2023 Silicon Valley Cybersecurity Conference (SVCC) | 979-8-3503-2157-9/23/$31.00 ©2023 IEEE | DOI: 10.1109/SVCC56964.2023.10164853

Trustworthy of Implantable Medical Devices using
ECG Biometric

Nima Karimian and Sara Tehranipoor

Thomas Lyp

Lane Department of Computer Science and Electrical Engineering Department of Electrical and Computer Engineering

West Virginia University
West Virginia, USA 26506-6109

Email: nima.karimian. sara.tehranipoor@mail.wvu.edu

Abstract—Implantable medical devices (IMD) such as pace-
makers, and cardiac defibrillators are becoming increasingly
interconnected to networks for remote patient monitoring. How-
ever, networked devices are vulnerable to external attacks that
could allow adversaries to gain unauthorized access to de-
vices/data and break patient privacy. To design a lightweight
computational trustworthy of IMD, we propose novel ECG-based
biometric authentication using lift and shift method based on
post-processing data from the noise generated in an ECG signal
recording. The lift and shift method is an ideal addition to this
system because it is a quick, lightweight process that produces
enough random bits for encrypted communication. ECG is a
signal that is already being measured by the IMD, so this ECG
biometric could utilize the data that is already being actively
recorded. We provide a comprehensive evaluation across multiple
NIST tests, as well as ENT and Dieharder statistical suites test.

Index Terms—ECG biometric, NIST, Entropy

I. INTRODUCTION AND MOTIVATION

The use of implantable medical devices (IMDs) is increasing
in the e-healthcare system due to the demand for remote
monitoring of patients. IMDs offer a promising solution for
early detection of medical complications and the potential
for various applications continues to grow. However, IMDs
are vulnerable to external attacks that can allow unauthorized
access to the devices and data, compromising patient privacy.
A lack of secure transmission protocols leaves these devices
exposed to attacks such as stealing of medical data or alteration
of device settings, which could potentially endanger the health
of patients. [16]. IMDs have limited resources, such as battery
life, memory, and processing power, which makes it difficult to
deploy traditional cryptographic algorithms. To overcome this
constraint, we propose to integrate biometric data from ECG,
which is already being actively recorded by the IMDs, to use
as a source of randomness for encryption. This eliminates the
computational overhead of traditional cryptography, and uti-
lizes existing data to protect the IMDs against various attacks,
while managing the resource constraints of the devices.

In this paper, we propose a novel ECG-based biometric key
that utilizes the noise from collected ECG signals during the
data acquisition process. Then, the random noise data was used
as the input data for the proposed lift and shift method. This
lift and shift method was used for post-processing purposes
and helped extract the maximum entropy from the given data.

Santa Clara University
Santa Clara, USA
Email: tlyp@alumni.scu.edu

To summarize, our contributions are as follows:

« Proposal of a novel process for extracting the entropy and
random noise from an acquired ECG signal

« Creation of a post-processing method for noise data that
extracts entropy from given samples

o Demonstration of the novel ECG-based biometric key,
with promising results for cryptographic applications

The remainder of the paper is as follows. First, in Section II,
there will be a thorough discussion of the Literature work. Sec-
tion III will describe how our test data was filtered from user
ECG signals, as well as give an in-depth look at the proposed
Lift and Switch Method used for post-processing the noise.
Section IV gives a detailed analysis of the verification process
for statistical testing suites. Lastly, Section V summarizes our
findings and gives insight into possible future work regarding
filtered ECG signals.

II. LITERATURE REVIEW

There have been multiple attempts at creating a True random
generator through biometric signals. One example is using
the EEG signal data produced by a user’s brain waves when
working on mental puzzles. While the signal is incredibly
hard to measure without the user’s consent, it is also an
incredible niche signal. These trials required 14 channels of
simultaneous data in order to accurately measure the EEG,
and it is not a commonly measured biometric signal [12].
In addition, the ECG-based key generation solutions have
gained a lot of interest in the uniqueness of bio-signals [8],
[13]-[15], [17], [19]. ECG data is readily available, and can
also offer additional security by authenticating the user by
their unique ECG signature. Moreover, this signal is unique
and present in all potential users, regardless of any physical
or mental irregularities. Most of the literature work utilized
IPIs (Inter-pulse Intervals) to produce random bits for key
generation, however, these methods impractically require more
than ten seconds to measure ECG signals for the 128-bit key
generation [7], [15], [17]. Moreover, there is no comprehensive
security analysis for ECG-based biometric keys. To address
this limitation, we propose a new and comprehensive efficient
key generation and authentication method to improve the
limitations of the current existing works.

Authorized licensed use limited to: West Virginia University. Downloaded on June 14,2024 at 17:34:54 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Summary of the three data sets adopted in our
experiments.

Database | # Subjects | Sample Rate | Electrode type | Health status
PTB 290 100Hz Gel Arrhythmia
ECG-ID 90 500Hz Gel Healthy
MITDB 47 360Hz Gel Healthy

sectionProposed work We designed a new post-processing
algorithm, coined the lift and shift method, that takes noise
signals filtered from user ECG data, and produces a random
key. The Lift and Shift Method was designed to take filtered
ECG noise data from multiple patients and produce a truly
random bit stream. This section will briefly discuss the ECG
signal Acquisition, as well as give an in-depth look at the
proposed Lift and Shift Method.

A. Public Dataset

In our study, we utilize three public ECG databases
from Physionet including PTB Diagnostic ECG Database
(PTDB), ECG identification database (ECG-ID), and Arrhyth-
mia Database (MITDB) [10]. The databases used are sum-
marized based on the number of subjects, health status, and
sensor types in Table I.

B. Noise Processing

The recordings of the ECG dataset were contaminated
with three types of noise i.e. baseline drift, electromyography
(EMG), and noise created by electrode movement. The ECG
signals were filtered using an Infinite impulse response (IIR)
Butterworth bandpass filter with a low and high cut frequency
of 1 Hz and 40 Hz respectively [11]. This ensured the ECG
noise is extracted from raw ECG data.

C. Lift and shift method

After the noise is extracted from the ECG signal, as
explained above, the Lift and Shift post-processing method
is applied. The Lift and Shift method is applied to this
data set in order to extract the maximum amount of entropy
from each user’s ECG noise data. Then we build a hash-
set from the data. The data points themselves are passed
through a dynamic hash function in order to find the data’s
position within the set. Since the hash function will output
the same result for the same input data on any given trial,
this process also eliminates any duplicate values in the hash-
set. This hash function randomization is a built-in security
feature of the Python 3.7.4 environment where the Lift and
Shift Method was developed. The feature itself is implemented
as a security feature, as it was developed to help prevent
remote attacks [4]. After every data point from each patient
has been read into the hash-set, the hash-set is sent to the
Subtraction Matrix Function. This function is the first used to
salt the hash function. While the hash itself is dynamic, and
therefore difficult to guess, the output is still not completely
random. In order to increase overall entropy, and further
prevent any outside attacks, salt must be added to the output.

The subtraction matrix was derived from a Hadamard transfor-
mation [6]. The transformation was originally developed for
image processing and compression and is efficient in that it
only requires addition and subtraction in order to process data.
By modifying the Hadamard matrices slightly, we were able
to achieve higher entropy, and high bit outputs. The method
itself is discussed further in the Subtraction Matrix section.
Lastly, the Lift and Shift algorithm is applied. This algorithm
is used in order to further randomize the output and helps
ensure that the probabilities of “1” and “0” are as close to
0.5 as possible. The algorithm itself is based on the work
presented by Markus Dichtl [9]. In this work, the mathematical
probability of generating a “1” or “0” is discussed in great
detail. In an ideal case, there should be an equal probability of
generating a “1” or “0.” One method to influence is through the
proposed H function [9]. This function is a simple rotational
bit-wise shift, which takes the product of the shifted value
XOR’d with its original value. The modifications and results
are discussed further in the Lift and Shift Function section.

Lift And Shift Method
0: for (j = 0; j < length(inputData); j++) do
0: HashSet.add(inputDatali])
0: end for
0: while n < (length(HashSet)-3) do
0: for (i=0;1<4;i++) do
0 HS[i] = Hash(HashSet[i])
0: end for
0: val = SubMatrix(HS)
0 val = SubMatrix(val)
0: binseq = LiftAndShift(val)
0: file += binseq {Add Binary to output file}
0: n+= 1 {Iterate to next HashSet Value}
0: end while=0

Building a Hash-Set

Algorithm 1 Get Longest Path
InputinputOutputoutput Circuit Graph and Key Length List of
nodes on the longest path G« circuit graph overallNodes <—
[l
while true do allPaths < DFS(G)
for p in allPaths do
if len(p) = maxLength then maxPath < len(p)
for p in maxPath do
if p not in overallNodes then overallNodes.append(p)
if len(overallNodes > keyLength * 3) then break

The Lift and Shift method reads from the provided ECG
noise file and imports data into a hash-set. This set is used in
order to remove duplicates in the noise signals. While looking
through the selected data, it was observed that the ECG noise
does not consist of large variations, and some subjects have
over 50 consecutive readings with the same noise value. The

Authorized licensed use limited to: West Virginia University. Downloaded on June 14,2024 at 17:34:54 UTC from IEEE Xplore. Restrictions apply.

noise signal can be likened to an extremely low-frequency
signal with a small range of values for each patient. The
average difference between the maximum value and minimum
value for each participant in the three tested trial groups are
3445.6, 293.2, and 103.3 for PTB Diagnostic ECG Database
(PTDB), ECG identification database (ECG-ID), and MIT-
BIH Arrhythmia Database respectively. With small variability
between readings and a low overall range of possible values,
eliminating duplicates creates a smaller, but more entropic, set
of data. This process of removing duplicates can create a need
for larger data sets. In order to provide sufficient unique data
points, multiple patients in each trial were combined.

It is also worth noting again that a unique hash-set is created
for each time the method is executed due to the random seed
used in the python hash function. This allows for the same file
to be used multiple times and still produce a highly entropic
bit stream. This dynamic hash function was tested extensively
in Section IV, as it was forced to create multiple trials of data
for each data set provided.

Subtraction Matrix Function

After the unique hash-set is created, salt is added to the
hash function in order to ensure randomness. With duplicates
being removed, the overall size of the data set is dramatically
decreased. In order to increase the total number of bits pro-
duced per data value, and in order to prevent potential attackers
from reconstructing the data set, the hash-set is used in the
subtraction matrix function. The subtraction matrix function
is a derivative of a Hadamard Transformation [18]. These
transformations are popular for image processing applications
because they employ a lightweight process that only requires
addition and subtraction functionality.

Another feature exploited is the hash value generated for
each data value. While the hash-set contains all of the unique
data values from each patient, these values were all very
similar in magnitude. All of the data points were valued
between 100 and 20,000, leaving only 19,900 unique possi-
bilities. This realization lead to the proposed implementation
of using actual hash values instead of noise data values.
The hash values for each of these data points can range
anywhere from =+ 2,147,483,647 (231), increasing the number
of unique outputs by over 215,000 times. The hash function
also helps eliminate instances of similar data values being
grouped together. The difference between the hash results
of two consecutive numbers could be millions. This drastic
increase in possible values not only increases the number of
possible values used, making the function almost impossible
to reverse engineer, but it also nearly doubles the number of
bits produced. While all the data values were stored as 16-
bit integers, the hash values are all 32 bits long, doubling the
output bits of each data point.

The Subtraction Matrix Function is shown in two forms. In
the Matrix Multiplication Form, the function is shown as
the product of two matrix multiplications. In the Expanded
Equation Form, the matrix multiplication has already been

performed, and the resulting equations are shown.

Subtraction Matrix Function

Matrix Multiplication Form

1 1 1 -1 HS[0] abs(tmp1)
1 I -1 1 . HS[1]| _ |abs(tmp2)
1 -1 1 1 HSP2|| = |abs(tmp3)
-1 1 1 1| [HS[3] abs(tmp4) |
1 1 1 —1] [tmpl abs(val[1])]
1 I -1 1 . tmp2| _ |abs(val[2])
1 -1 1 1 tmp3| ~ |abs(val[3])
-1 1 1 1| |tmp4 abs(val[4])
Expanded Equation Form
tmpl = | HS[0] + HS[1]+HS[2] HS[3] |
tmp2 = |HS[0]+HS[| —HS[2]+HS[3] |
tmp3 = | HS[0] — HS[1] + HS[2] + HS[3] |
tnpé = | —HS[0]+ HS[1] + HS[2] + HS[3] |

val[1l] = tmpl+tmp2+tmp3-tmp4

val[2] = tmpl+tmp2-tmp3+tmp4

val[3] = tmpl-tmp2+tmp3+tmp4
val[4] = -tmpl+tmp2+tmp3+tmp4

As shown in the matrices, the subtraction matrix function
takes 4 hash values each time it is called, initially Hs[0] to
Hs[3]. After those 4 values have been processed, then the
subtraction matrix function is called again using Hs[1] through
Hs[4]. Since the method feeds values sequentially based on the
unique hash-set, hash values are reused in order to increase
total bit output.

It is also shown that the matrix multiplication occurs twice,
once with the original hash values, and then again with the
results of the first matrix multiplication. Due to the nature of
applying the matrix multiplication twice, values are thoroughly
randomized.

Lift and Shift Function

Once the subtraction matrix function has been applied, the
output array will no longer resemble the original hash values.
These output values are further modified using the Lift and
Shift function. The goal of the Lift and Shift function is to
ensure that the probability of getting either a 0 or a 1 is as close
to 0.5 as possible. This will ensure that the bits being produced
are thoroughly random and cannot be predicted by an outside
party. The suggested H function utilizes a bit-wise rotational
shift left by 1, followed by an XOR of this shifted value
and the original value. These new bits are then XOR’d with
the original value again and considered thoroughly random.
Instead of constantly left shifting each value by one, the lift
and shift function employs a dynamic shift value. This value
is calculated for each individual output of the subtraction

Authorized licensed use limited to: West Virginia University. Downloaded on June 14,2024 at 17:34:54 UTC from IEEE Xplore. Restrictions apply.

matrix. The input number’s decimal digits are added together
to determine the shift value. Once the shift value has been
calculated, a bit-wise rotational shift left is applied using the
calculated shift value. After the rotation, the new shifted value
is XOR’d with the original value, and this final result is
used as the randomized bit-stream. The dynamic shift value
further cloaks the original hash function and ensure that the
probability of producing a keys is as close to 0.5 as possible.

GetShift Function

function GETSHIFT(int 123)
return (1+2+3)

The Lift and Shift function is shown below:

Lift And Shift Function

0: function LIFTANDSHIFT(val)
0: for (i=0;1i<4;i++) do

0: ShiftValue = GetShift(vall[i])
0: ShiftedHash = val[i] << ShiftValue
0: HashBinary = GetBinary(ShiftedHash)
0: binseq += HashBinary & val[i]
0: end for
0: return binseq

Overall Advantages

As discussed throughout the previous sections, the Lift and
Shift Method is applied in order to extract entropy from the
collected noise signal. The measures of entropy and statistical
verification are discussed thoroughly in section IV. Beyond
verifying that the output is truly random, the method itself
also has many other built-in advantages.

Dynamic Hash Function

One advantage of the Lift and Shift method is the dynamic
hash function. As discussed earlier in this section, this allows
the method to be applied multiple times to the same data set,
resulting in fewer points of data being required when creating a
random key. This feature is exploited when generating multiple
random keys in succession. If an attacker were able to gain
access to the user’s filtered ECG data, they would still not
be able to directly predict the output bits without knowing the
dynamic hash seed. As implemented in the python library, this
hash seed is impossible to duplicate, so a random collision is
astronomically unlikely.

Fast Processing Speed

With the hash-set’s constant lookup time and lightweight
processes in each function, the entire method is fast. With a
hash-set of just under 20,000 entries, the method produces
about 3.1Kb per second. Depending on how large the input
data file is, the time for creating the hash-set can vary, although
it will be a constant time function based on the hash function.
The process was designed with speed in mind.

SP 800 - 90B
Test Name Average P-Value | Average P-Value | Average P-Value
(10 Trials) (20 Trials) (50 Trials)
Most C Value 0.9969 0.9967 0.9969
Collision Estimate 0.9154 0.9262 0.9249
Literal Markov 0.9986 0.9988 0.9988
Compression 0.8769 0.8779 0.8720
Tuple Estimate 0.9316 0.9260 0.9299
LRS Estimate 0.9759 0.9805 0.9823
Multi MCW 0.9962 0.9880 0.9931
Lag Prediction 0.9777 0.9507 0.9598
Multi MMC 0.9973 0.9863 0.9975
LZ78Y 0.9972 0.9976 0.9935
Average Value 0.9664 0.9629 0.9649

TABLE II: NIST SP 800-90B Results PTB Diagnostic ECG
Database (PTDB)

III. RESULTS AND VALIDATIONS

Throughout the testing process for TRNG verification, mul-
tiple data sets were tested using multiple statistical testing
suites. As mentioned in Section III, one of the major ad-
vantages of using the Lift and Shift method is the dynamic
hash function. With the built-in security measure, we are able
to ensure that the same data set can be used multiple times,
and still produce a completely random bit-stream. To better
illustrate this fact, testing was not only done using one output
of each data set but rather groupings.

Each testing suite was applied to groups of 10, 20, and 50
trials. Each trial consists of 1 iteration of the data set. That
means that 1 trial is produced by using 1 filtered data set, so the
only difference between trial 1 and trial 2 is the hash function.
Every other aspect of the method applied is the exact same
among trials. While the averaged results of the trial groups
showed a high level of entropy, in order to ensure entropy,
testing was also done on larger sample sizes of bits. These
larger sample sizes were created by appending multiple trials
together. That means that one data set was utilized multiple
times, with the only difference being the hash function output,
and all of the outputs were placed into the same file.

The main factor in output length was the input data length.
Larger input data sets resulted in larger average file outputs. As
a general estimate, between samples 1, 2, and 3 there was an
average file length of 2.3 Mb, 100 Kb, and 2 Mb respectively.
There was also an additional test run utilizing 15Mb samples
generated by each data set.

A. Bit Visualization

While there is no quantitative statistical testing done in the
bit visualization maps, it can be a good indicator of repeating
RNGs. In these maps, black pixels represent a 1’ while white
pixels represent a ’0’. As shown in Figures 1-2, there is no
discernible pattern shown. No score or quantitative measure-
ment is assigned during this test. Similar to the ENT testing
suite, the bit visualization technique was used as a quick check
to ensure that the RNG is not blatantly predictable. While
the results of this specific testing method cannot be used to
definitively say that the bit-stream is sufficiently random, they
can be used to determine that a bit-stream is predictable [5]

Authorized licensed use limited to: West Virginia University. Downloaded on June 14,2024 at 17:34:54 UTC from IEEE Xplore. Restrictions apply.

NIST 800 - 90B Testing Suite Results - MIT-BIH Arrhythmia Datat
Test N: Average P-Value | Average P-Value | Average P-Value
est Name (10 Trials) (20 Trials) (50 Trials) DieHarder Testing Suite Results -MIT-BIH Arrhythmia Database
Most Common Value 0.996572 0.996314 0.996572 Average P-Value | Average P-Value | Average P-Value
Collision Estimate 0.915602 0.915922 0.917702 Test Name (Pass/Total) (Pass/Total) (Pass/Total)
Literal Markov 0.998600 0998286 0998373 , (0 Trials) (20 Trials) (50 Trials)
Compression 0.872567 0.872867 0.863101 Birthdays 0.682 (10/10) 0.440 (20/20) 0.536(49/50)
! Operms 0.679 (10/10) 0.524 (2020) 0.651 (45/50)
Tuple Estimate 0.930676 0.926954 0.927223 R
A ank 32x32 0.390 (10/10) 0.512 (2020) 0.570 (50/50)
LRS .Estlmate 0.978487 0.984855 0.978334 6x8 Binary 0.646 (10710) 0,594 (20720) 0,566 (30/50)
Multi MCW 0.994462 0.995463 0.989409 Bitstream 0.382 (10710) 0.546 (19720) 0.568 (50/50)
Lag Prediction 0.957051 0.972778 0.960396 0PSO 0.396 (10/10) 0.574 (17720) 0.516 (49/50)
Multi MMC 0.994668 0.989896 0.987981 0QSO 0.457 (10/10) 0.607 (20/20) 0.584 (50/50)
LZ78Y 0.997764 0.996746 0.992732 DNA 0.474 (10/10) 0.427 (18720) 0.486 (50/50)
Average Value 0.963645 0.965008 0.961691 Count the 1s (stream) | 0.460 (10/10) 0.459 (19/20) 0.587 (48/50)
Count the 1s (BYTE) | 0.573 (10/10) 0.477 (20720) 0.528 (39/50)
TABLE IIL: NIST 800-90B Test Results for MIT-BIH Arrhyth- Parking Lot 0413 (10710) | 0.565 (1920) | 0,600 (49750
. M Di 0.586 (10/10) 0.644(20/20) 0.622 (49/50)
mia Database Mini Distance 0.550 (10/10) 0.607 (20720) 0.488 (48/50)
Squeeze Test 0.598 (10/10) 0.490 (16/20) 0.578 (48/50)
Sum Test 0.279 (10/10) 0.317 (18/20) 0.237 (45/50)
NIST 800 - 90B Testing Suite Results -ECG identification datal (ECG-ID) Runs1 0.634 (9/10) 0.451 (19/20) 0.540 (49/50)
Test Name Average P-Value | Average P-Value | Average P-Value Runs2 0.509 (10/10) 0.513 (20/20) 0.589 (50/50)
(10 Trials) (20 Trials) (50 Trials) Crapsl 0.550 (10/10) 0.651 (20/20) 0.576 (50/50)
Most C Value 0.985123 0.985072 0.985286 Craps2 0.333 (10/10) 0.466 (19/20) 0.576 (48/50)
Collision Estimate 0.840 0.844 0.849
Literal Markoy 0.994 0.994 0.995 TABLE VI: DieHarder Test Results MIT-BIH Arrhythmia
Compression 0.806 0.802 0.755
Tuple Estimate 0.911 0.920 0.917 Database
LRS Estimate 0.975 0.972 0.971
Multi MCW 0.985 0.986 0.986
Lag Prediction 0.978 0.981 0.974
Multi MMC 0.981 0.983 0.988
LZ78Y 0.980 0.988 0.989
Average Value 0.943946 0.945948 0.941421
DieHarder Testing Suite
TABLE IV: NIST 800-90B Test Results for ECG identification Average P-Value [Average P-Value [Average P-Value
Test Name (Pass/Total) (Pass/Total) (Pass/Total)
database (ECG-ID) (10 Trials) (20 Trials) (50 Trials)
Birthdays 0.514 (10/10) 0.585 (19/20) 0.596 (49/50)
Operms 0.533 (10/10) 0.602 (20/20) 0.559 (50/50)
DieHarder Testing Suite Results - ECG identification datal (ECG-ID) Rank 32x32 0.653 (10/10) 0.558 (20/20) 0.576 (49/50)
Average P-Value | Average P-Value | Average P-Value 6x8 Binary 0.661 (9/10) 0.573 (20/20) 0.620 (50/50)
Test Name (Pass/Total) (Pass/Total) (Pass/Total) Bitstream 0.618 (8/10) 0.555 (19/20) 0.543 (50/50)
(10 Trials) (20 Trials) (50 Trials) OPSO 0.618 (10/10) 0.579 (19/20) 0.529 (48/50)
Birthdays 0.498 (9/10) 0.700 (20/20) 0.595 (48/50) 0QSO 0.619 (10/10) 0.582 (19/20) 0.568 (48/50)
Operms 0.493 (9/10) 0.698 (19/20) 0.512 (50/50) DNA 0.395 (10/10) 0.425 (20/20) 0.507 (50/50)
Rank 32x32 0.575 (10/10) 0.544 (20/20) 0.631 (48/50) Count the 1Is (stream) 0.590 (10/10) 0.498 (20/20) 0.529 (47/50)
6x8 Binary 0.700 (10/10) 0.579 (19/20) 0.598 (50/50) Count the 1s (BYTE) 0.605 (10/10) 0.567 (20/20) 0.504 (49/50)
Bitstream 0.437 (10/10) 0.670 (19/20) 0.503 (48/50) Parking Lot 0.462 (10/10) 0.627 (20/20) 0.520 (49/50)
OPSO 0.733 (10/10) 0.524 (20/20) 0.555 (49/50 Mini Distance 0.826 (10/10) 0.589 (19/20) 0.648 (50/50)
0QSO 0.612 (10/10) 0.567 (20/20) 0.542 (50/50) Mini Distance 0.455 (10/10) 0.612 (18/20) 0.673(47/50)
DNA 0.358 (10/10) 0.504 (20/20) 0.388 (49/50) Squeeze Test 0.467 (9/10) 0.532 (20/20) 0.554 (48/50)
Count the 1s (stream) | 0.639 (10/10) 0.630 (19/20) 0.547 (49/50) Sum Test 0.186 (10/10) 0.235 (17/20) 0.199 (40/50)
Count the 1s (BYTE) 0.549 (9/10) 0.542 (20/20) 0.486 (48/50) Runsl 0.505 (10/10) 0.594 (20/20) 0.514 (49/50)
Parking Lot 0.521 (10/10) 0.552 (19/20) 0.567 (50/50) Runs2 0.511 (10/10) 0.587 (20/20) 0.620 (48/50)
Mi Distance 0.602 (10/10) 0.537 (20/20) 0.607 (49/50) Crapsl 0.556 (10/10) 0.418 (20/20) 0.521 (48/50)
Mini Distance 0.473 (10/10) 0.579 (20/20) 0.601 (46/50) Craps2 0.542 (10/10) 0.638 (20/20) 0.581 (48/50)
Squeeze Test 0.567 (10/10) 0.466 (20/20) 0.571 (49/50)
Sum Test 0415 (9/10) 0.299 (15720) 0.203 (43/50) TABLE VII: DieHarder Test Results for TB Diagnostic ECG
Runs1 0.536 (9710) 0.631 (19/20) 0.541 (50/50)
Runs2 0.597 (10710) 0,490 (19720) 0.567 (9750) Database (PTDB)
Crapsl 0.65 (10/10) 0.624 (19/20) 0.637 (49/50)
Craps2 0.709 (10/10) 0.502 (20/20) 0.559 (50/50)

TABLE V: DieHarder Test Results ECG identification
database (ECG-ID)

Fig. 2: Random bit Visualization of Sample 3.
Fig. 1: Random bit Visualization of Sample 1.

Authorized licensed use limited to: West Virginia University. Downloaded on June 14,2024 at 17:34:54 UTC from IEEE Xplore. Restrictions apply.

B. DieHarder Statistical Testing Suite

The next testing suite applied was the DieHarder testing
suite. This suite is a much more comprehensive statistical
testing suite, as it offers 19 intensive statistical tests. This is a
continuation, or sequel, of the original “Diehard” testing suite
by George Marsaglia, which had been used for many years
before Dieharder’s development. What makes the Dieharder
suite stand out is its intense tests, as well as its clear results.
While some tests give p-values and leave the results up to your
interpretation, the Dieharder testing suite gives a pass/weak
scoring, which helps remove most ambiguity from results [1].
As shown in Tables V-VI, the tested bit-streams performed
highly under intensive testing. With 19 different tests being
used to evaluate each bit-stream, there is much more assurance
that these RNG outputs are highly entropic. Although the
DieHarder results alone cannot guarantee a TRNG, they are a
strong indicator that these bitstreams are extremely random.

C. NIST SP800-90B Statistical Testing Suite

The next testing suite applied was the National Institute
for Standards and Technology (NIST) SP800-90B testing
Suite [2]. NIST is considered the gold standard for RNG
verification and testing. In the SP800-90B statistical testing
suite, 10 tests are applied to an input bit-stream. The tests give
p-values for the testing results, with a ’1’ being considered a
perfect pass, and a ’0’ being a fail. While there is no official
pass or fail results, every RNG should strive to be as close
to 1 as possible. As shown in the results from tables II - IV,
the proposed RNG performs extremely well under the testing
suite. Averaging all the trial results reveals an average entropy
value of around 96%. These results are strong indicators that
the RNG is effective,

D. NIST 800-22 Statistical Testing Suite

Altogether, these testing suites help quantitatively justify the
proposed RNG’s entropy [3]. Even with extensive statistical
testing, and highly entropic results, no RNG can be 100%
random. Keeping this fact in mind, the Lift and Shift Method
has proven to be an extremely effective, and efficient RNG.

IV. CONCLUSIONS

In this paper, we design a lightweight computational trust-
worthy of IMD based on novel ECG biometric authentication
using lift and shift method. This method is based on post-
processing data from the noise generated in an ECG signal
recording. We provide a comprehensive evaluation across mul-
tiple National Institute of Standards and Technology (NIST)
tests, as well as ENT and Dieharder statistical suites, and the
results all indicate highly unpredictable outputs.

REFERENCES

[1] Dieharder: A Random Number Test Suite. [Online].
webhome.phy.duke.edu/~rgb/General/dieharder.php/

[2] KNIST800-90b. [Online]. Available: https:/nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-90B.pdf/

[3] NIST800-22. [Online]. Available: https:/nvlpubs.nist.gov/nistpubs/
Legacy/SP/nistspecialpublication800-22r1a.pdf/

Available:

[4]
[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

PythonDocs. [Online].
html#cmdoption-R/
Spectra. [Online]. Available: http://www.digifail.com/software/spectra.
shtml/

A. N. Akansu and R. Poluri, “Walsh-like nonlinear phase orthogonal
codes for direct sequence cdma communications,” IEEE Transactions
on Signal Processing, vol. 55, no. 7, pp. 3800-3806, 2007.

D. K. Altop, A. Levi, and V. Tuzcu, “Towards using physiological
signals as cryptographic keys in body area networks,” in 2015 9th
International Conference on Pervasive Computing Technologies for
Healthcare (PervasiveHealth). 1EEE, 2015, pp. 92-99.

S.-D. Bao, C. C. Poon, Y.-T. Zhang, and L.-F. Shen, “Using the timing
information of heartbeats as an entity identifier to secure body sensor
network,” IEEE transactions on information technology in biomedicine,
vol. 12, no. 6, pp. 772-779, 2008.

M. Dichtl, “Bad and good ways of post-processing biased physical ran-
dom numbers,” in International Workshop on Fast Software Encryption.
Springer, 2007, pp. 137-152.

A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C.
Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E.
Stanley, “Physiobank, physiotoolkit, and physionet: components of a
new research resource for complex physiologic signals,” circulation, vol.
101, no. 23, pp. €215-e220, 2000.

M. Ingale, R. Cordeiro, S. Thentu, Y. Park, and N. Karimian, “Ecg
biometric authentication: A comparative analysis,” IEEE Access, vol. 8,
pp. 117 853-117 866, 2020.

H. Kim, S. Kim, N. Van Helleputte, A. Artes, M. Konijnenburg,
J. Huisken, C. Van Hoof, and R. F. Yazicioglu, “A configurable and
low-power mixed signal soc for portable ecg monitoring applications,”
IEEE transactions on biomedical circuits and systems, vol. 8, no. 2, pp.
257-267, 2013.

Q. Lin, W. Xu, J. Liu, A. Khamis, W. Hu, M. Hassan, and A. Senevi-
ratne, “H2b: Heartbeat-based secret key generation using piezo vibration
sensors,” in Proceedings of the 18th International Conference on Infor-
mation Processing in Sensor Networks, 2019, pp. 265-276.

C. C. Poon, Y.-T. Zhang, and S.-D. Bao, “A novel biometrics method
to secure wireless body area sensor networks for telemedicine and m-
health,” IEEE Communications Magazine, vol. 44, no. 4, pp. 73-81,
2006.

M. Rostami, A. Juels, and F. Koushanfar, “Heart-to-heart (h2h) authenti-
cation for implanted medical devices,” in Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, 2013, pp.
1099-1112.

R. M. Seepers, C. Strydis, I. Sourdis, and C. I. De Zeeuw, “Enhancing
heart-beat-based security for mhealth applications,” IEEE journal of
biomedical and health informatics, vol. 21, no. 1, pp. 254-262, 2015.
F. Xu, Z. Qin, C. C. Tan, B. Wang, and Q. Li, “Imdguard: Securing
implantable medical devices with the external wearable guardian,” in
2011 Proceedings IEEE INFOCOM. 1EEE, 2011, pp. 1862-1870.

R. K. Yarlagadda and J. E. Hershey, Hadamard matrix analysis and
synthesis: with applications to communications and signal/image pro-
cessing. Springer Science & Business Media, 2012, vol. 383.

G. Zheng, G. Fang, R. Shankaran, and M. A. Orgun, “Encryption
for implantable medical devices using modified one-time pads,” IEEE
Access, vol. 3, pp. 825-836, 2015.

Available: docs.python.org/3/using/cmdline.

Authorized licensed use limited to: West Virginia University. Downloaded on June 14,2024 at 17:34:54 UTC from IEEE Xplore. Restrictions apply.

