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Background and Objectives: Driven by the risk of repetitive head trauma, sensors have been integrated
into mouthguards to measure head impacts in contact sports and military activities. These wearable
devices, referred to as “instrumented” or “smart” mouthguards are being actively developed by various
research groups and organizations. These instrumented mouthguards provide an opportunity to further
study and understand the brain biomechanics due to impact. In this study, we present a brain model-
ing service that can use information from these sensors to predict brain injury metrics in an automated
fashion.

Methods: We have built a brain modeling platform using several of Amazon’s Web Services (AWS) to
enable cloud computing and scalability. We use a custom-built cloud-based finite element modeling code
to compute the physics-based nonlinear response of the intracranial brain tissue and provide a frontend
web application and an application programming interface for groups working on head impact sensor
technology to include simulated injury predictions into their research pipeline.

Results: The platform results have been validated against experimental data available in literature for
brain-skull relative displacements, brain strains and intracranial pressure. The parallel processing capabil-
ity of the platform has also been tested and verified. We also studied the accuracy of the custom head
surfaces generated by Avatar 3D.

Conclusion: We present a validated cloud-based computational brain modeling platform that uses sensor
data as input for numerical brain models and outputs a quantitative description of brain tissue strains
and injury metrics. The platform is expected to generate transparent, reproducible, and traceable brain
computing results.
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1. Introduction the modeling community has failed to transition the technology ef-

fectively into medical diagnostic tools (e.g., for physicians and ath-

Brain modeling has been an active area of research in the last
40 years, with millions of dollars invested by the US government.
It is difficult to determine when the first US government grant was
awarded specifically for brain modeling, but notable related studies
were two seminal works from Chan in 1974 and Ward and Thomp-
son in 1975 [6,62]. Since those early efforts, brain modeling has
been driven by advances in computer architectures and availabil-
ity, brain imaging, experimental measurements, and injury biome-
chanics. In the future, the field may be further transformed by arti-
ficial intelligence and deep learning [15,65,70]. Despite the steady
increase in the capabilities of computational brain biomechanics,

* Corresponding author: Reuben H. Kraft, 320 Leonhard Building, University Park,
PA.
E-mail address: reuben.kraft@psu.edu (R.H. Kraft).

https://doi.org/10.1016/j.cmpb.2023.107470
0169-2607/© 2023 Published by Elsevier B.V.

letic trainers). In addition to regulatory approvals, a primary reason
for the low application of brain modeling is the lack of access and
technical abilities to perform high-performance numerical simula-
tions. Meanwhile, the modeling community has consistently pri-
oritized linking computationally predicted metrics, such as strain,
with the incidence of injury [16,20,25,64,68,70] that may be clini-
cally transformative. The modeling community should make a bet-
ter effort at expanding the usage and accessibility of their tools to
fully elucidate the true value and efficacy of the tools.

Wearable sensor technology aimed at measuring head impact
kinematics has advanced alongside brain modeling [24,32,50]. Re-
cently, the use of instrumented mouthguards has been a major fo-
cus in the head injury biomechanics community. Similarly, sensor
technology is also being developed to measure blast overpressure
in military environments [9,45]. With the steady increase in the
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number of wearable sensors for measuring head impact kinematics
[4,8,12,19,23,25,27,29,33,38,40,48], the modeling community could
help transform the collected sensor data into predictive measures
of intracranial brain strain which in turn may be useful to med-
ical professionals. One future potential scenario is that trustwor-
thy wearable sensor data combined with predictive brain simu-
lation data could be used for diagnosing traumatic brain injuries.
If medical practitioners intend to combine wearable sensors and
brain modeling (referred to as sensors + simulations), certain criti-
cal practical and physiological questions must be examined, includ-
ing the following:

e What is the accuracy of wearable sensor data? What is the as-
sociated error?

e How can individual-specific computer models be created at
scale? There could be thousands of impacts globally at a given
time. As practitioners would ideally desire prompt simulation
feedback, how can numerous simulations be run simultane-
ously?

e Can the modeling and simulation be presented in a way that

practitioners find useful? Stress and strain contours are useful

to an engineer, but they can be difficult to understand for non-
engineers.

What are the critical metrics to examine? Do the metrics hold

any clinical relevance given the uncertainty and wide range of

biovariability (material properties, geometry, injury tolerances,
etc.)?

o How is the data organized for rapid identification of the most
critical information?

e How can computational modeling experts increase collabora-
tion, which will drive improvement in the quality of the mod-
els?

This paper aims to present a new open-source cloud-based
platform, referred to as the Brain Simulation Research Platform, for
brain modeling and simulation. The platform may help to answer
a few of the questions raised above. We present a cloud-based ar-
chitectural framework that can simultaneously run thousands of
individual-specific brain simulations. Creating such a framework
does not address questions related to clinical relevance, but the
framework can be used to create large, diverse datasets (big data),
where relationships might be identified and yield a capability of
using sensors paired with simulations for diagnosing brain injuries.

This paper primarily focuses on the development and archi-
tectural components of the platform. In Section 2, we provide
the technical details of the framework design and describe the
platform in detail. We present results of using the platform in
Section 3, followed by discussions and scope for future research
on the platform in Section 4. Finally, we state our conclusions in
Section 5. Due to the length restrictions of the journal, extensive
details about the platform can be found in the Appendix. Readers
are encouraged to look at Appendix C for a demonstration of the
platform with a test case.

2. Platform details
2.1. Broad overview

The Brain Simulation Research Platform is hosted at https://
www.brainsimresearch.io and was built using Amazon Web Ser-
vices (AWS). The current state of the platform is a result of several
iterations of computing architectures and tools that have been ex-
plored over the last few years. Fig. 1 illustrates the general system
design, which includes three important pillars: a persistent inter-
face, a persistent database for storage, and flexible or temporary
computational capability.
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Users can interact with the system through a persistent ‘fron-
tend’ web application, from which they can interact with the data
and run individual-specific brain simulations with just a few clicks.
An application programming interface (API) also exists to provide a
‘command-line’ option for submitting finite element simulations or
retrieving deep-learning and artificial intelligence predictions. The
frontend web application and API server are referred to as ‘persis-
tent’ (continuously operational).

To store all the data and access it quickly, the database (i.e.,
the ‘backend storage’) is also a persistent component of the sys-
tem. Items such as simulation results, user data, and finite element
meshes are files that need to be sent to or retrieved from a long-
term storage system.

The final component is the temporary compute framework (i.e.,
the ‘backend computing’). The cloud offers ‘elasticity, meaning
computers (also referred to as instances) can be started and shut
down dynamically. Elasticity saves cost and enables the platform to
handle the computing load. Amazon offers many types of instances
(AWS EC2) that can be used for high-performance computing.

2.2. Detailed technical description

Any study using the platform is deemed IRB (Institutional Re-
view Board) exempt by the Pennsylvania State University as long
as de-identified sensor data is used (approved via Penn State IRB
STUDY00017175). The components comprising the Brain Simula-
tion Research Platform are presented in Fig. 2, which shows that
different AWS services are used for a) access and security, b)
user interface and application programming interface, c) finite el-
ement model creation, d) encrypted data storage, e) simulation
pre-processing, f) simulation execution, and g) simulation post-
processing. The components are assembled such that the system is
highly scalable and cost effective. Each subcomponent is described
below.

2.2.1. Access and security

Access to the system is controlled by AWS Cognito, a service
that enables user sign-up, sign-in, and access control. More details
can be found in the appendix Section A.1.

2.2.2. User interface

The user interface is a progressive web application written in
React.js with Redux (JavaScript Redux); hence, the interface works
on desktop, tablet, and mobile hardware. Additional information
about the interface is available in the appendix Section A.2.

2.2.3. Model creation

Creating a brain mesh is time-consuming because of the com-
plexity of the structure [3,42]. An objective of this platform is to
provide a process that enables automatic generation of individual-
specific brain meshes without the need to manually re-create a
mesh each time. This objective is achieved by first creating a 3D
head surface of the user with technology developed by Avatar SDK
using a picture of their face. This is followed by the generation
of a custom mesh by morphing the template brain mesh to the
head. The template brain meshes (“coarse” and “fine”) have been
created using 3D geometry from a male head model (https:
[[www.turbosquid.com/3d-models/male-head-3d-model/701148,
https://blog.turbosquid.com/turbosquid-3d-model-license/). ~ The
morphing technique uses a radial basis function [57] to fit the
brain mesh to the user’'s head shape and size. The individual
specific meshes are generated fairly quick; a user can create the
mesh in a few minutes and it is then stored and can be used for
any subsequent simulations for that user.

This two-step process is presented in further detail in the ap-
pendix (Section A.3). The entire process of the custom mesh gen-
eration is illustrated in Fig. 3.
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Fig. 1. Persistent and temporary framework structure. The frontend and the database are persistent, whereas the compute capability is temporary i.e. the instances are
generated only when simulations are submitted. The computations are also scalable, so multiple instances can be generated at the same time if multiple jobs are submitted.
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Fig. 2. System design showing different services used for different components of our platform. We use AWS cognito for user sign-in, AWS elastic beanstalk for the frontend,
AWS lambda functions for different pre and post processing steps, AWS batch for job scheduling and AWS S3 and mongoDB for data storage.

2.2.4. Encrypted data storage

Owing to the potentially sensitive nature of the data, we aim
to provide a platform that is compliant with the Health Insur-
ance Portability and Accountability Act (HIPAA). Although HIPAA
compliance is not claimed (nor is the system a medical device),
the system employs best practices for encrypted data storage and
database tools that enable rapid data access and reporting. We use
MongoDB to manage the database for the platform. Additional de-
tails about data storage for our platform are presented in the ap-
pendix (Section A.4).

2.2.5. Pre-processing of simulations

When a simulation is submitted, several actions are taken prior
to running the simulation. First a check is performed to identify an
existing simulation: each impact is assigned a unique ID using the

sensor ID and the time of impact which is resolved down to mil-
liseconds. These impacts have unique time traces of accelerations
that are used as boundary conditions. The platform uses serverless
lambda functions to determine if a directory exists for that impact
based on this ID. If no directory exists, one is created for the im-
pacts to store the meshes for the user and all the relevant results.
Based on the results of the check, users can choose to either cancel
that simulation or overwrite the results.

Next, the size of the job list is checked. If the size is less than
300 simulations, then serverless lambda functions are used to fur-
ther preprocess and submit jobs. If the size is greater than 300,
then a batch process is created to monitor job flow. If an account
ID exists, then the mesh is identified and used in the simulation; if
no account ID exists, then a new account is created. At the time of
submission, the user can upload a profile picture of an individual
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Fig. 3. Process of generation of custom brain mesh: once user uploads a selfie, it is first converted to a PLY file and then an STL file. A python script is then used to extract
control points from the STL file and generate a parameters file. The parameters file is used as input for the Radial Basis Function (RBF) code and a custom brain mesh is
created for the user and saved in the VTK file format. We convert the VTK to an INP format which can then be directly used in our finite element code.

wearing the sensor, and a custom finite element mesh is created
and used in the simulation. Once all the checks are performed, a
custom input file is written based on the sensor brand and simu-
lation type. Finally, the mesh is saved, and the initial file is sub-
mitted. Custom materials files can also be specified, but all simu-
lations are currently assigned the same material properties.

2.2.6. Simulation execution

The calculation of brain response and injury is carried out
on a non-linear finite element code that has been developed for
this platform. This code was developed using parallel computing
techniques to improve runtime. Details about the formulation and
implementation of the code can be found in Appendix B. The
finite element code can take kinematic boundary conditions as
well as pressure conditions. This enables overpressure simulations
[7,55,56] to be conducted as well. In order to easily build the code
on any instance, docker containerization along with AWS’s Elastic
Container Registry (ECR) are used. This enables a cross platform
computing environment that can be used on many different types
of compute instances.

AWS batch processing is used to automatically allocate in-
stances to jobs when running multiple simulations at the same
time. This enables scalability of the platform as AWS does the dy-
namic load balancing to efficiently run several simulations at once.
The platform employs both ‘on-demand’ and ‘spot’ instances to
further balance computing time versus cost. More information on
containerization and batch processing is available in the appendix
Section A.5.

2.2.7. Post-processing of simulation

To avoid moving large files across the cloud infrastructure, we
use the simulation batch instance to post-process the results. Once
the results are obtained in the desired format, they are transferred
for storage into S3, a storage service offered by AWS. The results
are then dynamically shown on the front-end web app for the user
to visualize. Post-processed results are also available via the APIL
Further details about post-processing can be found in the appendix
(Section A.6).

3. Results

As this platform relies on a custom-built finite element code,
results are presented pertaining to its accuracy and performance.

3.1. Verification and validation

We rely on a new open-source finite element code, FEMTech
(https://github.com/PSUCompBio/FemTech), and a new set of open-
source brain and skull finite element meshes (https://github.com/
PSUCompBio/brain-meshing). Hence, our verification and valida-
tion (V&V) strategy is critical to examine.

For verification, we compared single and simple multi-element
finite element problems with commercially available and widely
accepted codes, such as Abaqus and LS-DYNA. We compared the
models in tension, compression, and shear for relevant material
models. Our verification results are shown on the Brain Sim-
ulation Research Platform website at https://brainsimresearch.io/
verification.

Our validation strategy examines pressure, relative displace-
ments between the brain tissue and skull, and intracranial strain
using a quantitative comparison technique (i.e., Correlation and
Analysis (CORA) [58]) to test the predictive capability of the model.
The recommended settings for each metric [17] were used to eval-
uate CORA ratings. Each validation metric is presented in detail in
the appendix Section B.5. Summary CORA scores for all metrics
are presented in Fig. 4 and Fig. 5. For all validation cases for both
meshes, the CORA ratings were above the marginal 0.26 value, and
most of the cases were in either the ‘fair’ or ‘good’ categories.

3.2. Processing speed on AWS

The computation time of a simulation can differ significantly
depending on the type of instance and number of processors used.
To compare the simulation speed across different instances offered
by AWS, we conducted a speed benchmarking test. Fig. 6 illustrates
the computation time to run a sample job on different AWS in-
stances while using a different number of virtual CPUs (vCPUs).
This sample job has a total run time of 49.6875 ms (milliseconds)
and uses the coarse brain with reduced integration elements. The
estimate time step for the simulation using an explicit dynamics
solver is 1.78e76 s. It should be noted that in we are only con-
sidering the actual runtime for the simulations; the pre and post-
processing times are excluded.

The instances tested were C6g (AWS Graviton2 based on 64bit
Arm), C6i (3rd generation Intel Xeon Scalable processors), C5 (2nd
generation Intel Xeon Scalable processors), C5a (2nd generation
AMD EPYC processors) and C5ad (2nd generation AMD EPYC pro-
cessors with additional local SSD storage). The secondary portion
of the instance name contains an “nxlarge”, which indicates that
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the number of vCPUs (threads) used are “n” times 4 (this number
corresponds to the “large”); therefore, a 4xlarge instance uses 16
vCPUs. All these instances are recommended by AWS for compute-
intensive workloads

The different instance types can be compared by observing
their performance while using 4xlarge instances. C6g.4xlarge takes
the shortest amount of time: ~24 s, whereas C5ad.4xlarge takes
the longest amount of time: ~39 s. An observation of the C6g and
C5a instances shows that when using 4 vCPUs, the job took longer
to run on the C6g instances; however, when comparing the run-
times of using 16 vCPUs, the job on C6g ran faster than that on
C5a. Hence, depending on how many vCPUs are being used, the
optimal instance type may change.

When comparing the performance of one instance using a dif-
ferent number of vCPUs, as expected in most cases, the runtime
reduced when the number of vCPUs was increased. Although there
was significant improvement when moving from 4 C6g vCPUs to 16
C6g vCPUs (~3.5 times), moving from 16 to 64 C6g vCPUs yielded
a smaller improvement (~1.2 times). Meanwhile, in the case of C5a
instances, when the number of vCPUs was increased from 4 to
16 and then from 16 to 64, similar improvements were observed

(~2.4 times). However, increasing from 64 to 96 vCPUs for C5a in-
stances yielded an increase in runtime. We suspect that this oc-
curred because of the increase in the communication time between
vCPUs. Hence, simply increasing the number of vCPUs does not al-
ways lead to faster simulations.

We also ran the same test case on Pennsylvania State Univer-
sity’s high-performance computing system ROAR using 16 2.8 GHz
Intel Xeon processors on one node; the job took 34 s to run. Aver-
aging all four AWS processor runtimes corresponding to 16 vCPUs,
we obtained approximately 30 s, which is comparable to ROAR.

3.3. Accuracy of avatar 3D surfaces

We have conducted a study involving 24 participants to test the
accuracy of the head surfaces generated using Avatar 3D. First, we
needed a reference surface to compare with. This reference head
surface was created by generating a point cloud of the head using
laser scanning. Avatar 3D head surfaces were then created for the
same users. Both surfaces were transformed to align in the same
reference frame (see Fig. 7).



R.R. Menghani, A. Das and R.H. Kraft

1.2

FemTech Run Time RI (min)

=}
~

=}
N

\@qu 6 M\'“q \6*\2“q 5 M\a(q

War9® Anare®
o9 69° 69

5o *\'\(9

Computer Methods and Programs in Biomedicine 233 (2023) 107470

]’m

;,qz*‘a‘g 58 anese® Cgaw\agc A2 qc AN 9 c o a0

Fig. 6. Time taken to run sample job on different instances and using different number of vCPUs. Overall, the speed improves when using more processors except in the
case of C5a instances when going from 64 to 96 vCPUs. On average when using 16 vCPUs, the job takes ~30 s to run.

a) b)
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Next, a basis was required for comparison of both surfaces. For
3D mesh comparison, this means ensuring that there is some one-
to-one correspondence between the two meshes. There are sev-
eral ways to generate this correspondence; we opted for the ico-
sphere mesh projection technique to create corresponding vertices
on both meshes.

Once the basis was created we compared both surfaces us-
ing the Standard Hausdorff Distance (SHD). The Hausdorff distance
equation for a point p on the AvatarSDK mesh given mesh M which
represents the scanned mesh is shown in Eq. (1). The algorithm
searches the entire mesh M for point p’ which is the closest point
to p based L2 norm (Euclidean distance).

SHD(p, M) = mm Hp p H (1)
Fig. 8 shows the results for each participant based on what per-
centage of vertices were within 5 mm, 10 mm and 15 mm. On av-
erage, 57% of vertices were within 5 mm SHD, 78% of vertices were
within 10 mm SHD and 87% of vertices were within 15 mm SHD.

4. Discussion

Given the prevalence of head injury in contact sports and the
military, TBI has become a serious concern. This has led to the de-
velopment of sensors that make it possible to collect impact data
and use that data for predicting brain injury. To automate the pro-
cess of obtaining computational brain injury results, we created
The Brain Simulation Research Platform that is a cloud-based brain

modeling service that can simulate any head impact event using
impact data collected by sensors. The platform is open source to
allow for collaborations with other researchers. The platform com-
bines technology from brain biomechanics, wearable sensors, and
cloud computing. Key features of the platform include:

e A custom explicit dynamic nonlinear finite element code that
requires no licensing. The code is built with message passing
interface (MPI) to enable parallel computing.

A verification and validation pipeline that enables brain simu-
lation regression testing as code changes are made.
Individual-specific automatic custom brain mesh generation
based on Avatar technology.

Scalable computing i.e., multiple simulations can run simulta-
neously. We have successfully run 50,000 simulations in about
24 hrs.

o A user-friendly frontend dashboard that shows post-processed
results in an organized format. Reports of the results can also
be downloaded.

The ability to read data from different sensor companies includ-
ing Hybrid III data format.

A machine learning toolkit that trains models based on simula-
tion results and automatically computes deep-learning predic-
tion for each simulation.

It must be noted that a similar open-source platform that also
models the brain exists but deals with brain network models
[52] instead, making this the first platform of its kind.

Given that our platform cuts across multiple research areas, it is
tricky to draw comparisons with other research in the field. Hence,
we section our discussion to enhance our overall remarks about
our platform as well as to compare our work with other research.

4.1. Custom mesh generation

Research suggests that anatomically accurate brain models have
better biofidelity [34]. Brain meshes for FEM simulations have been
created using several different techniques: using the average of
MRI (Magnetic Resonance Imaging) scans of several brains [44] or
MRI scans of an individual with a healthy brain [2,10,14,53,69] by
a voxel-based mesh generation technique or by using morphing
techniques to convert a template brain mesh into a subject specific
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Fig. 8. Bar plot showing the percentage of vertices within 5 mm, 10 mm and 15 mm Standard Hausdorff Distance (SHD).

brain mesh [18,37,43,46]. Given the demands of our application,
we used the second technique for creating user-specific meshes.
We first create a head surface for each user with technology from
Avatar 3D and then morph the template brain mesh to fit this sur-
face. The term "skull adjusted brain mesh" can be used to describe
this process. This terminology accurately reflects the fact that a
generic brain model is being adjusted to fit the shape of a user’s
skull, as outlined in the avatar processing in Section 2.2.3. The as-
sumption that the brain shape follows the skull shape is based on
previous studies [63], but it warrants further research.

4.2. Computational model

Unlike several other research groups that use commercial tools
to run brain models, we created a physics-based nonlinear finite
element analysis code to calculate the brain’s response to impact
events. This was essential to avoid paying license fees incurred by
using commercial tools for large-scale simulations. Moreover, cre-
ating our own code provides us with the option to customize our
model with desired features.

Our model uses an Ogden hyper-viscoelastic material model for
the brain, with parameters from literature [30]. Before selecting
this model, different material models and parameters were tested
on validation cases. Similar validation results were also obtained
using a Kelvin-Maxwell viscoelastic material model with parame-
ters from the SIMon model [54]. However, the Ogden model with
viscoelasticity has a more straightforward implementation. We also
considered the skull as a rigid body, enabling us to apply the input
sensor accelerations to the CG for determining the skull motion.

Along with the code, we also created two types of brain
meshes: a ‘coarse’ mesh that contains 17,030 elements and a ‘fine’
mesh that contains 105,520 elements. Both meshes have hexa-
hedral elements and a mesh quality measure of scaled Jacobian
greater than 0.2. The element scaled Jacobian distribution for both
brains in shown in Fig. 9 and Fig. 10. The corresponding mesh vol-
ume for each interval is listed on top of the bars.

The original geometry for the skull and brain components
were provided by the royalty free library from TurboSquid (https:
/[www.turbosquid.com/3d-models/male-head-3d-model/701148,
https://blog.turbosquid.com/turbosquid-3d-model-license/) which
was modified to improve finite element meshability. The mod-
els include cerebral hemispheres, cerebellum, corpus callosum,
basal ganglia, ventricles, brain stem, hippocampus, and thala-
mus. Additional layers for CSF and a skull were also added. The
fine mesh captures the sulci and gyri. In addition, the Allen
Human Brain Reference Atlas (https://community.brain-map.org/

t/allen-human-reference-atlas-3d-2020-new/405/13) was also
meshed with all hexahedral elements.

To improve confidence in our code and meshes, we per-
formed several validation tests, details of which are presented
in Section 3.1, appendix Section B.5 and on our website (https:
//brainsimresearch.io/validation). We attempted to validate our
model with all the recommended validation studies and even in-
cluded strain rate validation on our website using the data from
literature [77]. However, we did not include the details here be-
cause the CORA ratings were not calculated, as no recommended
CORA settings are yet available for strain rate. We also intend on
validating our code with data from live MRI tagging experiments
[13,31]. To reproduce the V&V results included here, readers should
download the ‘Paper1’ branch of FEMTech, which includes a direc-
tory FEMTech/examples/V&V containing all input files required to
reproduce the V&V results shown here.

V&V is a continuous process that evolves over time. For ex-
ample, as new experimental data becomes available, the current
codebase should ideally be evaluated again for the new data, and
previous validation data should be reexamined. Furthermore, when
changes are made to the codebase, the V&V suite of tests needs
to be reanalyzed. The Brain Simulation Research Platform aims to
provide a transparent and reproducible V&V process that can easily
be re-computed.

4.3. Machine learning

More recently, there has been an increase in efforts to
apply artificial intelligence (AI) in brain response predictions
[15,49,60,66,71]. These methods are advantageous because they
provide rapid predictions in a fraction of the time taken for a
full three-dimensional finite element model. However, all Al mod-
els are based on an underlying dataset of finite element models.
Improved Al models also require robust (diverse, large, unbiased)
finite element datasets. Our platform makes it possible to collect
and process data for thousands of impacts and use the processed
data to create datasets for machine learning.

We are working on adding machine learning capabilities to the
platform; currently, we have a trained but untested model. We
plan to test the accuracy of the model using the results obtained
from the FEM simulations. All the results from the testing will be
available on the website.

Once this feature is deployed, users will be able to submit sim-
ulations in the same way that they would for a finite element
simulation; the only difference would be the need to select the
machine learning option. The results will also be displayed in the
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Fig. 9. The histogram shows the scaled Jacobian distribution of the elements in the fine brain mesh in intervals of 0.1; over 90% of the elements have a scaled Jacobian over
0.7. Further, the percent volume of mesh for each interval is listed on top of each bar: 69.2% of the mesh volume has a scaled Jacobian of greater than 0.9.
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Fig. 10. The histogram shows the scaled Jacobian distribution of the elements in the coarse brain mesh in intervals of 0.1; over 90% of the elements have a scaled Jacobian

over 0.6. Further, 59.17% of the mesh volume has a scaled Jacobian of greater than 0.9.

same way that they are currently displayed. From the user’s per-
spective, the only change would be the time taken to run the sim-
ulations.

4.4. Limitations

There are limitations of the current work. Mesh convergence is
an ongoing effort with the soft nonlinear materials of the brain.
Convergence can be tested on a number of different variables in-
cluding displacements, pressures, and strains. Similar to another
study [73], 95th percentile MPS (MPS-95) has been used to test
convergence; different brain resolutions have been tested for one
of the validation cases and from the preliminary results it appears

that the MPS-95 does not converge for all loading conditions. This
is being investigated further; more details on this study can be
found in Appendix section B.7.

The accuracy of the brain meshes is yet to be determined; al-
though the meshes are a good fit for the head generated by the
avatar-based geometry creation, we only use a limited number of
control points to create the custom meshes. As the custom meshes
are created from the template meshes, features such as the size
and shape of the sulci and gyri are based on the size and shape
of the sulci and gyri in the template mesh and not on the indi-
vidual’s brain surface. To determine if the morphed meshes are a
good representation of an individual’s brain, another study will be
necessary to compare the morphed meshes and MRI scans of the
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same individuals. In future work, we aim to increase the personal-
ization of computational brain models.

Another limitation is that our current brain model uses only
an isotropic material model. We only have the implementation of
the Ogden and Neo-Hookean models along with viscoelasticity; we
currently do not have the capability to include anisotropy. In the
near future we plan on including embedded elements in order to
model fiber tractography which will add anisotropy to the mod-
els. Furthermore, our code works with full and reduced integration
hex elements; implementation for shell elements to include falx
and tentorium is still underway.

5. Conclusion

We present the Brain Simulation Research Platform, an easy-to-
use service that can compute brain response and injury. The use
of high-performance cloud computing makes the platform accessi-
ble to any number of users with no capacity limit. By adding the
functionality to directly input sensor data, we can predict brain in-
jury caused by real-world impacts in a reasonable amount of time.
We currently use finite element modeling as our basis for predict-
ing injury; however, we are working on adding machine learning
capabilities to reduce the computation time significantly. As the
platform is already being used to run large-scale simulations, we
would like to invite other research groups to use and contribute to
the platform as well. With this platform, we hope to be one step
closer to using brain models in clinical applications.
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Appendix A. Additional details of platform architecture:
A.1. Access and Security

AWS Cognito scales to millions of users and supports sign-ins
with social identity providers, such as Apple, Facebook, Google,
and Amazon, and enterprise identity providers via SAML 2.0 and
OpenID Connect. Once a user is created, they are assigned an
account ID that is entered into Cognito as well as a ‘relational’
database.

User permissions are also a critical part of the platform, and
the permission construct is organized according to organizations,
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institutions, teams, groups, and individuals. The permissions were
originally designed for principal investigators (PI) of research or-
ganizations. A PI who runs a research group would often wish to
grant different levels of data visibility to members of their research
group. In addition, the PI may be running multiple studies at dif-
ferent institutions, and the studies would require compartmental-
ization and security. Thus, the PI would be assigned a ‘Level 300
permission for their organization. The PI would be able to assign
another Level-300 admin who could manage the data organization
for the research laboratory.

A.2. User Interface

The web application runs on AWS Elastic BeanStalk, which en-
ables scalability as additional users become active simultaneously.
This means additional instances running the web application are
dynamically created when the CPU usage becomes greater than
80%. In addition, we have an API that would be useful for groups
working on sensor technology, allowing for a seamless transfer of
sensor data to the platform.

A.3. Model creation

First, a three-dimensional surface model of an individual is gen-
erated using a two-dimensional picture of the individual’s face.
This model is generated with the help of Avatar3D, a software
toolkit that uses machine learning algorithms and machine vision.
Fig. A.1 shows an example of surfaces generated using the technol-
ogy. The platform uses the version without hair for processing.

Next, the radial basis function approach [35,36,61,72] is used
to map fine and coarse template finite element brain meshes (see
Fig. A.2) to the target head geometry (in this case, the target is the
head surface without the hair). The radial basis function interpo-
lates the coordinates of the brain mesh for the target surface and
provides a morphed mesh. Control points are selected in regions
that define the structure of the head. The control points currently
used can be adjusted if required; however, preliminary results are
promising.

A.4. Encrypted Data Storage

As the simulation data is analyzed to present the user informa-
tion back on the frontend, a database is important to search and
query the data. Through experimentation with different types of
databases, we found that a ‘relational’ database is best suited for
the platform. We initially used a non-relational database but found
that conducting queries to show data on the frontend severely
slowed the responsiveness of the platform. This is because we
would repeatedly look up one value from a table to get data from

(/PN

Fig. A.1. Head surface files created by Avatar SDK; one includes hair and shoulders,
the other is a hairless version and only shows the head. The hairless version is more
accurate and is therefore used for the generation of custom meshes for users.
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cerebellum

Fig. A.2. The fine brain mesh (top) and the coarse brain mesh (bottom). A cut view shows different parts included in the meshes. These can be assigned different material

properties if needed.

another table. By switching to a relational database, we created
pre-existing connections between collections of data, thereby mak-
ing the queries faster. The different connections are formed by how
data is queried on the frontend and what type of data can be sent
into the system.

The relational database schema is presented in Fig. A.3. The
schema defines the relationship between collections of data; each
outline in the figure is referred to as a collection. A closer ob-
servation of the ‘sensor details’ in the angular-acceleration col-
lection shows that the collection contains a considerable amount
of the information sent to the system when a simulation is sub-
mitted. Connections can be observed between sensor details and
other data collections with arrows indicating either ‘virtual rela-
tion’ or ‘object’. The virtual relation arrows indicate connections
that exist across different collections of data; for example, a virtual
relationship is observed between ‘sensor details’ in the ‘angular-
accelerations’ collection and ‘users’ in the ‘user-sensors’ collection.
The object arrows link to data belonging to the same collection but
is presented separately for clarity; for example, ‘players’ is linked
with ‘sensor details’ and both belong to the angular accelerations
collection. A careful observation of all the virtual relations reveals
how different collections are connected. Different configurations of
relations and collections could be made; however, the current for-
mat has been tested extensively.

The relational database used for the platform is MongoDB,
which has different pricings for different numbers of connections
per second to the servers. This is an important feature as simula-
tions are scaled. For example, we have observed that for a single
simulation, as many as four connections to the database servers
may exist at a given instance of time, depending on several fac-
tors. The goal is to minimize the number of simultaneous database
connections to reduce cost. The number of database connections
could be 4000 for 1000 simultaneous simulations. Therefore, care
should be taken when ‘bursting’ simulations—if a sufficient num-
ber of database connections are not paid for, errors could be gen-
erated in the system.

10

A.5. Simulation Execution

Containerization:

Owing to the complex nature of our code, building can be deli-
cate and time-consuming. Several dependencies of the code require
installation, and not all the dependencies are available on all oper-
ating systems. Hence, to achieve a faster build that works across
all platforms, we use Docker containers. Docker is an open-source
platform that allows users to build, deploy, and run applications
by packaging the code and its dependencies using images. Building
our code on a docker image allows it to be deployed on any ma-
chine or even a cloud computing system that has docker installed.
Running an image creates a container, which is used to run the
code. We have several images for different aspects of our applica-
tion; hence, to create the final docker image, we use a multistage
build. This ensures that the final image contains only the files nec-
essary to run the code.

Batch computing:

Amazon offers a batch computing service (AWS Batch), which
automatically allocates resources to jobs according to their require-
ment. This feature enables users to submit several simulations at
once on the platform, and the jobs receive instances based on pre-
defined parameters. When multiple simulations (over 300) are up-
loaded, our platform first creates a serverless compute function
that preprocess all the files to identify accounts and group events
together; at this point, the user can choose to remove any simu-
lation that may have already been run. Submitting the simulations
then spawns a batch job that divides the simulations across differ-
ent job queues that are already set up. Currently, five queues are
set up, and each queue can handle 300 jobs. Once the first queue
reaches 300 jobs, the 301st job goes to the second queue, and so
on. This process helps to reduce wait times for the jobs. When the
user uploads less than 300 jobs, the jobs are automatically sent to
the job queue; in this case, no batch job is created to divide the
jobs among queues.
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Fig. A.3. Entity relationship diagram (ERD) showing the relations between collections in our database.

A.6. Postprocessing

The post-processing stage uses several lambda functions (AWS
Lambda); this is a scalable serverless compute service offered by
AWS that can run a script when triggered. For example, when a
new simulation is run, an output file containing all the injury met-
rics is generated and uploaded to S3. Once this file is uploaded, a
lambda function is triggered to update a summary file for the user
with the injury results from that impact. The summary file is used
for displaying all results on the player dashboard.

In the near future, we plan to use step functions for post-
processing. A step function is another service offered by AWS and
can create a workflow for the lambda functions. This makes it pos-
sible to visualize the process and track failed lambda functions.
Currently, if a lambda function fails for any reason (such as a con-
nection error), it is difficult to track the failed function due to the
number of lambda functions. Thus, using step functions enables
better error handling (e.g., by adding retry logics).

Appendix B. Finite Element Code (FEMTech):

We developed a custom, open-source nonlinear finite element
code known as FEMTech (Finite Element Modeling Technology) to
run brain simulations. The custom code is built on message pass-
ing interface (MPI) to facilitate simulation runtime through parallel
FEM calculations. Benchmarking tests were run to determine the
improvement in runtime due to parallel processing; the results of
the test are presented in Section 3.2.

11

The finite element code uses the updated Lagrangian method
for an explicit dynamics scheme. Updated Lagrangian codes use
equations that reference the mesh in the current time step. The
finite element formulation is derived from the generalized momen-
tum equations, including the momentum equation (equation (B.1)),
traction boundary conditions (equation (B.2)), and interior continu-
ity condition (equation (B.3)). Together, these are called the strong
form equations:

80']'1' .

ox; + pb; = pv; on Q (B.1)
njoj; = tonl'y, (B.2)
njoj = Oon Fint (B3)

where o is the stress, p is the density, b is the body force, v is
the velocity, Q is the current domain, n is the unit normal, f is the
traction and I' is the boundary. As the strong form equations can-
not be directly discretized, the weak form equation is developed.

[

Nsp

3 / SudT + / S pidS = 0
Q

i=1 Fri
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O’j,‘dQ —/8vipbid§2 -
Q

(B.4)

This equation can also be written as the virtual power equation:

8P = §Pt _ §pet 4 §PKIN = OV v; € ug (B.5)
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where
a(dv;)
8x‘

the virtual internal power is given by &8P =
0;d2, the virtual external power is given by Spext =

[Sulpb dQ2 + Z J 8vit;dl’ , and the virtual kinetic power is given
i= 11}

by 8P = [ §v; p1d Q2.
Q

These equations can be found in nonlinear finite element mod-
eling books [5]; however, we have added them here for the
reader’s convenience. The implementation of these equations is
presented in Section B.4. Features of our code relevant to model
validation are described in the upcoming sections.

B.1. Reduced Integration

The brain meshes of our platform are created using 3D hex el-
ements. The most straightforward implementation for these ele-
ments is the fully integrated scheme. While it has good accuracy,
shear locking (when subjected to bending loads) and volumetric
locking (when using nearly incompressible materials) make it an
undesirable element to use. These problems can be avoided by us-
ing an element with fewer integration points. An example is the
reduced integration element that uses only one integration point.
Consequently, the model runtime is significantly reduced because
of the reduction in the number of calculations. This is a substan-
tial advantage as brain simulations can often run for hours because
of the small elements and near incompressible material properties
involved.

The shape functions used for implementing the reduced inte-
gration element are given by the equation

5 (1+6)(1+0m) (1+¢5)

where(&;, nj, {;) are substituted as combinations of ( + 1, + 1,

+ 1), and (&, n, ¢) represents the coordinates in the natu-
ral coordinate system; because a single integration point exists, we
can substitute (&, n, ¢) as (0, 0, 0).

A disadvantage of using a reduced integration scheme is hour-
glassing, which is a numeral instability that causes spurious defor-
mation modes that can quickly destroy the solution. Four modes
can arise because of hourglassing in each direction (12 in total). As
these displacements are artificial, they are known as zero-energy
modes.

To prevent the mesh from encountering hourglassing, an anti-
hourglass scheme is implemented. Hourglass shape vectors y are
used to determine the occurrence of hourglassing. If hourglassing
is detected, an anti-hourglassing force is computed and added to
the internal forces at the nodal level, thereby making the element
stiffer. We use the implementation from the LS-DYNA theory man-
ual [39]; more details of this scheme can be found in the original
research paper [11]. To ensure that none of the rigid body, normal
strain, and shear strain modes are affected by this additional force,
the hourglass shape vectors are formulated to be orthogonal to the
linear velocity field:

N; = (B.6)

8
Yak = Lok — Nii Zx?ran (B.7)
n=1

where [ represents the hourglass base vectors (Table B.1), and
x represents the coordinates of the element in the current
timestep. The anti-hourglassing force is calculated as:

filét = Un8ia Vak» (B.S)

where g;, = Z x Vak» p = QHG,ove c/4 , x is the nodal velocity,

Qyg is a constant (typically between 0.05 and 0.15), pis the el-
ement density, ve is the element volume, and cis the speed of
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Table B.1
Hourglass base vectors.
a=1 o =2 o =3 o =4

I} 1 1 1 1
r, 1 -1 -1 -1
rj -1 -1 1 1
rj, -1 1 -1 -1
r, -1 1 1 -1
I'j -1 -1 -1 1
rj 1 -1 1 -1
T 1 1 -1 1

&

sound in the material. If no hourglassing occurs, g = 0, eliminat-
ing anti-hourglassing forces.

B.2. Ogden Hyper-elastic Model

Since the brain bulk modulus is significantly higher than its
shear modulus, the brain behaves like a nearly incompressible
material. Hyper-elastic models are able to capture large deforma-
tion mechanics for nearly incompressible materials, making them
a suitable option to model the brain. Several head models have
used the Ogden material model for the capturing the brain’s mo-
tion [14,26,30]. To account for the rate dependence of the brain’s
motion, a linear viscoelastic model is used as an addition to the
Ogden model; this has been described further in the next section.

As the brain has a small amount of compressibility, the volu-
metric component of the strain energy equation is treated sepa-
rately.

w— ZZMW’

i=1 j=1

)+§(1—1)2 (B.9)
W is the strain energy function; w, o, and n are Ogden ma-

terial constants; and K is the bulk modulus; the values of these

constants are listed on the website at https://brainsimresearch.io/

code-details/v1.0. A is the volumetric independent principal stretch

calculated from the principal stretch A as:

= A

= 5 (B.10)

where | is the element Jacobian. Cauchy stresses are calculated
from the strain energy function using the following relation:

MW mpy A W b b
%= man U Y, e,
P 8Wb<3>b<3> (B.11)

Ap-Ay-Azorg T

A is calculated as the square root of the eigenvalues of matrix
B, and b represents the eigenvectors of that matrix. By substitut-
ing W from equation (B.9) in equation (B.11), we get the following
equation:

Opg = Z ZM:(XO['

j=1 i=1
by @ by (B.12)

We then add the contribution of viscoelasticity to these
stresses, the details of which are explained in the next section.

(X?f+i§‘*+i§f)> +Kx(J—1)*1

B.3. Viscoelasticity

The brain exhibits viscous behavior, i.e., the motion of the brain
lags behind the motion of the skull. Thus, it is essential to in-
clude a viscoelastic model when simulating the brain. Like sev-
eral other research groups, we add viscoelasticity onto a hyper-
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Read input file and mesh
Transform and partition mesh
Initialize all variables to zero

Set up mass matrix M
Compute initial time step At

PNV E WD

Compute the different time variables

10. Update Time

11.

v

12. Compute displacements

13.
14.

Call GetForce routine (see box 3)
Calcul ate accelerations

n+1/2

Compute shape functions and derivates of shape functions N, dN/dx

Begin time loop and repeat till simulation end time is reached

t"™ = Time, t"*! = Time + At
9. Apply acceleration/vel ocity boundary conditions (see box 2)

Time = t"*!
Calcul ate half vel ocities ifnodes do not have any boundary conditi ons:

=v" +—=a"

un+1 =u"+ At % vn+1/2

™l = (free — Cdamp v

At
2

n+1/2)

15. Calculate velodities

16.
17.
18.

Check Energy
Write required output variables
Compute time step increment

19.

pntl = pn¥l/2 +¥an+1

At = Reduction Factor *

Check if simulation end time has been reached, if not, repeat from step 7

M

Characteristic Length
Wave Speed

Box B.1. Explicit dynamic scheme used in FEMTech.

elastic model [10,30,59,67,74]; however, certain groups only model
the brain with a viscoelastic model [41,51,54,69].

Several implementations exist for viscoelasticity; we imple-
mented a scheme that adds three-dimensional viscoelasticity at fi-
nite strains [28]. We first calculate an internal stress variable (H)
that uses information from the previous stress state and then adds
it to the deviatoric stresses at the current time step. The equa-
tions for the computation of the internal stress variable are in
the time = O reference frame; thus, we first need to convert our
Cauchy stresses (o) to PK2 stresses (S). Once we add the contribu-
tion of the internal stress variable to the deviatoric PK2 stress, we
then convert it back to the Cauchy stress.

Hn+l —(At/Tj)HH 1- ei(m/rj) DEVS”H DEVS!
(B.13)
N
DEVS™! = DEVSg*! + 3 "Hi*! (B.14)
j=1
devg™ = Fr+1DEVS™ (F™+1)" (B.15)
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n+1
i S (i;f‘/) [+ devg™! (B.16)
] §n+1
ol — o (B.17)

The Cauchy and internal stress variables from this time step are
then stored and used for the calculations in the next time step.

B.4. Finite element code implementation

Box B.1 shows the general implementation of the explicit dy-
namics scheme in FEMTech. Implementation of the rigid body mo-
tion and internal force computation can be found in Boxes B.2 and
B.3, respectively.

B.5. Validation

For each case, the head model was scaled according to the di-
mensions provided in the respective reference papers. Further dis-
cussion is provided below for each metric.
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1. Compute angular vel ocities at generator r halftime step using runge-kutta stepping algorithm
Tmag COt(’;nu,q) T

w=aq, r=—wXr+w

(1 ~ Tnag COt(rmu,q ))

2 2 21,
2. Calculate therotor R
R=e"
3. Calculate the new coordinates of the rigid nodes after rotation
V, = RVR™!

4. Find half velodties for nodes with rigid boundary conditions
Vhatf = @ X V, + linear velocity

Box B.2. Calculation of velocity for boundary conditions.

1. Initialize internal forces

fi=0
2. Calculate external forces based on boundary conditions and store it under the net force
free =Jfe

3. Loop over elements
- Loop over quadrature points
= Calculate deformation gradient and other deformation related tensors
F=1+ @, B =FFT
ox
* Calculate stresses (see ogden model and viscoelasticity)
= Calculate internal forces

oNy - __
fi = fu+ 5" 0leWe
= Check for hourglassing and cotrect if needed (see reduced integration)
fi=Ffi+fue
- Update total forces
fret = free — [
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Box B.3. GetForce routine.

B.5.1. Pressure

We first compared pressure traces from Nahum [47]. The accel-
eration curve for experiment 37 was used as input and was applied
to the head CG. The output was calculated by averaging the pres-
sure across a range of elements for each of five regions: frontal,
parietal, occipital 1 and 2, and posterior fossa. The locations of the
elements selected for the pressure calculation were based on fig-
ures showing similar elements in the validation of another brain
model [54]. The overall CORA rating for the Nahum case was 0.685
(good). The comparison plots and CORA scores for each region can
be found here: https://brainsimresearch.io/pressure-response.

B.5.2. Brain Displacements

We compared relative brain-skull motions obtained from the
experiments of Hardy [21,22], referred to as group 1, and Alshareef
[1], referred to as group 2. For both groups, acceleration bound-
ary conditions were applied to the head CG. Relative displace-
ments were computed by subtracting the rigid displacement from
the output nodes, which were the nodes closest to the location
of the neutral density targets (NDT)/sonomicrometry crystals in
the experimental studies. Eight cases were tested under group 1:
two occipital impacts, one parietal impact, and five temporal im-
pacts; four cases were tested under group 2: all temporal impacts.

14

Detailed validation results for brain displacements are shown at
https://brainsimresearch.io/brain-displacement-response.

B.5.3. Brain Strain

Next, we compared Green-Lagrangian strains to the experimen-
tal data [76] . To compute strains, a tetra structure was created
according to the locations of the NDTs in the brain. All elements
identified as part of this structure were then used for the strain
calculations by averaging their strains [76]. An example is shown
in Fig. B.1. All the brain strain validation results are available at
https://brainsimresearch.io/brain-strain-response.

B.6. Benchmarking

We have compared our mesh validation results (Table B.2) with
other brain models that use the same CORA parameters; these in-
clude the ADAPT model [34], original KTH model [30,34] and the
WHIM anisotropic model version 1.5 [75].

In addition, we are including two sample test cases that we
tested on our models; these can be used for benchmarking other
brain models. Both cases use a morphed brain mesh that is based
on dimensions of the 50th percentile male head. The boundary
conditions were applied to the CG with the skull kinematically
coupled to it. For both cases the results presented are the 95th
percentile MPS (MPS-95) curves in seven brain regions: Motor and
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Table B.2
Comparison of FEMTech CORA scores with other brain models.
CORA scores
Test Case .
FEMTech Coarse FEMTech Fine = ADAPT  KTH WHIM (v1.5)

Displacement C064-T4 0.504 0.618 - - -

High Rate C288-T3 0.577 0.561 0.588 0423  0.696
C380-T1 0.683 0.611 0.694 0.56 0.693
C380-T2 0.599 0.614 0.549 0416  0.588
C380-T3 0.715 0.684 0.65 0.503  0.651
C380-T4 0.653 0.586 0.658 0.551  0.712
C380-T6 0.678 0.637 0.625 0511  0.772
C393-T3 0.633 0.642 0.555 0.5 0.704

Displacement v20dt60 0.614 0.572 - - 0.819

Mid Rate v20dt30 0.555 0.496 - - 0.856
v40dt60 0.65 0.564 - - 0.826
v40dt30 0.624 0.49 - - 0.77

Pressure Frontal 0.899 0.87 0.922 - -
Parietal 0.648 0.673 0.995 - -
Occipital 1 0.66 0.696 - - -
Occipital 2 0.591 0.609 - - -
PF 0.626 0.594 0.859 - -

Strain C288-T3 C1  0.811 0.679 0.712 0.643  0.808
C288-T3 C2  0.831 0.818 - - -
C380-T1 C1  0.852 0.707 0.874 0.874  0.782
C380-T2 C1  0.844 0.795 0.766 0.76 0.721
C380-T3 C1  0.845 0.868 0.758 0.74 0.9
C380-T4 C1  0.74 0.91 0.721 0.696  0.961
C380-T6 C1  0.745 0.909 0.68 0.62 0.893
C393-T3C1 09 0.839 0.832 0913  0.802

i
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Fig. B.1. Based on the neutral density target (NDT) locations in the experiment, a
tetra structure is created in the brain mesh. The elements used for strain computa-
tion were then identified as all elements that intersect with or lie inside the tetra
structure.

a)

sensory cortex, brain stem, cerebellum, frontal lobe, parietal lobe,
occipital lobe and temporal lobe.

Case 1: In this case we apply a rotational acceleration about
the X axis. Fig. B.2 shows the skull before and after the simula-
tion. Fig. B.3 shows the regional MPS-95 plots as well as the input
boundary conditions.

Case 2: Here we apply a combined rotational acceleration about
the Y and Z axes. Fig. B.4 shows the skull before and after the sim-
ulation. Fig. B.5 shows the regional MPS-95 plots as well as the
input boundary conditions.

B.7. Convergence Testing

We have carried out convergence testing using the 95th per-
centile Maximum Principal Strain metric. The case tested was
a relative brain displacement validation case (C380-T4). Fig. B.6
shows the 95th percentile Maximum Principal Strain (MPS-95) for
three mesh resolutions: coarse (17,030 elements), fine (105,520
elements) and a newer super-fine mesh (844,160 elements). The
trend shows that the coarse and fine brains have not converged.
We are additionally running another finer mesh (6,753,280 ele-
ments) to test the convergence of the super-fine mesh. However,

b)

I~
&

Fig. B.2. Case 1: a) Skull surface before rotation. b) Skull surface after rotation.
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Fig. B.3. Input load curve and MPS-95 curves for the coarse and fine meshes morphed to dimensions of the 50th percentile male head model for benchmarking case 1.

Computer Methods and Programs in Biomedicine 233 (2023) 107470

Motor and Sensory Cortex Brain Stem Cerebellum
—— Coarse —— Coarse —— Coarse
—— Fine 07 —— Fine 0.7 —— Fine
0.6 0.6
0.5 0.5
n n
2 04 04
0 0
s s
0.3 0.3
0.2 0.2
0.1 0.1
0.0 0.0
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10
Time (s) Time (s) Time (s)
Frontal Lobe Parietal Lobe Occipital Lobe
—— Coarse —— Coarse ~——— Coarse
—— Fine 0.7 —— fFine 0.7 fine
0.6 0.6
0.5 0.5
n 0
2 04 204
d w
o o
=03 =03
0.2 0.2
0.1 0.1
0.0 0.0
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10
Time (s) Time (s) Time (s)
Temporal Lobe Input Load
—— Coarse 10 —— X rotation
~—— Fine
@ s
=]
©
£
=
c
L o
=}
B
2
[9)
o
& -5
-10
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10
Time (s) Time (s)

a)

Fig. B.4. Case 2: a) Skull surface before rotation. b) Skull surface after rotation.

16




R.R. Menghani, A. Das and R.H. Kraft Computer Methods and Programs in Biomedicine 233 (2023) 107470

Motor and Sensory Cortex Brain Stem Cerebellum
0.5 —— Coarse 0.5 —— Coarse 0.5 —— Coarse
~—— Fine ~—— Fine —— Fine
0.4 0.4 0.4
03 0.3 0.3
n n a)
2 & @
n 0 | n
Q. Qo | o
=02 ‘ =02 =02
01 0.1 0.1
0.0 0.0 0.0
0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05
Time (s) Time (s) Time (s)
Frontal Lobe Parietal Lobe Occipital Lobe
0.5 ~—— Coarse 0.5 0.5 —— Coarse
—— Fine —— Fine
0.4 0.4 0.4
n 03 n 03 &0
o & Lo
wv (2] wv
o a o
= o3 =02 =02
01 0.1 0.1
0.0 0.0 0.0
0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05
Time (s) Time (s) Time (s)
Temporal Lobe Input Load
0.5 —— Coarse 10 —— Y rotation
—— Fine —— Z rotation
8
0.4
Q
S 6
o
0.3 kS
- >
o c 4
v S
a ¥~
=02 E 2
[
9
g o e
01
-2
0.0 <4
0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05
Time (s) Time (s)

Fig. B.5. Input load curve and MPS-95 curves for the coarse and fine meshes morphed to dimensions of the 50th percentile male head model for benchmarking case 2.

—Coarse —Fine ——Superfine Angular Acc —Linear Acc

MPS-95
o
w

300 20000

10000

Linear Acc (m/s2)
Angular Acc (rad/s?)

0 \/-\/—/
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
Time (s)

0

Fig. B.6. MPS-95 results for convergence testing of C380-T4 relative brain-skull displacement validation case.
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the simulation takes a significantly long amount of time to run
to completion (~300 h using 40 processors). These meshes may
be added to the platform as alternatives to the coarse and fine
meshes; however the estimate to run one simulation using the
super-super-fine mesh is $1000, which is not feasible for scalable
modeling.

The value of the coarse mesh lies in its fast runtime; it is a use-
ful mesh when determining which impact in a long list of impacts
results in the largest strains (or other such metrics). These cases
can then be rerun using higher resolution meshes to get accurate
results. It is also the preferred mesh when testing various features
of the platform such as scalability.

It should also be noted that the resolution the coarse brain
mesh is over four times the resolution of the original KTH model
[30] which has been widely used in literature. By using the same
material properties as the KTH model, we were able to get accept-
able validation results.

Appendix C. Platform Demonstration:

A test case is used to demonstrate how a user can create a per-
sonal mesh, submit one or multiple jobs, and access results.

Create profile and mesh:

The user uploads a picture of their face on the profile page
(Fig. C.1), and the platform creates and stores a custom mesh for
the user for future use. Where the user does not intend to upload
an image or where several cases are being run for which the ac-
celeration data have been collected previously but no associated
account/user exists, the platform uses the default meshes created.

Users can see the avatar model created along with the brain by
clicking the inspect button. An example is shown in Fig. C.2.

Upload sensor data:

By navigating to the team dashboard, users can submit a new
job (see Fig. C.3). They can select the sensor company that col-
lected the impact data, the mesh, and instance type, as shown in
Fig. C.4. Our database is then searched for the account to see if
a mesh exists (otherwise, the default mesh is used) and if that
specific event has already been simulated, in which case users can
then choose to remove the simulation.

rain Simulation

Computer Methods and Programs in Biomedicine 233 (2023) 107470

Fig. C.2. Personalized model and brain mesh created for one user. This model is
available for all users and can be found by clicking the inspect button on the cus-
tom mesh generation portal.

Alternatively, the user can upload multiple simulations at once;
the simulations will be automatically sorted into groups according
to the sensor ID, as shown in Fig. C.5. The user can also automati-
cally remove simulations that have already been run.

Monitoring:

Once the job is submitted, the user will be returned to the team
dashboard where they can monitor the job status.

The job is highlighted in orange (Fig. C.6) when it is running.
Once the job is fully run, the highlight turns green (Fig. C.7).

Visualize results:

Users can then visualize the results for a player/sensor ID by
clicking on it from the team dashboard. The user is taken to the
player dashboard after clicking (Fig. C.8).

The dashboard displays an interactive image of the brain. The
strain events for the user are segregated by the region they occur

Home How It Works. Technical Details  Contact Us Blogs Dashboard Ritika Menghani @

Home

Profile Page

Account Information Simulation Information

) Security and Permissions

... Sensor and Position 1
* Information

@ Simulation Information

Se y (-]
ast Updated 2 74113PM
Update Take New Photo Download 3d Selfie
3D Avate (]
Last Updated : ( 43:58 pm
. (]

Last Upd:

Download FE Mesh (VTK)

Download Abaqus Mesh (ZIP)

Fig. C.1. Custom mesh creation portal where users can upload a picture of their face and generate a 3D avatar and brain mesh. The meshes are available in VTK and INP file

formats.
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Brain Simulation
Research Platform
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#® Ritka Menghani @

Home How It Works Technical Details Contact Us Blogs Dashboard
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€393_T3 7 Hardy C393_T3 1 11-19:2020 12.00 PM 06112022 11:64 PM (o]
€380_T6 6 Hardy C380_T8 1 1118-2020 12:00 PM 05-11.2022 11:54 PM (o) m
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4 Hardy C380_T4 1 11-19.2020 12.00 PM 05112022 11:54 PM (o]
Show 5 ¢ entries Prev u 2 Next

Fig. C.3. Team dashboard that will be visible to any user on the team. All simulations corresponding to the team will be shown here. The red box highlights the button that

takes a user to the job submission portal.

Brain Simulation Portal

Upload CSV or JSON files and submit brain simulations right from the web browser.

(Requires Admin Permissions)

[ Select sensor brand

4

Upload Sensor Data

A list of different sensor companies can be selected from the dropdown

1 simulation uploaded!
What type of model would you like to use?

[v] Coarse

Would you like to use on-demand or spot instances?
The user can select the mesh and instance type

Fine Deep Learning

[¥] On-demand Spot instances

Remove any unwanted simulations

Name Organization Team File Name Account Profile Overwrite Cancel
Exist Image Simulation Simulation
input_C064-
Hardy Penn State Hardy = Yes Yes
T4_Hardyetal2007- X Cancel
C064_T4 University Validation m;2 ]scny Click to expand o Click to expand
The account ID associated with the simulation is compared with existing IDs

Fig. C.4. Brain submission portal. Users can choose the sensor company, mesh type and instance type for their simulation. They can then upload the acceleration data.

in and are also size and color-coded by their magnitude. By hov-
ering over a region in the major functional region bar graph, the
respective area is highlighted, and only strains in that region are
shown. Fig. C.9 shows that the strain event occurred in the frontal
lobe.

Other plots show the 95th percentile Maximum Principal
Strain (MPS-95) with respect to different parameters; these
plots are linked such that hovering over one event in one
plot will highlight the corresponding event in the other plots
(Fig. C.10). A box containing the event ID also appears; this in-
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formation can be especially useful when the user has multiple
events.

Additional results for this event can be found on the brain sim-
ulation details page (Fig. C.12), which can be accessed by selecting
the ‘view details’ option on the player dashboard (Fig. C.11).

The brain simulation details page shown in Fig. C.12 contains
several plots and results:

o Two plots show the input accelerations used as boundary con-
ditions.
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Brain Simulation Portal

8 simulations uploaded!
What type of model would you like to use?

Would you like to use on-demand or spot instances?

Automatically exclude re-running existing simulations

Remove any unwanted simulations

Name Organization Team File Name
t_C393-
Hardy Penn State Hardy I:;)UH‘ dyetal2007
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C288_T3 University Validation oy
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input_C380-
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ms2 json
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ms2 json
t_C380-
Hardy Penn State Hardy ?;LIH’ dvetal2007
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[v] Coarse

[v] On-demand

Fine Deep Learning

Spot instances

[v] 0 simulations.

Account Profile Overwrite Cancel
Exist Image Simulation Simulati
Yes Yes

[+ X Cance
Click to expand Click to expand
Yes Yes

I+ Y X Cance
Click to expand Click to expand
Yes Yes

[+ X Cance
Click to expand Click to expand
Yes Yes

O X Cance

ick to expand Click to expand

Yes Yes

F+Y X Cance
Click to expand Click to expand
Yes Yes

e X Cance
Click to expand Click to expand
Yes Yes

I+ Y X Cancel
Click to expand Click to expand
Yes Yes

F+Y X Cance
Click to expand Chick to expand

A video shows the skull rigid motion; the user can upload a
real-time video of the impact, if any. These videos can be syn-
chronized, and the real and simulated head motion can be ob-
served side-by-side.

Another video shows the internal brain response to the impact.
Different injury metrics are also displayed in a plot (see
Fig. C.13 for all plots).

Finally, a plot compares the MPS to a standard curve (T. [66]);
this plot can be used to determine if any mild TBI exists for
that event. In this case, the MPS value intersects with the curve
at almost zero risk, implying that the chance that a mild TBI
occurred is low.

Fig. C.13 presents plots showing results from different injury

metrics calculated for each simulation. These plots include:

« A ranked MPS plot; this is useful when identifying the 95th per-
centile maximum principal strain (MPS).

Fig. C.5. Job submission portal with multiple jobs uploaded at the same time. Users can choose
button under cancel simulation.

to remove any simulations they don’t want to run by hitting the cancel

An image of the brain showing the element that experienced
the largest MPS.

An image of the brain showing the elements that exceed 15%
tensile strain (CSDM-15).

An image of the brain showing the elements that exceed an
MPSXSR (product of maximum principal strain and strain rate)
of 28s~'; in this case none of the elements crossed the thresh-
old.

An image of the brain showing the elements that exceed the
95th percentile maximum principal strain at some point during
the simulation (MPS-95).

An image of the brain showing the elements that exceed 30%
tensile strain (CSDM-30); in this case, none of the elements
crossed the threshold.

The user can also view the results of the entire team at once

on the team analytics page, which can be accessed from the team
dashboard (Fig. C.14).
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Fig. C.6. Team dashboard after a job is submitted and is running. The red box shows the number of pending simulations. The pending simulations are also highlighted in
orange on the dashboard.

Back to Teams | Hardy Validation

—— Team Dashboard a ’ ‘ ® ‘

" ° ° Team Stats ML Toolkit DR
Simulations
The simulation
has now completed O (Z.ean) (@ Mansge Team |
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Fig. C.7. Team dashboard after job finishes running. The red box shows the pending simulations as zero and completed simulations as one. The completed simulations are
highlighted in green on the dashboard.

The team analytics page (Fig. C.15) appears similar to the player The user can access the individual results for any event by se-
results page but contains additional plots: one that ranks all the lecting the event ID when highlighted in the plot (Fig. C.16). This
accounts according to the 95th percentile MPS and one that shows selection leads to the page and results shown in Fig. C.12. Users
the time at which the 95th percentile MPS value occurred for each can also download the results in a clinical style report for a single
simulation. This plot is linked with the other MPS vs acceleration player from the player dashboard or for the entire team from the
plots (Fig. C.16). team analytics page.
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Fig. C.8. The player dashboard shows results of all events experienced by the player. The individual plots have been explained in detail in other figures.
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Fig. C.9. The major functional brain regions plot shows the number of events occurring in each of the brain regions. Users can select a specific brain region to visualize
strains only in that region. By selecting “front” in the major functional brain regions plot, the frontal lobe and all strains in the frontal lobe are highlighted.
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Fig. C.10. The events in the “95th Percentile MPS vs Maximum Linear Acceleration”, the “95th Percentile MPS vs Maximum Angular Acceleration” and the “Brain Loading
over Time” plots are linked. By hovering over a plot point in any of these plots, the corresponding plot point highlights in the other plots.
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Fig. C.11. The magnitude of the strain event is shown on a scale depicting the level of severity. Further information for this simulation can be found by clicking 'view details’;
this takes users to the “Brain Simulation Results” page.
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Fig. C.12. All results for any one simulation along with the player information can be found on this page. This includes the input acceleration plots, a video showing skull
kinematics that can be synced with a video of the actual impact, a video showing the brain response to the impact, several plots showing various brain injury metrics and
one other plot quantifying the risk of a mild TBI from the impact.
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Fig. C.13. Different injury metrics calculated for every simulation. This includes i) a ranked MPS plot; ii) the element that has the largest MPS; iii) elements that exceed 15%
tensile strain (CSDM-15); iv) elements that cross 28s~' threshold when computing product of MPS and strain rate (MPSxSR-28); v) all elements that exceed 95th percentile
MPS (MPS-95); vi) elements that exceed 30% tensile strain (CSDM-30).
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Fig. C.14. Team analytics can be accessed by clicking the 'Team Stats’ button highlighted with the red box.

25



R.R. Menghani, A. Das and R.H. Kraft

rai ulation
esearch Platform

Computer Methods and Programs in Biomedicine 233 (2023) 107470

Home How It Wo

hani

Team | Team Analytics

Team Analytics
Note: Team members must be activated on the Team Dashboard for their data to show up here.
Return to Team Dashboard to activate team members.

Team: Hardy Validation Dis|

Selecta .
strain Range “ & " 3
& W = |

: o, » i . :

(W) | s | &
A al B
B o il e,
— T
Major Functional Brain Regions

strain Metric: TR

Brain Loading by Position | Avg. Maximum Principal Strain

play all member data with  Max Principal Strain

95 Percentile MPS vs. Max Linear Acceleration

Max Linear Acceleration (Gs)

Machine Learning

0w 000 1 0% I 198

Caomes
£

ot v.cpocn [

Reset Zoom

Ranked 95th Percentile MPS Per Account

0

Sensor ID

© 2022 Copyright: Penn State Computational Biomechanics Group

Fig. C.15. Results for all simulations for a team are shown on the team analytics page. These plots are similar to the plots from the player dashboard but also include a

ranked 95th percentile MPS vs sensor IDs plot and a 95th percentile MPS vs time plot.
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Fig. C.16. The events in the “95th Percentile MPS vs Maximum Linear Acceleration”, the “95th Percentile MPS vs Maximum Angular Acceleration” and the “95th Percentile
MPS vs Time” plots are linked. By hovering over a plot point in any of these plots, the corresponding plot point highlights in the other plots. Additionally, a box showing the
event details appears by the plot point and by clicking on the event ID, the user will be taken to the “Brain Simulation Results” page for that simulation.
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