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Abstract

While the cognitivist school of thought holds that the mind is analogous to a computer,

performing logical operations over internal representations, the tradition of ecological

psychology contends that organisms can directly "resonate" to information for action and

perception without the need for a representational intermediary. The concept of resonance

has played an important role in ecological psychology, but it remains a metaphor.

Supplying a mechanistic account of resonance requires a non-representational account of

central nervous system (CNS) dynamics. We present a series of simple models in which a

reservoir network with homeostatic nodes is used to control a simple agent embedded in an

environment. This network spontaneously produces behaviors that are adaptive in each

context, including (1) visually tracking a moving object, (2) substantially above-chance

performance in the arcade game Pong, (2) and avoiding walls while controlling a mobile

agent. Upon analyzing the dynamics of the networks, we find that behavioral stability can

be maintained without the formation of stable or recurring patterns of network activity

that could be identified as neural representations. These results may represent a useful step

towards a mechanistic grounding of resonance and a view of the CNS that is compatible

with ecological psychology.

Keywords: ecological psychology, resonance, action-perception, computational

cognitive neuroscience, reservoir computing
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A Potential Mechanism for Gibsonian Resonance: Behavioral Entrainment

Emerges from Local Homeostasis in an Unsupervised Reservoir Network

Introduction1

Thinking of the mind as analogous to a computer was a key inspiration for many2

thinkers central to the founding of cognitive science as a field some 50 years ago, and3

remains a popular notion today. For these cognitivist thinkers, cognition is a process of4

performing logical operations over internal representations that stand for entities and ideas.5

This view of cognition can be traced back at least to the psychophysics work of Hermann6

von Helmholtz in the mid 19th century (1860), who first popularized the notion of7

perception as inference. Cognitive agents, Helmholtz thought, have direct access only to8

their own sense data, but not to the things in the world that cause sense data, and9

therefore must infer the latter from the former. In philosophy of mind, this approach has10

been referred to as indirect or representational realism.11

But for as long as this stance has dominated conceptions of mind and brain, it has12

also had its detractors. Many have argued that cognitivism introduces a false dualism13

between stimulus and response, and mistakenly paints the organism as a passive entity14

(Dewey, 1896). Consider that in 1942, before the advent of modern computing technology,15

a different metaphor was commonly used to express a cognitivist stance: the brain was said16

to be like a (musical) keyboard, on which external stimuli would play (through sensory17

impulses) to produce melodies “depending on the order and the cadence of the impulses18

received” (i.e. neural and subsequent behavioral responses). The phenomenologist19

Merleau-Ponty (1942) took issue with the keyboard metaphor, writing:20

“The organism cannot properly be compared to a keyboard on which the21

external stimuli would play [...] for the simple reason that the organism22

contributes to the constitution of that form [...] When the eye and the ear23

follow an animal in flight, it is impossible to say "which started first" in the24
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exchange of stimuli and responses [...] since all the stimulations which the25

organism receives have in turn been [made] possible only by its preceding26

movements which have culminated in exposing the receptor organ to the27

external influences [... I]t is the organism itself—according to the proper nature28

of its receptors, the thresholds of its nerve centers and the movements of the29

organs—which chooses the stimuli in the physical world to which it will be30

sensitive [...] This would be a keyboard which moves itself in such a way as to31

offer—and according to variable rhythms—such or such of its keys to the32

in-itself monotonous action of an external hammer1.”33

In this passage, Merleau-Ponty attempted to revise the standard metaphor of his time,34

presenting cognition not as passive process driven by the environment, but instead as an35

active one, driven mutually by organism and the environment—akin to a keyboard that is36

both played and plays itself by pressing its keys onto the world around it.37

A similar line of argumentation was prominently taken up by the school of thought38

known as ecological psychology, associated with James and Eleanor Gibson, and more39

recently in the framework of Embodied Cognition. Researchers in these traditions argue40

that the cognitivist approach introduces an insurmountable chasm between mind and41

world, making it impossible for cognitive agents to ever access the meanings or referents of42

their internal representations (Michaels & Palatinus, 2014). Gibson emphasized that43

perceiving-acting organisms have no need to represent the world outside, and instead can44

“resonate” to structured flows of energy—an idea he called “direct perception.” For45

example, a bee attempting to fly through a small gap need not build up an internal46

representation of the environment, its own body, and calculate a trajectory. Instead, it47

could solve the problem simply by moving in such a way that the speed of image movement48

in the left and right hemifields is balanced in the right and left eyes, which will ensure the49

bee passes through the center of the gap (Srinivasan, 1992; Duchon & Warren Jr, 200250

1 Emphasis ours
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found evidence that humans use the same strategy). Thus, rather than compute, the bee51

can “resonate” or “attune itself” to information that uniquely specifies useful relationships52

between action and perception, known as "affordances" (Chemero, 2003).53

While the tradition of ecological psychology has produced many important insights,54

in eschewing the notion of representation and instead focusing on what goes on at the level55

of the organism and environment, this tradition has avoided the issue of how neural activity56

figures into the story. This was an important move in order to call attention to the fact57

that many cognitive problems need not require complex internal representations. However,58

recently there have been increasing calls to finally reintroduce neural dynamics into59

ecological theories of cognition, towards fleshing out a mechanism for Gibson’s notion of60

resonance, which remains a metaphor (Raja, 2018, 2019, 2021; de Wit & Withagen, 2019).61

We suggest that a useful step towards such a mechanistic account of resonance is to62

emphasize the role of homeostatic neural mechanisms in facilitating self-organization of the63

CNS. Ecological psychology has focused on homeostatic mechanisms (often described as64

"control laws") at the level of the organism-environment relation, while work stemming65

from the cybernetic tradition has emphasized how internal homeostatic mechanisms can66

lead to adaptive behavior at the system level (Ashby, 1960). It is well established that the67

CNS implements several different homeostatic mechanisms, including synaptic scaling and68

regulating the expression of ion channels (Desai, 2003; Chistiakova, Bannon, Bazhenov, &69

Volgushev, 2014; Turrigiano & Nelson, 2004; O’Leary & Wyllie, 2011), which allow the70

CNS to stabilize activity following perturbations (see also: Grossberg, 1982). We propose71

that the emergence of adaptive behavior at the organism-environment level by virtue of72

homeostatic mechanisms in the CNS constitutes a viable mechanistic account of Gibson’s73

concept of resonance.74

In this paper, we present a series of simple models that serve as a proof-of-concept75

that homeostatic properties of the CNS can generate adaptive behavior at the76
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organism-environment level2. The central component of our models is an77

sparsely-connected, spiking neural network—a reservoir computer—composed of78

homeostatic nodes. These nodes adjust connection weights with neighbors and “target”79

activity levels in order to keep their flow of activity consistent over time. This model was80

first introduced by Falandays, Nguyen, and Spivey (2021), where it was applied to the81

context of language processing. When the network was fed inputs generated by a simple82

probabilistic grammar, it was shown to exhibit behavioral signatures associated with83

“predictive coding,” including increased activity for surprising inputs and sequence84

completion, suggesting that the network is able to entrain itself to complex sensory85

patterns that unfold over time, without the need for supervision. We hypothesized that the86

same network would serve to control behavior when embedded in an action-perception87

loop, while avoiding some of the representational assumptions of cognitivism.88

With short periods of unsupervised training, we observe that the model produces89

adaptive behavior in a variety of contexts, including spontaneous object-tracking behavior90

(following a moving stimulus despite no explicit instruction to do so), above-chance91

performance in the arcade game Pong, and wall-avoidance behavior. The reservoir activity92

underlying these behaviors can be seen as a simple illustration of Gibson’s notion of93

resonance, and offers an opportunity to consider how internal (neural) dynamics and94

movement work together in this phenomenon. We explain this as multi-scale resonance,95

whereby individual nodes resonate to flows of energy in their immediate environment,96

which in turn drives movement and new perceptions, ultimately allowing the agent as a97

whole to resonate to information in the external environment.98

In what follows, we begin with some background on the contrast between99

2 We emphasize that our proposal is a form of "how-possibly" explanation (Dray, 1968): our model shows

one possible mechanism by which resonance could occur, but much further work will be necessary to

determine if, or to what extent, something like this mechanism actually accounts for the behavior of

humans or other organisms.
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representational and direct-realist approaches to cognition by virtue of an oft-cited100

example, the “outfielder problem.” We use this example to clarify key tenets of ecological101

psychology, including the notions of resonance and attunement. Then, we reflect on the102

lack of a mechanism for Gibson’s concept of resonance. We explain why such a mechanism103

is needed, why standard views in cognitive neuroscience are not up to the task, and discuss104

some proposals for how to fill this gap. Next, we offer our own proposal for a system with105

the potential to ground the concept of resonance in the CNS—the reservoir network—and106

suggest that endowing these networks with self-stabilizing mechanisms is an important step107

forward. Then, we present our model and analyze its behavior in three agent-environment108

systems, demonstrating that apparently-adaptive behavior at the agent level emerges from109

the homeostatic mechanism at the level of nodes, and is not dependent upon the formation110

of stable and/or recurring activity patterns of the kind that might be expected within a111

representational theory of CNS.112

A primer on the ecological approach to perception-action113

Newcomers to ecological psychology may find themselves a bit overwhelmed by the114

prevalence of jargon associated with the field. Given the major differences between this115

approach and the more dominant cognitivist tradition with which readers may be more116

familiar, ecological psychologists have found it necessary to introduce a number of new117

terms. Many of these terms have proven crucial for theory-building in this tradition, so to118

not deter the uninitiated, this section will provide a brief primer on the direct-realist119

approach to cognition and define some key concepts.120

The outfielder problem is a classic example used to illustrate the differences between121

representational and direct-realist approaches to perception and action. In the outfielder122

problem, a baseball player must view a fly ball and decide where to run in order to catch it.123

A representational approach to this problem would involve the player’s brain constructing124

a mental representation of the fly ball’s trajectory, based on visual input and other sensory125
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information. This mental representation would then be used to guide the player’s actions,126

such as running towards the predicted landing point of the ball (Saxberg, 1987).127

On the other hand, the direct-realist suggests that no such mental representation is128

needed. Instead, the player could use continuous, online visual information to guide their129

movements to the right place at the right time. For example, Fink, Foo, and Warren (2009)130

provided evidence that outfielders control running direction and speed so as to cancel the131

optical acceleration of the ball, which results in intersecting at the landing location at the132

right time.133

In this example, we can say that the player’s actions have become perceptually134

coupled to a pattern of optic flow, meaning a pattern of change in light hitting the retina,135

due to the relative motion of an individual and objects in the environment. Ecological136

psychologists use the term "optic flow" in this case, rather than simply "visual information,"137

because the former emphasizes (1) a pattern of sensory stimulation over time, rather than138

static imagine in a slice of time, and (2) that visual information is generated both by139

changes in the environment and by the motion of the observer.140

Going beyond the context of vision, observer-relative patterns of sensory change141

have been referred to as "ecological information," to distinguish this notion from other uses142

of the term "information." A more common use of the term "information" among cognitive143

scientists is the one used in information theory, which is operationalized as the reduction of144

uncertainty, or surprise, upon receiving a signal. Ecological psychologists emphasize that145

this more common notion of information is purely syntactic, meaning it deals only with the146

relationships among arbitrary signals, stripped of all semantic content.147

In contrast, ecological information is inherently semantic, in that it specifies the148

state of the animal-environment system, and thus has meaning or value for an organism.149

For example, Gibson argued that patterns of optic flow can directly specify opportunities150

for action—called "affordances"—and that adaptive action involves the perception of these151

affordances. It is in this sense that Gibson thought perception was direct: organisms152
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perceive useful relationships between themselves and the environment by detecting153

information that uniquely specifies what can be done, instead of needing to make inferences154

about the environment based on impoverished, static sensory information.155

When an organism perceives affordances for action, Gibson described the organism156

as "resonating" to ecological information (M. Anderson & Chemero, 2019). The concept of157

resonance draws an analogy between the way that an organism becomes coupled to their158

environment, and the way that two nearby tuning forks, for example, may become159

physically coupled by sound waves. Consider that each tuning fork (and indeed any object)160

has a "resonant frequency," a natural frequency of vibration due to its physical properties161

(e.g. size, shape, material). When one tuning fork is struck and begins to vibrate, sound162

waves may travel to a nearby tuning fork, causing the latter to vibrate as well, if the two163

have the same resonant frequency. In this vein, Gibson’s use of "resonance" to describe the164

detection of information implies something like a spontaneous physical coupling of two165

parts of a system by virtue of energy transferred through a physical medium.166

The metaphor of resonance can be expanded upon to describe the ecological view of167

learning. Consider that the resonance of our two tuning forks requires them to share the168

same resonant frequency—the natural frequency of oscillation of an object, determined by169

its physical properties. When resonant frequencies match, we may say that one tuning fork170

is "attuned" to the resonant frequency of the other. The resonant frequency of an object171

can be altered through physical changes, such as clipping a damper to a tuning fork, or172

adjusting the tension on a guitar string. Along these lines, Gibson described learning as173

analogous to attunement—the altering of parameters (e.g. visual-system parameters) so as174

to resonate to information for an affordance. For example, a novice ballplayer may not be175

aware that running so as to cancel optical acceleration of a ball will lead them to the176

landing point, but through experience they may gradually adjust their perception-action177

system to detect and cancel optical acceleration, becoming attuned to this information.178

Gibson described this view of learning as being about "differentiation"—the gradual179
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refinement and calibration of existing perception-action capacities—as opposed to180

"enrichment," or the adding of knowledge or new mental capacities (Gibson & Gibson,181

1955).182

Finally, ecological psychologists emphasize that resonance enables one individual to183

anticipate the behavior of another individual or object. For example, by resonating to the184

appropriate information, our ballplayer is able to anticipate the motion of the ball, going185

towards where it will be. The notion of anticipation used here can be distinguished from186

the term "prediction," where the latter involves a mental model of a target’s behavior and187

the formation of an explicit expectation about what will happen (Falandays et al., 2021;188

Bickhard, 2016; Zhao & Warren, 2015; Stepp & Turvey, 2010).189

What is the mechanism of resonance?190

One strength of Gibson’s concept of resonance is that it treats cognition (i.e.191

perception-action) as a kind of physical coupling, implying that we need not invoke192

intermediate representations or symbolic operations. In the spirit of this idea, ecological193

psychologists have tended to focus on explanations that lie at the level of194

organism-environment interactions, down-playing the role of the brain. But, Raja and195

colleagues have recently drawn attention to the fact that Gibson left the concept of196

resonance as a metaphor (Raja, 2018, 2019, 2021; de Wit & Withagen, 2019). Humans, of197

course, are not tuning forks, so what does it actually mean for us to resonate to ecological198

information? Once we commit to the idea that perception of affordances is direct—that199

this information is defined over our interactions with the environment—we require an200

explanation of what kind of physical system is capable of such behavior. While there has201

been some work on modeling affordances and other concepts in ecological psychology202

(Thill, Caligiore, Borghi, Ziemke, & Baldassarre, 2013; Zech et al., 2017; Pezzulo et al.,203

2011), to the best of our knowledge there are no models addressing the physical mechanism204

for resonance.205
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We agree with Raja that filling this gap in theory requires a story about the central206

nervous system. De-emphasizing the brain was a strategic move on the part of ecological207

psychologists, to redirect attention to environmental and informational constraints in the208

explanation of behavior. While cognitivists focused on mental representations, ecological209

psychologists urged the field to "Ask not what’s inside your head, but what’s your head210

inside of" (Mace, 1977). However, the field now seems ready to turn back towards the211

question of what’s inside our heads, albeit armed with a set of theoretical desiderata for212

what a satisfying answer will look like.213

First and foremost, an explanation of the CNS that is consistent with ecological214

psychology ought not to fall back on the notion of mental representations and rule-like215

operations. This requirement renders much of modern neuroscience as a poor foundation216

for ecological psychology, given the dominance of the "encodingist" view: the view that217

brain activity is an encoding or representation of stimulus properties, action plans, etc218

(Brette, 2019; Mirski & Bickhard, 2019). There have been many theoretical objections to219

this view, but the general thrust, as Dennett (1978) put it, is that encodingism entails an220

"unpaid debt of intelligence". That is, these views imply that a brain can somehow "see221

outside itself" to know what a pattern of its own activity represents. This debt remains222

unpaid because existing attempts at explanation, which may make recourse to innate,223

evolved knowledge structures or learning processes, run into seemingly insurmountable224

logical problems (Bickhard & Terveen, 1996).225

Furthermore, as Anderson (2014) argues, the neuroscientific literature amassed226

under the encodingist assumption has ultimately undermined its own theoretical227

commitments. For example, while cognitivists suggested that the brain should instantiate a228

set of computational modules, each designed to compute a specific function, such modules229

have not been found. Instead, we have discovered that the brain is both highly interactive,230

with constant cross-talk between supposedly-distinct modules (Falandays, Batzloff,231

Spevack, & Spivey, 2020), and highly dynamic, with rapidly-shifting functional232
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partnerships between brain regions constantly emerging and dissipating (M. L. Anderson,233

2014; Pessoa, 2022). Seminal work from Anderson (2014) casts brain activity in terms of234

"transiently active local neuronal subsystems" (TALoNS), which are temporary235

“task-specific neural synergies that coordinate brain, body, and world” (Raja & Anderson,236

2019). TALoNS have been shown to self-organize on the timescale of milliseconds in visual237

processing (Wu & Sabel, 2021), or on the timescale of minutes in skill acquisition (Bassett238

et al., 2011; Bassett, Meyer-Lindenberg, Achard, Duke, & Bullmore, 2006).239

The encodingist view also finds a new challenge in recent demonstrations of the240

phenomenon of "representational drift," whereby supposed neural encodings change their241

distributed location in the brain over time (Rule, O’Leary, & Harvey, 2019). For example,242

O’Leary and Wyllie (2011) examined place cells in rat cortex as they repeatedly navigated243

a T-maze across several days. Neural recordings on day one after mastery of the T-maze244

showed a clear topographical mapping, but by day 10 this mapping was instantiated by an245

entirely different set of neurons. Similar results have been shown for odor representations246

in primary olfactory cortex (Schoonover, Ohashi, Axel, & Fink, 2020) and for visual247

representations in primary visual cortex (Deitch, Rubin, & Ziv, 2020; Marks & Goard,248

2021). These findings put pressure on a representational account of neural activity, because249

they suggest that if neural activity is to function as a code, the brain would need to keep250

track of a constantly-shifting mapping from signals to meaning. Such an encoding scheme251

would seem rather inefficient, hence implausible from an evolutionary perspective.252

Furthermore, if the brain needs to track its own drifting representations, but the medium253

that does the tracking is subject to the same pressures, it is not clear that this would even254

be possible.255

Ecological psychology’s solution to these challenges has been simply to abandon the256

search for representations. But while this may avoid the unpaid debt of intelligence, it257

instead incurs a debt of resonance. Saying what the brain is not won’t suffice; ecological258

psychology is also in need of a positive account. Towards this, Raja (2019) defines259
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resonance as the informational coupling between two dynamical systems (Fig. 1): (1) an260

agent-environment system, and (2) an intra-agent system (the CNS). For dealing with the261

agent-environment system, ecological psychology is already equipped with established262

approaches. For example, Raja points to Warren’s (2006) "behavioral dynamics" approach263

or Kelso and colleagues’ "coordination dynamics" approach (Kelso, Dumas, & Tognoli,264

2013), both of which describe cognition as a multi-scale dynamical system and do not265

appeal to computation or representation. In a similar way, Hotton and Yoshimi’s (2011)266

“open dynamical systems” model agent-environment systems directly as dynamical267

systems, but also include machinery for studying the internal states that unfold in these268

systems. However, none of these authors commit to a specific story about the CNS.269

270
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Figure 1

An illustration of the coupled CNS-Organism-Environment system. Information (blue

arrows) couples the environment to the organism, and the organism to the CNS. Neural

dynamics couples the CNS to the organism, and action couples the organism to the

environment (red arrows). The behavioral dynamics approach (top right) focuses on

emergent stabilities in the organism-environment coupling.

Davies-Barton, Raja, Baggs, and Anderson (2022) suggest autoencoders as one271

cognitive architecture that might be useful for ecological psychology. These are artificial272

neural network (ANN) architectures that learn a function to reproduce their own input. In273

the process, autoencoders may learn a lower-dimensional representation of the274

input-generating function—in other words, a model of the environment. This could allow275

us to preserve the idea that neural activity is an encoding without sneaking in any unpaid276

intelligence.277

We agree that autoencoders have some properties that make them appealing to278

ecological psychology, and may indeed describe one of many possible functions279

implemented in the CNS. However, towards a mechanistic account of resonance, this is280

only a starting point, and more modeling work is needed to understand different aspects of281

the problem. Here, we present a complementary approach, highlight the potential utility of282

another artificial neural network architecture—the reservoir computer—that may be of283

interest to ecological psychologists due to its dynamical properties.284

Reservoir computers as an ecological model of the CNS285

Consider a pond of water, into which an individual throws a series of rocks at286

different times and locations. As the first rock is tossed in the pool, it causes a particular287

ripple on the pond. And as each new rock is tossed in, its own ripples interact with the288

radiating ripples of previous rocks. If you are a scientist, instead of having fun throwing289

rocks, you may stop to reflect on the fact that the state of the pond at any given moment290
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in time—the instantaneous pattern of ripples—carries all of the information necessary to291

recover the locations and timings of all of the previous rocks tossed in the pond, if only you292

can learn to read these patterns (Yoshimi, Hotton, Tosi, & Gordon, 2022).293

This is the general intuition behind both liquid state machines (Maass, Natschläger,294

& Markram, 2002) and echo state networks (Jaeger & Haas, 2004), introduced295

independently in the early 2000’s, which are now grouped in the general class of algorithms296

called "reservoir computers." The general logic of these systems is, first, to construct a297

recurrent neural network without stable states, i.e. one in which activity continues to298

ripple through the network over time. As the network is fed a series of inputs, it will carry299

forward the activity from previous timesteps, therefore becoming a high-dimensional300

representation of the history of inputs. Researchers then need only train a simple linear301

readout of the reservoir state to a desired output. These networks have high computational302

efficiency because they only involve one layer of training a simple linear function, since the303

reservoir network connections typically are not adjusted, and multiple readout functions304

can operate in parallel on the same reservoir. Because of the integration of information305

across timescales, reservoir computers have been shown to be able to predict chaotic time306

series. And while "reservoir computer" most often refers to a class of artificial neural307

network models, any physical system with appropriate non-linear dynamics can play the308

role of a reservoir, including a literal bucket of water (Fernando & Sojakka, 2003).309

Dale and Kello (2018) point out that reservoir networks are also interesting as a310

model of cognition, because they satisfy three important desiderata for contemporary311

theories of cognition. The first is dynamic memory, which refers to the fact that reservoir312

networks maintain a trace of past inputs in their ongoing fluctuations. This is crucial for313

human cognitive processes, which are clearly sensitive to contextual cues over a variety of314

timescales. For example, in the course of a conversation, the interpretation of a single word315

can be influenced by the preceding words, sentences, the entire discourse history, the316

identify of the speaker, and shared knowledge of events over longer timescales. Dale and317
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Kello point out that just having memory is not sufficient; memory must also be integrated318

across timescales. In reservoir networks, memory is not stored in a symbolic memory319

buffer, but instead embodied in the ongoing activity of the network, which allows for320

interaction between cues that unfold over distinct timescales, without the need to posit321

distinct processes for bringing together stored representations. Finally, Dale and Kello322

point out that reservoir networks also facilitate multimodal integration (i.e. integration of323

information from multiple sensory sources) in a natural way. For these reasons, they324

suggest that reservoir networks are particularly promising as a model of "sense-making" in325

human communication.326

We suggest that reservoir computers have strong potential as a framework within327

which to model the role of CNS in action-perception more generally, and in a way that is328

compatible with ecological psychology. First, their oscillatory properties make them329

amenable to analysis within the dynamical systems framework preferred within ecological330

psychology, and may simply enhance biological plausibility over something like typical331

autoencoders3. Second, as Dale and Kello point out, they have several properties that332

make them appealing as general models of cognitive systems, including multi-modal- and333

multi-timescale integration. Third, and perhaps most importantly, we suggest that their334

activity need not be seen as representational from the perspective of the system itself,335

though it can be read out as representational to an outside observer. This is a point we will336

reflect on more in the next section.337

But there is still one crucial way in which typical reservoir computers are unlike the338

CNS: they are not adaptive. In general, the weights of a reservoir network and any node339

properties are non-updating. However, in biological brains, change is the only340

constant—there is ongoing adjustment of synaptic weights, synaptogenesis or pruning, and341

neuron-level regulatory adjustments, among other processes. To be more useful as a model342

3 Note that a reservoir computer can be trained to match its own input, becoming an autoencoder, so these

are not exclusive categories.
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in cognitive neuroscience, reservoir computers can be amended to incorporate adaptive343

processes.344

Self-organization in brain and behavior345

An important point in ecological psychology, missing from many models of the CNS,346

is that brain activity and behavior are self-organizing systems (Kelso, 1995).347

Self-organization refers to the spontaneous emergence of structure in non-equilibrium348

thermodynamic systems, without the control of external agents (Prigogine & Nicolis,349

1977). Consider that any human behavior, such as swinging a hammer to hit a nail,350

involves the coordination of many degrees of freedom (e.g. multiple limbs, joints and351

muscles) outside of the conscious awareness of the actor (Biryukova & Sirotkina, 2020).352

Somehow these many degrees of freedom constrain one another to achieve a stable353

outcome—hitting a nail—despite substantial variability at the lower level. In this respect,354

the behavioral stability can be understood as an emergent product of the interaction of355

many coupled degrees of freedom, without any shared representation of the goal.356

It is precisely these higher-order stabilities in behavior that ecological psychology357

takes as its unit of analysis. Research on the self-organization of behavior highlights the358

functional importance of intrinsic, multiscale fluctuations (Kelty-Stephen, Palatinus,359

Saltzman, & Dixon, 2013; Kello et al., 2010; Pouw et al., 2021). Intrinsic fluctuations that360

are poised "at the edge of chaos" are thought to maximize the computational efficiency of361

such systems and the flexibility to switch between adaptive regimes (Bertschinger &362

Natschläger, 2004). Note that these properties of self-organizing systems are not specific to363

any level of analysis, and can apply to any system with many appropriately-coupled364

degrees of freedom, including the CNS. The self-organization of brain activity has become a365

major topic of research in its own right (Kelso, 1995; M. L. Anderson, 2014). However, in366

order to develop a mechanistic account of the concept of resonance, it is necessary to367

understand how the self-organization of CNS dynamics is linked to the self-organization of368
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organism-environment dynamics.369

An important question here is why higher-order stabilities should emerge at all in370

systems of many degrees of freedom, when chaos is an option. One response is to invoke371

the "law of maximal entropy production," which states that a "system will select the path,372

or assembly of paths, out of otherwise available paths, that minimize the potential or373

maximize the entropy at the fastest rate given the constraints" (Swenson, 1997). Under374

some constraints on a thermodynamic system, moving towards lower-entropy state will be375

the most efficient path to entropy production, and therefore order emerges spontaneously.376

But what exactly are the constraints that facilitate such self-organization in the CNS?377

We suggest that one constraint in the CNS that may facilitate self-organization is378

the homeostatic tendencies of individual cells. Historically, the relevance of homeostasis to379

perception-action has been emphasized within the cybernetic tradition. Cyberneticists380

emphasized how several foundational cognitive processes can emerge from such homeostatic381

mechanisms. As an example of this, W. Ross Ashby (1960) offered his "homeostat", an382

analog computing device that adapted to maintain homeostasis in a changing environment,383

and in the process exhibited phenomena of learning, habituation, and reinforcement.384

Ecological psychology shares an emphasis on homeostasis to some extent, in that the field385

seeks to describe control laws for behavior. For example, work derived from Warren’s386

(2006) behavioral dynamics approach has led to the discovery of visual control laws for387

locomotion in a variety of contexts (Fajen & Warren, 2007; Warren Jr & Whang, 1987;388

Rio, Dachner, & Warren, 2018), which often involve acting so as to cancel some change in389

the visual array. Thus, these laws can be thought of as mechanisms of homeostasis. Kelso’s390

(2013) coordination dynamics approach largely uses oscillatory systems—spring391

equations—which is another type of homeostatic system. We suggest that a useful step392

towards an ecological story of the CNS is to return focus to how such393

organism-environment control laws may emerge from homeostatic principles in the CNS.394

As O’Leary and Wyllie (2011) write, "global control is observed as an emergent395
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feature of the nervous system, arising from the combined effects of a hierarchy of regulatory396

mechanisms operating on the level of cellular networks, individual cells, subcellular397

domains and, ultimately, individual genes and proteins" (see also: Gosak, Milojević, Duh,398

Skok, & Perc, 2022). This position suggests that if we build homeostatic mechanisms399

directly into our models of the CNS, organism-level control may emerge as a natural400

consequence. Neurons can regulate their own activity both by adjusting synapses as well as401

by modifying intrinsic properties, which may act to maintain some degree of stability in402

activity despite ongoing changes in the brain, such as the synaptic changes associated with403

Hebbian learning (Desai, 2003). For example, one important synaptic mechanism for404

homeostasis is heterosynaptic plasticity, by which neurons act to conserve the total weight405

of incoming synapses, which may help prevent runaway synaptic plasticity (Chistiakova et406

al., 2014; Turrigiano & Nelson, 2004). Intrinsic homeostatic mechanisms include regulating407

the expression of proteins that make hyperpolarizing or leak channels, which in turn may408

stabilize spiking frequency or resting membrane potential, for example (O’Leary & Wyllie,409

2011). Although the existence of such homeostatic mechanisms are well-established,410

artificial neural network models do not often incorporate homeostatic principles; typically,411

these models focus on input-dependent synaptic adjustments (i.e. learning mechanisms412

such as Hebbian learning and back-propagation of errors). The few ANN models of which413

we are aware that have included homeostatic mechanisms (Di Paolo & Iizuka, 2008; Iizuka414

& Di Paolo, 2007) have used evolutionary algorithms to create viable architectures, leaving415

open the question of how much of their adaptability is due to homeostasis, and how much416

to the particular architecture that was evolved (but for a rare exception, see: Tosi, 2021).417

Work by Kello and colleagues (Kello, 2013; Kello, Kerster, & Johnson, 2011; Rodny,418

Shea, & Kello, 2017; Szary, Kerster, & Kello, 2011) has shown that several interesting,419

biologically-realistic phenomena emerge when a reservoir network is endowed with420

homeostatic control. These researchers allowed nodes to activate or deactivate synapses in421

pursuit of a "critical branching ratio", meaning producing approximately one downstream422
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spike for each of its own spikes. If this ratio is lower than 1, network activity may423

eventually die out, and if it is higher, activity may grow out of control—both would be bad424

for a human brain. The work of Kello and colleagues showed that the critical branching425

network produces a number of signatures of real-world self-organizing systems, including426

1/f noise and neural avalanches (sudden cascades of activity with a power law distribution427

of magnitudes; Beggs & Plenz, 2003). Thus, in addition to having desirable properties for a428

cognitive architecture, reservoir networks with local homeostatic control resemble biological429

dynamics in important ways.430

However, an important limitation of the cybernetic approach is that homeostasis431

was generally imposed by the researcher, who decided the homeostatic targets of the432

computing nodes. This approach has been criticized, from the ecological perspective, for433

neglecting the circular-causality in the CNS: in real biological systems, the homeostatic set434

point is not imposed from the outside, but instead is itself an emergent product of435

interaction with an environment (Turvey & Kugler, 1984). For example, in neurons,436

spiking activity is determined by the opening and closing of ion channels, which both437

influence and are influenced by the membrane potential. Due to this circular causality, the438

spiking activity self-stabilizes at some preferred level, which is an emergent property of the439

ion channel-membrane dynamics.440

Falandays et al. (2021) introduced a homeostatic reservoir model that avoids this441

criticism to some extent, using nodes that can be described as "allostatic," meaning their442

homeostatic set-points are dynamic. Note that there is some debate as to whether443

allostatic systems are a distinct class from homeostatic systems (Corcoran & Hohwy,444

2017), since homeostasis does not necessarily imply static set points (O’Leary & Wyllie,445

2011), though that is often how the term has been used in practice. In the model from446

Falandays et al. (2021), neurons pursue homeostasis at the level of overall firing rates,447

while permitting of variability over time in in lower-order set points. As such, homeostasis448

in this model is an emergent property of the interaction of neurons with their neighbors,449
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and in turn with the environment.450

Falandays et al. (2021) suggested that neuronal homeostasis may be one potential451

mechanism for apparent "predictive processing" in the brain. A prominent general view in452

cognitive science today is that the brain learns a model of the environment by predicting453

upcoming sensory inputs and using prediction errors to adjust parameters of the model454

(Hohwy, 2018). Falandays et al. (2021) showed that some behavioral signatures associated455

with predictive processing can emerge from a reservoir network endowed with a456

neuron-level homeostatic learning rule. They presented their network with a sequence of457

inputs generated from a simple probabilistic grammar—four possible input "words," with a458

set of transitional probabilities determining the sequence. The sequence of inputs produced459

a sequence of perturbations across the network, which triggered homeostatic adjustments460

of synaptic weights and intrinsic node parameters. They found that the reservoir adapted461

to produce endogenous activity that compensated for the input in real time, routing462

inhibitory input to nodes that were receiving sensory inputs, and excitatory input to nodes463

that needed a boost. In other words, the network controlled its own flow of activity in a464

way that tracked the temporal dynamics of the input, embodying a predictive model of the465

input sequence for the purposes of control. As such, this model exhibited some behavioral466

signatures of predictive processing, such as sequence completion and spikes of activity in467

response to unexpected inputs, but without the use of explicit predictions or prediction468

errors.469

Importantly, we believe the model introduced by Falandays et al. (2021) allows one470

to cast a non-representational account of how the CNS "predicts," making it potentially471

useful in the ecological framework. Consider that the activity in this network is not472

primarily an encoding of a current input, but instead a complement to the unfolding input,473

in the context of a dynamic neuronal milieu. Just as "one cannot step in the same river474

twice," as the proverb states (Graham, 2007), an input cannot perturb the network in the475

same way twice (at least not in practice). Because the effect of any given input on network476
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activity may change over time, so too must the network’s response to the perturbation.477

Along these lines, Falandays et al. (2021) found that only over relatively short timescales478

(dozens of input "sentences") could one discover what looked like population codes in the479

network—highly similar network responses to repetitions of a particular input signal—but480

these patterns drifted substantially over longer timescales, as the network gradually481

changed. Thus, although an external observer can recognize that network activity tracks482

the external input, we do not take this activity as sufficient to serve a representational483

function from the perspective of the network itself, since it is not associated with a stable484

code.485

We hypothesized that local homeostatic mechanisms at the level of neurons can lead486

to global control at the organism level when embedded in the context of an487

action-perception loop. Imagine a disembodied network of neurons, with some subset that488

is subjected to a predictable pattern of stimulation from the environment, which produces489

a sequence of perturbations in spiking activity throughout the network (this describes the490

model in Falandays et al., 2021). If spiking activity is the variable being regulated by491

neurons, neuronal homeostasis and synaptic updates allow the network to eventually adapt492

to the regular pattern of perturbations, bringing spiking activity back towards a target493

profile. But consider now that, when this neural network is embodied in an organism,494

spiking activity may lead to movement. Movement in turn alters sensory input, leading to495

a different perturbation across the network. In this case, a stable signal from the496

environment is not a guarantee of stable input to the network, since the full497

input-generating process now also involves the organism’s own behavior. One possible498

solution is to find a network state that regulates action so as to render the input regular499

once again4. For example, if the input from the environment is stable, discovering a500

4 What we are describing has much in common with the active-inference and free-energy minimizing

approach. However, we take there to be important distinctions as well, which are beyond the scope of this

article to unpack.
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network state that leads to no motor output could render the input regular. But if the501

environment is itself dynamic—containing a moving stimulus, for example—then a pattern502

of motor output that cancels out changes in the sensory array would be a solution. In sum,503

we are suggesting that resonance at the organism-environment level could emerge as a504

stable solution to the problem of regulating activity in the CNS.505

In what follows, we analyze simple models consisting of simulated mobile agents506

controlled by the homeostatic reservoir network introduced by Falandays et al. (2021).507

This work is an attempt to design a "minimally cognitive system" in the spirit of Beer et al.508

(1996)—a system which is as simple as possible while still producing interesting cognitive509

dynamics, which may help to shed light on more complex systems. We suggest that these510

examples illustrate a potential mechanism, at a very coarse level of description, for the511

Gibsonian concept of resonance in the CNS. We explore how these intrinsic fluctuations512

can lead agents to discover patterns of movement in a dynamic environment that serve to513

stabilize activity across the network—in other words, agent-environment resonance. We514

find that the simple homeostatic updating mechanism at the neural level spontaneously515

produces apparently adaptive behavior in a variety of tasks, including tracking a moving516

stimulus, avoiding walls, and playing the game Pong. Given the generalizability of this517

algorithm across tasks, we suggest that homeostatic reservoir networks may be an518

important step towards an ecological theory of the CNS.519

Model Description520

Network Architecture521

The model consists of three layers of processing nodes: (1) an input layer, (2) a522

homeostatic reservoir layer, and (3) an output layer. The input represents a pattern of523

sensory stimulation. Input encoding is treated slightly differently in each of the cases524

described below. Generally speaking, nodes in this layer are tuned to spike when an input525

stimulus passes in front of a particular ego-centric location, analogous to light-sensitive526
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retinal cells. Nodes in this layer do not update intrinsic parameters, and immediately reset527

activity at each timestep.528

The input layer has non-updating feedforward projections to the reservoir layer.529

These links are generated randomly, with plink = .1. Nodes within the reservoir layer also530

have directed connections to each other, generated randomly with plink = .1. The531

connectivity matrix of the reservoir network did not update, though weights of connected532

nodes were allowed to change. Initial weights were randomly generated by sampling from a533

normal distribution with mean 0 and s.d. of 1. The reservoir nodes are discrete-time leaky534

integrate-and-fire nodes, which update internal parameters and incoming weights with535

neighbors using a homeostatic learning rule, described in the next section.536

The reservoir network has feed-forward connections to an output layer, which537

determines a motor command. The output layer consisted of two nodes (e.g. representing a538

left vs. right turn motor command) with the relative strength of their activities controlling539

behavior. The activity of each output node is calculated as the proportion of incoming540

connections that propagated a spike at time t, such that output values were in the range541

[0,1]. Reservoir nodes were connected to output nodes with plink = .1. Like the input layer,542

output nodes were non-updating and their activity was reset at each time step.543

Activation Dynamics and Homeostatic Updating544

The reservoir layer consists of a set of N processing nodes characterized by four545

intrinsic variables: (1) a current activation level xn, initialized at 0; (2) a fixed leak rate l546

of .25; (3) a variable target activation level, initialized at Tn = 1; (4) and a variable spiking547

threshold T ′
n = 2T ′

n, directly coupled to target values. The value of the target Tn was given548

a lower bound of 1 (the value at initialization), ensuring that all nodes needed at least some549

continuous, positive input in order to remain near their target value. Note that targets are550

intrinsic parameters for each node; they do not come from an external "teaching signal."551

Figure 2 shows a flowchart of the activation dynamics and homeostatic updating552
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rules. Each iteration consists of three processing steps: (1) integrating activity, (2) spiking,553

and (3) homeostatic updating. In step one, nodes first leak a constant proportion l of554

current activation value, then sum the weighted input from external perturbations as well555

as from spikes within the reservoir that occurred on the previous iteration. The activation556

vector x of the reservoir at time step t given input vector i is:557

xt = (xt−1 · l) + (i · W I) + (s(xt−1) · W N) (1)

where W I is the input weight matrix, s(xt−1) is the vector of length N that is equal to 1558

for any node that spiked at time t − 1 and to 0 otherwise, and W N is the recurrent weight559

matrix of the reservoir.560

In step two, a spike occurs when activity exceeds the spike threshold T ′
n. Any node561

n that spikes at time t broadcasts a signal of 1 ∗ Wnn′ to connected neighbors n′ at time562

t + 1, while non-spiking nodes broadcast 0. The spiking node also immediately subtracts563

(at time t) the threshold value T ′
n, producing the adjusted activation vector x′

t:564

x′
t = xt − s(xt) · T ′

t (2)

For example, if a node n has a current threshold T ′
n = 2 and current activation xn

t = 2.5, it565

will spike and drop to an activation x′n
t = 0.5. Nodes can only spike once per time step,566

and there is no refractory period (they can spike again on the next time step).567

Step three involves homeostatic updating of targets Tn (and thereby thresholds T ′
n)568

and incoming synaptic weights. Nodes first compute the deviation from the target:569

En
t = x′n

t − T n
t (3)

Our homeostatic mechanism is a form of proportional control, or P-control in570

control-theory parlance, meaning that adjustments correspond to a proportion of the total571

error En. Targets were adjusted by a proportion .01 of the total error, while synaptic572

weights were adjusted by equally dividing the total error across all spiking neighbors.573
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Targets are increased if activity is above the target, or decreased if activity is below the574

target, unless the target is at the floor value of 1:575

T n
t+1 = max(T n

t + .01En
t , 0) (4)

Incoming synaptic weights are updated in the opposite direction from targets, meaning576

that nodes attempt to recruit more input if their activity is below target, and less input if577

their activity is above target. Nodes only update weights with the subset of neighbors that578

spiked on the previous iteration, dividing the total error by the number of weights to be579

adjusted:580

W N
sn,t+1 = W N

sn,t − Et

∥W N
sn,t∥

(5)

where W N
sn represents the incoming weight to node n from a neighbor s that spiked on the581

previous iteration, and ∥W N
sn,t∥ represents the total number of incoming weights from582

spiking neighbors.583
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Figure 2

A flowchart displaying the homeostatic updating program. Rectangles indicate processes,

diamonds indicate decision points, and rounded boxes indicate termina.
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Neural Resonance and Action-Perception Loops: Three Case Studies5
585

In this subsection, we show how the homeostatic reservoir network described above586

may be used to control the action-perception loop of a simple agent embedded in an587

environment. We explore three distinct agent-environment systems: (1) an agent that can588

rotate right and left while position is fixed at a central point, with a stimulus that rotates589

around the agent at a fixed radius, (2) the classic arcade game Pong, where the agent590

corresponds to the paddle that can move up or down, with the Pong ball serving as591

stimulus, and (3) an agent similar to a Braitenberg vehicle, which can both rotate and move592

forward, and which senses the distance to walls in an enclosed space. In each case, inputs593

to the reservoir network correspond to egocentric sensory inputs based on the relative594

position of stimuli with respect to the agent, while the output layer controls movement. We595

find that with short periods of unsupervised training, the network spontaneously produces596

behaviors that appear adaptive in these contexts: (1) spontaneously tracking a rotating597

stimulus, (2) playing Pong with substantially above-chance performance, and (3) avoiding598

walls. We analyze the dynamics of the homeostatic reservoir network in the context of599

these agent-environment systems, showing that these adaptive behaviors are associated600

with drifting patterns of activity in the reservoir. These findings serve as a proof-of-concept601

that homeostatic mechanisms in the CNS could serve as a mechanism for602

agent-environment resonance, as understood in ecological psychology, while avoiding the603

need for a purely representational account of CNS activity.604

5 Data reported in this manuscript and code for running and visualizing all models is available on our

Open Science Foundation repository: https://osf.io/6hqrt/. Our simulations leveraged the Agents.jl

package (Datseris, Vahdati, & DuBois, 2022)
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Case Study 1: Moving-Object Tracking605

Agent-Environment System606

The first case study, inspired by a model from Hotton and Yoshimi (2010), used the607

homeostatic network (N = 200) to control an agent that can rotate left or right while fixed608

at a central point. The environment contained a single stimulus that moves in a circle609

around the agent (see the top left panel of Fig. 3). The agent is given a set of sensor nodes610

that react to the presence of the stimulus, and a pair of effector nodes that allow for611

rotation in either direction. The stimulus moves along a circle of radius 1 at an angular612

speed of 1 degree per time step, thus rotating around the the agent once every 360 time613

steps. The simulation begins with the agent heading at 90 degrees (north) and the stimulus614

at 0 degrees (east), moving counter-clockwise. The stimulus was set to switch directions615

every 720 time steps, or two full rotations, in order to check that the agent was responsive616

to changing stimuli, rather than always rotating in one direction.617

Sensors. The agent is imbued with 2 arrays of sensors, analogous to two eyes,618

positioned at +30 degrees (left sensor, red point in Fig. 3) and -30 degrees (right sensor,619

blue point in Fig. 3) relative to the heading angle of the agent. Each eye consists of an620

array of 31 input nodes (62 total for both eyes), analogous to retinal cells, that are evenly621

spaced in steps of 4 degrees from ±60 degrees from the center of each sensor, giving each622

eye a 120-degree field-of-view. Given that the left and right eyes are positioned 60 degrees623

apart, and that each eye contains sensors extending 60 degrees in each direction, the624

field-of-view for each eye overlaps in the space between them. In other words, when a625

stimulus is present at an angle that falls between the two eyes, both eyes are able to “see”626

the stimulus simultaneously.627

The activity of each sensor is a Gaussian function of the angular distance of the628

stimulus from the respective sensor:629

in = e− a2
n

10 (6)
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where in is the activity of sensor n, and a is the angular distance in degrees between sensor630

n and the stimulus. According to this activation function, the input of sensor n was set to631

1 when the stimulus was directly above the sensor, and quickly decayed to 0 when the632

stimulus moved further away from the sensor.633

Each of the 62 input nodes was randomly connected to a node in the reservoir634

network with a probability of Plink = .1. The activation level of input nodes was reset at635

each timestep and input nodes did not utilize the homeostatic mechanism. All weights636

from the input to the reservoir layer were set to 0.75, and there were no connections from637

the reservoir to the input layer.638

Effectors. In addition to having two arrays of input sensors, the agent was also639

given an output layer of two nodes corresponding to “effectors” for turning left or right640

(bottom-middle panel of Figure 3). Each node in the reservoir was randomly connected to641

each effector node again with a probability of Plink = .1. All connection weights from the642

reservoir to the output layer were set to 1.0, and there were no connections in the opposite643

direction. Like the input nodes, effector nodes did not use the homeostatic mechanism and644

their activity was reset at each timestep.645

The output at each effector node was determined by the total proportion of646

neighbors that spiked at each time step, producing a value between 0 and 1 for each647

effector. For example, if an effector node had incoming connections from 20 reservoir nodes,648

and 10 of those reservoir nodes spiked at time t, the output of the effector was 10/20, or .5.649

Movement was determined by the difference in activation value between the left-650

and right-turn effectors, multiplied by a gain of 10.651

∆H = 10 · (eleft − eright) (7)

where ∆H is the change in heading of the agent, and eleft and eright represent the current652

output of the left and right effector nodes, respectively. Thus, if the output of eleft = 1 and653

eright = 0 at time t, the agent rotated left by 10 degrees.654
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655

Figure 3

A still of the model as it controls the action-perception loop of a simple agent that can turn

left or right. The top-left panel shows the agent (large pink circle) with two sensor arrays

(centered at red and blue points) and the stimulus (green point). The top-center panel shows

the activation level across the array of red and blue sensors. The top-right panel shows the

current mean activation across the reservoir nodes, the mean error (discrepancy between

target and activation), and mean target value. The bottom-left panel shows the reservoir,

with spiking nodes shown in yellow. The bottom-middle panel shows the current activation

level of the effectors for turning left (red) and right (blue). At this timestep, the stimulus is

moving clockwise, and the agent is turning right (right effector > left effector) to follow it.

The bottom-right panel shows the distribution of learned weights within the reservoir.

Outcomes656

Spontaneous Object Tracking. When the agent’s sensors first detect the657

presence of the stimulus, activation begins to spread through the network. This activity658

also spreads to the effector nodes, which initially begin moving the agent erratically left659
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and right. After the homeostatic mechanism is applied for about 100 time steps, a sudden660

shift of behavior occurs: the agent locks on to the stimulus and begins rotating in the same661

direction, at a similar speed. When the stimulus changes directions, the agent turns to662

follow it with a brief delay, occasionally losing track of the stimulus. These dynamics can663

be seen in Figure 4, which shows the heading angle of the agent (red) and the stimulus664

(black) over 7200 timesteps (20 rotations of the stimulus) in a representative run.665

666
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Figure 4

(A.) The heading angle of the stimulus (black lines) and the agent (red lines) over time for

the first 7200 timesteps of a run. (B.) The proportion of the reservoir that was spiking at

time t. (C.) The autocorrelation matrix of the spike pattern of the network for the same

run. Grey bands are present for points where a correlation could not be computed because

there was no variability in the spike vector (all nodes were either spiking or silent).

Why does this apparent object-tracking behavior emerge in a network that has no667

explicit directive to track the stimulus? This behavior can be explained by virtue of the668

fact that tracking the stimulus allows the network to stabilize its own activity. When the669

stimulus first passes over the sensors, the spikes in the network are initially chaotic. If,670

when this activity spreads to the effector layer, the agent turns in the opposite direction671

from the stimulus, activity will stop entering the network entirely, and the reservoir will672

eventually stop spiking until the stimulus comes back around (or the agent comes back673

around to the stimulus). Because this movement undermines the flow of input into the674

network, it impedes the updating of connection weights. Nodes can only update675

connections with neighbors that are spiking, so if the activity of the entire network dies out676

quickly, no updating will occur for a period of time.677

On the other hand, if the activity that spreads to the effectors leads the agent to678

turn in the same direction as the stimulus, the network will continue to spike for a longer679

period of time, providing more opportunity for the network to learn. If the agent tracks the680

stimulus for a sufficient amount of time, learning can be minimized and the ongoing681

behavior will be sustained indefinitely. In sum, behaviors that maintain a consistent flow of682

input to the network are implicitly rewarded, while behaviors that undermine the input to683

the network are not. In this way, the network spontaneously learns to track the stimulus,684

“attuning” its own movements to changes in the position of the stimulus.685

Transiently Active Local Neuronal Subsystems. We suggest that our model686

exhibits patterns reminiscent of "transiently active local neuronal subsystems" (TALoNS;687
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M. L. Anderson, 2014). This is most readily apparent in the autocorrelation matrix in688

Figure 4 C. Here, we can see that the network moves through a series of transiently-stable689

activity patterns (red/orange regions). Cross-referencing this figure with the proportion of690

the network that spiked at any given time (Fig. 4 B.) we can see that reorganizations of691

the network are preceded by spikes of activity. Cross-referencing again with the692

agent-stimulus dynamics (Fig. 4 A.), it is apparent that these spikes in activity occur693

either when the stimulus changes direction (e.g. around t = 4200), or when the agent has694

lost track of the stimulus and encounters it again (e.g. around t = 3000). At each of these695

time points, the agent encounters a perturbation in the flow through the network, which696

leads to a spike in activity that triggers homeostatic updating. This updating process697

results in the rapid discovery of a new local neuronal subsystem that restores stability in698

the network for a period of time.699

Representational Drift. Next, we may also consider the degree to which this700

network “reuses” spike patterns over time. Given that our network appears to maintain701

stable tracking behavior throughout the run, except for a few brief windows where the702

angles of the agent and stimulus decouple, it is reasonable to expect that we may find703

stable patterns of activity associated with particular behavioral outcomes, such as a "turn704

clockwise" subnetwork and another "turn counterclockwise" subnetwork, which alternate in705

activity when the stimulus changes direction. However, previous work by Rodny et al.706

(2017) found the presence of localist representations in critical branching networks that707

drifted over time, similar to demonstrations of representational drift in mice (Rule et al.,708

2019).709

As might be expected from the previous section, the autocorrelation matrix (Fig. 4710

C.) suggests that any representations present must not be stable over time. Despite711

repeating the same behavior multiple times throughout the run, we can see that patterns712

associated with turning clockwise or counterclockwise at one time point are uncorrelated713

with patterns associated with the same behaviors at later time points. Thus, our network714
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appears to exhibit representational drift.715

Another way to visualize this representational drift is presented in Figure 5, which716

is similar to a figure used by (Rule et al., 2019) to show representational drift in the PPC717

of mice. In this figure, we plot the correlation between the spiking activity of each node,718

and the total output at the effector layer. Thus, strong positive correlations indicate that a719

particular node contributes strongly to counter-clockwise movements (higher output of720

effector node L), and vice versa for strong negative correlations. Each column considers721

these correlations in a different sliding window of 1000 timesteps, in increments of 250722

timesteps. Along the diagonal, we sort the nodes in descending order according to their723

correlations with effector output in that same time window, while off-diagonal panels show724

nodes sorted according to a different time window. This plot reveals that, within any given725

time window we can observe what look like strong tunings for particular726

outcomes—particular nodes that seem to represent or encode clockwise or727

counter-clockwise movement. Nonetheless, when we sort nodes according to correlations in728

other time windows, we can see that these correlations fade over time. For example, nodes729

that were highly correlated with clockwise or counter-clockwise movement in the first time730

window (top-left panel) show no clear preferences for either direction during the last time731

window (bottom-left panel). That is, what seem like representations occur over short time732

windows, but these representations drift and change over time.733
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734

Figure 5

Representational drift in the correspondance between network activity and motor output.

Each panel shows nodes on the x-axis, and their respective correlation with effector output

on the y-axis. Each column corresponds to data from a sliding time window, and in each

row the nodes are sorted by their correlation with effector output in a particular time

window. This reveals that during any given 1000ms window, it is possible to find what

appears to be a mapping between spiking activity and agent behavior, but this mapping

changes substantially in as little as 250 time steps.

Case Study 2: Playing Pong735

Background. The second case study was inspired by recent work from Kagan et736

al. (2022), in which a culture of cortical tissue was trained to play Pong. The culture was737

grown on a high-density microelectrode array, which received inputs based on pixel changes738
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in the game, and generated outputs that were used to control the paddle. The culture739

learned to play Pong with slightly above-chance performance when it was trained by740

providing a predictable pattern of exogenous stimulation when the paddle hit the ball, or741

an unpredictable pattern of stimulation when the paddle missed the ball. The authors742

interpreted these findings through the lens of the free-energy principle (Friston, 2010a),743

suggesting that the cells learned to minimize prediction errors. There may be important744

theoretical differences between our account and those associated with the free-energy745

principle, which is beyond the scope of this paper to discuss in detail, but there is at least746

some clear overlap: homeostasis may be more achievable when patterns of stimuli are747

predictable, therefore a system that pursues homeostasis may act so as to render stimuli748

predictable.749

We wondered whether our reservoir network (N = 500) would show similar750

performance in the absence of any exogenously-provided training signals. Note that Kagan751

et al. (2022) encoded sensory inputs to their cortical culture allocentrically, such that the752

motions of the paddle did not influence sensory input continuously (but only at discrete753

moments, when the paddle either hit or missed the ball, and an exogenous signal was754

applied). We instead coded sensory inputs egocentrically, from the perspective of the755

paddle. In this case, hitting the ball will naturally confer more predictable patterns of756

stimulation, given that a miss leads to a sudden reset of the ball’s position. Unpredictable757

patterns of stimuli may lead to adjustments of network parameters, leading the network to758

search the space of parameters until a set is discovered that renders the stimulation759

predictable, which will consequently minimize misses. As in the first case study, tracking760

the movement of the ball may be implicitly rewarded by virtue of facilitating stability761

within the network, leading to a higher likelihood of hits.762
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Agent-Environment System763

764

Figure 6

The game environment with paddle and ball.

The game environment consisted of a 1000 (width) X 500 (height) pixel rectangle765

(Fig. 6). The stimulus was the Pong ball, which had a radius of 15 pixels. The ball had a766

constant speed of 5 pixels per timestep in both the x- and y-direction. The ball was set to767

change y-direction upon hitting the top or bottom of the space, and to change x-direction768

upon hitting the right wall of the space or the paddle. The agent controlled the paddle,769

which was 100 pixels tall—1
5 the height of the space—making chance performance for770

hitting the ball 20%. The x-position of the paddle was fixed at 100, while the y-position771

was free to vary within the bounds of the space. If the ball passed the paddle and crossed772

the y-intercept (x = 0), the ball was immediately reset to the right side of the space with a773

random y-position and random y-direction.774

Sensors. The agent (paddle) possessed an array of 46 sensors that radiated out775

from the center of the paddle over the range ±90 degrees in steps of 4 degrees. Sensors776

were tuned to produce an input value of 1 when angle of the stimulus (ball) relative to the777

center of the paddle was ≤ 2 degrees. Sensors had feed-forward connections to nodes in the778

reservoir layer with Plink = .1, and all input-reservoir weights were set to 2.75.779
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Effectors. The agent was given two effector nodes that moved the paddle up or780

down, with the restriction that no part of the paddle could cross the upper or lower781

boundary of the play area. Nodes in the reservoir network were again connected to effector782

nodes with Plink = .1, and motor output at each effector was taken as the proportion of783

spikes out of the total number of incoming connections, producing a value in the range [0,784

1]. Movement was given by the relative activation of the "up" and "down" nodes, multiplied785

by a gain factor of 100. For example, if the "up" node was fully active and the down node786

was fully inactive, the paddle would move up by 100 pixels on that time step.787

Outcomes788

Proportion of Hits. To evaluate the success of the model in playing Pong, we789

considered the proportion of times that the paddle hit the ball out of the total number of790

opportunities. We ran 500 separate runs of the model, for 1x105 time steps each. The791

mean percentage of hits over runs was 58.2% (SD = 9.95%), well above the chance792

performance of 20%. This data is displayed in Figure 7 panel D.793

794
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Figure 7

(A.) The y-position of the stimulus (solid lines) and the agent (dotted lines) over time for

the first 2000 timesteps of a run. Red columns indicate misses, while green columns

indicate hits. (B.) The proportion of the reservoir that spiked at time t on the same run.

(C.) The autocorrelation matrix of the spike pattern of the network for the same run, with

time moving from the top-left to the bottom-right. Warmer colors indicate higher pairwise

correlation. (D.) The proportion of hits achieved in the baseline condition (medium gray),

the first 50 opportunities (light gray) or last 50 opportunities in the baseline condition (dark

gray), or when learning was turned off (blue), or when the sensory encoding was allocentric

(red). Points correspond to individual runs, and bars display the mean and bootstrapped

95% C.I. across 500 runs. (E.) The first two principal components of the reservoir

network’s activity for the first 2000 timesteps of the same run. Earlier timepoints are

shown in lighter colors, with later timepoints in dark red.

Learning. We next evaluated whether the model learned. One way to gauge795

learning is to consider whether performance improved over time. Comparing the likelihood796

of hits in the first 50 opportunities on each run (M = 57.86%, SD = 10.5%) to the last 50797

opportunities (M = 57.86%, SD = 12%), we see that the model was at peak performance798

from near the beginning of a run (see Fig. 7, grayscale points). However, this should not799

be taken to mean that learning was irrelevant for the model’s success in the task. Consider800

that when learning was turned off in the model, the likelihood of hits fell to 43% (SD =801

13.8%; see Fig. 7, blue points). This reveals that continual adaptation of synaptic weights802

and internal parameters was crucial for performance.803

However, it is interesting that performance with learning turned off was already well804

above chance performance. Why would a randomly initialized, non-updating network be805

inclined towards this behavior, considering there is no incentive built in to follow or hit the806

ball? This appears to be a natural consequence of the egocentric sensory encoding.807

Consider the basic law of optics that objects that are closer to an observer appear to move808
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faster. In our model, the sensory array encodes the angle of the ball relative to the angle of809

the paddle, and that angle changes more rapidly as the ball approaches the paddle. Thus,810

the input pattern begins to change very rapidly when the ball is about to pass the paddle,811

which leads to an increase of activity throughout the network, which increases the812

likelihood of movement. Conversely, when the ball is headed towards the paddle, the angle813

relative to the center changes more slowly, meaning the paddle is more likely to stabilize814

activity and remain still. Thus, tracking the ball appears to emerge naturally from an815

egocentric action-perception loop in this context.816

To confirm the above claims, we re-ran the model with an allocentric sensory817

encoding. The agent was given an array of 50 sensors that encoded the y-position of the818

ball in the play space, arranged in steps of 10 pixels from 5 to 495 pixels. With this819

encoding, the mean likelihood of hits over 100 independent runs was 21.6% (SD = 2.07%;820

see 7 red points), just slightly above chance level. Thus, the network only tracked the ball821

when sensory information was egocentric.822

Case Study 3: Wall Avoidance823

Background. The final case study was inspired by work from Masumori et al.824

(2015). Similarly to the work by Kagan et al. (2022) discussed in the previous case study,825

Masumori et al. (2015) grew a culture of cortical cells on a high-density microelectrode826

array, which was used to control a mobile robot with sensors that detected the presence of827

walls. They found that the collection of cells spontaneously improved in its tendency to828

avoid walls, without the need for any external reward. The authors proposed that this829

result occurs because movements that lead to the cessation of stimulation (i.e. avoidance)830

allow the network to stabilize activity, whereas continued stimulation leads to adaptation831

in the network until a stable avoidant pattern is discovered. We wondered whether our832

homeostatic network (N = 200) would produce similar results even if avoidance did not833

lead to the cessation of inputs, given our commitment to the idea that some level of834
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continuous input is necessary for survival of neurons. Instead, we hypothesized that our835

network would produce movement patterns that rendered input patterns predictable, which836

would involve avoiding walls, given that hitting a barrier would disrupt the correspondence837

between motor commands and sensory inputs.838

Unlike the previous two case studies, in this context the environment is entirely839

static. Because the full input-generating process now only depends upon the agent’s840

behavior, we hypothesized that the network would be able to discover patterns of841

movement that rendered sensory input perfectly predictable. If this were the case, the842

network would eventually be able to completely stabilize its activity, and would cease843

changing parameters after a time. Because of this, we were also interested in how the844

network would perform when the input is noisy, preventing the possibility of perfect845

stability. Additionally, we explore the resilience of behavior to a perturbation consisting of846

a sudden inversion of the visual field, similar to prior work from Di Paolo and Iizuka847

(2008). Finally, we consider whether the network will still show some adaptive behavior848

when homeostatic updating was turned off, as we did in the previous case study.849

Agent-Environment System850

The space consisted of a simulated 15 X 15 meter box containing a circular agent of851

radius .5m (see Fig. 8). The agent was driven by two simulated "wheels," located ±90852

degrees from the heading direction, akin to a Braitenberg vehicle, with movement driven by853

the relative speed of the wheels. The agent could not move any part of its circular body854

past a wall, and was set to suddenly rotate either +45 degrees or -45 degrees upon855

contacting a wall, which enhanced the degree to which hitting walls produced856

unpredictable patterns of stimulation.857

Sensors. The agent was given two sensors, located at ±45 degrees relative to the858

heading direction of the agent. Each sensor casts a ray forward at the respective angle from859

the heading direction of the agent, and detected the nearest point of intersection with one860
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of the four walls of the space. The strength of input at the sensor was inversely861

proportional to the distance to the wall, such that input was equal to 1 if the sensor was862

directly touching a wall, or 0 if the sensor was at the maximum distance from a wall. The863

maximum distance was the length of the diagonal,
√

2 · 152. Because the agent could not864

have a sensor located perfectly in the corner of the space, as this would require having865

some region of the agent pass through the walls of the space, input at each sensor was866

always > 0. As before, sensors had feed-forward connections to nodes in the reservoir layer867

with Plink = .1, with all input-reservoir weights now set to 2.868

Effectors. The agent had two effector nodes, which simulated motors controlling869

two wheels located ±90 degrees from the heading direction. As in the previous simulations,870

reservoir nodes were randomly connected to effectors with Plink = .1, and motor output at871

each effector was taken as the proportion of spikes out of the total number of incoming872

connections, producing a value in the range [0, 1].873
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874

Figure 8

Outcomes875

Wall Avoidance Behavior. In the absence of noise in sensory inputs, we find876

that the agent typically discovers a stable pattern of movement within a few hundred time877

steps. This stable pattern involves keeping a constant ratio of output in the left and right878

motors, such that the agent moves in a circle either clockwise or counter-clockwise. The879

ratio of outputs must be such that the circle produced has a small enough radius as to not880

intersect any of the boundaries of the space.881



MECHANISM OF RESONANCE 44

Investigation of the network dynamics once a stable movement pattern has been882

discovered shows that this involves either completely stable activity, or a limit cycle883

(repeating pattern of spikes over time) with only a small number of nodes changing values6.884

The first column of Figure 9 shows the first 1000 timesteps of a representative run in which885

the network discovered a stable movement pattern and network state within around 300886

time steps.887

888

Figure 9

Row (A.) shows the trajectory of the agent in the space for the first 1000 timesteps of a

representative run, with arrowheads indicating the direction of movement, and more recent

points shown darker (or earlier points more transparent). Columns correspond to distinct

conditions. Row (B.) shows the proportion of the reservoir that was spiking at time t. Row

(C.) shows the autocorrelation matrix of the reservoir. Notches below the x-axis indicate

points at which the agent hit a wall of the space. Note that a heatmap could not be

constructed for the condition with learning turned off, given that there was no variability in

spiking behavior over time.

6 The behavior of this agent-environment system is similar to that of a two-vehicle Braitenberg system,

studied in depth by Hotton and Yoshimi (in press). In particular, the circular behaviors are comparable to

what are there studied as "revolving type relative equilibria".
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Effect of Sensory Noise. Given that the static environment in this case allows889

the network to find a stable pattern or cycle of activity, we wondered whether the network890

would still show successful wall-avoidance when noise was added to sensory inputs. At each891

time step, we added noise by sampling from a uniform distribution in the range [-.2, .2] to892

each sensor independently. As such, the sensor values were now in the range [-.2, 1.2].893

An example of the agent’s movement dynamics from a representative run of the894

model under these conditions is shown in Figure 9 panel C. In the presence of noise, we895

find that the network can no longer completely stabilize activity. Nonetheless, the agent896

maintains a tendency to avoid walls, and to seek out circular movement patterns that are897

occasionally disrupted.898

Adaptation Following Perturbation. Following work by Di Paolo and Iizuka899

(2008), we next examined how the network would respond to a perturbation in the form of900

a sudden inversion of the visual field. After 1000 time steps of the model—enough time to901

discover a stable movement pattern—the inputs to the left and right sensors were swapped.902

To amplify the perturbation caused by this change, sensor values were also multiplied by 2,903

such that inputs were now in the range [0,2]. An example of the agent’s movement904

dynamics from a representative run of the model under these conditions is shown in the905

third column of Figure 9. Here we can see that the reservoir network takes less than 500906

time steps before finding a new, completely stable pattern of activity and movement.907

Learning. Finally, we considered whether the model showed evidence of learning.908

First, we considered the behavior of the model when homeostatic updating was turned off909

(right column of Fig. 9). Given that, in the case of playing Pong, the network shows some910

level of adaptive behavior even when homeostatic updating was turned off, would the same911

be true of the wall avoidance model? We found that in this case, when learning was turned912

off, activity quickly goes to a maximum, with all nodes spiking simultaneously. As a result,913

the model can only move straight and bounce off the walls, because the left and right914

effectors have equal output values.915
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However, when homeostatic updating is turned on, the model shows clear signs of916

improvement over time. In the baseline condition and the added sensory noise condition,917

Figure 9 shows that the agent makes a number of collisions with the wall in the first few918

hundred time steps (black lines beneath heatmaps), after which it discovers a stable919

movement pattern that results in no further contact with walls. This is also true when the920

visual field was inverted after 1000 time steps, except here the model again hits the wall a921

number of times after the inversion, before learning a new movement pattern. Thus, while922

learning (in the sense of improvement in performance over time) was not clearly evident in923

the Pong case study, perhaps because learning occurred too quickly to be detectable, the924

wall-avoidance model shows clear evidence of learning.925

General Discussion926

In recent years, work from Raja (2018, 2019, 2021) has called attention to the lack927

of a mechanistic account of the concept of "resonance" within ecological psychology, which928

requires a story about the CNS that does not fall back on a representationalist account of929

brain activity. Raja and colleagues have suggested, as a foundation for this work,930

Anderson’s neural reuse hypothesis, which casts brain activity in terms of transiently active931

local neuronal subsystems (TALoNS), which are “task-specific neural synergies that932

coordinate brain, body, and world” (Raja & Anderson, 2019). Adding to these arguments,933

we have suggested that a useful path forward is to consider the role of homeostatic934

properties of neurons in facilitating self-organization in the CNS. As an illustration of the935

utility of this view, we have considered the dynamics of simple simulated agents, endowed936

with minimal sensory and motor systems, mediated by a random homeostatic network. We937

have shown that in three distinct scenarios—(1) a rotating agent in an environment with a938

moving stimulus, (2) the game Pong, and (3) a mobile agent in a walled space—adaptive939

behavior spontaneously emerges. We believe that these case studies illustrate one way that940

the CNS could facilitate organism-environment resonance, i.e. an organism’s sensitivity to941
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informative relations between action and perception, without relying on stabilized,942

computational internal representations.943

What is surprising here is the fact that behavior of the model seems sensible at all944

right out of the box. Although work in artificial intelligence and machine-learning research945

has shown that similar or even more complex outcomes can be achieved with a variety of946

techniques, including deep neural networks with trained weights (Gibney et al., 2015),947

reservoir networks with a trained output mapping (Maass et al., 2002; Jaeger & Haas,948

2004), networks that are evolved using a genetic algorithm (Iizuka & Di Paolo, 2007; Beer949

& Gallagher, 1992; Cangelosi, Parisi, & Nolfi, 1994), and of course hand-wired circuits,950

such as Braitenberg vehicles (Braitenberg, 1986; Hotton & Yoshimi, in press), our model951

has none of these features. Consider that on the first iteration of training an ANN or952

evolving a network, performance would typically be expected to be rather bad. So why953

does our model seem to exhibit reasonably context-appropriate behaviors, even exhibiting954

opposite patterns of behavior such as following a stimulus or avoiding walls?955

The adaptive behaviors in these networks emerge spontaneously because they allow956

for the individual nodes to pursue homeostasis. When network activity generates957

movement patterns that lead to a stable flow of activity through the network, the958

homeostatic mechanism may reach an equilibrium, temporarily minimizing changes and959

therefore maintaining the ongoing behavior. The "trick" in our models is that the960

context-appropriate behavior just so happens to be such an equilibrium point. In scenario961

1, following the stimulus keeps the sensory input stable. In scenario 2, missing the Pong962

ball leads to a sudden reset of the ball’s position, again leading to maximally unpredictable963

input, whereas hitting the ball preserves a continuous trajectory of inputs that changes in a964

predictable manner. In scenario 3, hitting a wall produces a sudden turn either clockwise965

or counter-clockwise. This creates a situation in which hitting walls generates maximally966

unpredictable flows of activity, whereas avoiding walls allows for complete stability.967

Although we situate this work in the context of ecological psychology, it is worth968
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pointing out that our interpretation of how the homeostatic mechanism leads to behavioral969

control is reminiscent of another theoretical paradigm, the free-energy principle (FEP;970

Friston, 2010b), and its related process theory, active inference (M. Ramstead, Badcock, &971

Friston, 2018). The FEP holds that organisms act so as to avoid "surprising" states, by972

optimizing a model of the environment and the consequences of actions (the "generative973

model"). Ecological psychology and the FEP have often been framed as competing974

frameworks for cognitive science (Bruineberg, Dołęga, Dewhurst, & Baltieri, 2022; though975

for an argument to the contrary, see Bruineberg, Kiverstein, & Rietveld, 2018), given that976

the former rejects representational notions, and the latter relies on them extensively.977

Indeed, existing FEP models of neural dynamics suggest that neural populations explicitly978

encode a generative model and perform Bayesian inference (M. J. Ramstead et al., 2021),979

and in that respect, would seem difficult to reconcile with our model. However, the FEP is980

framed at a higher level of abstraction than our model, and is not committed to any981

particular mechanistic account of brain dynamics. It is possible that an active inference982

model consistent with the FEP could approximate a mechanism like the one we have983

descrived. Purusing this question would provide a welcome opportunity for reconciliation984

in the “representation wars” (Constant, Clark, & Friston, 2021), but further work is needed985

to bear this out.986

A skeptic might suggest that our examples were cherry-picked, nudged in some way987

to elicit the desired outcome. For example, in our wall-avoidance model, the fact that988

hitting a wall produces a random turn is not a necessary feature of the mechanics, and989

perhaps without this feature, a different pattern of behavior would emerge that would not990

seem "adaptive" (it should be noted that, because our model has no analog of fitness,991

describing the behavior as "adaptive" is purely based on our preconceived notions for what992

behaviors would be adaptive in a given context). While this criticism is accurate to an993

extent, we take these mechanics to be a reasonable analog of the real conditions faced by994

biological organisms. In general, some behaviors will sustain a higher-order stability in995
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action-perception relations, while others will not. For example, while forward movement996

will typically produce a certain kind of optic flow, this relation will be interrupted if an997

organism hits a wall. If the organism was relying on a stable relation between movement998

and optic flow to achieve homeostasis, then hitting a wall will disrupt homeostasis, and999

therefore lead to a change in behavior. Thus, while our models clearly contain many1000

simplifications, we contend that these are appropriate analogs of real constraints faced by1001

organisms.1002

However, it should be noted that there are possible scenarios in which the behavior1003

that facilitates homeostasis will not be the "adaptive" (per our expectations) behavior. For1004

example, if we imagine a game of Pong in which the goal is to avoid the ball, our model1005

would do quite poorly, because there is nothing to push it out of the observed regime of1006

tracking the ball. In an ecological-psychology-inspired view of evolution, we would suggest1007

that it is the role of natural selection to produce organisms for which the action-perception1008

loops that facilitate homeostasis are precisely those that are adaptive. In other words,1009

natural selection must generate a set of physiological constraints such that whatever flow of1010

activity keeps neurons alive is also good for the entire organism. For example, if we1011

imagine natural selection operating on a population of our Pong-playing agents, but in a1012

case where avoiding the ball conferred fitness benefits, one possibility would be to evolve a1013

sensory system that produces stable inputs when the ball is not in view, and unstable ones1014

when the ball is in view. This could produce avoidance behavior without needing to search1015

the vast space of potential networks and node types, so it may be an evolutionarily "easy"1016

solution. Thus, while our case studies were chosen because we expected a natural1017

correspondence between node homeostasis and adaptive behavior, we believe that these are1018

the typical conditions encountered by organisms that are pre-adapted to their1019

environments.1020

Furthermore, our model suggests that evolution need not act to produce1021

highly-specific neural structures or detailed representations of the environment in order to1022
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achieve adaptive behavior. Instead, evolution needs to construct organisms that are capable1023

of rapidly finding adaptive stabilities in the agent-environment coupling. Our examples1024

point to a potential evolutionary "hack"—a head start on intelligence with minimal barrier1025

to entry. Indeed, while we understand that evolution is a very important part of any theory1026

in cognitive science, we have purposely left this out of our model at present in order to1027

show how much intelligence can be achieved even before evolution has had a chance to act.1028

Individual cells are already homeostatic, and our model shows that random collections of1029

cells can generate behaviors that are self-preservative, context-sensitive, and rapidly1030

adaptive to perturbations. Natural selection can then refine these simple abilities into1031

increasingly complex behavioral repertoires simply by tuning local features of nodes (i.e.1032

their homeostatic mechanisms, spiking mechanisms, and developmental trajectories),1033

without needing to "know" how the entire system should act or what contexts it will1034

encounter. This view is consistent with a developmental systems theory approach to1035

evolution, which suggests that natural selection works upon the entire developmental1036

trajectory, rather than simply shaping an adult phenotype (Griffiths & Tabery, 2013).1037

A final point worth reflecting on is our claim that the dynamics of the networks1038

presented here need not be interpreted as "representational," as this is a crucial point for1039

compatibility with the ecological approach7. In order to justify this point, we draw upon a1040

restrictive definition of representation given by (Chemero, 2000):1041

A feature R0 of a system S will be counted as a Representation for S if and1042

7 The second author, Yoshimi, interprets some points in this paper slightly differently than his co-authors,

in two ways. (1) He allows that internal mediating states can be thought of as representations in a minimal

sense, and has argued that that these minimal representations can have an illuminating mathematical

structure, that is manifest in the "open phase portraits" of open dynamics systems (Hotton and Yoshimi,

2011, forthcoming). (2) He belives that ecological resonance of the kind described here is important and is

indeed often non-representational, but also believes that an account like this can co-exist with one in which

more classical forms of representation play an important role in cognitive science. In that sense he defends

a form of pluralism (Yoshimi, in press)
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only if:1043

(R1) R0 stands between a representation producer P and a representation1044

consumer C that have been standardized to fit one another.1045

(R2) R0 has as its proper function to adapt the representation consumer C to1046

some aspect A0 of the environment, in particular by leading S to behave1047

appropriately with respect to A0, even when A0 is not the case.1048

(R3) There are (in addition to R0) transformations of R0, R1 ... Rn, that have1049

as their function to adapt the representation consumer C to corresponding1050

transformations of A0, A1 ... An1051

In evaluating whether our model meets these requirements for representation, first consider1052

that, as Chemero points out, there are two distinct hypotheses regarding representation1053

raised in the dynamical systems tradition within cognitive science. The "nature hypothesis"1054

is an ontological claim that dynamical systems simply do not meet the requirements for1055

using representations as outlined above, while the "knowledge hypothesis" is that some1056

dynamical systems may still meet the requirements for using representations, but that1057

adopting a representational stance carries no additional explanatory power. For example,1058

Chemero notes that a paradigm example of a dynamical system, the Watt governor,1059

actually can be given a representational description (though a non-computational or1060

non-rule-governed version of representation), but such a view of the Watt governor is1061

unhelpful over and above purely mathematical descriptions of its behavior.1062

In contrast, we suggest that our model satisfies both the nature and knowledge1063

hypothesis, meaning that our agents neither use representations, nor can be helpfully1064

described as such. A previous application of our model in processing a simple probabilistic1065

grammar revealed that, in reasonably short time-windows, patterns of activation could be1066

found that resembled population codes corresponding to specific words, or even1067

grammatical classes that were not explicitly contained in the input data (Falandays et al.,1068
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2021). Nonetheless, these patterns drifted over time, such that different population codes1069

"encoded" the same features at later time points. Similar outcomes have been observed1070

here (see Fig. 5), with some nodes having strong correspondences with movement either1071

clockwise or counter-clockwise, but with these correspondences drifting throughout the1072

reservoir over time. As such, while we do see activity patterns that stand between a1073

producer (the sensory input layer) and a consumer (the effector layer), these patterns are1074

not stable, hence not standardized, and we can reject R1. In fact, if there are no stably1075

recurring patterns at all, there is no entity that we can call R0, hence nothing to ascribe1076

functions to, nor to construct a system of representations, and therefore we can also reject1077

R2 and R3.1078

In conclusion, we suggest that homeostatic networks offer a promising path towards1079

providing a mechanistic account of the ecological concept of "resonance." This model has1080

previously been shown to produce patterns reminiscent of predictive-processing when1081

dealing with language (Falandays et al., 2021), and in this work has been shown capable of1082

producing context-appropriate behavior in three distinct settings, when embedded within1083

an action-perception loop. This suggests that our model may be applicable to an even1084

wider variety of domains, and may help shed light on the emergence of many kinds of1085

adaptive behavior without appeal to representation.1086
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