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Abstract

While the cognitivist school of thought holds that the mind is analogous to a computer,
performing logical operations over internal representations, the tradition of ecological
psychology contends that organisms can directly "resonate’ to information for action and
perception without the need for a representational intermediary. The concept of resonance
has played an important role in ecological psychology, but it remains a metaphor.
Supplying a mechanistic account of resonance requires a non-representational account of
central nervous system (CNS) dynamics. We present a series of simple models in which a
reservoir network with homeostatic nodes is used to control a simple agent embedded in an
environment. This network spontaneously produces behaviors that are adaptive in each
context, including (1) visually tracking a moving object, (2) substantially above-chance
performance in the arcade game Pong, (2) and avoiding walls while controlling a mobile
agent. Upon analyzing the dynamics of the networks, we find that behavioral stability can
be maintained without the formation of stable or recurring patterns of network activity
that could be identified as neural representations. These results may represent a useful step
towards a mechanistic grounding of resonance and a view of the CNS that is compatible
with ecological psychology.

Keywords: ecological psychology, resonance, action-perception, computational

cognitive neuroscience, reservoir computing
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A Potential Mechanism for Gibsonian Resonance: Behavioral Entrainment

Emerges from Local Homeostasis in an Unsupervised Reservoir Network
Introduction

Thinking of the mind as analogous to a computer was a key inspiration for many
thinkers central to the founding of cognitive science as a field some 50 years ago, and
remains a popular notion today. For these cognitivist thinkers, cognition is a process of
performing logical operations over internal representations that stand for entities and ideas.
This view of cognition can be traced back at least to the psychophysics work of Hermann
von Helmholtz in the mid 19th century (1860), who first popularized the notion of
perception as inference. Cognitive agents, Helmholtz thought, have direct access only to
their own sense data, but not to the things in the world that cause sense data, and
therefore must infer the latter from the former. In philosophy of mind, this approach has
been referred to as indirect or representational realism.

But for as long as this stance has dominated conceptions of mind and brain, it has
also had its detractors. Many have argued that cognitivism introduces a false dualism
between stimulus and response, and mistakenly paints the organism as a passive entity
(Dewey, 1896). Consider that in 1942, before the advent of modern computing technology,
a different metaphor was commonly used to express a cognitivist stance: the brain was said
to be like a (musical) keyboard, on which external stimuli would play (through sensory
impulses) to produce melodies “depending on the order and the cadence of the impulses
received” (i.e. neural and subsequent behavioral responses). The phenomenologist

Merleau-Ponty (1942) took issue with the keyboard metaphor, writing:

“The organism cannot properly be compared to a keyboard on which the
external stimuli would play [...] for the simple reason that the organism
contributes to the constitution of that form [...] When the eye and the ear

follow an animal in flight, it is impossible to say "which started first" in the
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MECHANISM OF RESONANCE 4

exchange of stimuli and responses |...] since all the stimulations which the
organism receives have in turn been [made] possible only by its preceding
movements which have culminated in exposing the receptor organ to the
external influences [... It is the organism itself—according to the proper nature
of its receptors, the thresholds of its nerve centers and the movements of the
organs—which chooses the stimuli in the physical world to which it will be
sensitive [...] This would be a keyboard which moves itself in such a way as to
offer—and according to variable rhythms—such or such of its keys to the

in-itself monotonous action of an external hammer®)”

In this passage, Merleau-Ponty attempted to revise the standard metaphor of his time,
presenting cognition not as passive process driven by the environment, but instead as an
active one, driven mutually by organism and the environment—akin to a keyboard that is
both played and plays itself by pressing its keys onto the world around it.

A similar line of argumentation was prominently taken up by the school of thought
known as ecological psychology, associated with James and Eleanor Gibson, and more
recently in the framework of Embodied Cognition. Researchers in these traditions argue
that the cognitivist approach introduces an insurmountable chasm between mind and
world, making it impossible for cognitive agents to ever access the meanings or referents of
their internal representations (Michaels & Palatinus, 2014). Gibson emphasized that
perceiving-acting organisms have no need to represent the world outside, and instead can
“resonate” to structured flows of energy—an idea he called “direct perception.” For
example, a bee attempting to fly through a small gap need not build up an internal
representation of the environment, its own body, and calculate a trajectory. Instead, it
could solve the problem simply by moving in such a way that the speed of image movement
in the left and right hemifields is balanced in the right and left eyes, which will ensure the

bee passes through the center of the gap (Srinivasan, 1992; Duchon & Warren Jr, 2002

! Emphasis ours
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MECHANISM OF RESONANCE 5

found evidence that humans use the same strategy). Thus, rather than compute, the bee
can “resonate” or “attune itself” to information that uniquely specifies useful relationships
between action and perception, known as "affordances" (Chemero, 2003).

While the tradition of ecological psychology has produced many important insights,
in eschewing the notion of representation and instead focusing on what goes on at the level
of the organism and environment, this tradition has avoided the issue of how neural activity
figures into the story. This was an important move in order to call attention to the fact
that many cognitive problems need not require complex internal representations. However,
recently there have been increasing calls to finally reintroduce neural dynamics into
ecological theories of cognition, towards fleshing out a mechanism for Gibson’s notion of
resonance, which remains a metaphor (Raja, 2018, 2019, 2021; de Wit & Withagen, 2019).

We suggest that a useful step towards such a mechanistic account of resonance is to
emphasize the role of homeostatic neural mechanisms in facilitating self-organization of the
CNS. Ecological psychology has focused on homeostatic mechanisms (often described as
"control laws") at the level of the organism-environment relation, while work stemming
from the cybernetic tradition has emphasized how internal homeostatic mechanisms can
lead to adaptive behavior at the system level (Ashby, 1960). It is well established that the
CNS implements several different homeostatic mechanisms, including synaptic scaling and
regulating the expression of ion channels (Desai, 2003; Chistiakova, Bannon, Bazhenov, &
Volgushev, 2014; Turrigiano & Nelson, 2004; O’Leary & Wyllie, 2011), which allow the
CNS to stabilize activity following perturbations (see also: Grossberg, 1982). We propose
that the emergence of adaptive behavior at the organism-environment level by virtue of
homeostatic mechanisms in the CNS constitutes a viable mechanistic account of Gibson’s
concept of resonance.

In this paper, we present a series of simple models that serve as a proof-of-concept

that homeostatic properties of the CNS can generate adaptive behavior at the
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MECHANISM OF RESONANCE 6

organism-environment level?. The central component of our models is an
sparsely-connected, spiking neural network—a reservoir computer—composed of
homeostatic nodes. These nodes adjust connection weights with neighbors and “target”
activity levels in order to keep their flow of activity consistent over time. This model was
first introduced by Falandays, Nguyen, and Spivey (2021), where it was applied to the
context of language processing. When the network was fed inputs generated by a simple
probabilistic grammar, it was shown to exhibit behavioral signatures associated with
“predictive coding,” including increased activity for surprising inputs and sequence
completion, suggesting that the network is able to entrain itself to complex sensory
patterns that unfold over time, without the need for supervision. We hypothesized that the
same network would serve to control behavior when embedded in an action-perception
loop, while avoiding some of the representational assumptions of cognitivism.

With short periods of unsupervised training, we observe that the model produces
adaptive behavior in a variety of contexts, including spontaneous object-tracking behavior
(following a moving stimulus despite no explicit instruction to do so), above-chance
performance in the arcade game Pong, and wall-avoidance behavior. The reservoir activity
underlying these behaviors can be seen as a simple illustration of Gibson’s notion of
resonance, and offers an opportunity to consider how internal (neural) dynamics and
movement work together in this phenomenon. We explain this as multi-scale resonance,
whereby individual nodes resonate to flows of energy in their immediate environment,
which in turn drives movement and new perceptions, ultimately allowing the agent as a
whole to resonate to information in the external environment.

In what follows, we begin with some background on the contrast between

2 We emphasize that our proposal is a form of "how-possibly" explanation (Dray, 1968): our model shows
one possible mechanism by which resonance could occur, but much further work will be necessary to
determine if, or to what extent, something like this mechanism actually accounts for the behavior of

humans or other organisms.
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MECHANISM OF RESONANCE 7

representational and direct-realist approaches to cognition by virtue of an oft-cited
example, the “outfielder problem.” We use this example to clarify key tenets of ecological
psychology, including the notions of resonance and attunement. Then, we reflect on the
lack of a mechanism for Gibson’s concept of resonance. We explain why such a mechanism
is needed, why standard views in cognitive neuroscience are not up to the task, and discuss
some proposals for how to fill this gap. Next, we offer our own proposal for a system with
the potential to ground the concept of resonance in the CNS—the reservoir network—and
suggest that endowing these networks with self-stabilizing mechanisms is an important step
forward. Then, we present our model and analyze its behavior in three agent-environment
systems, demonstrating that apparently-adaptive behavior at the agent level emerges from
the homeostatic mechanism at the level of nodes, and is not dependent upon the formation
of stable and/or recurring activity patterns of the kind that might be expected within a

representational theory of CNS.

A primer on the ecological approach to perception-action

Newcomers to ecological psychology may find themselves a bit overwhelmed by the
prevalence of jargon associated with the field. Given the major differences between this
approach and the more dominant cognitivist tradition with which readers may be more
familiar, ecological psychologists have found it necessary to introduce a number of new
terms. Many of these terms have proven crucial for theory-building in this tradition, so to
not deter the uninitiated, this section will provide a brief primer on the direct-realist
approach to cognition and define some key concepts.

The outfielder problem is a classic example used to illustrate the differences between
representational and direct-realist approaches to perception and action. In the outfielder
problem, a baseball player must view a fly ball and decide where to run in order to catch it.
A representational approach to this problem would involve the player’s brain constructing

a mental representation of the fly ball’s trajectory, based on visual input and other sensory
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MECHANISM OF RESONANCE 8

information. This mental representation would then be used to guide the player’s actions,
such as running towards the predicted landing point of the ball (Saxberg, 1987).

On the other hand, the direct-realist suggests that no such mental representation is
needed. Instead, the player could use continuous, online visual information to guide their
movements to the right place at the right time. For example, Fink, Foo, and Warren (2009)
provided evidence that outfielders control running direction and speed so as to cancel the
optical acceleration of the ball, which results in intersecting at the landing location at the
right time.

In this example, we can say that the player’s actions have become perceptually
coupled to a pattern of optic flow, meaning a pattern of change in light hitting the retina,
due to the relative motion of an individual and objects in the environment. Ecological
psychologists use the term "optic flow" in this case, rather than simply "visual information,"
because the former emphasizes (1) a pattern of sensory stimulation over time, rather than
static imagine in a slice of time, and (2) that visual information is generated both by
changes in the environment and by the motion of the observer.

Going beyond the context of vision, observer-relative patterns of sensory change
have been referred to as "ecological information," to distinguish this notion from other uses
of the term "information." A more common use of the term "information" among cognitive
scientists is the one used in information theory, which is operationalized as the reduction of
uncertainty, or surprise, upon receiving a signal. Ecological psychologists emphasize that
this more common notion of information is purely syntactic, meaning it deals only with the
relationships among arbitrary signals, stripped of all semantic content.

In contrast, ecological information is inherently semantic, in that it specifies the
state of the animal-environment system, and thus has meaning or value for an organism.
For example, Gibson argued that patterns of optic flow can directly specify opportunities
for action—called "affordances'"—and that adaptive action involves the perception of these

affordances. It is in this sense that Gibson thought perception was direct: organisms
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MECHANISM OF RESONANCE 9

perceive useful relationships between themselves and the environment by detecting
information that uniquely specifies what can be done, instead of needing to make inferences
about the environment based on impoverished, static sensory information.

When an organism perceives affordances for action, Gibson described the organism
as "resonating" to ecological information (M. Anderson & Chemero, 2019). The concept of
resonance draws an analogy between the way that an organism becomes coupled to their
environment, and the way that two nearby tuning forks, for example, may become
physically coupled by sound waves. Consider that each tuning fork (and indeed any object)
has a "resonant frequency," a natural frequency of vibration due to its physical properties
(e.g. size, shape, material). When one tuning fork is struck and begins to vibrate, sound
waves may travel to a nearby tuning fork, causing the latter to vibrate as well, if the two
have the same resonant frequency. In this vein, Gibson’s use of "resonance" to describe the
detection of information implies something like a spontaneous physical coupling of two
parts of a system by virtue of energy transferred through a physical medium.

The metaphor of resonance can be expanded upon to describe the ecological view of
learning. Consider that the resonance of our two tuning forks requires them to share the
same resonant frequency—the natural frequency of oscillation of an object, determined by
its physical properties. When resonant frequencies match, we may say that one tuning fork
is "attuned" to the resonant frequency of the other. The resonant frequency of an object
can be altered through physical changes, such as clipping a damper to a tuning fork, or
adjusting the tension on a guitar string. Along these lines, Gibson described learning as
analogous to attunement—the altering of parameters (e.g. visual-system parameters) so as
to resonate to information for an affordance. For example, a novice ballplayer may not be
aware that running so as to cancel optical acceleration of a ball will lead them to the
landing point, but through experience they may gradually adjust their perception-action
system to detect and cancel optical acceleration, becoming attuned to this information.

Gibson described this view of learning as being about "differentiation"—the gradual
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MECHANISM OF RESONANCE 10

refinement and calibration of existing perception-action capacities—as opposed to
"enrichment," or the adding of knowledge or new mental capacities (Gibson & Gibson,
1955).

Finally, ecological psychologists emphasize that resonance enables one individual to
anticipate the behavior of another individual or object. For example, by resonating to the
appropriate information, our ballplayer is able to anticipate the motion of the ball, going
towards where it will be. The notion of anticipation used here can be distinguished from
the term "prediction," where the latter involves a mental model of a target’s behavior and
the formation of an explicit expectation about what will happen (Falandays et al., 2021;

Bickhard, 2016; Zhao & Warren, 2015; Stepp & Turvey, 2010).

What is the mechanism of resonance?

One strength of Gibson’s concept of resonance is that it treats cognition (i.e.
perception-action) as a kind of physical coupling, implying that we need not invoke
intermediate representations or symbolic operations. In the spirit of this idea, ecological
psychologists have tended to focus on explanations that lie at the level of
organism-environment interactions, down-playing the role of the brain. But, Raja and
colleagues have recently drawn attention to the fact that Gibson left the concept of
resonance as a metaphor (Raja, 2018, 2019, 2021; de Wit & Withagen, 2019). Humans, of
course, are not tuning forks, so what does it actually mean for us to resonate to ecological
information? Once we commit to the idea that perception of affordances is direct—that
this information is defined over our interactions with the environment—we require an
explanation of what kind of physical system is capable of such behavior. While there has
been some work on modeling affordances and other concepts in ecological psychology
(Thill, Caligiore, Borghi, Ziemke, & Baldassarre, 2013; Zech et al., 2017; Pezzulo et al.,
2011), to the best of our knowledge there are no models addressing the physical mechanism

for resonance.
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MECHANISM OF RESONANCE 11

We agree with Raja that filling this gap in theory requires a story about the central
nervous system. De-emphasizing the brain was a strategic move on the part of ecological
psychologists, to redirect attention to environmental and informational constraints in the
explanation of behavior. While cognitivists focused on mental representations, ecological
psychologists urged the field to "Ask not what’s inside your head, but what’s your head
inside of" (Mace, 1977). However, the field now seems ready to turn back towards the
question of what’s inside our heads, albeit armed with a set of theoretical desiderata for
what a satisfying answer will look like.

First and foremost, an explanation of the CNS that is consistent with ecological
psychology ought not to fall back on the notion of mental representations and rule-like
operations. This requirement renders much of modern neuroscience as a poor foundation
for ecological psychology, given the dominance of the "encodingist" view: the view that
brain activity is an encoding or representation of stimulus properties, action plans, etc
(Brette, 2019; Mirski & Bickhard, 2019). There have been many theoretical objections to
this view, but the general thrust, as Dennett (1978) put it, is that encodingism entails an
"unpaid debt of intelligence". That is, these views imply that a brain can somehow 'see
outside itself" to know what a pattern of its own activity represents. This debt remains
unpaid because existing attempts at explanation, which may make recourse to innate,
evolved knowledge structures or learning processes, run into seemingly insurmountable
logical problems (Bickhard & Terveen, 1996).

Furthermore, as Anderson (2014) argues, the neuroscientific literature amassed
under the encodingist assumption has ultimately undermined its own theoretical
commitments. For example, while cognitivists suggested that the brain should instantiate a
set of computational modules, each designed to compute a specific function, such modules
have not been found. Instead, we have discovered that the brain is both highly interactive,
with constant cross-talk between supposedly-distinct modules (Falandays, Batzloff,

Spevack, & Spivey, 2020), and highly dynamic, with rapidly-shifting functional
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partnerships between brain regions constantly emerging and dissipating (M. L. Anderson,
2014; Pessoa, 2022). Seminal work from Anderson (2014) casts brain activity in terms of
"transiently active local neuronal subsystems' (TALoNS), which are temporary
“task-specific neural synergies that coordinate brain, body, and world” (Raja & Anderson,
2019). TALoNS have been shown to self-organize on the timescale of milliseconds in visual
processing (Wu & Sabel, 2021), or on the timescale of minutes in skill acquisition (Bassett
et al., 2011; Bassett, Meyer-Lindenberg, Achard, Duke, & Bullmore, 2006).

The encodingist view also finds a new challenge in recent demonstrations of the
phenomenon of "representational drift," whereby supposed neural encodings change their
distributed location in the brain over time (Rule, O'Leary, & Harvey, 2019). For example,
O’Leary and Wyllie (2011) examined place cells in rat cortex as they repeatedly navigated
a T-maze across several days. Neural recordings on day one after mastery of the T-maze
showed a clear topographical mapping, but by day 10 this mapping was instantiated by an
entirely different set of neurons. Similar results have been shown for odor representations
in primary olfactory cortex (Schoonover, Ohashi, Axel, & Fink, 2020) and for visual
representations in primary visual cortex (Deitch, Rubin, & Ziv, 2020; Marks & Goard,
2021). These findings put pressure on a representational account of neural activity, because
they suggest that if neural activity is to function as a code, the brain would need to keep
track of a constantly-shifting mapping from signals to meaning. Such an encoding scheme
would seem rather inefficient, hence implausible from an evolutionary perspective.
Furthermore, if the brain needs to track its own drifting representations, but the medium
that does the tracking is subject to the same pressures, it is not clear that this would even
be possible.

Ecological psychology’s solution to these challenges has been simply to abandon the
search for representations. But while this may avoid the unpaid debt of intelligence, it
instead incurs a debt of resonance. Saying what the brain is not won'’t suffice; ecological

psychology is also in need of a positive account. Towards this, Raja (2019) defines
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resonance as the informational coupling between two dynamical systems (Fig. 1): (1) an
agent-environment system, and (2) an intra-agent system (the CNS). For dealing with the
agent-environment system, ecological psychology is already equipped with established
approaches. For example, Raja points to Warren’s (2006) "behavioral dynamics" approach
or Kelso and colleagues’ "coordination dynamics" approach (Kelso, Dumas, & Tognoli,
2013), both of which describe cognition as a multi-scale dynamical system and do not
appeal to computation or representation. In a similar way, Hotton and Yoshimi’s (2011)
“open dynamical systems” model agent-environment systems directly as dynamical
systems, but also include machinery for studying the internal states that unfold in these

systems. However, none of these authors commit to a specific story about the CNS.
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Figure 1

An illustration of the coupled CNS-Organism-Environment system. Information (blue
arrows) couples the environment to the organism, and the organism to the CNS. Neural
dynamics couples the CNS to the organism, and action couples the organism to the
environment (red arrows). The behavioral dynamics approach (top right) focuses on

emergent stabilities in the organism-environment coupling.

Davies-Barton, Raja, Baggs, and Anderson (2022) suggest autoencoders as one
cognitive architecture that might be useful for ecological psychology. These are artificial
neural network (ANN) architectures that learn a function to reproduce their own input. In
the process, autoencoders may learn a lower-dimensional representation of the
input-generating function—in other words, a model of the environment. This could allow
us to preserve the idea that neural activity is an encoding without sneaking in any unpaid
intelligence.

We agree that autoencoders have some properties that make them appealing to
ecological psychology, and may indeed describe one of many possible functions
implemented in the CNS. However, towards a mechanistic account of resonance, this is
only a starting point, and more modeling work is needed to understand different aspects of
the problem. Here, we present a complementary approach, highlight the potential utility of
another artificial neural network architecture—the reservoir computer—that may be of

interest to ecological psychologists due to its dynamical properties.

Reservoir computers as an ecological model of the CNS

Consider a pond of water, into which an individual throws a series of rocks at
different times and locations. As the first rock is tossed in the pool, it causes a particular
ripple on the pond. And as each new rock is tossed in, its own ripples interact with the
radiating ripples of previous rocks. If you are a scientist, instead of having fun throwing

rocks, you may stop to reflect on the fact that the state of the pond at any given moment
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in time—the instantaneous pattern of ripples—carries all of the information necessary to
recover the locations and timings of all of the previous rocks tossed in the pond, if only you
can learn to read these patterns (Yoshimi, Hotton, Tosi, & Gordon, 2022).

This is the general intuition behind both liquid state machines (Maass, Natschliager,
& Markram, 2002) and echo state networks (Jaeger & Haas, 2004), introduced
independently in the early 2000’s, which are now grouped in the general class of algorithms
called "reservoir computers." The general logic of these systems is, first, to construct a
recurrent neural network without stable states, i.e. one in which activity continues to
ripple through the network over time. As the network is fed a series of inputs, it will carry
forward the activity from previous timesteps, therefore becoming a high-dimensional
representation of the history of inputs. Researchers then need only train a simple linear
readout of the reservoir state to a desired output. These networks have high computational
efficiency because they only involve one layer of training a simple linear function, since the
reservoir network connections typically are not adjusted, and multiple readout functions
can operate in parallel on the same reservoir. Because of the integration of information
across timescales, reservoir computers have been shown to be able to predict chaotic time
series. And while "reservoir computer' most often refers to a class of artificial neural
network models, any physical system with appropriate non-linear dynamics can play the
role of a reservoir, including a literal bucket of water (Fernando & Sojakka, 2003).

Dale and Kello (2018) point out that reservoir networks are also interesting as a
model of cognition, because they satisfy three important desiderata for contemporary
theories of cognition. The first is dynamic memory, which refers to the fact that reservoir
networks maintain a trace of past inputs in their ongoing fluctuations. This is crucial for
human cognitive processes, which are clearly sensitive to contextual cues over a variety of
timescales. For example, in the course of a conversation, the interpretation of a single word
can be influenced by the preceding words, sentences, the entire discourse history, the

identify of the speaker, and shared knowledge of events over longer timescales. Dale and
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Kello point out that just having memory is not sufficient; memory must also be integrated
across timescales. In reservoir networks, memory is not stored in a symbolic memory
buffer, but instead embodied in the ongoing activity of the network, which allows for
interaction between cues that unfold over distinct timescales, without the need to posit
distinct processes for bringing together stored representations. Finally, Dale and Kello
point out that reservoir networks also facilitate multimodal integration (i.e. integration of
information from multiple sensory sources) in a natural way. For these reasons, they
suggest that reservoir networks are particularly promising as a model of "sense-making" in
human communication.

We suggest that reservoir computers have strong potential as a framework within
which to model the role of CNS in action-perception more generally, and in a way that is
compatible with ecological psychology. First, their oscillatory properties make them
amenable to analysis within the dynamical systems framework preferred within ecological
psychology, and may simply enhance biological plausibility over something like typical
autoencoders®. Second, as Dale and Kello point out, they have several properties that
make them appealing as general models of cognitive systems, including multi-modal- and
multi-timescale integration. Third, and perhaps most importantly, we suggest that their
activity need not be seen as representational from the perspective of the system itself,
though it can be read out as representational to an outside observer. This is a point we will
reflect on more in the next section.

But there is still one crucial way in which typical reservoir computers are unlike the
CNS: they are not adaptive. In general, the weights of a reservoir network and any node
properties are non-updating. However, in biological brains, change is the only
constant—there is ongoing adjustment of synaptic weights, synaptogenesis or pruning, and

neuron-level regulatory adjustments, among other processes. To be more useful as a model

3 Note that a reservoir computer can be trained to match its own input, becoming an autoencoder, so these

are not exclusive categories.
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in cognitive neuroscience, reservoir computers can be amended to incorporate adaptive

processes.

Self-organization in brain and behavior

An important point in ecological psychology, missing from many models of the CNS,
is that brain activity and behavior are self-organizing systems (Kelso, 1995).
Self-organization refers to the spontaneous emergence of structure in non-equilibrium
thermodynamic systems, without the control of external agents (Prigogine & Nicolis,
1977). Consider that any human behavior, such as swinging a hammer to hit a nail,
involves the coordination of many degrees of freedom (e.g. multiple limbs, joints and
muscles) outside of the conscious awareness of the actor (Biryukova & Sirotkina, 2020).
Somehow these many degrees of freedom constrain one another to achieve a stable
outcome—hitting a nail—despite substantial variability at the lower level. In this respect,
the behavioral stability can be understood as an emergent product of the interaction of
many coupled degrees of freedom, without any shared representation of the goal.

It is precisely these higher-order stabilities in behavior that ecological psychology
takes as its unit of analysis. Research on the self-organization of behavior highlights the
functional importance of intrinsic, multiscale fluctuations (Kelty-Stephen, Palatinus,
Saltzman, & Dixon, 2013; Kello et al., 2010; Pouw et al., 2021). Intrinsic fluctuations that
are poised "at the edge of chaos" are thought to maximize the computational efficiency of
such systems and the flexibility to switch between adaptive regimes (Bertschinger &
Natschldger, 2004). Note that these properties of self-organizing systems are not specific to
any level of analysis, and can apply to any system with many appropriately-coupled
degrees of freedom, including the CNS. The self-organization of brain activity has become a
major topic of research in its own right (Kelso, 1995; M. L. Anderson, 2014). However, in
order to develop a mechanistic account of the concept of resonance, it is necessary to

understand how the self-organization of CNS dynamics is linked to the self-organization of
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organism-environment dynamics.

An important question here is why higher-order stabilities should emerge at all in
systems of many degrees of freedom, when chaos is an option. One response is to invoke
the "law of maximal entropy production,” which states that a "system will select the path,
or assembly of paths, out of otherwise available paths, that minimize the potential or
maximize the entropy at the fastest rate given the constraints' (Swenson, 1997). Under
some constraints on a thermodynamic system, moving towards lower-entropy state will be
the most efficient path to entropy production, and therefore order emerges spontaneously.
But what exactly are the constraints that facilitate such self-organization in the CNS?

We suggest that one constraint in the CNS that may facilitate self-organization is
the homeostatic tendencies of individual cells. Historically, the relevance of homeostasis to
perception-action has been emphasized within the cybernetic tradition. Cyberneticists
emphasized how several foundational cognitive processes can emerge from such homeostatic
mechanisms. As an example of this, W. Ross Ashby (1960) offered his "homeostat’, an
analog computing device that adapted to maintain homeostasis in a changing environment,
and in the process exhibited phenomena of learning, habituation, and reinforcement.
Ecological psychology shares an emphasis on homeostasis to some extent, in that the field
seeks to describe control laws for behavior. For example, work derived from Warren’s
(2006) behavioral dynamics approach has led to the discovery of visual control laws for
locomotion in a variety of contexts (Fajen & Warren, 2007; Warren Jr & Whang, 1987;
Rio, Dachner, & Warren, 2018), which often involve acting so as to cancel some change in
the visual array. Thus, these laws can be thought of as mechanisms of homeostasis. Kelso’s
(2013) coordination dynamics approach largely uses oscillatory systems—spring
equations—which is another type of homeostatic system. We suggest that a useful step
towards an ecological story of the CNS is to return focus to how such
organism-environment control laws may emerge from homeostatic principles in the CNS.

As O’Leary and Wyllie (2011) write, "global control is observed as an emergent
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feature of the nervous system, arising from the combined effects of a hierarchy of regulatory
mechanisms operating on the level of cellular networks, individual cells, subcellular
domains and, ultimately, individual genes and proteins" (see also: Gosak, Milojevi¢, Duh,
Skok, & Perc, 2022). This position suggests that if we build homeostatic mechanisms
directly into our models of the CNS, organism-level control may emerge as a natural
consequence. Neurons can regulate their own activity both by adjusting synapses as well as
by modifying intrinsic properties, which may act to maintain some degree of stability in
activity despite ongoing changes in the brain, such as the synaptic changes associated with
Hebbian learning (Desai, 2003). For example, one important synaptic mechanism for
homeostasis is heterosynaptic plasticity, by which neurons act to conserve the total weight
of incoming synapses, which may help prevent runaway synaptic plasticity (Chistiakova et
al., 2014; Turrigiano & Nelson, 2004). Intrinsic homeostatic mechanisms include regulating
the expression of proteins that make hyperpolarizing or leak channels, which in turn may
stabilize spiking frequency or resting membrane potential, for example (O'Leary & Wyllie,
2011). Although the existence of such homeostatic mechanisms are well-established,
artificial neural network models do not often incorporate homeostatic principles; typically,
these models focus on input-dependent synaptic adjustments (i.e. learning mechanisms
such as Hebbian learning and back-propagation of errors). The few ANN models of which
we are aware that have included homeostatic mechanisms (Di Paolo & lizuka, 2008; lizuka
& Di Paolo, 2007) have used evolutionary algorithms to create viable architectures, leaving
open the question of how much of their adaptability is due to homeostasis, and how much
to the particular architecture that was evolved (but for a rare exception, see: Tosi, 2021).
Work by Kello and colleagues (Kello, 2013; Kello, Kerster, & Johnson, 2011; Rodny,
Shea, & Kello, 2017; Szary, Kerster, & Kello, 2011) has shown that several interesting,
biologically-realistic phenomena emerge when a reservoir network is endowed with
homeostatic control. These researchers allowed nodes to activate or deactivate synapses in

pursuit of a "critical branching ratio", meaning producing approximately one downstream
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spike for each of its own spikes. If this ratio is lower than 1, network activity may
eventually die out, and if it is higher, activity may grow out of control—both would be bad
for a human brain. The work of Kello and colleagues showed that the critical branching
network produces a number of signatures of real-world self-organizing systems, including
1/f noise and neural avalanches (sudden cascades of activity with a power law distribution
of magnitudes; Beggs & Plenz, 2003). Thus, in addition to having desirable properties for a
cognitive architecture, reservoir networks with local homeostatic control resemble biological
dynamics in important ways.

However, an important limitation of the cybernetic approach is that homeostasis
was generally imposed by the researcher, who decided the homeostatic targets of the
computing nodes. This approach has been criticized, from the ecological perspective, for
neglecting the circular-causality in the CNS: in real biological systems, the homeostatic set
point is not imposed from the outside, but instead is itself an emergent product of
interaction with an environment (Turvey & Kugler, 1984). For example, in neurons,
spiking activity is determined by the opening and closing of ion channels, which both
influence and are influenced by the membrane potential. Due to this circular causality, the
spiking activity self-stabilizes at some preferred level, which is an emergent property of the
ion channel-membrane dynamics.

Falandays et al. (2021) introduced a homeostatic reservoir model that avoids this

criticism to some extent, using nodes that can be described as "allostatic," meaning their
homeostatic set-points are dynamic. Note that there is some debate as to whether
allostatic systems are a distinct class from homeostatic systems (Corcoran & Hohwy,
2017), since homeostasis does not necessarily imply static set points (O’Leary & Wyllie,
2011), though that is often how the term has been used in practice. In the model from
Falandays et al. (2021), neurons pursue homeostasis at the level of overall firing rates,

while permitting of variability over time in in lower-order set points. As such, homeostasis

in this model is an emergent property of the interaction of neurons with their neighbors,
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and in turn with the environment.

Falandays et al. (2021) suggested that neuronal homeostasis may be one potential
mechanism for apparent "predictive processing" in the brain. A prominent general view in
cognitive science today is that the brain learns a model of the environment by predicting
upcoming sensory inputs and using prediction errors to adjust parameters of the model
(Hohwy, 2018). Falandays et al. (2021) showed that some behavioral signatures associated
with predictive processing can emerge from a reservoir network endowed with a
neuron-level homeostatic learning rule. They presented their network with a sequence of
inputs generated from a simple probabilistic grammar—four possible input "words," with a
set of transitional probabilities determining the sequence. The sequence of inputs produced
a sequence of perturbations across the network, which triggered homeostatic adjustments
of synaptic weights and intrinsic node parameters. They found that the reservoir adapted
to produce endogenous activity that compensated for the input in real time, routing
inhibitory input to nodes that were receiving sensory inputs, and excitatory input to nodes
that needed a boost. In other words, the network controlled its own flow of activity in a
way that tracked the temporal dynamics of the input, embodying a predictive model of the
input sequence for the purposes of control. As such, this model exhibited some behavioral
signatures of predictive processing, such as sequence completion and spikes of activity in
response to unexpected inputs, but without the use of explicit predictions or prediction
errors.

Importantly, we believe the model introduced by Falandays et al. (2021) allows one
to cast a non-representational account of how the CNS "predicts," making it potentially
useful in the ecological framework. Consider that the activity in this network is not
primarily an encoding of a current input, but instead a complement to the unfolding input,
in the context of a dynamic neuronal milieu. Just as "one cannot step in the same river
twice," as the proverb states (Graham, 2007), an input cannot perturb the network in the

same way twice (at least not in practice). Because the effect of any given input on network
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activity may change over time, so too must the network’s response to the perturbation.
Along these lines, Falandays et al. (2021) found that only over relatively short timescales
(dozens of input "sentences") could one discover what looked like population codes in the
network—highly similar network responses to repetitions of a particular input signal—but
these patterns drifted substantially over longer timescales, as the network gradually
changed. Thus, although an external observer can recognize that network activity tracks
the external input, we do not take this activity as sufficient to serve a representational
function from the perspective of the network itself, since it is not associated with a stable
code.

We hypothesized that local homeostatic mechanisms at the level of neurons can lead
to global control at the organism level when embedded in the context of an
action-perception loop. Imagine a disembodied network of neurons, with some subset that
is subjected to a predictable pattern of stimulation from the environment, which produces
a sequence of perturbations in spiking activity throughout the network (this describes the
model in Falandays et al., 2021). If spiking activity is the variable being regulated by
neurons, neuronal homeostasis and synaptic updates allow the network to eventually adapt
to the regular pattern of perturbations, bringing spiking activity back towards a target
profile. But consider now that, when this neural network is embodied in an organism,
spiking activity may lead to movement. Movement in turn alters sensory input, leading to
a different perturbation across the network. In this case, a stable signal from the
environment is not a guarantee of stable input to the network, since the full
input-generating process now also involves the organism’s own behavior. One possible
solution is to find a network state that regulates action so as to render the input regular

once again*. For example, if the input from the environment is stable, discovering a

4 What we are describing has much in common with the active-inference and free-energy minimizing
approach. However, we take there to be important distinctions as well, which are beyond the scope of this

article to unpack.
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network state that leads to no motor output could render the input regular. But if the
environment is itself dynamic—containing a moving stimulus, for example—then a pattern
of motor output that cancels out changes in the sensory array would be a solution. In sum,
we are suggesting that resonance at the organism-environment level could emerge as a
stable solution to the problem of regulating activity in the CNS.

In what follows, we analyze simple models consisting of simulated mobile agents
controlled by the homeostatic reservoir network introduced by Falandays et al. (2021).
This work is an attempt to design a "minimally cognitive system" in the spirit of Beer et al.
(1996)—a system which is as simple as possible while still producing interesting cognitive
dynamics, which may help to shed light on more complex systems. We suggest that these
examples illustrate a potential mechanism, at a very coarse level of description, for the
Gibsonian concept of resonance in the CNS. We explore how these intrinsic fluctuations
can lead agents to discover patterns of movement in a dynamic environment that serve to
stabilize activity across the network—in other words, agent-environment resonance. We
find that the simple homeostatic updating mechanism at the neural level spontaneously
produces apparently adaptive behavior in a variety of tasks, including tracking a moving
stimulus, avoiding walls, and playing the game Pong. Given the generalizability of this
algorithm across tasks, we suggest that homeostatic reservoir networks may be an

important step towards an ecological theory of the CNS.

Model Description
Network Architecture

The model consists of three layers of processing nodes: (1) an input layer, (2) a
homeostatic reservoir layer, and (3) an output layer. The input represents a pattern of
sensory stimulation. Input encoding is treated slightly differently in each of the cases
described below. Generally speaking, nodes in this layer are tuned to spike when an input

stimulus passes in front of a particular ego-centric location, analogous to light-sensitive



527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

MECHANISM OF RESONANCE 24

retinal cells. Nodes in this layer do not update intrinsic parameters, and immediately reset
activity at each timestep.

The input layer has non-updating feedforward projections to the reservoir layer.
These links are generated randomly, with p;;,x = .1. Nodes within the reservoir layer also
have directed connections to each other, generated randomly with pj;,x = .1. The
connectivity matrix of the reservoir network did not update, though weights of connected
nodes were allowed to change. Initial weights were randomly generated by sampling from a
normal distribution with mean 0 and s.d. of 1. The reservoir nodes are discrete-time leaky
integrate-and-fire nodes, which update internal parameters and incoming weights with
neighbors using a homeostatic learning rule, described in the next section.

The reservoir network has feed-forward connections to an output layer, which
determines a motor command. The output layer consisted of two nodes (e.g. representing a
left vs. right turn motor command) with the relative strength of their activities controlling
behavior. The activity of each output node is calculated as the proportion of incoming
connections that propagated a spike at time ¢, such that output values were in the range
[0,1]. Reservoir nodes were connected to output nodes with py,x = .1. Like the input layer,

output nodes were non-updating and their activity was reset at each time step.

Activation Dynamics and Homeostatic Updating

The reservoir layer consists of a set of N processing nodes characterized by four
intrinsic variables: (1) a current activation level x,,, initialized at 0; (2) a fixed leak rate [
of .25; (3) a variable target activation level, initialized at T,, = 1; (4) and a variable spiking
threshold 7)) = 277, directly coupled to target values. The value of the target 7, was given
a lower bound of 1 (the value at initialization), ensuring that all nodes needed at least some
continuous, positive input in order to remain near their target value. Note that targets are
intrinsic parameters for each node; they do not come from an external "teaching signal."

Figure 2 shows a flowchart of the activation dynamics and homeostatic updating
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rules. Each iteration consists of three processing steps: (1) integrating activity, (2) spiking,
and (3) homeostatic updating. In step one, nodes first leak a constant proportion [ of
current activation value, then sum the weighted input from external perturbations as well
as from spikes within the reservoir that occurred on the previous iteration. The activation

vector x of the reservoir at time step t given input vector 7 is:
ve= (241 - D)+ (0 - W) + (s(z_y) - W) (1)

where W is the input weight matrix, s(z;_;) is the vector of length N that is equal to 1
for any node that spiked at time ¢t — 1 and to 0 otherwise, and W is the recurrent weight
matrix of the reservoir.

In step two, a spike occurs when activity exceeds the spike threshold 7. Any node
n that spikes at time ¢ broadcasts a signal of 1 * W,,,,, to connected neighbors n’ at time
t + 1, while non-spiking nodes broadcast 0. The spiking node also immediately subtracts

(at time t) the threshold value T, producing the adjusted activation vector z;:
zy = a0 — s(x) T (2)

For example, if a node n has a current threshold 7)) = 2 and current activation z} = 2.5, it
will spike and drop to an activation z;* = 0.5. Nodes can only spike once per time step,
and there is no refractory period (they can spike again on the next time step).

Step three involves homeostatic updating of targets 7,, (and thereby thresholds 77)

and incoming synaptic weights. Nodes first compute the deviation from the target:
B =~ T 3)

Our homeostatic mechanism is a form of proportional control, or P-control in
control-theory parlance, meaning that adjustments correspond to a proportion of the total
error F,. Targets were adjusted by a proportion .01 of the total error, while synaptic

weights were adjusted by equally dividing the total error across all spiking neighbors.
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Targets are increased if activity is above the target, or decreased if activity is below the

target, unless the target is at the floor value of 1:
17 = max(T]" + .01E},0) (4)

Incoming synaptic weights are updated in the opposite direction from targets, meaning
that nodes attempt to recruit more input if their activity is below target, and less input if
their activity is above target. Nodes only update weights with the subset of neighbors that
spiked on the previous iteration, dividing the total error by the number of weights to be
adjusted:

E
WJX,t+1 =W, t (5)

’ Wl
where W2 represents the incoming weight to node n from a neighbor s that spiked on the

previous iteration, and ||W$]Xt|| represents the total number of incoming weights from

spiking neighbors.

/ * Increase target "\
« Decrease weights |
with neighbors who
r{ spiked on last
Yes  \_iteration /
* Spike

Result over
target level?

« Subtract threshold
value from current
activation level

« Decrease target
(unless at floor)

Result over
threshold level?

« Increase weights with
neighbors who spiked
on last iteration

« Increase target

« Integrate any sensory
inputs

« Integrate inputs from any
neighbors who spiked on

Result over
target level?

« Decrease weights
with neighbors who
spiked on last
iteration

last iteration
* Leak

« Decrease target
(unless at floor)

« Increase weights with
neighbors who spiked
on last iteration

Figure 2
A flowchart displaying the homeostatic updating program. Rectangles indicate processes,

diamonds indicate decision points, and rounded boxes indicate termina.
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Neural Resonance and Action-Perception Loops: Three Case Studies®

In this subsection, we show how the homeostatic reservoir network described above
may be used to control the action-perception loop of a simple agent embedded in an
environment. We explore three distinct agent-environment systems: (1) an agent that can
rotate right and left while position is fixed at a central point, with a stimulus that rotates
around the agent at a fixed radius, (2) the classic arcade game Pong, where the agent
corresponds to the paddle that can move up or down, with the Pong ball serving as
stimulus, and (3) an agent similar to a Braitenberg vehicle, which can both rotate and move
forward, and which senses the distance to walls in an enclosed space. In each case, inputs
to the reservoir network correspond to egocentric sensory inputs based on the relative
position of stimuli with respect to the agent, while the output layer controls movement. We
find that with short periods of unsupervised training, the network spontaneously produces
behaviors that appear adaptive in these contexts: (1) spontaneously tracking a rotating
stimulus, (2) playing Pong with substantially above-chance performance, and (3) avoiding
walls. We analyze the dynamics of the homeostatic reservoir network in the context of
these agent-environment systems, showing that these adaptive behaviors are associated
with drifting patterns of activity in the reservoir. These findings serve as a proof-of-concept
that homeostatic mechanisms in the CNS could serve as a mechanism for
agent-environment resonance, as understood in ecological psychology, while avoiding the

need for a purely representational account of CNS activity.

5 Data reported in this manuscript and code for running and visualizing all models is available on our
Open Science Foundation repository: https://osf.io/6hqrt/. Our simulations leveraged the Agents.jl
package (Datseris, Vahdati, & DuBois, 2022)
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Case Study 1: Moving-Object Tracking
Agent- Environment System

The first case study, inspired by a model from Hotton and Yoshimi (2010), used the
homeostatic network (N = 200) to control an agent that can rotate left or right while fixed
at a central point. The environment contained a single stimulus that moves in a circle
around the agent (see the top left panel of Fig. 3). The agent is given a set of sensor nodes
that react to the presence of the stimulus, and a pair of effector nodes that allow for
rotation in either direction. The stimulus moves along a circle of radius 1 at an angular
speed of 1 degree per time step, thus rotating around the the agent once every 360 time
steps. The simulation begins with the agent heading at 90 degrees (north) and the stimulus
at 0 degrees (east), moving counter-clockwise. The stimulus was set to switch directions
every 720 time steps, or two full rotations, in order to check that the agent was responsive
to changing stimuli, rather than always rotating in one direction.

Sensors. The agent is imbued with 2 arrays of sensors, analogous to two eyes,
positioned at +30 degrees (left sensor, red point in Fig. 3) and -30 degrees (right sensor,
blue point in Fig. 3) relative to the heading angle of the agent. Each eye consists of an
array of 31 input nodes (62 total for both eyes), analogous to retinal cells, that are evenly
spaced in steps of 4 degrees from 60 degrees from the center of each sensor, giving each
eye a 120-degree field-of-view. Given that the left and right eyes are positioned 60 degrees
apart, and that each eye contains sensors extending 60 degrees in each direction, the
field-of-view for each eye overlaps in the space between them. In other words, when a
stimulus is present at an angle that falls between the two eyes, both eyes are able to “see”
the stimulus simultaneously.

The activity of each sensor is a Gaussian function of the angular distance of the

stimulus from the respective sensor:
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where 17,, is the activity of sensor n, and a is the angular distance in degrees between sensor
n and the stimulus. According to this activation function, the input of sensor n was set to
1 when the stimulus was directly above the sensor, and quickly decayed to 0 when the
stimulus moved further away from the sensor.

Each of the 62 input nodes was randomly connected to a node in the reservoir
network with a probability of Py, = .1. The activation level of input nodes was reset at
each timestep and input nodes did not utilize the homeostatic mechanism. All weights
from the input to the reservoir layer were set to 0.75, and there were no connections from
the reservoir to the input layer.

Effectors. In addition to having two arrays of input sensors, the agent was also
given an output layer of two nodes corresponding to “effectors” for turning left or right
(bottom-middle panel of Figure 3). Each node in the reservoir was randomly connected to
each effector node again with a probability of Py, = .1. All connection weights from the
reservoir to the output layer were set to 1.0, and there were no connections in the opposite
direction. Like the input nodes, effector nodes did not use the homeostatic mechanism and
their activity was reset at each timestep.

The output at each effector node was determined by the total proportion of
neighbors that spiked at each time step, producing a value between 0 and 1 for each
effector. For example, if an effector node had incoming connections from 20 reservoir nodes,
and 10 of those reservoir nodes spiked at time ¢, the output of the effector was 10/20, or .5.

Movement was determined by the difference in activation value between the left-

and right-turn effectors, multiplied by a gain of 10.
AH = 10- (eleft - em-ght) (7)

where AH is the change in heading of the agent, and e;.;; and e,;gn: represent the current
output of the left and right effector nodes, respectively. Thus, if the output of e;fs = 1 and

eright = 0 at time ¢, the agent rotated left by 10 degrees.
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Agent & Stimulus Sensor Activations Reservoir Node Properties
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Figure 3

A still of the model as it controls the action-perception loop of a simple agent that can turn
left or right. The top-left panel shows the agent (large pink circle) with two sensor arrays
(centered at red and blue points) and the stimulus (green point). The top-center panel shows
the activation level across the array of red and blue sensors. The top-right panel shows the
current mean activation across the reservoir nodes, the mean error (discrepancy between
target and activation), and mean target value. The bottom-left panel shows the reservoir,
with spiking nodes shown in yellow. The bottom-middle panel shows the current activation
level of the effectors for turning left (red) and right (blue). At this timestep, the stimulus is
moving clockwise, and the agent is turning right (right effector > left effector) to follow it.

The bottom-right panel shows the distribution of learned weights within the reservoir.

Outcomes

Spontaneous Object Tracking. When the agent’s sensors first detect the
presence of the stimulus, activation begins to spread through the network. This activity

also spreads to the effector nodes, which initially begin moving the agent erratically left
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and right. After the homeostatic mechanism is applied for about 100 time steps, a sudden
shift of behavior occurs: the agent locks on to the stimulus and begins rotating in the same
direction, at a similar speed. When the stimulus changes directions, the agent turns to
follow it with a brief delay, occasionally losing track of the stimulus. These dynamics can
be seen in Figure 4, which shows the heading angle of the agent (red) and the stimulus

(black) over 7200 timesteps (20 rotations of the stimulus) in a representative run.
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Figure 4

(A.) The heading angle of the stimulus (black lines) and the agent (red lines) over time for
the first 7200 timesteps of a run. (B.) The proportion of the reservoir that was spiking at
time t. (C.) The autocorrelation matriz of the spike pattern of the network for the same
run. Grey bands are present for points where a correlation could not be computed because
there was no variability in the spike vector (all nodes were either spiking or silent).

Why does this apparent object-tracking behavior emerge in a network that has no
explicit directive to track the stimulus? This behavior can be explained by virtue of the
fact that tracking the stimulus allows the network to stabilize its own activity. When the
stimulus first passes over the sensors, the spikes in the network are initially chaotic. If,
when this activity spreads to the effector layer, the agent turns in the opposite direction
from the stimulus, activity will stop entering the network entirely, and the reservoir will
eventually stop spiking until the stimulus comes back around (or the agent comes back
around to the stimulus). Because this movement undermines the flow of input into the
network, it impedes the updating of connection weights. Nodes can only update
connections with neighbors that are spiking, so if the activity of the entire network dies out
quickly, no updating will occur for a period of time.

On the other hand, if the activity that spreads to the effectors leads the agent to
turn in the same direction as the stimulus, the network will continue to spike for a longer
period of time, providing more opportunity for the network to learn. If the agent tracks the
stimulus for a sufficient amount of time, learning can be minimized and the ongoing
behavior will be sustained indefinitely. In sum, behaviors that maintain a consistent flow of
input to the network are implicitly rewarded, while behaviors that undermine the input to
the network are not. In this way, the network spontaneously learns to track the stimulus,
“attuning” its own movements to changes in the position of the stimulus.

Transiently Active Local Neuronal Subsystems. We suggest that our model

exhibits patterns reminiscent of "transiently active local neuronal subsystems" (TALoNS;
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M. L. Anderson, 2014). This is most readily apparent in the autocorrelation matrix in
Figure 4 C. Here, we can see that the network moves through a series of transiently-stable
activity patterns (red/orange regions). Cross-referencing this figure with the proportion of
the network that spiked at any given time (Fig. 4 B.) we can see that reorganizations of
the network are preceded by spikes of activity. Cross-referencing again with the
agent-stimulus dynamics (Fig. 4 A.), it is apparent that these spikes in activity occur
either when the stimulus changes direction (e.g. around ¢ = 4200), or when the agent has
lost track of the stimulus and encounters it again (e.g. around ¢ = 3000). At each of these
time points, the agent encounters a perturbation in the flow through the network, which
leads to a spike in activity that triggers homeostatic updating. This updating process
results in the rapid discovery of a new local neuronal subsystem that restores stability in
the network for a period of time.

Representational Drift. Next, we may also consider the degree to which this
network “reuses” spike patterns over time. Given that our network appears to maintain
stable tracking behavior throughout the run, except for a few brief windows where the
angles of the agent and stimulus decouple, it is reasonable to expect that we may find
stable patterns of activity associated with particular behavioral outcomes, such as a "turn
clockwise" subnetwork and another "turn counterclockwise" subnetwork, which alternate in
activity when the stimulus changes direction. However, previous work by Rodny et al.
(2017) found the presence of localist representations in critical branching networks that
drifted over time, similar to demonstrations of representational drift in mice (Rule et al.,
2019).

As might be expected from the previous section, the autocorrelation matrix (Fig. 4
C.) suggests that any representations present must not be stable over time. Despite
repeating the same behavior multiple times throughout the run, we can see that patterns
associated with turning clockwise or counterclockwise at one time point are uncorrelated

with patterns associated with the same behaviors at later time points. Thus, our network
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appears to exhibit representational drift.

Another way to visualize this representational drift is presented in Figure 5, which
is similar to a figure used by (Rule et al., 2019) to show representational drift in the PPC
of mice. In this figure, we plot the correlation between the spiking activity of each node,
and the total output at the effector layer. Thus, strong positive correlations indicate that a
particular node contributes strongly to counter-clockwise movements (higher output of
effector node L), and vice versa for strong negative correlations. Each column considers
these correlations in a different sliding window of 1000 timesteps, in increments of 250
timesteps. Along the diagonal, we sort the nodes in descending order according to their
correlations with effector output in that same time window, while off-diagonal panels show
nodes sorted according to a different time window. This plot reveals that, within any given
time window we can observe what look like strong tunings for particular
outcomes—particular nodes that seem to represent or encode clockwise or
counter-clockwise movement. Nonetheless, when we sort nodes according to correlations in
other time windows, we can see that these correlations fade over time. For example, nodes
that were highly correlated with clockwise or counter-clockwise movement in the first time
window (top-left panel) show no clear preferences for either direction during the last time
window (bottom-left panel). That is, what seem like representations occur over short time

windows, but these representations drift and change over time.
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Nodes Ordered by Correlatlon in Each Time Window
Figure 5
Representational drift in the correspondance between network activity and motor output.
Each panel shows nodes on the x-axis, and their respective correlation with effector output
on the y-axis. Each column corresponds to data from a sliding time window, and in each
row the nodes are sorted by their correlation with effector output in a particular time
window. This reveals that during any given 1000ms window, it is possible to find what
appears to be a mapping between spiking activity and agent behavior, but this mapping

changes substantially in as little as 250 time steps.

Case Study 2: Playing Pong

Background. The second case study was inspired by recent work from Kagan et
al. (2022), in which a culture of cortical tissue was trained to play Pong. The culture was

grown on a high-density microelectrode array, which received inputs based on pixel changes
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in the game, and generated outputs that were used to control the paddle. The culture
learned to play Pong with slightly above-chance performance when it was trained by
providing a predictable pattern of exogenous stimulation when the paddle hit the ball, or
an unpredictable pattern of stimulation when the paddle missed the ball. The authors
interpreted these findings through the lens of the free-energy principle (Friston, 2010a),
suggesting that the cells learned to minimize prediction errors. There may be important
theoretical differences between our account and those associated with the free-energy
principle, which is beyond the scope of this paper to discuss in detail, but there is at least
some clear overlap: homeostasis may be more achievable when patterns of stimuli are
predictable, therefore a system that pursues homeostasis may act so as to render stimuli
predictable.

We wondered whether our reservoir network (/N = 500) would show similar
performance in the absence of any exogenously-provided training signals. Note that Kagan
et al. (2022) encoded sensory inputs to their cortical culture allocentrically, such that the
motions of the paddle did not influence sensory input continuously (but only at discrete
moments, when the paddle either hit or missed the ball, and an exogenous signal was
applied). We instead coded sensory inputs egocentrically, from the perspective of the
paddle. In this case, hitting the ball will naturally confer more predictable patterns of
stimulation, given that a miss leads to a sudden reset of the ball’s position. Unpredictable
patterns of stimuli may lead to adjustments of network parameters, leading the network to
search the space of parameters until a set is discovered that renders the stimulation
predictable, which will consequently minimize misses. As in the first case study, tracking
the movement of the ball may be implicitly rewarded by virtue of facilitating stability

within the network, leading to a higher likelihood of hits.
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Agent-Environment System

500

400+
300+

200+

100+ ®

0 1
0 500 1000

Figure 6

The game environment with paddle and ball.

The game environment consisted of a 1000 (width) X 500 (height) pixel rectangle
(Fig. 6). The stimulus was the Pong ball, which had a radius of 15 pixels. The ball had a
constant speed of 5 pixels per timestep in both the x- and y-direction. The ball was set to
change y-direction upon hitting the top or bottom of the space, and to change x-direction
upon hitting the right wall of the space or the paddle. The agent controlled the paddle,
which was 100 pixels tall—% the height of the space—making chance performance for
hitting the ball 20%. The x-position of the paddle was fixed at 100, while the y-position
was free to vary within the bounds of the space. If the ball passed the paddle and crossed
the y-intercept (z = 0), the ball was immediately reset to the right side of the space with a
random y-position and random y-direction.

Sensors. The agent (paddle) possessed an array of 46 sensors that radiated out
from the center of the paddle over the range +90 degrees in steps of 4 degrees. Sensors
were tuned to produce an input value of 1 when angle of the stimulus (ball) relative to the

center of the paddle was < 2 degrees. Sensors had feed-forward connections to nodes in the

reservoir layer with Py, = .1, and all input-reservoir weights were set to 2.75.
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Effectors. The agent was given two effector nodes that moved the paddle up or
down, with the restriction that no part of the paddle could cross the upper or lower
boundary of the play area. Nodes in the reservoir network were again connected to effector
nodes with Py, = .1, and motor output at each effector was taken as the proportion of
spikes out of the total number of incoming connections, producing a value in the range [0,
1]. Movement was given by the relative activation of the "up" and "down" nodes, multiplied
by a gain factor of 100. For example, if the "up" node was fully active and the down node

was fully inactive, the paddle would move up by 100 pixels on that time step.

Outcomes

Proportion of Hits. To evaluate the success of the model in playing Pong, we
considered the proportion of times that the paddle hit the ball out of the total number of
opportunities. We ran 500 separate runs of the model, for 1210° time steps each. The
mean percentage of hits over runs was 58.2% (SD = 9.95%), well above the chance

performance of 20%. This data is displayed in Figure 7 panel D.
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Figure 7

(A.) The y-position of the stimulus (solid lines) and the agent (dotted lines) over time for
the first 2000 timesteps of a run. Red columns indicate misses, while green columns
indicate hits. (B.) The proportion of the reservoir that spiked at time t on the same run.
(C.) The autocorrelation matrix of the spike pattern of the network for the same run, with
time moving from the top-left to the bottom-right. Warmer colors indicate higher pairwise
correlation. (D.) The proportion of hits achieved in the baseline condition (medium gray),
the first 50 opportunities (light gray) or last 50 opportunities in the baseline condition (dark
gray), or when learning was turned off (blue), or when the sensory encoding was allocentric
(red). Points correspond to individual runs, and bars display the mean and bootstrapped
95% C.I. across 500 runs. (E.) The first two principal components of the reservoir
network’s activity for the first 2000 timesteps of the same run. Earlier timepoints are
shown in lighter colors, with later timepoints in dark red.

Learning. We next evaluated whether the model learned. One way to gauge
learning is to consider whether performance improved over time. Comparing the likelihood
of hits in the first 50 opportunities on each run (M = 57.86%, SD = 10.5%) to the last 50
opportunities (M = 57.86%, SD = 12%), we see that the model was at peak performance
from near the beginning of a run (see Fig. 7, grayscale points). However, this should not
be taken to mean that learning was irrelevant for the model’s success in the task. Consider
that when learning was turned off in the model, the likelihood of hits fell to 43% (SD =
13.8%; see Fig. 7, blue points). This reveals that continual adaptation of synaptic weights
and internal parameters was crucial for performance.

However, it is interesting that performance with learning turned off was already well
above chance performance. Why would a randomly initialized, non-updating network be
inclined towards this behavior, considering there is no incentive built in to follow or hit the
ball? This appears to be a natural consequence of the egocentric sensory encoding.

Consider the basic law of optics that objects that are closer to an observer appear to move
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faster. In our model, the sensory array encodes the angle of the ball relative to the angle of
the paddle, and that angle changes more rapidly as the ball approaches the paddle. Thus,
the input pattern begins to change very rapidly when the ball is about to pass the paddle,
which leads to an increase of activity throughout the network, which increases the
likelihood of movement. Conversely, when the ball is headed towards the paddle, the angle
relative to the center changes more slowly, meaning the paddle is more likely to stabilize
activity and remain still. Thus, tracking the ball appears to emerge naturally from an
egocentric action-perception loop in this context.

To confirm the above claims, we re-ran the model with an allocentric sensory
encoding. The agent was given an array of 50 sensors that encoded the y-position of the
ball in the play space, arranged in steps of 10 pixels from 5 to 495 pixels. With this
encoding, the mean likelihood of hits over 100 independent runs was 21.6% (SD = 2.07%;
see 7 red points), just slightly above chance level. Thus, the network only tracked the ball

when sensory information was egocentric.

Case Study 3: Wall Avoidance

Background. The final case study was inspired by work from Masumori et al.
(2015). Similarly to the work by Kagan et al. (2022) discussed in the previous case study,
Masumori et al. (2015) grew a culture of cortical cells on a high-density microelectrode
array, which was used to control a mobile robot with sensors that detected the presence of
walls. They found that the collection of cells spontaneously improved in its tendency to
avoid walls, without the need for any external reward. The authors proposed that this
result occurs because movements that lead to the cessation of stimulation (i.e. avoidance)
allow the network to stabilize activity, whereas continued stimulation leads to adaptation
in the network until a stable avoidant pattern is discovered. We wondered whether our
homeostatic network (N = 200) would produce similar results even if avoidance did not

lead to the cessation of inputs, given our commitment to the idea that some level of
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continuous input is necessary for survival of neurons. Instead, we hypothesized that our
network would produce movement patterns that rendered input patterns predictable, which
would involve avoiding walls, given that hitting a barrier would disrupt the correspondence
between motor commands and sensory inputs.

Unlike the previous two case studies, in this context the environment is entirely
static. Because the full input-generating process now only depends upon the agent’s
behavior, we hypothesized that the network would be able to discover patterns of
movement that rendered sensory input perfectly predictable. If this were the case, the
network would eventually be able to completely stabilize its activity, and would cease
changing parameters after a time. Because of this, we were also interested in how the
network would perform when the input is noisy, preventing the possibility of perfect
stability. Additionally, we explore the resilience of behavior to a perturbation consisting of
a sudden inversion of the visual field, similar to prior work from Di Paolo and lizuka
(2008). Finally, we consider whether the network will still show some adaptive behavior

when homeostatic updating was turned off, as we did in the previous case study.

Agent-Environment System

The space consisted of a simulated 15 X 15 meter box containing a circular agent of
radius .5m (see Fig. 8). The agent was driven by two simulated "wheels," located £+90
degrees from the heading direction, akin to a Braitenberg vehicle, with movement driven by
the relative speed of the wheels. The agent could not move any part of its circular body
past a wall, and was set to suddenly rotate either +45 degrees or -45 degrees upon
contacting a wall, which enhanced the degree to which hitting walls produced
unpredictable patterns of stimulation.

Sensors. The agent was given two sensors, located at £45 degrees relative to the
heading direction of the agent. Each sensor casts a ray forward at the respective angle from

the heading direction of the agent, and detected the nearest point of intersection with one
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of the four walls of the space. The strength of input at the sensor was inversely
proportional to the distance to the wall, such that input was equal to 1 if the sensor was
directly touching a wall, or 0 if the sensor was at the maximum distance from a wall. The
maximum distance was the length of the diagonal, v/2 - 152. Because the agent could not
have a sensor located perfectly in the corner of the space, as this would require having
some region of the agent pass through the walls of the space, input at each sensor was
always > 0. As before, sensors had feed-forward connections to nodes in the reservoir layer
with Py, = .1, with all input-reservoir weights now set to 2.

Effectors. The agent had two effector nodes, which simulated motors controlling
two wheels located £90 degrees from the heading direction. As in the previous simulations,
reservoir nodes were randomly connected to effectors with Py, = .1, and motor output at
each effector was taken as the proportion of spikes out of the total number of incoming

connections, producing a value in the range [0, 1].
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15

104

Figure 8

Outcomes

Wall Avoidance Behavior. In the absence of noise in sensory inputs, we find
that the agent typically discovers a stable pattern of movement within a few hundred time
steps. This stable pattern involves keeping a constant ratio of output in the left and right
motors, such that the agent moves in a circle either clockwise or counter-clockwise. The
ratio of outputs must be such that the circle produced has a small enough radius as to not

intersect any of the boundaries of the space.
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Investigation of the network dynamics once a stable movement pattern has been
discovered shows that this involves either completely stable activity, or a limit cycle
(repeating pattern of spikes over time) with only a small number of nodes changing values®.
The first column of Figure 9 shows the first 1000 timesteps of a representative run in which

the network discovered a stable movement pattern and network state within around 300

time steps.
Baseline +Sensory Noise +Visual Field Inversion Learning Turned Off
A.
B 3
&
C.
om0 i Chim [ o
Figure 9

Row (A.) shows the trajectory of the agent in the space for the first 1000 timesteps of a
representative run, with arrowheads indicating the direction of movement, and more recent
points shown darker (or earlier points more transparent). Columns correspond to distinct
conditions. Row (B.) shows the proportion of the reservoir that was spiking at time t. Row
(C.) shows the autocorrelation matriz of the reservoir. Notches below the z-axis indicate
points at which the agent hit a wall of the space. Note that a heatmap could not be
constructed for the condition with learning turned off, given that there was no variability in

sptking behavior over time.

6 The behavior of this agent-environment system is similar to that of a two-vehicle Braitenberg system,
studied in depth by Hotton and Yoshimi (in press). In particular, the circular behaviors are comparable to

what are there studied as "revolving type relative equilibria".
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Effect of Sensory Noise. Given that the static environment in this case allows
the network to find a stable pattern or cycle of activity, we wondered whether the network
would still show successful wall-avoidance when noise was added to sensory inputs. At each
time step, we added noise by sampling from a uniform distribution in the range [-.2, .2] to
each sensor independently. As such, the sensor values were now in the range [-.2, 1.2].

An example of the agent’s movement dynamics from a representative run of the
model under these conditions is shown in Figure 9 panel C. In the presence of noise, we
find that the network can no longer completely stabilize activity. Nonetheless, the agent
maintains a tendency to avoid walls, and to seek out circular movement patterns that are
occasionally disrupted.

Adaptation Following Perturbation. Following work by Di Paolo and lizuka
(2008), we next examined how the network would respond to a perturbation in the form of
a sudden inversion of the visual field. After 1000 time steps of the model—enough time to
discover a stable movement pattern—the inputs to the left and right sensors were swapped.
To amplify the perturbation caused by this change, sensor values were also multiplied by 2,
such that inputs were now in the range [0,2]. An example of the agent’s movement
dynamics from a representative run of the model under these conditions is shown in the
third column of Figure 9. Here we can see that the reservoir network takes less than 500
time steps before finding a new, completely stable pattern of activity and movement.

Learning. Finally, we considered whether the model showed evidence of learning.
First, we considered the behavior of the model when homeostatic updating was turned off
(right column of Fig. 9). Given that, in the case of playing Pong, the network shows some
level of adaptive behavior even when homeostatic updating was turned off, would the same
be true of the wall avoidance model? We found that in this case, when learning was turned
off, activity quickly goes to a maximum, with all nodes spiking simultaneously. As a result,
the model can only move straight and bounce off the walls, because the left and right

effectors have equal output values.
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However, when homeostatic updating is turned on, the model shows clear signs of
improvement over time. In the baseline condition and the added sensory noise condition,
Figure 9 shows that the agent makes a number of collisions with the wall in the first few
hundred time steps (black lines beneath heatmaps), after which it discovers a stable
movement pattern that results in no further contact with walls. This is also true when the
visual field was inverted after 1000 time steps, except here the model again hits the wall a
number of times after the inversion, before learning a new movement pattern. Thus, while
learning (in the sense of improvement in performance over time) was not clearly evident in
the Pong case study, perhaps because learning occurred too quickly to be detectable, the

wall-avoidance model shows clear evidence of learning.

General Discussion

In recent years, work from Raja (2018, 2019, 2021) has called attention to the lack
of a mechanistic account of the concept of "resonance" within ecological psychology, which
requires a story about the CNS that does not fall back on a representationalist account of
brain activity. Raja and colleagues have suggested, as a foundation for this work,
Anderson’s neural reuse hypothesis, which casts brain activity in terms of transiently active
local neuronal subsystems (TALoNS), which are “task-specific neural synergies that
coordinate brain, body, and world” (Raja & Anderson, 2019). Adding to these arguments,
we have suggested that a useful path forward is to consider the role of homeostatic
properties of neurons in facilitating self-organization in the CNS. As an illustration of the
utility of this view, we have considered the dynamics of simple simulated agents, endowed
with minimal sensory and motor systems, mediated by a random homeostatic network. We
have shown that in three distinct scenarios—(1) a rotating agent in an environment with a
moving stimulus, (2) the game Pong, and (3) a mobile agent in a walled space—adaptive
behavior spontaneously emerges. We believe that these case studies illustrate one way that

the CNS could facilitate organism-environment resonance, i.e. an organism’s sensitivity to
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informative relations between action and perception, without relying on stabilized,
computational internal representations.

What is surprising here is the fact that behavior of the model seems sensible at all
right out of the box. Although work in artificial intelligence and machine-learning research
has shown that similar or even more complex outcomes can be achieved with a variety of
techniques, including deep neural networks with trained weights (Gibney et al., 2015),
reservoir networks with a trained output mapping (Maass et al., 2002; Jaeger & Haas,
2004), networks that are evolved using a genetic algorithm (lizuka & Di Paolo, 2007; Beer
& Gallagher, 1992; Cangelosi, Parisi, & Nolfi, 1994), and of course hand-wired circuits,
such as Braitenberg vehicles (Braitenberg, 1986; Hotton & Yoshimi, in press), our model
has none of these features. Consider that on the first iteration of training an ANN or
evolving a network, performance would typically be expected to be rather bad. So why
does our model seem to exhibit reasonably context-appropriate behaviors, even exhibiting
opposite patterns of behavior such as following a stimulus or avoiding walls?

The adaptive behaviors in these networks emerge spontaneously because they allow
for the individual nodes to pursue homeostasis. When network activity generates
movement patterns that lead to a stable flow of activity through the network, the
homeostatic mechanism may reach an equilibrium, temporarily minimizing changes and
therefore maintaining the ongoing behavior. The "trick" in our models is that the
context-appropriate behavior just so happens to be such an equilibrium point. In scenario
1, following the stimulus keeps the sensory input stable. In scenario 2, missing the Pong
ball leads to a sudden reset of the ball’s position, again leading to maximally unpredictable
input, whereas hitting the ball preserves a continuous trajectory of inputs that changes in a
predictable manner. In scenario 3, hitting a wall produces a sudden turn either clockwise
or counter-clockwise. This creates a situation in which hitting walls generates maximally
unpredictable flows of activity, whereas avoiding walls allows for complete stability.

Although we situate this work in the context of ecological psychology, it is worth
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pointing out that our interpretation of how the homeostatic mechanism leads to behavioral
control is reminiscent of another theoretical paradigm, the free-energy principle (FEP;
Friston, 2010b), and its related process theory, active inference (M. Ramstead, Badcock, &
Friston, 2018). The FEP holds that organisms act so as to avoid "surprising" states, by
optimizing a model of the environment and the consequences of actions (the "generative
model"). Ecological psychology and the FEP have often been framed as competing
frameworks for cognitive science (Bruineberg, Dotega, Dewhurst, & Baltieri, 2022; though
for an argument to the contrary, see Bruineberg, Kiverstein, & Rietveld, 2018), given that
the former rejects representational notions, and the latter relies on them extensively.
Indeed, existing FEP models of neural dynamics suggest that neural populations explicitly
encode a generative model and perform Bayesian inference (M. J. Ramstead et al., 2021),
and in that respect, would seem difficult to reconcile with our model. However, the FEP is
framed at a higher level of abstraction than our model, and is not committed to any
particular mechanistic account of brain dynamics. It is possible that an active inference
model consistent with the FEP could approximate a mechanism like the one we have
descrived. Purusing this question would provide a welcome opportunity for reconciliation
in the “representation wars” (Constant, Clark, & Friston, 2021), but further work is needed
to bear this out.

A skeptic might suggest that our examples were cherry-picked, nudged in some way
to elicit the desired outcome. For example, in our wall-avoidance model, the fact that
hitting a wall produces a random turn is not a necessary feature of the mechanics, and
perhaps without this feature, a different pattern of behavior would emerge that would not
seem "adaptive" (it should be noted that, because our model has no analog of fitness,
describing the behavior as "adaptive" is purely based on our preconceived notions for what
behaviors would be adaptive in a given context). While this criticism is accurate to an
extent, we take these mechanics to be a reasonable analog of the real conditions faced by

biological organisms. In general, some behaviors will sustain a higher-order stability in
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action-perception relations, while others will not. For example, while forward movement
will typically produce a certain kind of optic flow, this relation will be interrupted if an
organism hits a wall. If the organism was relying on a stable relation between movement
and optic flow to achieve homeostasis, then hitting a wall will disrupt homeostasis, and
therefore lead to a change in behavior. Thus, while our models clearly contain many
simplifications, we contend that these are appropriate analogs of real constraints faced by
organismes.

However, it should be noted that there are possible scenarios in which the behavior
that facilitates homeostasis will not be the "adaptive' (per our expectations) behavior. For
example, if we imagine a game of Pong in which the goal is to avoid the ball, our model
would do quite poorly, because there is nothing to push it out of the observed regime of
tracking the ball. In an ecological-psychology-inspired view of evolution, we would suggest
that it is the role of natural selection to produce organisms for which the action-perception
loops that facilitate homeostasis are precisely those that are adaptive. In other words,
natural selection must generate a set of physiological constraints such that whatever flow of
activity keeps neurons alive is also good for the entire organism. For example, if we
imagine natural selection operating on a population of our Pong-playing agents, but in a
case where avoiding the ball conferred fitness benefits, one possibility would be to evolve a
sensory system that produces stable inputs when the ball is not in view, and unstable ones
when the ball is in view. This could produce avoidance behavior without needing to search
the vast space of potential networks and node types, so it may be an evolutionarily "easy"
solution. Thus, while our case studies were chosen because we expected a natural
correspondence between node homeostasis and adaptive behavior, we believe that these are
the typical conditions encountered by organisms that are pre-adapted to their
environments.

Furthermore, our model suggests that evolution need not act to produce

highly-specific neural structures or detailed representations of the environment in order to
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achieve adaptive behavior. Instead, evolution needs to construct organisms that are capable
of rapidly finding adaptive stabilities in the agent-environment coupling. Our examples
point to a potential evolutionary "hack'—a head start on intelligence with minimal barrier
to entry. Indeed, while we understand that evolution is a very important part of any theory
in cognitive science, we have purposely left this out of our model at present in order to
show how much intelligence can be achieved even before evolution has had a chance to act.
Individual cells are already homeostatic, and our model shows that random collections of
cells can generate behaviors that are self-preservative, context-sensitive, and rapidly
adaptive to perturbations. Natural selection can then refine these simple abilities into
increasingly complex behavioral repertoires simply by tuning local features of nodes (i.e.
their homeostatic mechanisms, spiking mechanisms, and developmental trajectories),
without needing to "know" how the entire system should act or what contexts it will
encounter. This view is consistent with a developmental systems theory approach to
evolution, which suggests that natural selection works upon the entire developmental
trajectory, rather than simply shaping an adult phenotype (Griffiths & Tabery, 2013).

A final point worth reflecting on is our claim that the dynamics of the networks
presented here need not be interpreted as "representational," as this is a crucial point for
compatibility with the ecological approach”. In order to justify this point, we draw upon a

restrictive definition of representation given by (Chemero, 2000):

A feature Ry of a system S will be counted as a Representation for S if and

7 The second author, Yoshimi, interprets some points in this paper slightly differently than his co-authors,
in two ways. (1) He allows that internal mediating states can be thought of as representations in a minimal
sense, and has argued that that these minimal representations can have an illuminating mathematical
structure, that is manifest in the "open phase portraits" of open dynamics systems (Hotton and Yoshimi,
2011, forthcoming). (2) He belives that ecological resonance of the kind described here is important and is
indeed often non-representational, but also believes that an account like this can co-exist with one in which
more classical forms of representation play an important role in cognitive science. In that sense he defends

a form of pluralism (Yoshimi, in press)
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only if:

(R1) R, stands between a representation producer P and a representation

consumer C that have been standardized to fit one another.

(R2) Ry has as its proper function to adapt the representation consumer C' to
some aspect Ay of the environment, in particular by leading S to behave

appropriately with respect to Ay, even when Ay is not the case.

(R3) There are (in addition to Ry) transformations of Ry, Ry ... R, that have
as their function to adapt the representation consumer C' to corresponding

transformations of Ay, Ay ... A,

In evaluating whether our model meets these requirements for representation, first consider
that, as Chemero points out, there are two distinct hypotheses regarding representation
raised in the dynamical systems tradition within cognitive science. The "nature hypothesis"
is an ontological claim that dynamical systems simply do not meet the requirements for
using representations as outlined above, while the "knowledge hypothesis" is that some
dynamical systems may still meet the requirements for using representations, but that
adopting a representational stance carries no additional explanatory power. For example,
Chemero notes that a paradigm example of a dynamical system, the Watt governor,
actually can be given a representational description (though a non-computational or
non-rule-governed version of representation), but such a view of the Watt governor is
unhelpful over and above purely mathematical descriptions of its behavior.

In contrast, we suggest that our model satisfies both the nature and knowledge
hypothesis, meaning that our agents neither use representations, nor can be helpfully
described as such. A previous application of our model in processing a simple probabilistic
grammar revealed that, in reasonably short time-windows, patterns of activation could be
found that resembled population codes corresponding to specific words, or even

grammatical classes that were not explicitly contained in the input data (Falandays et al.,
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2021). Nonetheless, these patterns drifted over time, such that different population codes
"encoded" the same features at later time points. Similar outcomes have been observed
here (see Fig. 5), with some nodes having strong correspondences with movement either
clockwise or counter-clockwise, but with these correspondences drifting throughout the
reservoir over time. As such, while we do see activity patterns that stand between a
producer (the sensory input layer) and a consumer (the effector layer), these patterns are
not stable, hence not standardized, and we can reject R1. In fact, if there are no stably
recurring patterns at all, there is no entity that we can call Ry, hence nothing to ascribe
functions to, nor to construct a system of representations, and therefore we can also reject
R2 and R3.

In conclusion, we suggest that homeostatic networks offer a promising path towards
providing a mechanistic account of the ecological concept of "resonance." This model has
previously been shown to produce patterns reminiscent of predictive-processing when
dealing with language (Falandays et al., 2021), and in this work has been shown capable of
producing context-appropriate behavior in three distinct settings, when embedded within
an action-perception loop. This suggests that our model may be applicable to an even
wider variety of domains, and may help shed light on the emergence of many kinds of

adaptive behavior without appeal to representation.

Acknowledgements

JBF would like to thank the following people for their helpful discussions and
feedback during the development of this manuscript: Cody Moser, Paul Smaldino, Jeff
Rodny, and Tim Shea from UC Merced; Charles Bakker, Noah Guzman, and Mike
Anderson’s EMRG lab; Daniel Friedman and the Active Inference Institute; Maxwell

Ramstead and the Computational Phenomenology group; and Mac Shine.



1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

MECHANISM OF RESONANCE 53

References

Anderson, M., & Chemero, A. (2019). The world well gained. Andy Clark and his critics,
161-173.

Anderson, M. L. (2014). After phrenology: Neural reuse and the interactive brain. MIT
Press.

Ashby, W. R. (1960). The homeostat. In Design for a brain (pp. 100-121). Springer.

Bassett, D. S., Meyer-Lindenberg, A., Achard, S., Duke, T., & Bullmore, E. (2006).
Adaptive reconfiguration of fractal small-world human brain functional networks.
Proceedings of the National Academy of Sciences, 103(51), 19518-19523.

Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., & Grafton,
S. T. (2011). Dynamic reconfiguration of human brain networks during learning.
Proceedings of the National Academy of Sciences, 108(18), 7641-7646.

Beer, R. D., & Gallagher, J. C. (1992). Evolving dynamical neural networks for adaptive
behavior. Adaptive behavior, 1(1), 91-122.

Beer, R. D., et al. (1996). Toward the evolution of dynamical neural networks for
minimally cognitive behavior. From animals to animats, 4, 421-429.

Beggs, J. M., & Plenz, D. (2003). Neuronal avalanches in neocortical circuits. Journal of
neuroscience, 23(35), 11167-11177.

Bertschinger, N., & Natschlager, T. (2004). Real-time computation at the edge of chaos in
recurrent neural networks. Neural computation, 16(7), 1413-1436.

Bickhard, M. H. (2016). The anticipatory brain: Two approaches. In Fundamental issues
of artificial intelligence (pp. 261-283). Springer.

Bickhard, M. H., & Terveen, L. (1996). Foundational issues in artificial intelligence and
cognitive science: Impasse and solution (Vol. 109). Elsevier.

Biryukova, E., & Sirotkina, I. (2020). Forward to bernstein: Movement complexity as a
new frontier. Frontiers in Neuroscience, 14, 553.

Braitenberg, V. (1986). Vehicles: Experiments in synthetic psychology. MIT press.



1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

MECHANISM OF RESONANCE 54

Brette, R. (2019). Is coding a relevant metaphor for the brain? Behavioral and Brain
Sciences, 42.

Bruineberg, J., Dolega, K., Dewhurst, J., & Baltieri, M. (2022). The emperor’s new
markov blankets. Behavioral and Brain Sciences, 45, e183.

Bruineberg, J., Kiverstein, J., & Rietveld, E. (2018). The anticipating brain is not a
scientist: the free-energy principle from an ecological-enactive perspective. Synthese,
195(6), 2417-2444.

Cangelosi, A., Parisi, D., & Nolfi, S. (1994). Cell division and migration in a’genotype’for
neural networks. Network: computation in neural systems, 5(4), 497.

Chemero, A. (2000). Anti-representationalism and the dynamical stance. Philosophy of
Science, 67(4), 625-647.

Chemero, A. (2003). An outline of a theory of affordances. Ecological psychology, 15(2),
181-195.

Chistiakova, M., Bannon, N. M., Bazhenov, M., & Volgushev, M. (2014). Heterosynaptic
plasticity: multiple mechanisms and multiple roles. The Neuroscientist, 20(5),
483-498.

Constant, A., Clark, A., & Friston, K. J. (2021). Representation wars: Enacting an
armistice through active inference. Frontiers in Psychology, 11, 598733.

Corcoran, A. W., & Hohwy, J. (2017). Allostasis, interoception, and the free energy
principle: Feeling our way forward.

Dale, R., & Kello, C. T. (2018). “how do humans make sense?” multiscale dynamics and
emergent meaning. New Ideas in Psychology, 50, 61-72.

Datseris, G., Vahdati, A. R., & DuBois, T. C. (2022, January). Agents.jl: a performant
and feature-full agent-based modeling software of minimal code complexity.
SIMULATION, 0(0), 003754972110688. Retrieved from
https://doi.org/10.1177/00375497211068820 doi: 10.1177/00375497211068820

Davies-Barton, T., Raja, V., Baggs, E., & Anderson, M. L. (2022). Debt-free intelligence:


https://doi.org/10.1177/00375497211068820

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

MECHANISM OF RESONANCE 55

Ecological information in minds and machines.

Deitch, D., Rubin, A., & Ziv, Y. (2020). Representational drift in the mouse visual cortex.
bioRxiv.

Dennett, D. (1978). Philosophical essays on mind and psychology. Bradford Books,
Montgomery Vermont.

Desai, N. S. (2003). Homeostatic plasticity in the cns: synaptic and intrinsic forms.
Journal of Physiology-Paris, 97(4-6), 391-402.

Dewey, J. (1896). The reflex arc concept in psychology. Psychological review, 3(4), 357.

de Wit, M. M., & Withagen, R. (2019). What should a “gibsonian neuroscience” look like?
introduction to the special issue (Vol. 31) (No. 3). Taylor & Francis.

Di Paolo, E. A., & lizuka, H. (2008). How (not) to model autonomous behaviour.
BioSystems, 91(2), 409-423.

Dray, W. H. (1968). On explaining how-possibly. The Monist, 52(3), 390-407.

Duchon, A. P.; & Warren Jr, W. H. (2002). A visual equalization strategy for locomotor
control: of honeybees, robots, and humans. Psychological Science, 13(3), 272-278.

Fajen, B. R., & Warren, W. H. (2007). Behavioral dynamics of intercepting a moving
target. Experimental Brain Research, 180(2), 303-319.

Falandays, J. B., Batzloff, B. J., Spevack, S. C., & Spivey, M. J. (2020). Interactionism in
language: from neural networks to bodies to dyads. Language, Cognition and
Neuroscience, 35(5), 543-558.

Falandays, J. B., Nguyen, B., & Spivey, M. J. (2021). Is prediction nothing more than
multi-scale pattern completion of the future? Brain Research, 1768, 147578.

Fernando, C., & Sojakka, S. (2003). Pattern recognition in a bucket. In Furopean
conference on artificial life (pp. 588-597).

Fink, P. W., Foo, P. S., & Warren, W. H. (2009). Catching fly balls in virtual reality: A
critical test of the outfielder problem. Journal of vision, 9(13), 14-14.

Friston, K. (2010a). The free-energy principle: a unified brain theory? Nature Reviews



1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

MECHANISM OF RESONANCE 56

Neuroscience, 11(2), 127-138.

Friston, K. (2010b). The free-energy principle: a unified brain theory? Nature reviews
neuroscience, 11(2), 127-138.

Gibney, E., et al. (2015). Game-playing software holds lessons for neuroscience. Nature,
518(7540), 465-466.

Gibson, J. J., & Gibson, E. J. (1955). Perceptual learning: Differentiation or enrichment?
Psychological review, 62(1), 32.

Gosak, M., Milojevié¢, M., Duh, M., Skok, K., & Perc, M. (2022). Networks behind the
morphology and structural design of living systems. Physics of Life Reviews.

Graham, D. W. (2007). Heraclitus.

Griffiths, P. E., & Tabery, J. (2013). Developmental systems theory: What does it explain,
and how does it explain it? In Advances in child development and behavior (Vol. 44,
pp. 65-94). Elsevier.

Grossberg, S. (1982). How does a brain build a cognitive code? Studies of mind and brain:
Neural principles of learning, perception, development, cognition, and motor control,
1-52.

Helmholtz, H. (1860). "handbuch der physiologischen optik" (Vol. 3). Dover.

Hohwy, J. (2018). Prediction error minimization in the brain. The Routledge handbook of
the computational mind, 159-172.

Hotton, S., & Yoshimi, J. (2010). The dynamics of embodied cognition. International
Journal of Bifurcation and Chaos, 20(04), 943-972.

Hotton, S., & Yoshimi, J. (2011). Extending dynamical systems theory to model embodied
cognition. Cognitive Science, 35(3), 444-479.

Hotton, S., & Yoshimi, J. (in press). The open dynamics of braitenberg vehicles. MIT
Press.

lizuka, H., & Di Paolo, E. A. (2007). Toward spinozist robotics: Exploring the minimal

dynamics of behavioral preference. Adaptive Behavior, 15(4), 359-376.



1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

MECHANISM OF RESONANCE 57

Jaeger, H., & Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic systems and
saving energy in wireless communication. science, 304 (5667), 78-80.

Kagan, B. J., Kitchen, A. C., Tran, N. T., Habibollahi, F., Khajehnejad, M., Parker, B. J.,
... Friston, K. J. (2022). In vitro neurons learn and exhibit sentience when embodied
in a simulated game-world. Neuron, 110(23), 3952-3969.

Kello, C. T. (2013). Critical branching neural networks. Psychological review, 120(1), 230.

Kello, C. T., Brown, G. D., Ferrer-i Cancho, R., Holden, J. G., Linkenkaer-Hansen, K.,
Rhodes, T., & Van Orden, G. C. (2010). Scaling laws in cognitive sciences. Trends in
cognitive sciences, 14(5), 223-232.

Kello, C. T., Kerster, B., & Johnson, E. (2011). Critical branching neural computation,
neural avalanches, and 1/f scaling. In Proceedings of the annual meeting of the
cognitive science society (Vol. 33).

Kelso, J. S. (1995). Dynamic patterns: The self-organization of brain and behavior. MIT
press.

Kelso, J. S., Dumas, G., & Tognoli, E. (2013). Outline of a general theory of behavior and
brain coordination. Newral Networks, 37, 120-131.

Kelty-Stephen, D. G., Palatinus, K., Saltzman, E., & Dixon, J. A. (2013). A tutorial on
multifractality, cascades, and interactivity for empirical time series in ecological
science. Ecological Psychology, 25(1), 1-62.

Maass, W., Natschlager, T., & Markram, H. (2002). Real-time computing without stable
states: A new framework for neural computation based on perturbations. Neural
computation, 14(11), 2531-2560.

Mace, W. M. (1977). James j. gibson’s strategy for perceiving: Ask not what’s inside your
head, but what’s your head inside of. Perceiving, acting, and knowing: Towards an
ecological psychology.

Marks, T. D., & Goard, M. J. (2021). Stimulus-dependent representational drift in primary

visual cortex. Nature communications, 12(1), 1-16.



1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

MECHANISM OF RESONANCE 58

Masumori, A., Maruyama, N., Sinapayen, L., Mita, T., Frey, U., Bakkum, D., ... Tkegami,
T. (2015). Emergence of sense-making behavior by the stimulus avoidance principle:
Experiments on a robot behavior controlled by cultured neuronal cells. In Ecal 2015:
the 13th european conference on artificial life (pp. 373-380).

Merleau-Ponty, M. (1942). La structure du comportement (A. L. Fisher, Ed.). Presses
Universitaires de France.

Michaels, C. F., & Palatinus, Z. (2014). A ten commandments for ecological psychology. In
The routledge handbook of embodied cognition (pp. 19-28). Routledge.

Mirski, R., & Bickhard, M. H. (2019). Encodingism is not just a bad metaphor. Behavioral
and Brain Sciences, 2.

O’Leary, T., & Wyllie, D. (2011). Neuronal homeostasis: time for a change? The Journal
of Physiology, 589(20), 4811-4826.

Pessoa, L. (2022). The entangled brain. Journal of Cognitive Neuroscience, 1-12.

Pezzulo, G., Barsalou, L. W., Cangelosi, A., Fischer, M. H., McRae, K., & Spivey, M. J.
(2011). The mechanics of embodiment: A dialog on embodiment and computational
modeling. Frontiers in psychology, 2, 5.

Pouw, W., Proksch, S., Drijvers, L., Gamba, M., Holler, J., Kello, C. T., ... others (2021).
Multilevel rhythms in multimodal communication.

Prigogine, 1., & Nicolis, G. (1977). Self-organization. Non-Equilibrium System.

Raja, V. (2018). A theory of resonance: Towards an ecological cognitive architecture.
Minds and Machines, 28(1), 29-51.

Raja, V. (2019). From metaphor to theory: the role of resonance in perceptual learning.
Adaptive Behavior, 27(6), 405-421.

Raja, V. (2021). Resonance and radical embodiment. Synthese, 199(1), 113-141.

Raja, V., & Anderson, M. L. (2019). Radical embodied cognitive neuroscience. Ecological
Psychology, 31(3), 166-181.

Ramstead, M., Badcock, P., & Friston, K. (2018). Answering schrodinger’s question: A



1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

MECHANISM OF RESONANCE 59

free-energy formulation. Physics of Life Reviews, 24, 1-16.

Ramstead, M. J., Hesp, C., Tschantz, A., Smith, R., Constant, A., & Friston, K. (2021).
Neural and phenotypic representation under the free-energy principle. Neuroscience
& Biobehavioral Reviews, 120, 109-122.

Rio, K. W., Dachner, G. C.; & Warren, W. H. (2018). Local interactions underlying
collective motion in human crowds. Proceedings of the Royal Society B: Biological
Sciences, 285(1878), 20180611.

Rodny, J. J., Shea, T. M., & Kello, C. T. (2017). Transient localist representations in
critical branching networks. Language, Cognition and Neuroscience, 32(3), 330-341.

Rule, M. E., O’Leary, T., & Harvey, C. D. (2019). Causes and consequences of
representational drift. Current opinion in neurobiology, 58, 141-147.

Saxberg, B. V. (1987). Projected free fall trajectories. Biological Cybernetics, 56(2),
159-175.

Schoonover, C. E., Ohashi, S. N., Axel, R., & Fink, A. J. (2020). Representational drift in
primary olfactory cortex. bioRziv.

Srinivasan, M. V. (1992). How bees exploit optic flow: behavioural experiments and neural
models. Philosophical Transactions of the Royal Society of London. Series B:
Biological Sciences, 337(1281), 253-259.

Stepp, N., & Turvey, M. T. (2010). On strong anticipation. Cognitive systems research,
11(2), 148-164.

Swenson, R. (1997). Autocatakinetics, evolution, and the law of maximum entropy
production: A principled foundation towards the study of human ecology. Advances
in Human Ecology, 6, 1-48.

Szary, J., Kerster, B., & Kello, C. T. (2011). What makes a brain smart? reservoir
computing as an approach for general intelligence. In International conference on
artificial general intelligence (pp. 407-413).

Thill, S., Caligiore, D., Borghi, A. M., Ziemke, T., & Baldassarre, G. (2013). Theories and



1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

MECHANISM OF RESONANCE 60

computational models of affordance and mirror systems: an integrative review.
Neuroscience €& Biobehavioral Reviews, 37(3), 491-521.

Tosi, Z. (2021). Self-organization in neural circuits: Proposing a new model of neural
organization. Indiana University.

Turrigiano, G., & Nelson, S. (2004). Homeostatic plasticity in the developing nervous
system. Nature Reviews Neuroscience, 5(2), 97-107.

Turvey, M. T., & Kugler, P. N. (1984). An ecological approach to perception and action.
In Advances in psychology (Vol. 17, pp. 373-412). Elsevier.

Warren, W. H. (2006). The dynamics of perception and action. Psychological review,
113(2), 358.

Warren Jr, W. H.; & Whang, S. (1987). Visual guidance of walking through apertures:
body-scaled information for affordances. Journal of experimental psychology: human
perception and performance, 13(3), 371.

Wu, Z., & Sabel, B. A. (2021). Spacetime in the brain: rapid brain network reorganization
in visual processing and recovery. Scientific Reports, 11(1), 1-12.

Yoshimi, J. (in press). Pluralist neurophenomenology: A reply to lopes. Phenomenology
and the Cognitive Sciences.

Yoshimi, J., Hotton, S., Tosi, Z., & Gordon, C. (2022). Reservoir networks. In Neural
networks in cognitive science (chap. 15).

Zech, P., Haller, S., Lakani, S. R., Ridge, B., Ugur, E., & Piater, J. (2017). Computational
models of affordance in robotics: a taxonomy and systematic classification. Adaptive
Behavior, 25(5), 235-271.

Zhao, H., & Warren, W. H. (2015). On-line and model-based approaches to the visual

control of action. Vision research, 110, 190-202.



	Abstract
	A Potential Mechanism for Gibsonian Resonance: Behavioral Entrainment Emerges from Local Homeostasis in an Unsupervised Reservoir Network
	Introduction
	A primer on the ecological approach to perception-action
	What is the mechanism of resonance?
	Reservoir computers as an ecological model of the CNS
	Self-organization in brain and behavior

	Model Description
	Network Architecture
	Activation Dynamics and Homeostatic Updating


	Neural Resonance and Action-Perception Loops: Three Case StudiesData reported in this manuscript and code for running and visualizing all models is available on our Open Science Foundation repository: https://osf.io/6hqrt/. Our simulations leveraged the Agents.jl package Agents.jl
	Case Study 1: Moving-Object Tracking
	Agent-Environment System
	Outcomes

	Case Study 2: Playing Pong
	Agent-Environment System
	Outcomes

	Case Study 3: Wall Avoidance
	Agent-Environment System
	Outcomes


	General Discussion
	References

