 

times of using 16 vCPUs, the job on C6g ran faster than that on 

C5a. Hence, depending on how many vCPUs are being used, the 

optimal instance type may change. 

When comparing the performance of one instance using a dif- 

ferent number of vCPUs, as expected in most cases, the runtime 

reduced when the number of vCPUs was increased. Although there 

was significant improvement when moving from 4 C6g vCPUs to 16 

C6g vCPUs ( ∼3.5 times), moving from 16 to 64 C6g vCPUs yielded 

a smaller improvement ( ∼1.2 times). Meanwhile, in the case of C5a 
instances, when the number of vCPUs was increased from 4 to 

16 and then from 16 to 64, similar improvements were observed 

( ∼2.4 times). However, increasing from 64 to 96 vCPUs for C5a in- 

stances yielded an increase in runtime. We suspect that this oc- 

curred because of the increase in the communication time between 

vCPUs. Hence, simply increasing the number of vCPUs does not al- 

ways lead to faster simulations. 

We also ran the same test case on Pennsylvania State Univer- 

sity’s high-performance computing system ROAR using 16 2.8 GHz 

Intel Xeon processors on one node; the job took 34 s to run. Aver- 

aging all four AWS processor runtimes corresponding to 16 vCPUs, 

we obtained approximately 30 s, which is comparable to ROAR. 

3.3. Accuracy of avatar 3D surfaces 

We have conducted a study involving 24 participants to test the 

accuracy of the head surfaces generated using Avatar 3D. First, we 

needed a reference surface to compare with. This reference head 

surface was created by generating a point cloud of the head using 

laser scanning. Avatar 3D head surfaces were then created for the 

same users. Both surfaces were transformed to align in the same 

reference frame (see Fig. 7 ). 

5 
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Fig. 6. Time taken to run sample job on different instances and using different number of vCPUs. Overall, the speed improves when using more processors except in the 

case of C5a instances when going from 64 to 96 vCPUs. On average when using 16 vCPUs, the job takes ∼30 s to run. 

Fig. 7. a) Unaligned meshes b) Aligned meshes. 

Next, a basis was required for comparison of both surfaces. For 

3D mesh comparison, this means ensuring that there is some one- 

to-one correspondence between the two meshes. There are sev- 

eral ways to generate this correspondence; we opted for the ico- 

sphere mesh projection technique to create corresponding vertices 

on both meshes. 

Once the basis was created we compared both surfaces us- 

ing the Standard Hausdorff Distance (SHD). The Hausdorff distance 

equation for a point p on the AvatarSDK mesh given mesh M which 

represents the scanned mesh is shown in Eq. (1) . The algorithm 

searches the entire mesh M for point p’ which is the closest point 

to p based L2 norm (Euclidean distance). 

SHD ( p, M ) = min ∀ p ′ εM 

∣∣∣∣p − p ′ 
∣∣∣∣ (1) 

Fig. 8 shows the results for each participant based on what per- 

centage of vertices were within 5 mm, 10 mm and 15 mm. On av- 

erage, 57% of vertices were within 5 mm SHD, 78% of vertices were 

within 10 mm SHD and 87% of vertices were within 15 mm SHD. 

4. Discussion 

Given the prevalence of head injury in contact sports and the 

military, TBI has become a serious concern. This has led to the de- 

velopment of sensors that make it possible to collect impact data 

and use that data for predicting brain injury. To automate the pro- 

cess of obtaining computational brain injury results, we created 

The Brain Simulation Research Platform that is a cloud-based brain 

modeling service that can simulate any head impact event using 

impact data collected by sensors. The platform is open source to 

allow for collaborations with other researchers. The platform com- 

bines technology from brain biomechanics, wearable sensors, and 

cloud computing. Key features of the platform include: 

• A custom explicit dynamic nonlinear finite element code that 

requires no licensing. The code is built with message passing 

interface (MPI) to enable parallel computing. 
• A verification and validation pipeline that enables brain simu- 

lation regression testing as code changes are made. 
• Individual-specific automatic custom brain mesh generation 

based on Avatar technology. 
• Scalable computing i.e., multiple simulations can run simulta- 

neously. We have successfully run 50,0 0 0 simulations in about 

24 hrs. 
• A user-friendly frontend dashboard that shows post-processed 

results in an organized format. Reports of the results can also 

be downloaded. 
• The ability to read data from different sensor companies includ- 

ing Hybrid III data format. 
• A machine learning toolkit that trains models based on simula- 

tion results and automatically computes deep-learning predic- 

tion for each simulation. 

It must be noted that a similar open-source platform that also 

models the brain exists but deals with brain network models 

[52] instead, making this the first platform of its kind. 

Given that our platform cuts across multiple research areas, it is 

tricky to draw comparisons with other research in the field. Hence, 

we section our discussion to enhance our overall remarks about 

our platform as well as to compare our work with other research. 

4.1. Custom mesh generation 

Research suggests that anatomically accurate brain models have 

better biofidelity [34] . Brain meshes for FEM simulations have been 

created using several different techniques: using the average of 

MRI (Magnetic Resonance Imaging) scans of several brains [44] or 

MRI scans of an individual with a healthy brain [ 2 , 10 , 14 , 53 , 69 ] by 

a voxel-based mesh generation technique or by using morphing 

techniques to convert a template brain mesh into a subject specific 
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Fig. 8. Bar plot showing the percentage of vertices within 5 mm, 10 mm and 15 mm Standard Hausdorff Distance (SHD). 

brain mesh [ 18 , 37 , 43 , 46 ]. Given the demands of our application, 

we used the second technique for creating user-specific meshes. 

We first create a head surface for each user with technology from 

Avatar 3D and then morph the template brain mesh to fit this sur- 

face. The term "skull adjusted brain mesh" can be used to describe 

this process. This terminology accurately reflects the fact that a 

generic brain model is being adjusted to fit the shape of a user’s 

skull, as outlined in the avatar processing in Section 2.2.3 . The as- 

sumption that the brain shape follows the skull shape is based on 

previous studies [63] , but it warrants further research. 

4.2. Computational model 

Unlike several other research groups that use commercial tools 

to run brain models, we created a physics-based nonlinear finite 

element analysis code to calculate the brain’s response to impact 

events. This was essential to avoid paying license fees incurred by 

using commercial tools for large-scale simulations. Moreover, cre- 

ating our own code provides us with the option to customize our 

model with desired features. 

Our model uses an Ogden hyper-viscoelastic material model for 

the brain, with parameters from literature [30] . Before selecting 

this model, different material models and parameters were tested 

on validation cases. Similar validation results were also obtained 

using a Kelvin–Maxwell viscoelastic material model with parame- 

ters from the SIMon model [54] . However, the Ogden model with 

viscoelasticity has a more straightforward implementation. We also 

considered the skull as a rigid body, enabling us to apply the input 

sensor accelerations to the CG for determining the skull motion. 

Along with the code, we also created two types of brain 

meshes: a ‘coarse’ mesh that contains 17,030 elements and a ‘fine’ 

mesh that contains 105,520 elements. Both meshes have hexa- 

hedral elements and a mesh quality measure of scaled Jacobian 

greater than 0.2. The element scaled Jacobian distribution for both 

brains in shown in Fig. 9 and Fig. 10 . The corresponding mesh vol- 

ume for each interval is listed on top of the bars. 

The original geometry for the skull and brain components 

were provided by the royalty free library from TurboSquid ( https: 

//www.turbosquid.com/3d- models/male- head- 3d- model/701148 , 

https://blog.turbosquid.com/turbosquid- 3d- model- license/ ) which 

was modified to improve finite element meshability. The mod- 

els include cerebral hemispheres, cerebellum, corpus callosum, 

basal ganglia, ventricles, brain stem, hippocampus, and thala- 

mus. Additional layers for CSF and a skull were also added. The 

fine mesh captures the sulci and gyri. In addition, the Allen 

Human Brain Reference Atlas ( https://community.brain-map.org/ 

t/allen- human- reference- atlas- 3d- 2020- new/405/13 ) was also 

meshed with all hexahedral elements. 

To improve confidence in our code and meshes, we per- 

formed several validation tests, details of which are presented 

in Section 3.1 , appendix Section B.5 and on our website ( https: 

//brainsimresearch.io/validation ). We attempted to validate our 

model with all the recommended validation studies and even in- 

cluded strain rate validation on our website using the data from 

literature [77] . However, we did not include the details here be- 

cause the CORA ratings were not calculated, as no recommended 

CORA settings are yet available for strain rate. We also intend on 

validating our code with data from live MRI tagging experiments 

[ 13 , 31 ]. To reproduce the V&V results included here, readers should 

download the ‘Paper1’ branch of FEMTech, which includes a direc- 

tory FEMTech/examples/V&V containing all input files required to 

reproduce the V&V results shown here. 

V&V is a continuous process that evolves over time. For ex- 

ample, as new experimental data becomes available, the current 

codebase should ideally be evaluated again for the new data, and 

previous validation data should be reexamined. Furthermore, when 

changes are made to the codebase, the V&V suite of tests needs 

to be reanalyzed. The Brain Simulation Research Platform aims to 

provide a transparent and reproducible V&V process that can easily 

be re-computed. 

4.3. Machine learning 

More recently, there has been an increase in effort s to 

apply artificial intelligence (AI) in brain response predictions 

[15 , 49 , 60 , 66 , 71] . These methods are advantageous because they 

provide rapid predictions in a fraction of the time taken for a 

full three-dimensional finite element model. However, all AI mod- 

els are based on an underlying dataset of finite element models. 

Improved AI models also require robust (diverse, large, unbiased) 

finite element datasets. Our platform makes it possible to collect 

and process data for thousands of impacts and use the processed 

data to create datasets for machine learning. 

We are working on adding machine learning capabilities to the 

platform; currently, we have a trained but untested model. We 

plan to test the accuracy of the model using the results obtained 

from the FEM simulations. All the results from the testing will be 

available on the website. 

Once this feature is deployed, users will be able to submit sim- 

ulations in the same way that they would for a finite element 

simulation; the only difference would be the need to select the 

machine learning option. The results will also be displayed in the 
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Fig. 9. The histogram shows the scaled Jacobian distribution of the elements in the fine brain mesh in intervals of 0.1; over 90% of the elements have a scaled Jacobian over 

0.7. Further, the percent volume of mesh for each interval is listed on top of each bar: 69.2% of the mesh volume has a scaled Jacobian of greater than 0.9. 

Fig. 10. The histogram shows the scaled Jacobian distribution of the elements in the coarse brain mesh in intervals of 0.1; over 90% of the elements have a scaled Jacobian 

over 0.6. Further, 59.17% of the mesh volume has a scaled Jacobian of greater than 0.9. 

same way that they are currently displayed. From the user’s per- 

spective, the only change would be the time taken to run the sim- 

ulations. 

4.4. Limitations 

There are limitations of the current work. Mesh convergence is 

an ongoing effort with the soft nonlinear materials of the brain. 

Convergence can be tested on a number of different variables in- 

cluding displacements, pressures, and strains. Similar to another 

study [73] , 95th percentile MPS (MPS-95) has been used to test 

convergence; different brain resolutions have been tested for one 

of the validation cases and from the preliminary results it appears 

that the MPS-95 does not converge for all loading conditions. This 

is being investigated further; more details on this study can be 

found in Appendix section B.7. 

The accuracy of the brain meshes is yet to be determined; al- 

though the meshes are a good fit for the head generated by the 

avatar-based geometry creation, we only use a limited number of 

control points to create the custom meshes. As the custom meshes 

are created from the template meshes, features such as the size 

and shape of the sulci and gyri are based on the size and shape 

of the sulci and gyri in the template mesh and not on the indi- 

vidual’s brain surface. To determine if the morphed meshes are a 

good representation of an individual’s brain, another study will be 

necessary to compare the morphed meshes and MRI scans of the 
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same individuals. In future work, we aim to increase the personal- 

ization of computational brain models. 

Another limitation is that our current brain model uses only 

an isotropic material model. We only have the implementation of 

the Ogden and Neo-Hookean models along with viscoelasticity; we 

currently do not have the capability to include anisotropy. In the 

near future we plan on including embedded elements in order to 

model fiber tractography which will add anisotropy to the mod- 

els. Furthermore, our code works with full and reduced integration 

hex elements; implementation for shell elements to include falx 

and tentorium is still underway. 

5. Conclusion 

We present the Brain Simulation Research Platform, an easy-to- 

use service that can compute brain response and injury. The use 

of high-performance cloud computing makes the platform accessi- 

ble to any number of users with no capacity limit. By adding the 

functionality to directly input sensor data, we can predict brain in- 

jury caused by real-world impacts in a reasonable amount of time. 

We currently use finite element modeling as our basis for predict- 

ing injury; however, we are working on adding machine learning 

capabilities to reduce the computation time significantly. As the 

platform is already being used to run large-scale simulations, we 

would like to invite other research groups to use and contribute to 

the platform as well. With this platform, we hope to be one step 

closer to using brain models in clinical applications. 
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Appendix A. Additional details of platform architecture: 

A.1. Access and Security 

AWS Cognito scales to millions of users and supports sign-ins 

with social identity providers, such as Apple, Facebook, Google, 

and Amazon, and enterprise identity providers via SAML 2.0 and 

OpenID Connect. Once a user is created, they are assigned an 

account ID that is entered into Cognito as well as a ‘relational’ 

database. 

User permissions are also a critical part of the platform, and 

the permission construct is organized according to organizations, 

institutions, teams, groups, and individuals. The permissions were 

originally designed for principal investigators (PI) of research or- 

ganizations. A PI who runs a research group would often wish to 

grant different levels of data visibility to members of their research 

group. In addition, the PI may be running multiple studies at dif- 

ferent institutions, and the studies would require compartmental- 

ization and security. Thus, the PI would be assigned a ‘Level 300 ′ 
permission for their organization. The PI would be able to assign 

another Level-300 admin who could manage the data organization 

for the research laboratory. 

A.2. User Interface 

The web application runs on AWS Elastic BeanStalk, which en- 

ables scalability as additional users become active simultaneously. 

This means additional instances running the web application are 

dynamically created when the CPU usage becomes greater than 

80%. In addition, we have an API that would be useful for groups 

working on sensor technology, allowing for a seamless transfer of 

sensor data to the platform. 

A.3. Model creation 

First, a three-dimensional surface model of an individual is gen- 

erated using a two-dimensional picture of the individual’s face. 

This model is generated with the help of Avatar3D, a software 

toolkit that uses machine learning algorithms and machine vision. 

Fig. A.1 shows an example of surfaces generated using the technol- 

ogy. The platform uses the version without hair for processing. 

Next, the radial basis function approach [ 35 , 36 , 61 , 72 ] is used 

to map fine and coarse template finite element brain meshes (see 

Fig. A.2 ) to the target head geometry (in this case, the target is the 

head surface without the hair). The radial basis function interpo- 

lates the coordinates of the brain mesh for the target surface and 

provides a morphed mesh. Control points are selected in regions 

that define the structure of the head. The control points currently 

used can be adjusted if required; however, preliminary results are 

promising. 

A.4. Encrypted Data Storage 

As the simulation data is analyzed to present the user informa- 

tion back on the frontend, a database is important to search and 

query the data. Through experimentation with different types of 

databases, we found that a ‘relational’ database is best suited for 

the platform. We initially used a non-relational database but found 

that conducting queries to show data on the frontend severely 

slowed the responsiveness of the platform. This is because we 

would repeatedly look up one value from a table to get data from 

Fig. A.1. Head surface files created by Avatar SDK; one includes hair and shoulders, 

the other is a hairless version and only shows the head. The hairless version is more 

accurate and is therefore used for the generation of custom meshes for users. 
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Fig. A.2. The fine brain mesh (top) and the coarse brain mesh (bottom). A cut view shows different parts included in the meshes. These can be assigned different material 

properties if needed. 

another table. By switching to a relational database, we created 

pre-existing connections between collections of data, thereby mak- 

ing the queries faster. The different connections are formed by how 

data is queried on the frontend and what type of data can be sent 

into the system. 

The relational database schema is presented in Fig. A.3 . The 

schema defines the relationship between collections of data; each 

outline in the figure is referred to as a collection. A closer ob- 

servation of the ‘sensor details’ in the angular-acceleration col- 

lection shows that the collection contains a considerable amount 

of the information sent to the system when a simulation is sub- 

mitted. Connections can be observed between sensor details and 

other data collections with arrows indicating either ‘virtual rela- 

tion’ or ‘object’. The virtual relation arrows indicate connections 

that exist across different collections of data; for example, a virtual 

relationship is observed between ‘sensor details’ in the ‘angular- 

accelerations’ collection and ‘users’ in the ‘user-sensors’ collection. 

The object arrows link to data belonging to the same collection but 

is presented separately for clarity; for example, ‘players’ is linked 

with ‘sensor details’ and both belong to the angular accelerations 

collection. A careful observation of all the virtual relations reveals 

how different collections are connected. Different configurations of 

relations and collections could be made; however, the current for- 

mat has been tested extensively. 

The relational database used for the platform is MongoDB, 

which has different pricings for different numbers of connections 

per second to the servers. This is an important feature as simula- 

tions are scaled. For example, we have observed that for a single 

simulation, as many as four connections to the database servers 

may exist at a given instance of time, depending on several fac- 

tors. The goal is to minimize the number of simultaneous database 

connections to reduce cost. The number of database connections 

could be 40 0 0 for 10 0 0 simultaneous simulations. Therefore, care 

should be taken when ‘bursting’ simulations—if a sufficient num- 

ber of database connections are not paid for, errors could be gen- 

erated in the system. 

A.5. Simulation Execution 

Containerization: 

Owing to the complex nature of our code, building can be deli- 

cate and time-consuming. Several dependencies of the code require 

installation, and not all the dependencies are available on all oper- 

ating systems. Hence, to achieve a faster build that works across 

all platforms, we use Docker containers. Docker is an open-source 

platform that allows users to build, deploy, and run applications 

by packaging the code and its dependencies using images. Building 

our code on a docker image allows it to be deployed on any ma- 

chine or even a cloud computing system that has docker installed. 

Running an image creates a container, which is used to run the 

code. We have several images for different aspects of our applica- 

tion; hence, to create the final docker image, we use a multistage 

build. This ensures that the final image contains only the files nec- 

essary to run the code. 

Batch computing: 

Amazon offers a batch computing service (AWS Batch), which 

automatically allocates resources to jobs according to their require- 

ment. This feature enables users to submit several simulations at 

once on the platform, and the jobs receive instances based on pre- 

defined parameters. When multiple simulations (over 300) are up- 

loaded, our platform first creates a serverless compute function 

that preprocess all the files to identify accounts and group events 

together; at this point, the user can choose to remove any simu- 

lation that may have already been run. Submitting the simulations 

then spawns a batch job that divides the simulations across differ- 

ent job queues that are already set up. Currently, five queues are 

set up, and each queue can handle 300 jobs. Once the first queue 

reaches 300 jobs, the 301st job goes to the second queue, and so 

on. This process helps to reduce wait times for the jobs. When the 

user uploads less than 300 jobs, the jobs are automatically sent to 

the job queue; in this case, no batch job is created to divide the 

jobs among queues. 
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Fig. A.3. Entity relationship diagram (ERD) showing the relations between collections in our database. 

A.6. Postprocessing 

The post-processing stage uses several lambda functions (AWS 

Lambda); this is a scalable serverless compute service offered by 

AWS that can run a script when triggered. For example, when a 

new simulation is run, an output file containing all the injury met- 

rics is generated and uploaded to S3. Once this file is uploaded, a 

lambda function is triggered to update a summary file for the user 

with the injury results from that impact. The summary file is used 

for displaying all results on the player dashboard. 

In the near future, we plan to use step functions for post- 

processing. A step function is another service offered by AWS and 

can create a workflow for the lambda functions. This makes it pos- 

sible to visualize the process and track failed lambda functions. 

Currently, if a lambda function fails for any reason (such as a con- 

nection error), it is difficult to track the failed function due to the 

number of lambda functions. Thus, using step functions enables 

better error handling (e.g., by adding retry logics). 

Appendix B. Finite Element Code (FEMTech): 

We developed a custom, open-source nonlinear finite element 

code known as FEMTech (Finite Element Modeling Technology) to 

run brain simulations. The custom code is built on message pass- 

ing interface (MPI) to facilitate simulation runtime through parallel 

FEM calculations. Benchmarking tests were run to determine the 

improvement in runtime due to parallel processing; the results of 

the test are presented in Section 3.2 . 

The finite element code uses the updated Lagrangian method 

for an explicit dynamics scheme. Updated Lagrangian codes use 

equations that reference the mesh in the current time step. The 

finite element formulation is derived from the generalized momen- 

tum equations, including the momentum equation (equation (B.1)), 

traction boundary conditions (equation (B.2)), and interior continu- 

ity condition (equation (B.3)). Together, these are called the strong 

form equations: 

∂σ ji 

∂x j 
+ ρb i = ρ ˙ v i on � (B.1) 

n j σ ji = t i on �t i (B.2) 

n j σ ji = 0 on �int (B.3) 

where σ is the stress, ρ is the density, b is the body force, v is 

the velocity, � is the current domain, n is the unit normal, t̄ is the 

traction and � is the boundary. As the strong form equations can- 

not be directly discretized, the weak form equation is developed. 

∫ 
�

∂ ( δv i ) 
∂x j 

σ ji d� −
∫ 
�

δv i ρb i d� −
n SD ∑ 

i =1 

∫ 
�t i 

δv i t i d� + 

∫ 
�

δv i ρ ˙ v i d� = 0 

(B.4) 

This equation can also be written as the virtual power equation: 

δP = δP int − δP ext + δP kin = 0 ∀ v i ∈ u 0 (B.5) 
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where the virtual internal power is given by δP int = ∫ 
�

∂( δv i ) 
∂x j 

σ ji d�, the virtual external power is given by δP ext = 

∫ 
�

δv i ρb i d� + 

n SD ∑ 

i =1 

∫ 
�t i 

δv i t i d� , and the virtual kinetic power is given 

by δP kin = 

∫ 
�

δv i ρ ˙ v i d�. 

These equations can be found in nonlinear finite element mod- 

eling books [5] ; however, we have added them here for the 

reader’s convenience. The implementation of these equations is 

presented in Section B.4. Features of our code relevant to model 

validation are described in the upcoming sections. 

B.1. Reduced Integration 

The brain meshes of our platform are created using 3D hex el- 

ements. The most straightforward implementation for these ele- 

ments is the fully integrated scheme. While it has good accuracy, 

shear locking (when subjected to bending loads) and volumetric 

locking (when using nearly incompressible materials) make it an 

undesirable element to use. These problems can be avoided by us- 

ing an element with fewer integration points. An example is the 

reduced integration element that uses only one integration point. 

Consequently, the model runtime is significantly reduced because 

of the reduction in the number of calculations. This is a substan- 

tial advantage as brain simulations can often run for hours because 

of the small elements and near incompressible material properties 

involved. 

The shape functions used for implementing the reduced inte- 

gration element are given by the equation 

N j = 

1 

8 

(
1 + ξξj 

)(
1 + ηηj 

)(
1 + ζ ζj 

)
(B.6) 

where( ξ j , ηj , ζ j ) are substituted as combinations of ( ± 1, ± 1, 

± 1), and ( ξ , η, ζ ) represents the coordinates in the natu- 

ral coordinate system; because a single integration point exists, we 

can substitute ( ξ , η, ζ ) as (0, 0, 0). 
A disadvantage of using a reduced integration scheme is hour- 

glassing, which is a numeral instability that causes spurious defor- 

mation modes that can quickly destroy the solution. Four modes 

can arise because of hourglassing in each direction (12 in total). As 

these displacements are artificial, they are known as zero-energy 

modes. 

To prevent the mesh from encountering hourglassing, an anti- 

hourglass scheme is implemented. Hourglass shape vectors γ are 

used to determine the occurrence of hourglassing. If hourglassing 

is detected, an anti-hourglassing force is computed and added to 

the internal forces at the nodal level, thereby making the element 

stiffer. We use the implementation from the LS-DYNA theory man- 

ual [39] ; more details of this scheme can be found in the original 

research paper [11] . To ensure that none of the rigid body, normal 

strain, and shear strain modes are affected by this additional force, 

the hourglass shape vectors are formulated to be orthogonal to the 

linear velocity field: 

γαk = �αk − N k,i 

8 ∑ 

n =1 
x n i �αn (B.7) 

where � represents the hourglass base vectors ( Table B.1 ), and 

x represents the coordinates of the element in the current 

timestep. The anti-hourglassing force is calculated as: 

f k iα = a h g iαγαk , (B.8) 

where g iα = 

8 ∑ 

k =1 
˙ x k 
i 
γαk , a h = Q H Gρv 

2 
3 
e c/ 4 , ˙ x is the nodal velocity, 

Q HG is a constant (typically between 0.05 and 0.15), ρ is the el- 

ement density, v e is the element volume, and c is the speed of 

Table B.1 

Hourglass base vectors. 

α = 1 α = 2 α = 3 α = 4 

� j 1 1 1 1 1 

� j 2 1 −1 −1 −1 
� j 3 −1 −1 1 1 

� j 4 −1 1 −1 −1 
� j 5 −1 1 1 −1 
� j 6 −1 −1 −1 1 

� j 7 1 −1 1 −1 
� j 8 1 1 −1 1 

sound in the material. If no hourglassing occurs, g = 0, eliminat- 

ing anti-hourglassing forces. 

B.2. Ogden Hyper-elastic Model 

Since the brain bulk modulus is significantly higher than its 

shear modulus, the brain behaves like a nearly incompressible 

material. Hyper-elastic models are able to capture large deforma- 

tion mechanics for nearly incompressible materials, making them 

a suitable option to model the brain. Several head models have 

used the Ogden material model for the capturing the brain’s mo- 

tion [ 14 , 26 , 30 ]. To account for the rate dependence of the brain’s 

motion, a linear viscoelastic model is used as an addition to the 

Ogden model; this has been described further in the next section. 

As the brain has a small amount of compressibility, the volu- 

metric component of the strain energy equation is treated sepa- 

rately. 

W = 

3 ∑ 

i =1 

2 ∑ 

j=1 

μ j 

α j 

(
λ̄α j 
i 

− 1 
)

+ 

K 

2 
( J − 1 ) 

2 (B.9) 

W is the strain energy function; μ, α, and n are Ogden ma- 
terial constants; and K is the bulk modulus; the values of these 

constants are listed on the website at https://brainsimresearch.io/ 

code-details/v1.0 . λ̄ is the volumetric independent principal stretch 

calculated from the principal stretch λ as: 

λ̄ = 

λ

J 1 / 3 
, (B.10) 

where J is the element Jacobian. Cauchy stresses are calculated 

from the strain energy function using the following relation: 

σi j = 

λ1 

λ1 · λ2 · λ3 

∂W 

∂λ1 

b ( 
1 ) 
i 
b ( 
1 ) 
j 

+ 

λ2 

λ1 · λ2 · λ3 

∂W 

∂λ2 

b ( 
2 ) 
i 
b ( 
2 ) 
j 

+ 

λ3 

λ1 · λ2 · λ3 

∂W 

∂λ3 

b ( 
3 ) 
i 
b ( 
3 ) 
j 

(B.11) 

λ is calculated as the square root of the eigenvalues of matrix 

B, and b represents the eigenvectors of that matrix. By substitut- 

ing W from equation ( B.9 ) in equation ( B.11 ), we get the following 

equation: 

σpq = 

3 ∑ 

j=1 

[ 

1 

J 

2 ∑ 

i =1 
μi 

(
λ̄αi 

j 
− 1 

3 

(
λ̄αi 

1 
+ ̄λαi 

2 
+ ̄λαi 

3 

))
+ K ∗ ( J − 1 ) ∗ I 

] 

b ( 
j ) 
p � b ( 

j ) 
q (B.12) 

We then add the contribution of viscoelasticity to these 

stresses, the details of which are explained in the next section. 

B.3. Viscoelasticity 

The brain exhibits viscous behavior, i.e., the motion of the brain 

lags behind the motion of the skull. Thus, it is essential to in- 

clude a viscoelastic model when simulating the brain. Like sev- 

eral other research groups, we add viscoelasticity onto a hyper- 
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Box B.1. Explicit dynamic scheme used in FEMTech. 

elastic model [ 10 , 30 , 59 , 67 , 74 ]; however, certain groups only model 

the brain with a viscoelastic model [ 41 , 51 , 54 , 69 ]. 

Several implementations exist for viscoelasticity; we imple- 

mented a scheme that adds three-dimensional viscoelasticity at fi- 

nite strains [28] . We first calculate an internal stress variable (H) 

that uses information from the previous stress state and then adds 

it to the deviatoric stresses at the current time step. The equa- 

tions for the computation of the internal stress variable are in 

the time = 0 reference frame; thus, we first need to convert our 

Cauchy stresses ( σ ) to PK2 stresses (S). Once we add the contribu- 
tion of the internal stress variable to the deviatoric PK2 stress, we 

then convert it back to the Cauchy stress. 

H 

n +1 
j 

= e −( �t/τ j ) H 

n 
j + γ j 

(
1 − e −( �t/τ j ) 

�t/τ j 

)[
DEV S n +1 0 − DEV S n 0 

]
(B.13) 

DE V S n +1 = DE V S n +1 0 + 

N ∑ 

j=1 
H 

n +1 
j 

(B.14) 

de v ζ n +1 = F n +1 DEV S n +1 
(
F n +1 

)T 
(B.15) 

ζ n +1 = J n +1 
(

∂W 

∂ J 

)n +1 
I + de v ζ n +1 (B.16) 

σ n +1 = 

ζ n +1 

J n +1 
(B.17) 

The Cauchy and internal stress variables from this time step are 

then stored and used for the calculations in the next time step. 

B.4. Finite element code implementation 

Box B.1 shows the general implementation of the explicit dy- 

namics scheme in FEMTech. Implementation of the rigid body mo- 

tion and internal force computation can be found in Boxes B.2 and 

B.3 , respectively. 

B.5. Validation 

For each case, the head model was scaled according to the di- 

mensions provided in the respective reference papers. Further dis- 

cussion is provided below for each metric. 
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Box B.2. Calculation of velocity for boundary conditions. 

Box B.3. GetForce routine. 

B.5.1. Pressure 

We first compared pressure traces from Nahum [47] . The accel- 

eration curve for experiment 37 was used as input and was applied 

to the head CG. The output was calculated by averaging the pres- 

sure across a range of elements for each of five regions: frontal, 

parietal, occipital 1 and 2, and posterior fossa. The locations of the 

elements selected for the pressure calculation were based on fig- 

ures showing similar elements in the validation of another brain 

model [54] . The overall CORA rating for the Nahum case was 0.685 

(good). The comparison plots and CORA scores for each region can 

be found here: https://brainsimresearch.io/pressure-response . 

B.5.2. Brain Displacements 

We compared relative brain-skull motions obtained from the 

experiments of Hardy [ 21 , 22 ], referred to as group 1, and Alshareef 

[1] , referred to as group 2. For both groups, acceleration bound- 

ary conditions were applied to the head CG. Relative displace- 

ments were computed by subtracting the rigid displacement from 

the output nodes, which were the nodes closest to the location 

of the neutral density targets (NDT)/sonomicrometry crystals in 

the experimental studies. Eight cases were tested under group 1: 

two occipital impacts, one parietal impact, and five temporal im- 

pacts; four cases were tested under group 2: all temporal impacts. 

Detailed validation results for brain displacements are shown at 

https://brainsimresearch.io/brain- displacement- response . 

B.5.3. Brain Strain 

Next, we compared Green–Lagrangian strains to the experimen- 

tal data [76] . To compute strains, a tetra structure was created 

according to the locations of the NDTs in the brain. All elements 

identified as part of this structure were then used for the strain 

calculations by averaging their strains [76] . An example is shown 

in Fig. B.1 . All the brain strain validation results are available at 

https://brainsimresearch.io/brain- strain- response . 

B.6. Benchmarking 

We have compared our mesh validation results ( Table B.2 ) with 

other brain models that use the same CORA parameters; these in- 

clude the ADAPT model [34] , original KTH model [ 30 , 34 ] and the 

WHIM anisotropic model version 1.5 [75] . 

In addition, we are including two sample test cases that we 

tested on our models; these can be used for benchmarking other 

brain models. Both cases use a morphed brain mesh that is based 

on dimensions of the 50th percentile male head. The boundary 

conditions were applied to the CG with the skull kinematically 

coupled to it. For both cases the results presented are the 95th 

percentile MPS (MPS-95) curves in seven brain regions: Motor and 
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Table B.2 

Comparison of FEMTech CORA scores with other brain models. 

Test Case 

CORA scores 

FEMTech Coarse FEMTech Fine ADAPT KTH WHIM (v1.5) 

Displacement 

High Rate 

C064-T4 0.504 0.618 – – –

C288-T3 0.577 0.561 0.588 0.423 0.696 

C380-T1 0.683 0.611 0.694 0.56 0.693 

C380-T2 0.599 0.614 0.549 0.416 0.588 

C380-T3 0.715 0.684 0.65 0.503 0.651 

C380-T4 0.653 0.586 0.658 0.551 0.712 

C380-T6 0.678 0.637 0.625 0.511 0.772 

C393-T3 0.633 0.642 0.555 0.5 0.704 

Displacement 

Mid Rate 

v20dt60 0.614 0.572 – – 0.819 

v20dt30 0.555 0.496 – – 0.856 

v40dt60 0.65 0.564 – – 0.826 

v40dt30 0.624 0.49 – – 0.77 

Pressure Frontal 0.899 0.87 0.922 – –

Parietal 0.648 0.673 0.995 – –

Occipital 1 0.66 0.696 – – –

Occipital 2 0.591 0.609 – – –

PF 0.626 0.594 0.859 – –

Strain C288-T3 C1 0.811 0.679 0.712 0.643 0.808 

C288-T3 C2 0.831 0.818 – – –

C380-T1 C1 0.852 0.707 0.874 0.874 0.782 

C380-T2 C1 0.844 0.795 0.766 0.76 0.721 

C380-T3 C1 0.845 0.868 0.758 0.74 0.9 

C380-T4 C1 0.74 0.91 0.721 0.696 0.961 

C380-T6 C1 0.745 0.909 0.68 0.62 0.893 

C393-T3 C1 0.9 0.839 0.832 0.913 0.802 

Fig. B.1. Based on the neutral density target (NDT) locations in the experiment, a 

tetra structure is created in the brain mesh. The elements used for strain computa- 

tion were then identified as all elements that intersect with or lie inside the tetra 

structure. 

sensory cortex, brain stem, cerebellum, frontal lobe, parietal lobe, 

occipital lobe and temporal lobe. 

Case 1: In this case we apply a rotational acceleration about 

the X axis. Fig. B.2 shows the skull before and after the simula- 

tion. Fig. B.3 shows the regional MPS-95 plots as well as the input 

boundary conditions. 

Case 2: Here we apply a combined rotational acceleration about 

the Y and Z axes. Fig. B.4 shows the skull before and after the sim- 

ulation. Fig. B.5 shows the regional MPS-95 plots as well as the 

input boundary conditions. 

B.7. Convergence Testing 

We have carried out convergence testing using the 95th per- 

centile Maximum Principal Strain metric. The case tested was 

a relative brain displacement validation case (C380-T4). Fig. B.6 

shows the 95th percentile Maximum Principal Strain (MPS-95) for 

three mesh resolutions: coarse (17,030 elements), fine (105,520 

elements) and a newer super-fine mesh (844,160 elements). The 

trend shows that the coarse and fine brains have not converged. 

We are additionally running another finer mesh (6,753,280 ele- 

ments) to test the convergence of the super-fine mesh. However, 

Fig. B.2. Case 1: a) Skull surface before rotation. b) Skull surface after rotation. 
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Fig. B.3. Input load curve and MPS-95 curves for the coarse and fine meshes morphed to dimensions of the 50th percentile male head model for benchmarking case 1. 

Fig. B.4. Case 2: a) Skull surface before rotation. b) Skull surface after rotation. 
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Fig. B.5. Input load curve and MPS-95 curves for the coarse and fine meshes morphed to dimensions of the 50th percentile male head model for benchmarking case 2. 

Fig. B.6. MPS-95 results for convergence testing of C380-T4 relative brain-skull displacement validation case. 
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the simulation takes a significantly long amount of time to run 

to completion ( ∼300 h using 40 processors). These meshes may 
be added to the platform as alternatives to the coarse and fine 

meshes; however the estimate to run one simulation using the 

super-super-fine mesh is $10 0 0, which is not feasible for scalable 

modeling. 

The value of the coarse mesh lies in its fast runtime; it is a use- 

ful mesh when determining which impact in a long list of impacts 

results in the largest strains (or other such metrics). These cases 

can then be rerun using higher resolution meshes to get accurate 

results. It is also the preferred mesh when testing various features 

of the platform such as scalability. 

It should also be noted that the resolution the coarse brain 

mesh is over four times the resolution of the original KTH model 

[30] which has been widely used in literature. By using the same 

material properties as the KTH model, we were able to get accept- 

able validation results. 

Appendix C. Platform Demonstration: 

A test case is used to demonstrate how a user can create a per- 

sonal mesh, submit one or multiple jobs, and access results. 

Create profile and mesh: 

The user uploads a picture of their face on the profile page 

( Fig. C.1 ), and the platform creates and stores a custom mesh for 

the user for future use. Where the user does not intend to upload 

an image or where several cases are being run for which the ac- 

celeration data have been collected previously but no associated 

account/user exists, the platform uses the default meshes created. 

Users can see the avatar model created along with the brain by 

clicking the inspect button. An example is shown in Fig. C.2 . 

Upload sensor data: 

By navigating to the team dashboard, users can submit a new 

job (see Fig. C.3 ). They can select the sensor company that col- 

lected the impact data, the mesh, and instance type, as shown in 

Fig. C.4 . Our database is then searched for the account to see if 

a mesh exists (otherwise, the default mesh is used) and if that 

specific event has already been simulated, in which case users can 

then choose to remove the simulation. 

Fig. C.2. Personalized model and brain mesh created for one user. This model is 

available for all users and can be found by clicking the inspect button on the cus- 

tom mesh generation portal. 

Alternatively, the user can upload multiple simulations at once; 

the simulations will be automatically sorted into groups according 

to the sensor ID, as shown in Fig. C.5 . The user can also automati- 

cally remove simulations that have already been run. 

Monitoring: 

Once the job is submitted, the user will be returned to the team 

dashboard where they can monitor the job status. 

The job is highlighted in orange ( Fig. C.6 ) when it is running. 

Once the job is fully run, the highlight turns green ( Fig. C.7 ). 

Visualize results: 

Users can then visualize the results for a player/sensor ID by 

clicking on it from the team dashboard. The user is taken to the 

player dashboard after clicking ( Fig. C.8 ). 

The dashboard displays an interactive image of the brain. The 

strain events for the user are segregated by the region they occur 

Fig. C.1. Custom mesh creation portal where users can upload a picture of their face and generate a 3D avatar and brain mesh. The meshes are available in VTK and INP file 

formats. 
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Fig. C.3. Team dashboard that will be visible to any user on the team. All simulations corresponding to the team will be shown here. The red box highlights the button that 

takes a user to the job submission portal. 

Fig. C.4. Brain submission portal. Users can choose the sensor company, mesh type and instance type for their simulation. They can then upload the acceleration data. 

in and are also size and color-coded by their magnitude. By hov- 

ering over a region in the major functional region bar graph, the 

respective area is highlighted, and only strains in that region are 

shown. Fig. C.9 shows that the strain event occurred in the frontal 

lobe. 

Other plots show the 95th percentile Maximum Principal 

Strain (MPS-95) with respect to different parameters; these 

plots are linked such that hovering over one event in one 

plot will highlight the corresponding event in the other plots 

( Fig. C.10 ). A box containing the event ID also appears; this in- 

formation can be especially useful when the user has multiple 

events. 

Additional results for this event can be found on the brain sim- 

ulation details page ( Fig. C.12 ), which can be accessed by selecting 

the ‘view details’ option on the player dashboard ( Fig. C.11 ). 

The brain simulation details page shown in Fig. C.12 contains 

several plots and results: 

• Two plots show the input accelerations used as boundary con- 

ditions. 
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Fig. C.5. Job submission portal with multiple jobs uploaded at the same time. Users can choose to remove any simulations they don’t want to run by hitting the cancel 

button under cancel simulation. 

• A video shows the skull rigid motion; the user can upload a 

real-time video of the impact, if any. These videos can be syn- 

chronized, and the real and simulated head motion can be ob- 

served side-by-side. 
• Another video shows the internal brain response to the impact. 
• Different injury metrics are also displayed in a plot (see 

Fig. C.13 for all plots). 
• Finally, a plot compares the MPS to a standard curve (T. [66] ); 

this plot can be used to determine if any mild TBI exists for 

that event. In this case, the MPS value intersects with the curve 

at almost zero risk, implying that the chance that a mild TBI 

occurred is low. 

Fig. C.13 presents plots showing results from different injury 

metrics calculated for each simulation. These plots include: 

• A ranked MPS plot; this is useful when identifying the 95th per- 

centile maximum principal strain (MPS). 

• An image of the brain showing the element that experienced 

the largest MPS. 
• An image of the brain showing the elements that exceed 15% 

tensile strain (CSDM-15). 
• An image of the brain showing the elements that exceed an 

MPSxSR (product of maximum principal strain and strain rate) 

of 28s −1 ; in this case none of the elements crossed the thresh- 
old. 

• An image of the brain showing the elements that exceed the 

95th percentile maximum principal strain at some point during 

the simulation (MPS-95). 
• An image of the brain showing the elements that exceed 30% 

tensile strain (CSDM-30); in this case, none of the elements 

crossed the threshold. 

The user can also view the results of the entire team at once 

on the team analytics page, which can be accessed from the team 

dashboard ( Fig. C.14 ). 
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Fig. C.6. Team dashboard after a job is submitted and is running. The red box shows the number of pending simulations. The pending simulations are also highlighted in 

orange on the dashboard. 

Fig. C.7. Team dashboard after job finishes running. The red box shows the pending simulations as zero and completed simulations as one. The completed simulations are 

highlighted in green on the dashboard. 

The team analytics page ( Fig. C.15 ) appears similar to the player 

results page but contains additional plots: one that ranks all the 

accounts according to the 95th percentile MPS and one that shows 

the time at which the 95th percentile MPS value occurred for each 

simulation. This plot is linked with the other MPS vs acceleration 

plots ( Fig. C.16 ). 

The user can access the individual results for any event by se- 

lecting the event ID when highlighted in the plot ( Fig. C.16 ). This 

selection leads to the page and results shown in Fig. C.12 . Users 

can also download the results in a clinical style report for a single 

player from the player dashboard or for the entire team from the 

team analytics page. 
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Fig. C.8. The player dashboard shows results of all events experienced by the player. The individual plots have been explained in detail in other figures. 

Fig. C.9. The major functional brain regions plot shows the number of events occurring in each of the brain regions. Users can select a specific brain region to visualize 

strains only in that region. By selecting “front” in the major functional brain regions plot, the frontal lobe and all strains in the frontal lobe are highlighted. 
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Fig. C.10. The events in the “95th Percentile MPS vs Maximum Linear Acceleration”, the “95th Percentile MPS vs Maximum Angular Acceleration” and the “Brain Loading 

over Time” plots are linked. By hovering over a plot point in any of these plots, the corresponding plot point highlights in the other plots. 

Fig. C.11. The magnitude of the strain event is shown on a scale depicting the level of severity. Further information for this simulation can be found by clicking ’view details’; 

this takes users to the “Brain Simulation Results” page. 
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Fig. C.12. All results for any one simulation along with the player information can be found on this page. This includes the input acceleration plots, a video showing skull 

kinematics that can be synced with a video of the actual impact, a video showing the brain response to the impact, several plots showing various brain injury metrics and 

one other plot quantifying the risk of a mild TBI from the impact. 
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Fig. C.13. Different injury metrics calculated for every simulation. This includes i) a ranked MPS plot; ii) the element that has the largest MPS; iii) elements that exceed 15% 

tensile strain (CSDM-15); iv) elements that cross 28s −1 threshold when computing product of MPS and strain rate (MPSxSR-28); v) all elements that exceed 95th percentile 
MPS (MPS-95); vi) elements that exceed 30% tensile strain (CSDM-30). 

Fig. C.14. Team analytics can be accessed by clicking the ’Team Stats’ button highlighted with the red box. 
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Fig. C.15. Results for all simulations for a team are shown on the team analytics page. These plots are similar to the plots from the player dashboard but also include a 

ranked 95th percentile MPS vs sensor IDs plot and a 95th percentile MPS vs time plot. 
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Fig. C.16. The events in the “95th Percentile MPS vs Maximum Linear Acceleration”, the “95th Percentile MPS vs Maximum Angular Acceleration” and the “95th Percentile 

MPS vs Time” plots are linked. By hovering over a plot point in any of these plots, the corresponding plot point highlights in the other plots. Additionally, a box showing the 

event details appears by the plot point and by clicking on the event ID, the user will be taken to the “Brain Simulation Results” page for that simulation. 
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