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Abstract

Soil moisture data assimilation (SM-DA) is a valuable approach for enhancing streamflow
prediction in rainfall-runoff models. However, most studies have focused on incorporating
remotely sensed SM, and their results strongly depend on the quality of satellite products.
Compared with remote sensing products, in situ observed SM data provide greater accu-
racy and more effectively capture temporal fluctuations in soil moisture levels. Therefore,
the effectiveness of SM-DA in improving streamflow prediction remains site-specific and
requires further validation. Here, we employed the Ensemble Kalman filter (EnKF) to
integrate daily SM into lumped and distributed approaches of the Xinanjiang (XAJ) hydro-
logical model to assess the importance of SM-DA in streamflow prediction. We observed
a general improvement in streamflow prediction after conducting SM-DA. Specifically,
the Nash-Sutcliffe efficiency increased from 0.61 to 0.65 for the lumped and from 0.62 to
0.70 for the distributed approaches. Moreover, the efficiency of SM-DA exhibits seasonal
variation, with in situ SM proving particularly valuable for streamflow prediction during
the wet-cold season compared to the dry-warm season. Notably, daily SM data from deep
layers exhibit a stronger capability to improve streamflow prediction compared to surface
SM. This indicates the significance of deep SM information for streamflow prediction in
mountain areas. Overall, this study effectively demonstrates the efficacy of assimilating
SM data to improve hydrological models in streamflow prediction. These findings con-
tribute to our understanding of the connection between SM, streamflow, and hydrological
connectivity in headwater catchments.
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1 Introduction

Streamflow is a critical component of regional and global hydrological cycles. Accurate
streamflow prediction plays an essential role in water resources management, including
assessing the impact of climate and land use changes and aiding in reservoir operation
(Mello et al. 2021). In practice, both lumped and distributed hydrological models are used
for streamflow prediction across various environments (Li et al. 2009).

However, streamflow prediction by hydrological models is inevitably accompanied by
uncertainties related to model inputs, parameters, and structure (Li et al. 2015; Bournas
and Baltas 2021). These uncertainties arise from a lack of knowledge or inaccuracies when
measuring or calculating the values of variables and parameters in hydrological models,
resulting in discrepancies between modeled and actual streamflow values (Beven 2016). To
tackle this issue, model calibration is commonly employed to minimize such discrepancies
(Duan et al. 1992; Gotzinger and Bardossy 2008). However, calibration often heavily relies
on observed data, typically utilizing only streamflow data in previous research, reducing the
physical aspects of the models and constraining their application.

One effective approach to enhance streamflow prediction accuracy is to incorporate addi-
tional available information into forecasting (Gan et al. 2022; Ireson et al. 2022). With the
advancements in monitoring technology, hydrological modeling can leverage various data
sources such as soil moisture (SM), evapotranspiration (ET), groundwater, stream stage,
temperature, and snow cover (Avellaneda et al. 2020; Koohi et al. 2022; Tekeli and Fouli
2017). Utilizing these data can improve model performance and reduce prediction uncer-
tainty, increasing our understanding of the hydrological processes in the basin. The state
of SM significantly impacts various hydrological processes within catchments, including
rainfall-runoff transformations, aquifer recharge and actual evapotranspiration (Venegas-
Cordero et al. 2023; Yin et al. 2022). Thus, accurately representing SM in hydrological
models holds great importance for improving streamflow predictions. One way to integrate
SM into hydrological models is through data assimilation, specifically SM data assimilation
(SM-DA) (Alvarez-Garreton et al. 2015; Samuel et al. 2014). Data assimilation involves
the integration of observational data from various sources with a predictive model, accom-
panied by real-time adjustments to the model’s parameters or state variables. This process
aims to minimize errors associated with uncertainties in both the data and the model itself.
It is widely used for effectively integrating diverse observations and has increasingly been
applied to streamflow forecasting. Due to the Ensemble Kalman filter (EnKF) method’s
flexibility, ease of use, robustness, and effective assimilation capabilities, it is one of the
most popular approaches for SM-DA in hydrological modeling (Shi et al. 2014). The EnKF
can simultaneously estimate and adjust parameters as state variables, allowing for the real-
time adaptation of parameters over time. Additionally, it updates and corrects runoff simula-
tion results in real-time by integrating new data. This ability to more accurately represent
the actual situation enhances the prediction accuracy of the model.

In recent years, obtaining SM information has become easier through in situ and remote
sensing observations (Caldwell et al. 2019; Li et al. 2021). Numerous studies have explored
the assimilation of SM data into hydrological models to enhance streamflow prediction
(Loizu et al. 2018; Nayak et al. 2021). However, conducting SM-DA has not yielded con-
sistent results (Alvarez-Garreton et al. 2015; Patil and Ramsankaran 2017). Some studies
have highlighted the improved representation of SM and superior streamflow prediction
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with SM-DA (Brocca et al. 2012; Massari et al. 2015). For example, Ziliani et al. (2019)
significantly enhanced flood prediction by assimilating SM data. Conversely, other studies
have produced contrasting findings (Matgen et al. 2012; Liu et al. 2024). Nayak et al. (2021)
used three different hydrological models with SM-DA, observing performance improve-
ments in one model while deterioration in the other two models. Another example by Patil
and Ramsankaran (2017) investigated the potential of assimilating remotely sensed soil
moisture observations to improve streamflow predictions. The findings revealed moder-
ate improvements in streamflow predictions. Therefore, although several studies have
employed SM-DA for rainfall-runoff modeling and demonstrated promising results in
enhancing streamflow predictions, the degree of improvement often varies depending on
specific site characteristics. Additionally, the outcomes of SM-DA are influenced by factors
such as model structure, catchment characteristics, and the spatiotemporal resolution of
forcing data (Massari et al. 2015; Nayak et al. 2021). Despite this, it remains unclear which
factors have the most significant impact on the performance of SM-DA (Alvarez-Garreton
et al. 2015; Brocca et al. 2012; Massari et al. 2015).

Moreover, the incorporation of remote sensed SM data from sources such as Global Land
Data Assimilation System (GLDAS), Soil Moisture and Ocean Salinity (SMOS), and Soil
Moisture Active Passive (SMAP) in most studies is heavily influenced by the quality and
scale of satellite observations (Khaki et al. 2019; Laiolo et al. 2016; Wu et al. 2022). On one
hand, SM-DA using remote sensing data primarily focuses on surface SM (0—5 cm depth),
while hydrological models often divide soils into multiple layers, making it challenging to
accurately represent the state of deep soil moisture. Several studies assimilating in situ SM
data typically rely on a limited number of sites predominantly situated in relatively flat ter-
rains (Samuel et al. 2014), thereby leaving the performance of SM-DA in catchments with
complex topography unclear. Therefore, it is crucial to assess the performance of SM-DA in
streamflow prediction by utilizing an adequate number of in situ SM observations, encom-
passing both surface and subsurface SM, particularly in complex environments. This evalu-
ation is necessary to identify the key factors that exert the most significant impact on model
performance.

The objective of this paper is to evaluate the impact of assimilating in situ SM observa-
tions into lumped and distributed approaches of a rainfall-runoff model for streamflow sim-
ulation in a headwater catchment equipped with a network of 33 field monitoring sites. We
investigate the effectiveness of SM assimilation using the Ensemble Kalman filter (EnKF)
method to enhance streamflow predictions, as well as the disparity in streamflow predictions
between lumped and distributed hydrological models after SM data assimilation in catch-
ments characterized by complex terrains.

2 Study Area and Datasets

2.1 Study Catchment

The study was conducted in the Shale Hills catchment in central Pennsylvania, U.S.A.
(Fig. la), a forested, V-shaped catchment covering an area of 0.08 km?. The catchment

is characterized by relatively steep slopes (ranging from 25 to 45%). A first-order stream
forms within the catchment is a tributary of the Shaver’s Creek. The catchment experiences
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Fig.1 (a) Geographical location, soil moisture monitoring sites, geomorphological features, and elevation
of the Shale Hills catchment. (b) Distribution of soil types and slope degree. (¢) Distribution of soil depth

a typical continental climate with a mean annual air temperature of 10 °C and mean annual
precipitation of 1070 mm, distributed uniformly throughout the year. While most precipita-
tion falls as snow during winter and early spring, rain is predominant from late spring to
autumn (Liu and Lin 2015). Deciduous forests and a few evergreen coniferous forests and
shrubs dominate the catchment. The majority of soils in the study catchment are silt loam
and silty clay loam, with four soil types identified (Fig. 1b) (Lin 2006; Lin and Zhou 2008),
and their depths range from 0.31 to 2.45 m within the Shale Hills catchment (Fig. 1¢).The
catchment’s elevation ranges from 256 m at the outlet to 310 m at the highest ridge.

2.2 Datasets

The Shale Hills catchment was equipped with a real-time hydrologic (RTH) monitoring
network, including a flux tower and a weather station (Fig. 1a). The RTH network recorded
precipitation, wind speed, relative humidity, air temperature and net radiation at a temporal
resolution of 10 min. Hourly streamflow data were obtained using water level readings from
a V-shaped weir located at the catchment outlet (Fig. 1a) and an associated rating curve.
The Shale Hills catchment was established with 33 SM monitoring sites. The 33 sites
were grouped into one of six soil-terrain units: Ridge, Valley, N-slope, N-swale, S-slope
and S-swale (Fig. 1a). The grouping of these sites was based on a combination of soil types
and slope characteristics to achieve adequate representation and coverage (Fan et al. 2020).
These sensors were installed across multiple soil layers at each site to measure SM (m*/m?),
with a temporal resolution of 10 min. Each site has three different sensor depths: the shal-
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lowest (horizon A) is between 5 and 20 cm, the intermediate (horizon B), between 12 and
90 cm, and the deepest (horizon C), between 20 and 155 cm. Daily precipitation and stream-
flow data covering the period from January 01, 2008 to May 31, 2013 and SM data from
May 19, 2011 to May 31, 2013 (downloaded from http://www.czo.psu.edu) were employed
in this study (Table S1).

3 Methods
3.1 The Xinanjiang Hydrological Model (XAJ Model)

The XAJ model is a lumped rainfall-runoff model (Zhao 1992). It is primarily used in humid
and semi-humid regions and has gained wide recognition for its application in streamflow
prediction worldwide The XAJ model comprises four sub-models: an evapotranspiration
sub-model, a surface runoff generation sub-model, a runoff separation sub-model, and a run-
off routing sub-model (Fig. S1). The catchment is divided into permeable and impermeable
areas in the XAJ model. In impermeable areas, all effective rainfall is directly converted
into surface runoff. In permeable areas, the model recognizes the heterogeneity of vertical
soil distribution by subdividing the soil into upper, lower, and deep layers. The XAJ model
calculates the evaporation of the three layers in the evapotranspiration module, followed
by constructing a tension water capacity curve to estimate the runoff while considering the
uneven distribution of the underlying surface. The free water reservoir structure separates
the total runoff into three components: surface, interflow, and subsurface. The runoff is then
transported to the outlet of each sub-basin through linear reservoirs to generate the outflow
of the sub-basins. Finally, the runoff is calculated to the catchment’s outlet using either the
lag-and-route method or the Muskingum method.

Input data for the model include precipitation and potential evapotranspiration (PET),
while the output is represented by runoff (or streamflow). In this study, PET was calcu-
lated using the Food and Agriculture Organization of the United Nations (FAO) Penman-
Monteith equation (Cai et al. 2007) incorporating data on net radiation, wind speed, relative
humidity, and air temperature obtained from the RTH network in the Shale Hills catch-
ment. The XAJ model incorporates a total of 15 state variables and 18 parameters, including
the Muskingum parameters (Table S2). For more detailed information on the XAJ model,
please refer to Zhao (1992).

3.2 The Grid-XAJ Model

The Grid-XAJ model is a distributed hydrological model that builds upon the principles of
the XAJ model and utilizes DEM data (Yao et al. 2012). The watershed is partitioned into
rectangular grids based on the DEM information, with each grid serving as a computational
unit within the Grid-XAJ framework. These units consist of two main components: a water
balance component and a cell-to-cell flow routing component. The calculations for ET, run-
off generation, and runoff separation within each grid follow the same principles as the XAJ
model. The catchment calculation order for each grid is determined based on the grid catch-
ment area matrix. The Muskingum method is applied to route the flow from each unit to the
catchment outlet, considering the computed order among the DEM grid cells.
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The Grid-XAJ model comprises 13 spatial uniform parameters, including K, C, B, IM,
EX, KG, KI, CG, CI, CS, L, KE, and XE. These parameters in the Grid-XAJ model have
the same physical meanings as in the XAJ model. The Grid-XAJ model assumes a uniform
distribution of rainfall patterns and underlying surface conditions within each grid. The
parameters W, and S, in each grid are related to the characteristics of the underlying sur-
face and can be calculated based on soil texture properties. The specific calculation formula
is as follows:

W= (0 — 04) x Ly, (1)
Sm=(0s—06f) X Ly, 2
Ly =0.167 x L, (3)
Loy, =05 % L, 4)

where 0 is field capacity; 0,, is the wilting point; L, is the thickness of aeration zone
(mm); 6, is saturated moisture content; L;, is the thickness of humus soil (mm); L; is the
thickness of the upper aeration zone (mm); L, is the thickness of the lower aeration zone
(mm). For more detailed information about these formulas, please refer to Yao et al. (2012).

3.3 Data Assimilation
3.3.1 Ensemble Kalman Filter

The Ensemble Kalman filter (EnKF) is a sequential data assimilation algorithm that employs
a Monte Carlo-based approach (Evensen 1994). The EnKF consists of a forecast period and
an update period. The dual EnKF approach simultaneously estimates state variables and
model parameters using noisy observations. The method can be subdivided into two peri-
ods, i.e., parameter optimization and state update. At each assimilation time step, model
parameters are updated first, followed by the update of model state variables. The detailed
algorithmic process of the dual EnKF is as follows.

(1) Generating the initial state sets. Based on the Monte Carlo method, a set of random
variables is generated by initializing the set of state variables{x?} and parameters{¢é+}
of the model at time t=1, i=1,..., N.

In order to prevent over-updating in the process of parameter assimilation, kernel smooth-
ing is performed on the parameter set:

$i7y ~ N(agi™ + (1 — ), , h2V,") )
Vit = var(¢;) (6)

where ¢ is the parameter of assimilation, the superscripts “i-”and “i+” denote the forecast

and updated values of the i member of the parameter set, respectively. o = LTI, «a values
p p P Y 26

range from O to 1, and h = /1 — a?2.

@ Springer



Improved Streamflow Simulation by Assimilating In Situ Soil Moisture in...

(2) Transferring state. Using the forecasted parameters (gbﬁl) , the set of forecast values
of the model state variables at time 7+ 1 is calculated:

xyy = [l o, unt) @)

where z_, is the forecast value of the i state ensemble member at time 7+ 1 and /" is the
update value of the i state ensemble member at time . 1, is the model inputs at time ¢, such
as precipitation.

(3) Updating parameters. When observations are available at time ¢, the ensembles of
parameters are updated according to the Kalman equation:

&1ty = din + K7 (Vi +vin) — by, 6170), vt ~ N(0, Resy) ®)
K::»l = PtilHT(H‘PtilHT + Ri) ™! )
\ . -
Pl = Z G0 NPy — Prin ) (10)
- N
re1 = Z o (1n)

where Y, is the members of the observation at time ¢+ 1. The measured soil moisture
data from the surface and subsurface layers were used in this study. vi+1 and Ry are the
noise and covariance of the observation error, respectively. h( ) is the observation operator
characterizing the mapping process from the state variables x;,, and parameters b 11 of the
model to the observation Y}’ s K ’.1is the Kalman gain of the modified parameter trajec-
tory at time £+ 1; P; 118 the covariance of model forecasting error at time #+1; ¢, is the
mean of the forecasted parameter members.

(4) Forecasting the state variable. Bringing the parameters obtained from Eq. (8) back to

time ¢, and recalculating the state variables with the evolution of time.
r;;l = f(r§+7 ¢iilv Ut, t) + Wi, Wt ~ N(Oa Qt) (12)

where u; and (); are the noise and covariance of the model structure.
(5) Updating the status variable. Using the observation data and Eq. (13) to update the
state variables when the observation data are available.

Jjt+1 It+1 + Kt+1<(Yt+1 +vig1) — h(xilp ¢;¢1)): Vg1~ N(0, R 1) (13)
K} = PYH (HPY H" + Rpy)™ (14)

N
Py = 1 2 (i )i — wen ) (15)

i=1
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N

1 i
Tl =y Z Tiy1 (16)

i=1

where h(g) is the observation operator characterizing the mapping process from the state
variables 1:;;1 and parameters ¢, of the model to the observation Y, ,; K7 | is the Kal-
man gain of the modified status variable trajectory at time 7+1; Pélis the covariance of
model forecasting error at time #+1; T;,; is the mean of the forecasted state variables
members.

(6) Examining the stop criterion. Return to step (2) if ¢ is less than the total assimilation

time T; else, stop the loop.
3.3.2 SM-DA set up

The implementation framework of the EnKF for assimilating SM is depicted in Fig. 2. The
dual EnKF scheme was employed to capture the associated covariances between model
state variables and model parameters. Stochastic noises were assumed to follow a Gauss-
ian distribution with predetermined variances, and they were added to model parameters to
account for modeling errors (Loizu et al. 2018). Taking into account the computational cost
and assimilation effect, as well as comparative analyses with existing research, this study
has opted to set the ensemble size at 50 members.

During the data assimilation process, two parameters, namely the exponent of the dis-
tribution of tension water capacity (B) and the areal mean free soil water storage capacity
(S,,), along with two state variables, the areal mean tension water storage of the upper soil
layer (WU) and the mean tension water storage of the lower soil layer (WL), were adjusted
and updated.

‘ Precipitation and Meterologcial data

Parameters
Kernel smoothin

I In situ soil moisture
|| (surface SM and subsurface SM) | |— SESC-=c========== ) Runoff generation
! | 2P ! K Wm B ™M
I
| | R RB
<———— Forecasted parameters -~ _ i
| | Evapotranspiration l Runoff
| | Sm_ RS separation
I i W EX
—&—» Updated parameters ———————»| < wy 5 KL pp —
I | E <Y WL
I I . ;
| | C KG Rg
R, | Wi
FEEssm==m=s=sss=== 1 s routing
EnKF " Step 2 ) Flow routing Qs
I I
I I Q — Q ———
<L Torecasted state variables +———— «— Q& |

— Updated state variables ~—————— Each computational unit in the
Grid-XAT and XAT models

o l

Repeat the above steps for the next time period, using the - -
updated parameters and state variables in steps 1 and 2 of Improved streamflow simulation by
the current time period assimilating in situ soil moisture

Fig.2 Flow chart of the SM data assimilation set up in this study

@ Springer



Improved Streamflow Simulation by Assimilating In Situ Soil Moisture in...

3.4 Data Preprocessing

The soil moisture data from horizon A was used as the surface SM value. The mean value
of soil moisture from horizons B and C was considered subsurface SM, as these horizons
represent significantly deeper layers in this catchment (Primka et al. 2021).

The XAJ and Grid-XAJ model based on the Shale Hills catchment incorporates soil
properties to represent soil water storage using three different soil layers: the upper soil layer
(5-33 cm), lower soil layer (29-84 cm), and deep soil layer (34-101 cm). Initial experi-
ments conducted during this study highlighted that the model’s sensitivity to the deep soil
layer was limited unless there were changes in the vertical distribution of soil properties. As
a result, for data assimilation, the surface and subsurface soil water in the XAJ model were
represented and updated using surface and subsurface SM observations.

The XAJ and Grid-XAJ models simulate soil moisture content for each layer. When
assimilation observed SM data, the soil profile should be processed to divide the upper and
lower “virtual” soil layers so that the soil moisture monitoring point are in the correspond-
ing soil layers, thus the soil moisture content is converted into the corresponding moisture
content data. The positions of the monitoring points for both surface and subsurface layers
at the 33 stations are all located within the depth range of the upper and lower vadose zones
in the corresponding grids of the Grid-XAJ model.

The conversion formulas for surface and subsurface SM to the upper and lower soil
moisture content in the Grid-XAJ model are as follows:

WUOM‘ = (9227”,1{ - ew,k) X Lau,k (17)
W Loy = <923bsmgk — Ouwk) X Lak (18)

where WUy, is the upper soil moisture content corresponding to the observation site k
(k=1, ..., 33), mm; Q;’ZM is surface SM, m*/m?; 6, 1 is the wilting point; Ly & is the thick-
ness of upper aeration zone; W Loy is the lower soil moisture content corresponding to
the observation site, mm; ngbmmk is subsurface SM, m*/m?; L . is the thickness of lower

aeration zone.

33

- 1
WU()b = % ; WU{)[)J\? (]9)
1 33
L()) = 55 Lm i
WLy 33;W i (20)

where WU, , W L,, is the mean of the upper and lower soil moisture content correspond-
ing to the 33 observation sites, mm.

The WU,, and W L, represent the measured soil moisture content of the corresponding
upper and lower layers within the Shale Hills catchment in the XAJ model, respectively.
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3.5 Evaluation of Streamflow Prediction Results

The optimization of parameters for the two approaches of the XAJ hydrological model
was accomplished using the Genetic Algorithm (GA) method (Wang 1991). The calibration
period encompassed January 01, 2008, to December 31, 2010, with the first three months
allocated as the model warm-up period. Subsequently, the validation period extended from
January 01, 2011, to May 31, 2013. To assess the impact on data assimilation output per-
formance, the models were evaluated through two distinct runs: an Open Loop run, which
involved no data assimilation, and an SM-DA run, which incorporated the assimilation of
SM data. The simulation period considered for the SM-DA run spanned from May 19, 2011,
to May 31, 2013.

The evaluation of the model’s ability to simulate daily streamflow performance was
conducted using the following the metrics: the Nash-Sutcliffe efficiency coefficient (NSE,
Eq. (21)), relative bias (BIAS, Eq. (22)), correlation coefficient (R, Eq. (23)) and assimila-
tion efficiency (EFF, Eq. (24)). The calculation of these metrics is as follows:

i (Qut) = Quom(t))?
NSE =1 =L Q1)

r 2
Z <Q0b5<t> - Qobs)

Where T is the length of the streamflow time series (daily), O,,(¢) and O, (f) are the
observed and simulated streamflow at time ¢, m*/d, respectively, and @, is the mean of the
observed streamflow, m*/d,. In Egs. (21), (22) and (23) the subscript sim refers to any of the
different time series performance evaluated in this study, i.e., calibration (Q,,), validation

(O,a1)> Open Loop (Q,;) or data assimilation (Qp, ).

T
Z (Qobs(t) - Qsim(ﬂ)
BIAS = = - x 100% (22)

1231 Qobs <t>

T . _
Z Qobs Qobs)(@sim@) - Qsim)
R=— — ; — 23)
\/Z (Qobs( Qobs) ; (Qsim(t) - Qsim)

(QDA (t> - QubS (t)>2

M=

~+
Il
—

EFF = (1 — ) x 100% (24)

(Qor(t) — Quns(t))”

M’ﬂ

s,.
Il
—

The EFF is more than zero indicating that the assimilation run is better than the Open Loop
run for streamflow simulation and vice versa.
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4 Results

4.1 Dynamics of SM and Their Relation to Precipitation and Streamflow

The comparison of spatial patterns for surface and subsurface SM measurements is pre-
sented in Fig. 3a and b. Notably, the surface SM demonstrates higher levels of moisture in
comparison to the subsurface SM, exhibiting low spatial variability and lacking any appar-
ent spatial pattern (Fig. 3a). Conversely, the observed subsurface SM exhibits distinct spatial
patterns (Fig. 3b). Wet areas predominantly align along the valley, while the ridgetop areas
tend to be drier when compared to other soil-terrain units. These patterns may be attributed
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Fig. 3 Spatial distribution of the mean (a) surface SM and (b) subsurface SM measured from the sensor
network in the Shale Hills catchment from 2011 to 2013 (interpolated for the entire catchment using the
ordinary kriging method) and the time series of the daily unit-average of (¢) surface SM and (d) subsur-
face SM observations in the six soil-terrain units, as well as the daily precipitation and streamflow during
the same monitoring period
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to the combined influence of topography and soil characteristics, manifesting in catchment
wetting and drying cycles alongside precipitation and evapotranspiration processes (Fig. 1).

The temporal dynamics of surface and subsurface SM across six distinct soil-terrain
units are presented in Fig. 3¢ and d, accompanied by daily precipitation and streamflow data
during the monitoring period. Figure 3¢ and d suggests that the surface SM patterns remain
consistent across all soil-terrain units (Fig. 3c), whereas subsurface SM exhibits greater
variability influenced primarily by topography and soil depth within the catchment area. As
depicted in Fig. 3d, the valley unit consistently displays the highest moisture content, reach-
ing values of approximately 0.32 m*/m> or above for most monitoring days, predominantly
stored in the deeper subsurface layers. In contrast, the ridge unit exhibits lower moisture
content, typically below 0.18 m*/m?, attributed to variations in precipitation and evapotrans-
piration rates, terrain characteristics, and soil properties. SM correlates well with stream-
flow, where variations in streamflow are partly dependent on the relative dryness/wetness of
the soil, influencing the occurrence of overland flows on the hillslope.

4.2 Calibration and Validation of rainfall-runoff

We employed a 6-year time series spanning from 2008 to 2013 for calibration and valida-
tion. The predictive capabilities of both approaches for daily streamflow were compared.
Figure 4 presents the results obtained by both models during the calibration and validation
periods. Overall, both the XAJ and Grid-XAJ models demonstrated effectiveness in cap-
turing the hydrologic characteristics of the catchment. However, in terms of accuracy, the
distributed model showcased superior performance, indicated by consistently lower residual
values.

The performance of the XAJ and Grid-XAJ models during both the calibration and vali-
dation periods was compared. The NSE for the XAJ model is 0.66 during calibration and
0.65 during validation, whereas for the Grid-XAJ model, the NSE values are 0.68 during
calibration and 0.67 during validation. Additionally, the BIAS values for the two models are
—10.7% and 1.7% during calibration, and —19.7% and 0.0% during validation (Table S3).
These results indicate that the Grid-XAJ model outperforms the XAJ model.

4.3 Improved Streamflow Simulating with SM-DA

Figure 5 presents the results obtained from the Open Loop and SM-DA runs with 50 ensem-
ble members. The ensemble predictions of streamflow before and after SM-DA for both the
lumped and distributed model approaches were compared. The range between the Sth and
95th percentiles and the mean values represents ensembles. In both models, the SM-DA run
(Fig. S2) reveals improved agreement between the overall shape of the streamflow hydro-
graph and the observed data in comparison to the Open Loop run. Furthermore, the stream-
flow ensemble simulations in the Open Loop run exhibit a wider variation range when
compared to the SM-DA run, indicative of greater uncertainty. The period of peak flow
exhibits the highest level of uncertainty (Fig. S2).

The quartile ranges of NSE during the Open Loop run range from 0.55 to 0.62 and
0.51 to 0.61, while during the SM-DA run, they are observed to be 0.64 to 0.66 and 0.69
to 0.70 for the XAJ and Grid-XAlJ, respectively (Fig. 5a). Moreover, both models exhibit
higher correlation coefficient (R) in the SM-DA run compared to the Open Loop simulation
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Fig. 4 Observed and simulated daily streamflow as well as their difference at the Shale Hills catchment
from 2008 to 2013. (a) Daily precipitation time series. (b) Comparison of streamflow observations and
simulations during the calibration and validation periods using XAJ and Grid-XAJ model. (¢) Difference
between simulated and observed daily streamflow

(Fig. 5b). Both the XAJ model and the Grid-XAJ model achieved statistically significant
improvements in their NSE and R values, passing the significance test at the 0.01 level. This
result underscores a significant enhancement in streamflow modeling before and after data
assimilation. The Grid-XAlJ approached demonstrates superior performance when employ-
ing SM-DA with the EnKF method in comparison to the lumped approach. The box plots
in Fig. Sa further indicate that the NSE of the model simulations using SM-DA display nar-
rower ranges, suggesting less uncertainty in streamflow modeling.

The simulated streamflow between the lumped and distributed model approach employ-
ing the assimilation method was compared. The results clearly demonstrate improvements
achieved through assimilation, with the NSE increasing from 0.61 to 0.65 for the lumped
model and from 0.62 to 0.70 for the distributed model (Table S4). Additionally, the R
increased from 0.80 to 0.81 for the lumped approach and from 0.79 to 0.86 for the Grid-XAlJ
model, indicating that the assimilation methods enhanced the accuracy of runoff estimates
by effectively integrating SM. Consequently, SM-DA proves to be effective in reducing
uncertainty associated with streamflow simulations. Furthermore, the overall assimilation
efficiency (EFF) for simulating streamflow is 11.6% for the XAJ model and 19.9% for the
distributed approach. These findings underline the success of both lumped and distributed
models in leveraging SM-DA to improve streamflow predictions, with the distributed model
displaying a greater potential for enhancing streamflow prediction.

The similar analysis was conducted across different seasons. The improvements in
streamflow modeling resulting from SM-DA were observed to be more pronounced during
the wet-cold season (December-May) compared to the dry-warm season (June-November).
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Fig.5 Box plots showing the performance of simulated streamflow obtained from Open Loop and SM-DA
runs using the ensemble members (Open Loop ens and SM-DA ens) in terms of (a) NSE, and (b) R of
XAlJ and Grid-XAJ model, and ** indicates a significance level of 0.01

Substantial enhancements in streamflow prediction were evident for wet-cold seasons, with
the NSE increasing from 0.43 to 0.63 for the XAJ model and from 0.45 to 0.58 for the
Grid-XAJ model (Table S5). However, during dry-warm seasons, SM-DA did not yield
considerable improvements over the Open Loop simulation. This could be attributed to the
fact that, during warm-dry seasons, streamflow is primarily influenced by precipitation and
ET. Conversely, in wet-cold seasons, SM exerts a greater impact on runoff simulation, thus
rendering SM-DA more effective in enhancing streamflow prediction specifically for wet-
cold seasons.

4.4 Assimilating Surface SM and Subsurface SM

We investigated the assimilation of surface SM and subsurface SM to assess their respective
benefits for simulating streamflow. When using subsurface SM in the assimilation process,
the simulated streamflow more closely matched the observed streamflow than using surface
SM. The assimilation of surface SM led to slight improvements in streamflow predictions,
with average EFF values of 3.2% and 7.8% in the lumped and distributed models, respec-
tively (Table 1). In contrast, the assimilation of subsurface SM had a much greater impact
on streamflow (EFF=6.8% and 14.0%). This result can be attributed to the substantial dif-
ference in thickness between the two layers. Subsurface SM-DA has more relevance for
the hydrological processes in general. As forests predominantly occupy the basin, water
for transpiration is extracted from deeper layers. The percolation process (groundwater
recharge) is deeper in the vadose zone, so sub-surface SM is more effective than the surface
SM, which controls only the surface runoff process. This shows the physical robustness of
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Table 1 Evaluation of the corre- Assimilation XAJ Grid-XAJ
sponding benefits on stream-

. . . NSE EFF (%) NSE EFF (%)
flow simulation using surface
and subsurface SM for data Surface SM 0.62 32 0.64 7.8
assimilation Subsurface SM 0.64 6.8 0.66 14.0

the model. Accurately estimating SM in the subsoil is critical for simulating streamflow, as
it accounts for a significant proportion of soil water in the vadose zone.

5 Discussion

5.1 Comparison of Streamflow Modelling between Lumped and Distributed
Hydrological Models with SM-DA

The results of this study demonstrate the effective simulation of daily streamflow in the
study catchment by both the lumped and distributed XAJ models, effectively capturing the
dynamic rainfall-runoff processes. However, various statistical analyses indicate the supe-
rior performance of the distributed approach over the lumped approach. This improved per-
formance can mainly be attributed to considering the spatial distribution of SM data and
catchment attributes, such as soil properties and topography, in the distributed model. The
spatial heterogeneity of these catchment attributes significantly influences the patterns of
SM. The Shale Hills catchment exhibits complex terrain, with steep slopes and clear spa-
tial variability of soil types (Lin et al. 2006) also see Fig. 1. The valley geomorphological
feature dominated by Ernest soils generally exhibits higher moisture content, and ridges
dominated by Weikert soils are the driest areas in the catchment. These distinct characteris-
tics can lead to different flow generation mechanisms, with the distributed models providing
the means to account for distributed runoff generation (Xiao et al. 2019). In contrast, the
lumped approach represents runoff mechanisms by disregarding the spatial heterogeneity
of catchment attributes, relying instead on a single average soil water storage value for the
entire area (Alvarez-Garreton et al. 2015). Our study highlights that this approach poses
significant limitations for calibration schemes and serves as a major source of uncertainty.
Consequently, our results underscore the advantages of utilizing the distributed approach,
which demonstrates higher accuracy and lower uncertainty in comparison to the lumped
model (Tables S3 and S4).

The spatial distribution of catchment attributes plays a significant role in streamflow
generation. Further, the simulated streamflow by the lumped and distributed was divided
into surface runoff and subsurface runoff, encompassing interflow and groundwater. The
proportions of streamflow results from the lumped (applied to the entire catchment) and the
distributed approaches (applied to six soil-terrain units) are depicted after the assimilation
of SM (Fig. S3). The surface runoff simulated by both models accounts for a small portion,
constituting only 16% for the lumped model and ranging from 20 to 36% for the distributed
model (Fig. S3). Notably, the proportion of surface runoff varies significantly among all six
soil-terrain units in the distributed model. The valley, characterized by a smaller slope (3.2—
18.4%), exhibits the lowest surface runoff proportion (20%). In contrast, the S-Slope and
Ridge units display the highest proportions of surface runoff (36% and 32%, respectively)
attributed to greater steepness (20.4—36% and 7.5-22.3%). The XAJ and Grid-XAJ models
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employ the concept of a free water reservoir to segregate different types of runoff. In these
models, incoming rainfall first compensates for any deficit in soil moisture, contributing to
the formation of interflow. This process is followed sequentially by subsurface runoff and
then by surface runoff. The relationship between rainfall events and surface flow is provided
(Fig. S4). Rainfall exhibits a strong correlation with both surface and subsurface runoff
across six distinct soil-terrain units, which underscores its critical role in recharging runoff
systems. Typically, rainfall is the primary contributor to surface runoff. During smaller pre-
cipitation events, limited surface runoff is generated as a greater proportion of the rainfall
infiltrates the soil. Conversely, during intense rainfall events, the infiltration capacity is
overwhelmed by the volume of rainfall, resulting in more substantial surface runoff. On
the other hand, subsurface flows exhibited dominance and sustained for extended periods,
demonstrating relative steadiness (Fig. S4).

5.2 Uncertainties and Limitations of the SM-DA Approach

This study provides compelling evidence supporting the effectiveness of integrating in situ
SM measurements into the XAJ model to enhance streamflow prediction. However, it is
important to acknowledge that both models exhibit underestimation of the highest stream-
flow peaks. This discrepancy can be attributed to the limited density of rainfall gauges in
the catchment area, which emerges as a prominent factor contributing to these prediction
errors. The neglect of spatial heterogeneity of rainfall distribution may further contribute to
the underestimation of peak flows. Another crucial consideration is the significant influence
of preferential flow within the study catchment, which has not been accounted for in the
XAJ model. Previous studies have documented evidence of preferential flow paths through
macropore networks in forested hillslopes (Guo et al. 2018). Subsurface preferential flow
also occurs at interfaces between soil horizons and soil-rock transitions within the study
catchment (Lin et al. 2006; Liu et al. 2020). In addition, Yu et al. (2014) highlighted the suc-
cessful performance of hydrological models incorporating macropore effects in predicting
peak flow within the Shale Hills catchment, emphasizing the critical role of macropore flow
in determining recharge thresholds and runoff response.

The underlying structure of hydrological models highly influences the incorporation of
SM data for streamflow prediction (Massari et al. 2015; Nayak et al. 2021). This study uti-
lized the XAJ model, a two-layer soil water balance model consisting of an upper and lower
layer. However, it is crucial to note that the depth of SM considered by the XAJ model does
not always align precisely with the in situ measurements. Additionally, the hydrological par-
titioning in the XAJ model is based on the SM deficit in each layer, representing the amount
of moisture required to reach saturation level Zhao (1992). The XAJ model assumes that
soil water movement to the lower layer occurs only after the upper layer is saturated. This
leads to higher variations in the upper layer and less variation in the deeper layer, contrary
to actual soil water movement. Similar limitations are also present in other models, such as
SWAT (Chen et al. 2010; Patil and Ramsankaran 2017). These discrepancies can introduce
errors when assimilating surface and subsurface SM data into the XAJ model. These limita-
tions may affect the model’s ability to accurately describe the soil moisture state, which in
turn affects the model’s ability to understand and predict hydrological processes. Previous
studies have highlighted the influence of SM-DA on streamflow prediction, emphasizing
the importance of reliable SM information obtained from in-situ measurements compared
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to that derived from meteorological data during simulation (Nayak et al. 2021). It is worth
noting that the reliability of SM information is a critical factor affecting the effectiveness of
SM-DA. This discrepancy in data reliability is one of the primary reasons that SM-DA did
not consistently improve or even resulted in degraded streamflow simulation accuracy in
certain studies (Massari et al. 2015).

5.3 Future Outlook

This study evaluates the effects of assimilating in situ SM data into lumped and distributed
XAJ models in a forested catchment with complex terrain. Several factors influencing the
improvement in streamflow prediction with SM-DA need to be addressed in future stud-
ies to investigate the remaining uncertainties. For instance, our findings suggest that the
model structure generally influences the accuracy of SM-DA schemes. Therefore, devel-
oping of hydrological models incorporating a multilayer soil water sub-model capable of
better characterizing vertical soil water movement is crucial. Additionally, the representa-
tion of preferential flow in catchment hydrological modeling emerges as another important
issue (Xiao et al. 2019). In forested catchments, preferential flow through macropores can
result in significant and rapid infiltration and deep percolation (Sidle et al. 2001). Previous
studies have demonstrated the improvements achieved by incorporating preferential flow
concepts compared to models without them (Yu et al. 2014). The XAJ model lacks the capa-
bility to effectively incorporate the impacts of preferential flow. To address this issue and
more accurately represent the hydrological process and runoff generation mechanism in the
Shale Hills catchment, either a different hydrological model that includes preferential flow
could be utilized, or the XAJ model could be enhanced by integrating a module specifically
designed to account for preferential flow.

Our findings demonstrate that soil properties and topographic characteristics contribute
additional improvements to distributed flow simulation in catchments with complex ter-
rains. Therefore, it is crucial to employ a distributed model to enhance data assimilation
performance (Yu et al. 2014). Although distributed physics-based modeling has been uti-
lized to explore the impacts of spatial catchment characteristics on streamflow and overall
catchment model performance, further investigation is necessary. Furthermore, it should be
noted that our study was conducted within a relatively steep catchment, and the results of
SM-DA were inherently model (and site) specific. To validate this potential, further studies
will be conducted in catchments with flatter terrain in the future. Moreover, while the EnKF
method was employed for SM-DA in this study, conducting in-depth analysis to evaluate
alternative assimilation techniques would be worthwhile.

6 Conclusions

This work presents an evaluation of assimilating in situ SM into hydrological models
to reduce streamflow prediction uncertainty in a well-monitored catchment. The study
explores the advantages of SM spatial distribution within the catchment using both lumped
and distributed hydrological models. The results demonstrate that the SM data in the study
catchment exhibits a strong response to precipitation and streamflow. Comparing the simu-
lations of the SM-DA runs with the Open Loop runs, a general improvement is observed
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in both the lumped and distributed models. Specifically, the distributed model (NSE=0.70,
R=0.86) outperforms the lumped model (NSE=0.65, R=0.81) by considering the spatial
heterogeneity of SM and catchment attributes, thus providing more accurate and robust
streamflow simulations. SM updates in the wet-cold season primarily enhance the per-
formance of streamflow simulation compared to the dry-warm season. Furthermore, the
assimilation of subsurface SM yields greater improvements in streamflow simulation than
the surface SM. This highlights the importance of incorporating deeper SM information for
accurate streamflow prediction. However, it should be noted that the updated simulation in
the catchment remains limited by the model structure and the quality of forcing data prior
to assimilation. SM-DA alone cannot address the systematic errors present in the model
pre-assimilation. In conclusion, this study contributes to understanding of the connection
between SM, streamflow, and hydrological connectivity in headwater catchments, and also
offers crucial methodological and theoretical support for accurate simulation of hydrologi-
cal processes in catchments and real-time calibration of hydrological models.
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