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Abstract
Soil moisture data assimilation (SM-DA) is a valuable approach for enhancing streamflow 
prediction in rainfall-runoff models. However, most studies have focused on incorporating 
remotely sensed SM, and their results strongly depend on the quality of satellite products. 
Compared with remote sensing products, in situ observed SM data provide greater accu-
racy and more effectively capture temporal fluctuations in soil moisture levels. Therefore, 
the effectiveness of SM-DA in improving streamflow prediction remains site-specific and 
requires further validation. Here, we employed the Ensemble Kalman filter (EnKF) to 
integrate daily SM into lumped and distributed approaches of the Xinanjiang (XAJ) hydro-
logical model to assess the importance of SM-DA in streamflow prediction. We observed 
a general improvement in streamflow prediction after conducting SM-DA. Specifically, 
the Nash-Sutcliffe efficiency increased from 0.61 to 0.65 for the lumped and from 0.62 to 
0.70 for the distributed approaches. Moreover, the efficiency of SM-DA exhibits seasonal 
variation, with in situ SM proving particularly valuable for streamflow prediction during 
the wet-cold season compared to the dry-warm season. Notably, daily SM data from deep 
layers exhibit a stronger capability to improve streamflow prediction compared to surface 
SM. This indicates the significance of deep SM information for streamflow prediction in 
mountain areas. Overall, this study effectively demonstrates the efficacy of assimilating 
SM data to improve hydrological models in streamflow prediction. These findings con-
tribute to our understanding of the connection between SM, streamflow, and hydrological 
connectivity in headwater catchments.

Keywords  Data assimilation · Headwater catchment · Rainfall-runoff models · Soil 
moisture · Streamflow prediction
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1  Introduction

Streamflow is a critical component of regional and global hydrological cycles. Accurate 
streamflow prediction plays an essential role in water resources management, including 
assessing the impact of climate and land use changes and aiding in reservoir operation 
(Mello et al. 2021). In practice, both lumped and distributed hydrological models are used 
for streamflow prediction across various environments (Li et al. 2009).

However, streamflow prediction by hydrological models is inevitably accompanied by 
uncertainties related to model inputs, parameters, and structure (Li et al. 2015; Bournas 
and Baltas 2021). These uncertainties arise from a lack of knowledge or inaccuracies when 
measuring or calculating the values of variables and parameters in hydrological models, 
resulting in discrepancies between modeled and actual streamflow values (Beven 2016). To 
tackle this issue, model calibration is commonly employed to minimize such discrepancies 
(Duan et al. 1992; Gotzinger and Bardossy 2008). However, calibration often heavily relies 
on observed data, typically utilizing only streamflow data in previous research, reducing the 
physical aspects of the models and constraining their application.

One effective approach to enhance streamflow prediction accuracy is to incorporate addi-
tional available information into forecasting (Gan et al. 2022; Ireson et al. 2022). With the 
advancements in monitoring technology, hydrological modeling can leverage various data 
sources such as soil moisture (SM), evapotranspiration (ET), groundwater, stream stage, 
temperature, and snow cover (Avellaneda et al. 2020; Koohi et al. 2022; Tekeli and Fouli 
2017). Utilizing these data can improve model performance and reduce prediction uncer-
tainty, increasing our understanding of the hydrological processes in the basin. The state 
of SM significantly impacts various hydrological processes within catchments, including 
rainfall-runoff transformations, aquifer recharge and actual evapotranspiration (Venegas-
Cordero et al. 2023; Yin et al. 2022). Thus, accurately representing SM in hydrological 
models holds great importance for improving streamflow predictions. One way to integrate 
SM into hydrological models is through data assimilation, specifically SM data assimilation 
(SM-DA) (Alvarez-Garreton et al. 2015; Samuel et al. 2014). Data assimilation involves 
the integration of observational data from various sources with a predictive model, accom-
panied by real-time adjustments to the model’s parameters or state variables. This process 
aims to minimize errors associated with uncertainties in both the data and the model itself. 
It is widely used for effectively integrating diverse observations and has increasingly been 
applied to streamflow forecasting. Due to the Ensemble Kalman filter (EnKF) method’s 
flexibility, ease of use, robustness, and effective assimilation capabilities, it is one of the 
most popular approaches for SM-DA in hydrological modeling (Shi et al. 2014). The EnKF 
can simultaneously estimate and adjust parameters as state variables, allowing for the real-
time adaptation of parameters over time. Additionally, it updates and corrects runoff simula-
tion results in real-time by integrating new data. This ability to more accurately represent 
the actual situation enhances the prediction accuracy of the model.

In recent years, obtaining SM information has become easier through in situ and remote 
sensing observations (Caldwell et al. 2019; Li et al. 2021). Numerous studies have explored 
the assimilation of SM data into hydrological models to enhance streamflow prediction 
(Loizu et al. 2018; Nayak et al. 2021). However, conducting SM-DA has not yielded con-
sistent results (Alvarez-Garreton et al. 2015; Patil and Ramsankaran 2017). Some studies 
have highlighted the improved representation of SM and superior streamflow prediction 
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with SM-DA (Brocca et al. 2012; Massari et al. 2015). For example, Ziliani et al. (2019) 
significantly enhanced flood prediction by assimilating SM data. Conversely, other studies 
have produced contrasting findings (Matgen et al. 2012; Liu et al. 2024). Nayak et al. (2021) 
used three different hydrological models with SM-DA, observing performance improve-
ments in one model while deterioration in the other two models. Another example by Patil 
and Ramsankaran (2017) investigated the potential of assimilating remotely sensed soil 
moisture observations to improve streamflow predictions. The findings revealed moder-
ate improvements in streamflow predictions. Therefore, although several studies have 
employed SM-DA for rainfall-runoff modeling and demonstrated promising results in 
enhancing streamflow predictions, the degree of improvement often varies depending on 
specific site characteristics. Additionally, the outcomes of SM-DA are influenced by factors 
such as model structure, catchment characteristics, and the spatiotemporal resolution of 
forcing data (Massari et al. 2015; Nayak et al. 2021). Despite this, it remains unclear which 
factors have the most significant impact on the performance of SM-DA (Alvarez-Garreton 
et al. 2015; Brocca et al. 2012; Massari et al. 2015).

Moreover, the incorporation of remote sensed SM data from sources such as Global Land 
Data Assimilation System (GLDAS), Soil Moisture and Ocean Salinity (SMOS), and Soil 
Moisture Active Passive (SMAP) in most studies is heavily influenced by the quality and 
scale of satellite observations (Khaki et al. 2019; Laiolo et al. 2016; Wu et al. 2022). On one 
hand, SM-DA using remote sensing data primarily focuses on surface SM (0–5 cm depth), 
while hydrological models often divide soils into multiple layers, making it challenging to 
accurately represent the state of deep soil moisture. Several studies assimilating in situ SM 
data typically rely on a limited number of sites predominantly situated in relatively flat ter-
rains (Samuel et al. 2014), thereby leaving the performance of SM-DA in catchments with 
complex topography unclear. Therefore, it is crucial to assess the performance of SM-DA in 
streamflow prediction by utilizing an adequate number of in situ SM observations, encom-
passing both surface and subsurface SM, particularly in complex environments. This evalu-
ation is necessary to identify the key factors that exert the most significant impact on model 
performance.

The objective of this paper is to evaluate the impact of assimilating in situ SM observa-
tions into lumped and distributed approaches of a rainfall-runoff model for streamflow sim-
ulation in a headwater catchment equipped with a network of 33 field monitoring sites. We 
investigate the effectiveness of SM assimilation using the Ensemble Kalman filter (EnKF) 
method to enhance streamflow predictions, as well as the disparity in streamflow predictions 
between lumped and distributed hydrological models after SM data assimilation in catch-
ments characterized by complex terrains.

2  Study Area and Datasets

2.1  Study Catchment

The study was conducted in the Shale Hills catchment in central Pennsylvania, U.S.A. 
(Fig.  1a), a forested, V-shaped catchment covering an area of 0.08 km2. The catchment 
is characterized by relatively steep slopes (ranging from 25 to 45%). A first-order stream 
forms within the catchment is a tributary of the Shaver’s Creek. The catchment experiences 
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a typical continental climate with a mean annual air temperature of 10 ℃ and mean annual 
precipitation of 1070 mm, distributed uniformly throughout the year. While most precipita-
tion falls as snow during winter and early spring, rain is predominant from late spring to 
autumn (Liu and Lin 2015). Deciduous forests and a few evergreen coniferous forests and 
shrubs dominate the catchment. The majority of soils in the study catchment are silt loam 
and silty clay loam, with four soil types identified (Fig. 1b) (Lin 2006; Lin and Zhou 2008), 
and their depths range from 0.31 to 2.45 m within the Shale Hills catchment (Fig. 1c).The 
catchment’s elevation ranges from 256 m at the outlet to 310 m at the highest ridge.

2.2  Datasets

The Shale Hills catchment was equipped with a real-time hydrologic (RTH) monitoring 
network, including a flux tower and a weather station (Fig. 1a). The RTH network recorded 
precipitation, wind speed, relative humidity, air temperature and net radiation at a temporal 
resolution of 10 min. Hourly streamflow data were obtained using water level readings from 
a V-shaped weir located at the catchment outlet (Fig. 1a) and an associated rating curve.

The Shale Hills catchment was established with 33 SM monitoring sites. The 33 sites 
were grouped into one of six soil-terrain units: Ridge, Valley, N-slope, N-swale, S-slope 
and S-swale (Fig. 1a). The grouping of these sites was based on a combination of soil types 
and slope characteristics to achieve adequate representation and coverage (Fan et al. 2020). 
These sensors were installed across multiple soil layers at each site to measure SM (m3/m3), 
with a temporal resolution of 10 min. Each site has three different sensor depths: the shal-

Fig. 1  (a) Geographical location, soil moisture monitoring sites, geomorphological features, and elevation 
of the Shale Hills catchment. (b) Distribution of soil types and slope degree. (c) Distribution of soil depth
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lowest (horizon A) is between 5 and 20 cm, the intermediate (horizon B), between 12 and 
90 cm, and the deepest (horizon C), between 20 and 155 cm. Daily precipitation and stream-
flow data covering the period from January 01, 2008 to May 31, 2013 and SM data from 
May 19, 2011 to May 31, 2013 (downloaded from http://www.czo.psu.edu) were employed 
in this study (Table S1).

3  Methods

3.1  The Xinanjiang Hydrological Model (XAJ Model)

The XAJ model is a lumped rainfall-runoff model (Zhao 1992). It is primarily used in humid 
and semi-humid regions and has gained wide recognition for its application in streamflow 
prediction worldwide The XAJ model comprises four sub-models: an evapotranspiration 
sub-model, a surface runoff generation sub-model, a runoff separation sub-model, and a run-
off routing sub-model (Fig. S1). The catchment is divided into permeable and impermeable 
areas in the XAJ model. In impermeable areas, all effective rainfall is directly converted 
into surface runoff. In permeable areas, the model recognizes the heterogeneity of vertical 
soil distribution by subdividing the soil into upper, lower, and deep layers. The XAJ model 
calculates the evaporation of the three layers in the evapotranspiration module, followed 
by constructing a tension water capacity curve to estimate the runoff while considering the 
uneven distribution of the underlying surface. The free water reservoir structure separates 
the total runoff into three components: surface, interflow, and subsurface. The runoff is then 
transported to the outlet of each sub-basin through linear reservoirs to generate the outflow 
of the sub-basins. Finally, the runoff is calculated to the catchment’s outlet using either the 
lag-and-route method or the Muskingum method.

Input data for the model include precipitation and potential evapotranspiration (PET), 
while the output is represented by runoff (or streamflow). In this study, PET was calcu-
lated using the Food and Agriculture Organization of the United Nations (FAO) Penman-
Monteith equation (Cai et al. 2007) incorporating data on net radiation, wind speed, relative 
humidity, and air temperature obtained from the RTH network in the Shale Hills catch-
ment. The XAJ model incorporates a total of 15 state variables and 18 parameters, including 
the Muskingum parameters (Table S2). For more detailed information on the XAJ model, 
please refer to Zhao (1992).

3.2  The Grid-XAJ Model

The Grid-XAJ model is a distributed hydrological model that builds upon the principles of 
the XAJ model and utilizes DEM data (Yao et al. 2012). The watershed is partitioned into 
rectangular grids based on the DEM information, with each grid serving as a computational 
unit within the Grid-XAJ framework. These units consist of two main components: a water 
balance component and a cell-to-cell flow routing component. The calculations for ET, run-
off generation, and runoff separation within each grid follow the same principles as the XAJ 
model. The catchment calculation order for each grid is determined based on the grid catch-
ment area matrix. The Muskingum method is applied to route the flow from each unit to the 
catchment outlet, considering the computed order among the DEM grid cells.
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The Grid-XAJ model comprises 13 spatial uniform parameters, including K, C, B, IM, 
EX, KG, KI, CG, CI, CS, L, KE, and XE. These parameters in the Grid-XAJ model have 
the same physical meanings as in the XAJ model. The Grid-XAJ model assumes a uniform 
distribution of rainfall patterns and underlying surface conditions within each grid. The 
parameters Wm and Sm in each grid are related to the characteristics of the underlying sur-
face and can be calculated based on soil texture properties. The specific calculation formula 
is as follows:

	 Wm = (θf − θw)× La � (1)

	 Sm = (θs − θf )× Lh � (2)

	 Lal = 0.167× La � (3)

	 Lau = 0.5× La � (4)

where θf  is field capacity; θw  is the wilting point; La  is the thickness of aeration zone 
(mm); θs  is saturated moisture content; Lh  is the thickness of humus soil (mm); Lal  is the 
thickness of the upper aeration zone (mm); Lau  is the thickness of the lower aeration zone 
(mm). For more detailed information about these formulas, please refer to Yao et al. (2012).

3.3  Data Assimilation

3.3.1  Ensemble Kalman Filter

The Ensemble Kalman filter (EnKF) is a sequential data assimilation algorithm that employs 
a Monte Carlo-based approach (Evensen 1994). The EnKF consists of a forecast period and 
an update period. The dual EnKF approach simultaneously estimates state variables and 
model parameters using noisy observations. The method can be subdivided into two peri-
ods, i.e., parameter optimization and state update. At each assimilation time step, model 
parameters are updated first, followed by the update of model state variables. The detailed 
algorithmic process of the dual EnKF is as follows.

(1) Generating the initial state sets. Based on the Monte Carlo method, a set of random 
variables is generated by initializing the set of state variables

{
xi+t

}
 and parameters

{
φi+
t

}

of the model at time t = 1, i = 1 ,…, N.
In order to prevent over-updating in the process of parameter assimilation, kernel smooth-

ing is performed on the parameter set:

	 φi−
t+1 ∼ N(αφi+

t + (1 − α)φ
+

t , h
2V +

t ) � (5)

	 V +
t = var(φ+

t )� (6)

where φ  is the parameter of assimilation, the superscripts “i-”and “i+” denote the forecast 
and updated values of the ith member of the parameter set, respectively. α = 3δ−1

2δ
, α values 

range from 0 to 1, and h =
√
1− α2 .
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(2) Transferring state. Using the forecasted parameters (φi−
t+1) , the set of forecast values 

of the model state variables at time t + 1 is calculated:

	 xi−t+1 = f (xi+t , φi−
t+1, ut, t)� (7)

where xi−t+1 is the forecast value of the ith state ensemble member at time t + 1 and xi+t  is the 
update value of the ith state ensemble member at time t. ut is the model inputs at time t, such 
as precipitation.

(3) Updating parameters. When observations are available at time t, the ensembles of 
parameters are updated according to the Kalman equation:

	 φi+
t+1 = φi−

t+1 +Kφ
t+1((Y

i
t+1 + υt+1)− h(xi−t+1, φ

i−
t+1)), υt+1 ∼ N(0, Rt+1)� (8)

	 Kφ
t+1 = Pφ

t+1H
T (HPφ

t+1H
T + Rt+1)

−1 � (9)

	
Pφ
t+1 =

1

N − 1

N∑

i=1

(φi−
t+1−φt+1

−
)(φi−

t+1 − φt+1
−
)T � (10)

	
φt+1

−
=

1

N

N∑

i=1

φi−
t+1 � (11)

where Y i
t+1 is the members of the observation at time t + 1. The measured soil moisture 

data from the surface and subsurface layers were used in this study. υt+1 and Rt+1  are the 
noise and covariance of the observation error, respectively. h(g) is the observation operator 
characterizing the mapping process from the state variables xi−t+1 and parameters φi−

t+1 of the 
model to the observation Y i

t+1; Kφ
t+1is the Kalman gain of the modified parameter trajec-

tory at time t + 1; Pφ
t+1is the covariance of model forecasting error at time t + 1; φt+1

−  is the 
mean of the forecasted parameter members.

(4) Forecasting the state variable. Bringing the parameters obtained from Eq. (8) back to 
time t, and recalculating the state variables with the evolution of time.

	 xi−t+1 = f (xi+t , φi+
t+1, ut, t) + ωt, ωt ∼ N(0, Qt)� (12)

where ut  and Qt  are the noise and covariance of the model structure.
(5) Updating the status variable. Using the observation data and Eq. (13) to update the 

state variables when the observation data are available.

	 xi+t+1 = xi−t+1 +KX
t+1((Y

i
t+1 + υt+1)− h(xi−t+1, φ

i+
t+1)), υt+1 ∼ N(0, Rt+1)� (13)

	 KX
t+1 = PX

t+1H
T (HPX

t+1H
T + Rt+1)

−1 � (14)

	
PX
t+1 =

1

N − 1

N∑

i=1

(xi−t+1−xt+1
−)(xi−t+1 − xt+1

−)T � (15)
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xt+1

− =
1

N

N∑

i=1

xi−t+1� (16)

where h(g) is the observation operator characterizing the mapping process from the state 
variables xi−t+1 and parameters φi+

t+1 of the model to the observation Y i
t+1; KX

t+1 is the Kal-
man gain of the modified status variable trajectory at time t + 1; PX

t+1is the covariance of 
model forecasting error at time t + 1; xt+1

−  is the mean of the forecasted state variables 
members.

(6) Examining the stop criterion. Return to step (2) if t is less than the total assimilation 
time T; else, stop the loop.

3.3.2  SM-DA set up

The implementation framework of the EnKF for assimilating SM is depicted in Fig. 2. The 
dual EnKF scheme was employed to capture the associated covariances between model 
state variables and model parameters. Stochastic noises were assumed to follow a Gauss-
ian distribution with predetermined variances, and they were added to model parameters to 
account for modeling errors (Loizu et al. 2018). Taking into account the computational cost 
and assimilation effect, as well as comparative analyses with existing research, this study 
has opted to set the ensemble size at 50 members.

During the data assimilation process, two parameters, namely the exponent of the dis-
tribution of tension water capacity (B) and the areal mean free soil water storage capacity 
(Sm), along with two state variables, the areal mean tension water storage of the upper soil 
layer (WU) and the mean tension water storage of the lower soil layer (WL), were adjusted 
and updated.

Fig. 2  Flow chart of the SM data assimilation set up in this study

 

1 3



Improved Streamflow Simulation by Assimilating In Situ Soil Moisture in…

3.4  Data Preprocessing

The soil moisture data from horizon A was used as the surface SM value. The mean value 
of soil moisture from horizons B and C was considered subsurface SM, as these horizons 
represent significantly deeper layers in this catchment (Primka et al. 2021).

The XAJ and Grid-XAJ model based on the Shale Hills catchment incorporates soil 
properties to represent soil water storage using three different soil layers: the upper soil layer 
(5–33 cm), lower soil layer (29–84 cm), and deep soil layer (34–101 cm). Initial experi-
ments conducted during this study highlighted that the model’s sensitivity to the deep soil 
layer was limited unless there were changes in the vertical distribution of soil properties. As 
a result, for data assimilation, the surface and subsurface soil water in the XAJ model were 
represented and updated using surface and subsurface SM observations.

The XAJ and Grid-XAJ models simulate soil moisture content for each layer. When 
assimilation observed SM data, the soil profile should be processed to divide the upper and 
lower “virtual” soil layers so that the soil moisture monitoring point are in the correspond-
ing soil layers, thus the soil moisture content is converted into the corresponding moisture 
content data. The positions of the monitoring points for both surface and subsurface layers 
at the 33 stations are all located within the depth range of the upper and lower vadose zones 
in the corresponding grids of the Grid-XAJ model.

The conversion formulas for surface and subsurface SM to the upper and lower soil 
moisture content in the Grid-XAJ model are as follows:

	 WUob,k = (θobsur,k − θw,k)× Lau,k � (17)

	 WLob,k = (θobsubsur,k − θw,k)× Lal,k � (18)

where WUob,k  is the upper soil moisture content corresponding to the observation site k 
(k = 1, …, 33), mm; θobsur,k  is surface SM, m3/m3; θw,k  is the wilting point; Lau,k  is the thick-
ness of upper aeration zone; WLob,k  is the lower soil moisture content corresponding to 
the observation site, mm; θobsubsur,k  is subsurface SM, m3/m3; Lal,k  is the thickness of lower 
aeration zone.

	
WUob =

1

33

33∑

k=1

WUob,k � (19)

	
WLob =

1

33

33∑

k=1

WLob,k � (20)

where WUob , WLob  is the mean of the upper and lower soil moisture content correspond-
ing to the 33 observation sites, mm.

The WUob  and WLob  represent the measured soil moisture content of the corresponding 
upper and lower layers within the Shale Hills catchment in the XAJ model, respectively.
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3.5  Evaluation of Streamflow Prediction Results

The optimization of parameters for the two approaches of the XAJ hydrological model 
was accomplished using the Genetic Algorithm (GA) method (Wang 1991). The calibration 
period encompassed January 01, 2008, to December 31, 2010, with the first three months 
allocated as the model warm-up period. Subsequently, the validation period extended from 
January 01, 2011, to May 31, 2013. To assess the impact on data assimilation output per-
formance, the models were evaluated through two distinct runs: an Open Loop run, which 
involved no data assimilation, and an SM-DA run, which incorporated the assimilation of 
SM data. The simulation period considered for the SM-DA run spanned from May 19, 2011, 
to May 31, 2013.

The evaluation of the model’s ability to simulate daily streamflow performance was 
conducted using the following the metrics: the Nash-Sutcliffe efficiency coefficient (NSE, 
Eq. (21)), relative bias (BIAS, Eq. (22)), correlation coefficient (R, Eq. (23)) and assimila-
tion efficiency (EFF, Eq. (24)). The calculation of these metrics is as follows:

	

NSE = 1−

T∑

t=1
(Qobs(t)−Qsim(t))

2

T∑

t=1
(Qobs(t)−Qobs)

2
� (21)

Where T is the length of the streamflow time series (daily), Qobs(t) and Qsim(t) are the 
observed and simulated streamflow at time t, m3/d, respectively, and Qobs is the mean of the 
observed streamflow, m3/d,. In Eqs. (21), (22) and (23) the subscript sim refers to any of the 
different time series performance evaluated in this study, i.e., calibration (Qcal), validation 
(Qval), Open Loop (QOL) or data assimilation (QDA).

	

BIAS =

T∑

t=1
(Qobs(t)−Qsim(t))

T∑

t=1
Qobs(t)

× 100%� (22)

	

R =

T∑

t=1
(Qobs(t)−Qobs)(Qsim(t)−Qsim)

√
T∑

t=1
(Qobs(t)−Qobs)

2

√
T∑

t=1
(Qsim(t)−Qsim)

2
� (23)

	

EFF = (1−

T∑

t=1
(QDA(t)−Qobs(t))

2

T∑

t=1
(QOL(t)−Qobs(t))

2

)× 100%� (24)

The EFF is more than zero indicating that the assimilation run is better than the Open Loop 
run for streamflow simulation and vice versa.
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4  Results

4.1  Dynamics of SM and Their Relation to Precipitation and Streamflow

The comparison of spatial patterns for surface and subsurface SM measurements is pre-
sented in Fig. 3a and b. Notably, the surface SM demonstrates higher levels of moisture in 
comparison to the subsurface SM, exhibiting low spatial variability and lacking any appar-
ent spatial pattern (Fig. 3a). Conversely, the observed subsurface SM exhibits distinct spatial 
patterns (Fig. 3b). Wet areas predominantly align along the valley, while the ridgetop areas 
tend to be drier when compared to other soil-terrain units. These patterns may be attributed 

Fig. 3  Spatial distribution of the mean (a) surface SM and (b) subsurface SM measured from the sensor 
network in the Shale Hills catchment from 2011 to 2013 (interpolated for the entire catchment using the 
ordinary kriging method) and the time series of the daily unit-average of (c) surface SM and (d) subsur-
face SM observations in the six soil-terrain units, as well as the daily precipitation and streamflow during 
the same monitoring period
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to the combined influence of topography and soil characteristics, manifesting in catchment 
wetting and drying cycles alongside precipitation and evapotranspiration processes (Fig. 1).

The temporal dynamics of surface and subsurface SM across six distinct soil-terrain 
units are presented in Fig. 3c and d, accompanied by daily precipitation and streamflow data 
during the monitoring period. Figure 3c and d suggests that the surface SM patterns remain 
consistent across all soil-terrain units (Fig.  3c), whereas subsurface SM exhibits greater 
variability influenced primarily by topography and soil depth within the catchment area. As 
depicted in Fig. 3d, the valley unit consistently displays the highest moisture content, reach-
ing values of approximately 0.32 m3/m3 or above for most monitoring days, predominantly 
stored in the deeper subsurface layers. In contrast, the ridge unit exhibits lower moisture 
content, typically below 0.18 m3/m3, attributed to variations in precipitation and evapotrans-
piration rates, terrain characteristics, and soil properties. SM correlates well with stream-
flow, where variations in streamflow are partly dependent on the relative dryness/wetness of 
the soil, influencing the occurrence of overland flows on the hillslope.

4.2  Calibration and Validation of rainfall-runoff

We employed a 6-year time series spanning from 2008 to 2013 for calibration and valida-
tion. The predictive capabilities of both approaches for daily streamflow were compared. 
Figure 4 presents the results obtained by both models during the calibration and validation 
periods. Overall, both the XAJ and Grid-XAJ models demonstrated effectiveness in cap-
turing the hydrologic characteristics of the catchment. However, in terms of accuracy, the 
distributed model showcased superior performance, indicated by consistently lower residual 
values.

The performance of the XAJ and Grid-XAJ models during both the calibration and vali-
dation periods was compared. The NSE for the XAJ model is 0.66 during calibration and 
0.65 during validation, whereas for the Grid-XAJ model, the NSE values are 0.68 during 
calibration and 0.67 during validation. Additionally, the BIAS values for the two models are 
− 10.7% and 1.7% during calibration, and − 19.7% and 0.0% during validation (Table S3). 
These results indicate that the Grid-XAJ model outperforms the XAJ model.

4.3  Improved Streamflow Simulating with SM-DA

Figure 5 presents the results obtained from the Open Loop and SM-DA runs with 50 ensem-
ble members. The ensemble predictions of streamflow before and after SM-DA for both the 
lumped and distributed model approaches were compared. The range between the 5th and 
95th percentiles and the mean values represents ensembles. In both models, the SM-DA run 
(Fig. S2) reveals improved agreement between the overall shape of the streamflow hydro-
graph and the observed data in comparison to the Open Loop run. Furthermore, the stream-
flow ensemble simulations in the Open Loop run exhibit a wider variation range when 
compared to the SM-DA run, indicative of greater uncertainty. The period of peak flow 
exhibits the highest level of uncertainty (Fig. S2).

The quartile ranges of NSE during the Open Loop run range from 0.55 to 0.62 and 
0.51 to 0.61, while during the SM-DA run, they are observed to be 0.64 to 0.66 and 0.69 
to 0.70 for the XAJ and Grid-XAJ, respectively (Fig. 5a). Moreover, both models exhibit 
higher correlation coefficient (R) in the SM-DA run compared to the Open Loop simulation 
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(Fig. 5b). Both the XAJ model and the Grid-XAJ model achieved statistically significant 
improvements in their NSE and R values, passing the significance test at the 0.01 level. This 
result underscores a significant enhancement in streamflow modeling before and after data 
assimilation. The Grid-XAJ approached demonstrates superior performance when employ-
ing SM-DA with the EnKF method in comparison to the lumped approach. The box plots 
in Fig. 5a further indicate that the NSE of the model simulations using SM-DA display nar-
rower ranges, suggesting less uncertainty in streamflow modeling.

The simulated streamflow between the lumped and distributed model approach employ-
ing the assimilation method was compared. The results clearly demonstrate improvements 
achieved through assimilation, with the NSE increasing from 0.61 to 0.65 for the lumped 
model and from 0.62 to 0.70 for the distributed model (Table S4). Additionally, the R 
increased from 0.80 to 0.81 for the lumped approach and from 0.79 to 0.86 for the Grid-XAJ 
model, indicating that the assimilation methods enhanced the accuracy of runoff estimates 
by effectively integrating SM. Consequently, SM-DA proves to be effective in reducing 
uncertainty associated with streamflow simulations. Furthermore, the overall assimilation 
efficiency (EFF) for simulating streamflow is 11.6% for the XAJ model and 19.9% for the 
distributed approach. These findings underline the success of both lumped and distributed 
models in leveraging SM-DA to improve streamflow predictions, with the distributed model 
displaying a greater potential for enhancing streamflow prediction.

The similar analysis was conducted across different seasons. The improvements in 
streamflow modeling resulting from SM-DA were observed to be more pronounced during 
the wet-cold season (December-May) compared to the dry-warm season (June-November). 

Fig. 4  Observed and simulated daily streamflow as well as their difference at the Shale Hills catchment 
from 2008 to 2013. (a) Daily precipitation time series. (b) Comparison of streamflow observations and 
simulations during the calibration and validation periods using XAJ and Grid-XAJ model. (c) Difference 
between simulated and observed daily streamflow

 

1 3



H. Li et al.

Substantial enhancements in streamflow prediction were evident for wet-cold seasons, with 
the NSE increasing from 0.43 to 0.63 for the XAJ model and from 0.45 to 0.58 for the 
Grid-XAJ model (Table S5). However, during dry-warm seasons, SM-DA did not yield 
considerable improvements over the Open Loop simulation. This could be attributed to the 
fact that, during warm-dry seasons, streamflow is primarily influenced by precipitation and 
ET. Conversely, in wet-cold seasons, SM exerts a greater impact on runoff simulation, thus 
rendering SM-DA more effective in enhancing streamflow prediction specifically for wet-
cold seasons.

4.4  Assimilating Surface SM and Subsurface SM

We investigated the assimilation of surface SM and subsurface SM to assess their respective 
benefits for simulating streamflow. When using subsurface SM in the assimilation process, 
the simulated streamflow more closely matched the observed streamflow than using surface 
SM. The assimilation of surface SM led to slight improvements in streamflow predictions, 
with average EFF values of 3.2% and 7.8% in the lumped and distributed models, respec-
tively (Table 1). In contrast, the assimilation of subsurface SM had a much greater impact 
on streamflow (EFF = 6.8% and 14.0%). This result can be attributed to the substantial dif-
ference in thickness between the two layers. Subsurface SM-DA has more relevance for 
the hydrological processes in general. As forests predominantly occupy the basin, water 
for transpiration is extracted from deeper layers. The percolation process (groundwater 
recharge) is deeper in the vadose zone, so sub-surface SM is more effective than the surface 
SM, which controls only the surface runoff process. This shows the physical robustness of 

Fig. 5  Box plots showing the performance of simulated streamflow obtained from Open Loop and SM-DA 
runs using the ensemble members (Open Loop ens and SM-DA ens) in terms of (a) NSE, and (b) R of 
XAJ and Grid-XAJ model, and ** indicates a significance level of 0.01
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the model. Accurately estimating SM in the subsoil is critical for simulating streamflow, as 
it accounts for a significant proportion of soil water in the vadose zone.

5  Discussion

5.1  Comparison of Streamflow Modelling between Lumped and Distributed 
Hydrological Models with SM-DA

The results of this study demonstrate the effective simulation of daily streamflow in the 
study catchment by both the lumped and distributed XAJ models, effectively capturing the 
dynamic rainfall-runoff processes. However, various statistical analyses indicate the supe-
rior performance of the distributed approach over the lumped approach. This improved per-
formance can mainly be attributed to considering the spatial distribution of SM data and 
catchment attributes, such as soil properties and topography, in the distributed model. The 
spatial heterogeneity of these catchment attributes significantly influences the patterns of 
SM. The Shale Hills catchment exhibits complex terrain, with steep slopes and clear spa-
tial variability of soil types (Lin et al. 2006) also see Fig. 1. The valley geomorphological 
feature dominated by Ernest soils generally exhibits higher moisture content, and ridges 
dominated by Weikert soils are the driest areas in the catchment. These distinct characteris-
tics can lead to different flow generation mechanisms, with the distributed models providing 
the means to account for distributed runoff generation (Xiao et al. 2019). In contrast, the 
lumped approach represents runoff mechanisms by disregarding the spatial heterogeneity 
of catchment attributes, relying instead on a single average soil water storage value for the 
entire area (Alvarez-Garreton et al. 2015). Our study highlights that this approach poses 
significant limitations for calibration schemes and serves as a major source of uncertainty. 
Consequently, our results underscore the advantages of utilizing the distributed approach, 
which demonstrates higher accuracy and lower uncertainty in comparison to the lumped 
model (Tables S3 and S4).

The spatial distribution of catchment attributes plays a significant role in streamflow 
generation. Further, the simulated streamflow by the lumped and distributed was divided 
into surface runoff and subsurface runoff, encompassing interflow and groundwater. The 
proportions of streamflow results from the lumped (applied to the entire catchment) and the 
distributed approaches (applied to six soil-terrain units) are depicted after the assimilation 
of SM (Fig. S3). The surface runoff simulated by both models accounts for a small portion, 
constituting only 16% for the lumped model and ranging from 20 to 36% for the distributed 
model (Fig. S3). Notably, the proportion of surface runoff varies significantly among all six 
soil-terrain units in the distributed model. The valley, characterized by a smaller slope (3.2–
18.4%), exhibits the lowest surface runoff proportion (20%). In contrast, the S-Slope and 
Ridge units display the highest proportions of surface runoff (36% and 32%, respectively) 
attributed to greater steepness (20.4–36% and 7.5–22.3%). The XAJ and Grid-XAJ models 

Assimilation XAJ Grid-XAJ
NSE EFF (%) NSE EFF (%)

Surface SM 0.62 3.2 0.64 7.8
Subsurface SM 0.64 6.8 0.66 14.0

Table 1  Evaluation of the corre-
sponding benefits on stream-
flow simulation using surface 
and subsurface SM for data 
assimilation
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employ the concept of a free water reservoir to segregate different types of runoff. In these 
models, incoming rainfall first compensates for any deficit in soil moisture, contributing to 
the formation of interflow. This process is followed sequentially by subsurface runoff and 
then by surface runoff. The relationship between rainfall events and surface flow is provided 
(Fig. S4). Rainfall exhibits a strong correlation with both surface and subsurface runoff 
across six distinct soil-terrain units, which underscores its critical role in recharging runoff 
systems. Typically, rainfall is the primary contributor to surface runoff. During smaller pre-
cipitation events, limited surface runoff is generated as a greater proportion of the rainfall 
infiltrates the soil. Conversely, during intense rainfall events, the infiltration capacity is 
overwhelmed by the volume of rainfall, resulting in more substantial surface runoff. On 
the other hand, subsurface flows exhibited dominance and sustained for extended periods, 
demonstrating relative steadiness (Fig. S4).

5.2  Uncertainties and Limitations of the SM-DA Approach

This study provides compelling evidence supporting the effectiveness of integrating in situ 
SM measurements into the XAJ model to enhance streamflow prediction. However, it is 
important to acknowledge that both models exhibit underestimation of the highest stream-
flow peaks. This discrepancy can be attributed to the limited density of rainfall gauges in 
the catchment area, which emerges as a prominent factor contributing to these prediction 
errors. The neglect of spatial heterogeneity of rainfall distribution may further contribute to 
the underestimation of peak flows. Another crucial consideration is the significant influence 
of preferential flow within the study catchment, which has not been accounted for in the 
XAJ model. Previous studies have documented evidence of preferential flow paths through 
macropore networks in forested hillslopes (Guo et al. 2018). Subsurface preferential flow 
also occurs at interfaces between soil horizons and soil-rock transitions within the study 
catchment (Lin et al. 2006; Liu et al. 2020). In addition, Yu et al. (2014) highlighted the suc-
cessful performance of hydrological models incorporating macropore effects in predicting 
peak flow within the Shale Hills catchment, emphasizing the critical role of macropore flow 
in determining recharge thresholds and runoff response.

The underlying structure of hydrological models highly influences the incorporation of 
SM data for streamflow prediction (Massari et al. 2015; Nayak et al. 2021). This study uti-
lized the XAJ model, a two-layer soil water balance model consisting of an upper and lower 
layer. However, it is crucial to note that the depth of SM considered by the XAJ model does 
not always align precisely with the in situ measurements. Additionally, the hydrological par-
titioning in the XAJ model is based on the SM deficit in each layer, representing the amount 
of moisture required to reach saturation level Zhao (1992). The XAJ model assumes that 
soil water movement to the lower layer occurs only after the upper layer is saturated. This 
leads to higher variations in the upper layer and less variation in the deeper layer, contrary 
to actual soil water movement. Similar limitations are also present in other models, such as 
SWAT (Chen et al. 2010; Patil and Ramsankaran 2017). These discrepancies can introduce 
errors when assimilating surface and subsurface SM data into the XAJ model. These limita-
tions may affect the model’s ability to accurately describe the soil moisture state, which in 
turn affects the model’s ability to understand and predict hydrological processes. Previous 
studies have highlighted the influence of SM-DA on streamflow prediction, emphasizing 
the importance of reliable SM information obtained from in-situ measurements compared 
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to that derived from meteorological data during simulation (Nayak et al. 2021). It is worth 
noting that the reliability of SM information is a critical factor affecting the effectiveness of 
SM-DA. This discrepancy in data reliability is one of the primary reasons that SM-DA did 
not consistently improve or even resulted in degraded streamflow simulation accuracy in 
certain studies (Massari et al. 2015).

5.3  Future Outlook

This study evaluates the effects of assimilating in situ SM data into lumped and distributed 
XAJ models in a forested catchment with complex terrain. Several factors influencing the 
improvement in streamflow prediction with SM-DA need to be addressed in future stud-
ies to investigate the remaining uncertainties. For instance, our findings suggest that the 
model structure generally influences the accuracy of SM-DA schemes. Therefore, devel-
oping of hydrological models incorporating a multilayer soil water sub-model capable of 
better characterizing vertical soil water movement is crucial. Additionally, the representa-
tion of preferential flow in catchment hydrological modeling emerges as another important 
issue (Xiao et al. 2019). In forested catchments, preferential flow through macropores can 
result in significant and rapid infiltration and deep percolation (Sidle et al. 2001). Previous 
studies have demonstrated the improvements achieved by incorporating preferential flow 
concepts compared to models without them (Yu et al. 2014). The XAJ model lacks the capa-
bility to effectively incorporate the impacts of preferential flow. To address this issue and 
more accurately represent the hydrological process and runoff generation mechanism in the 
Shale Hills catchment, either a different hydrological model that includes preferential flow 
could be utilized, or the XAJ model could be enhanced by integrating a module specifically 
designed to account for preferential flow.

Our findings demonstrate that soil properties and topographic characteristics contribute 
additional improvements to distributed flow simulation in catchments with complex ter-
rains. Therefore, it is crucial to employ a distributed model to enhance data assimilation 
performance (Yu et al. 2014). Although distributed physics-based modeling has been uti-
lized to explore the impacts of spatial catchment characteristics on streamflow and overall 
catchment model performance, further investigation is necessary. Furthermore, it should be 
noted that our study was conducted within a relatively steep catchment, and the results of 
SM-DA were inherently model (and site) specific. To validate this potential, further studies 
will be conducted in catchments with flatter terrain in the future. Moreover, while the EnKF 
method was employed for SM-DA in this study, conducting in-depth analysis to evaluate 
alternative assimilation techniques would be worthwhile.

6  Conclusions

This work presents an evaluation of assimilating in situ SM into hydrological models 
to reduce streamflow prediction uncertainty in a well-monitored catchment. The study 
explores the advantages of SM spatial distribution within the catchment using both lumped 
and distributed hydrological models. The results demonstrate that the SM data in the study 
catchment exhibits a strong response to precipitation and streamflow. Comparing the simu-
lations of the SM-DA runs with the Open Loop runs, a general improvement is observed 
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in both the lumped and distributed models. Specifically, the distributed model (NSE = 0.70, 
R = 0.86) outperforms the lumped model (NSE = 0.65, R = 0.81) by considering the spatial 
heterogeneity of SM and catchment attributes, thus providing more accurate and robust 
streamflow simulations. SM updates in the wet-cold season primarily enhance the per-
formance of streamflow simulation compared to the dry-warm season. Furthermore, the 
assimilation of subsurface SM yields greater improvements in streamflow simulation than 
the surface SM. This highlights the importance of incorporating deeper SM information for 
accurate streamflow prediction. However, it should be noted that the updated simulation in 
the catchment remains limited by the model structure and the quality of forcing data prior 
to assimilation. SM-DA alone cannot address the systematic errors present in the model 
pre-assimilation. In conclusion, this study contributes to understanding of the connection 
between SM, streamflow, and hydrological connectivity in headwater catchments, and also 
offers crucial methodological and theoretical support for accurate simulation of hydrologi-
cal processes in catchments and real-time calibration of hydrological models.
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