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Exotic hadrons from scattering in the diabatic dynamical diquark model
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The diabatic framework generalizes the adiabatic approximation built into the Born-Oppenheimer (BO)
formalism and is devised to rigorously incorporate the mixing of BO-approximation eigenstates with two-
particle thresholds. We recently applied this framework in a bound-state approximation to the mixing of
hidden-charm dynamical-diquark tetraquark states with open-charm dimeson thresholds. Since almost all
of these states are observed as above-threshold resonances, we here implement the corresponding scattering
formalism to allow for a study of exotic tetraquark resonances within the diabatic framework. We calculate
elastic open-charm dimeson cross sections (in channels with zero, open, and hidden strangeness) as
functions of center-of-mass energy and observe the development of true resonances, near resonances, and
various threshold cusp effects. As an example, y.;(3872) can originate in the 17" channel as a diquark-
antidiquark state enhanced by the D°D*? threshold, with or without an additional contribution from the

conventional charmonium y.;(2P) state.
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I. INTRODUCTION

Reaching the 20-year anniversary of the first clear
experimental evidence for the existence of heavy-quark
exotic hadrons—the observation of the charmoniumlike
state now called y.(3872) [1]—the field of hadron
spectroscopy now faces the same scientific challenges
shared by many other areas of study. Some definitive
answers on the nature of these states have been obtained;
but many of the original questions remain, and many new
questions have arisen. More than 60 heavy-quark exotic
candidates have been observed to date, notably some of
which that were first seen shortly after the 2003 discovery
of y.1(3872) by Belle [1] [e.g., Y (4260) in 2005 by BABAR
[2], which has subsequently been determined by BESIII to
consist of more than one state [3] ]. Despite a long-standing
need for a theoretical paradigm to describe the structure,
production, and decays of these states, no universally
predictive model has emerged capable of accommodating
all of them [4-16]. A number of these exotic candidates
(some of which are listed in Table I) lie remarkably close
to some particular dihadron threshold, the most notable
example being y . (3872):
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My, (372 — Mpo — Mpo = —0.04 +0.09 MeV, (1)

using the averaged mass value for each particle provided by
the Particle Data Group (PDG) [17]. Clearly, it can be no
coincidence that so many of these states appear near a
threshold. Some of them, such as y.;(3872), lie close below
the corresponding threshold, suggesting a possible descrip-
tion via a dihadron molecular picture, with the hadron pair
(in this case, D°D*" plus its charge conjugate) being bound
in part via 7° exchange. In fact, this interpretation has a rich
history, in some cases long predating the y.,(3872) discov-
ery [18-20]. Others, such as the Z states in Table I, lie close
above a threshold, discouraging the naive meson-exchange
molecular description. A complete, self-consistent model
must be able to describe the relation between these exotic
states and their nearby thresholds, as well as states that lie
relatively far from any dihadron threshold, such as Z,.(4430)
or many of the J*¢ = 17~ Y states.

Adding to the puzzle, y.;(3872) exhibits some behaviors
that seem to imply the importance of short-distance
components of its wave function, such as in its appreciable
decays to J/y, y.1, and yy(2S), with the radiative decays
being especially significant in this regard. However, given
the tiny binding energy [Eq. (1)] available to a molecular
x1(3872), one would expect its observables to be utterly
dominated by long-distance interactions. This contradic-
tion, in part, has led to the long-standing view that
xc1(3872) contains at least some component of the funda-
mental charmonium state y.;(2P) [21]. But an alternate
short-range, color-attractive configuration is available to
the y.1(3872), in the form of a diquark-antidiquark pair:

(cu)s(c i)s.
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TABLE 1. Examples of heavy-quark exotic candidates lying
particularly close in mass (< 15 MeV) to a dihadron threshold.

Exotic candidate Dihadron threshold

2c1(3872) DYD*0
Z.(3900) DD*
Z.(4020) D*D*
P.(4312) z.D
P.(4450)/P_(4457) >.D*
Z,(10610) BB*
Z,(10650) B*B*

In fact, one approach using this paradigm, the dynami-
cal-diquark model [22,23], has made strides in successfully
representing the y.;(3872) as an exotic diquark-antidiquark
state, as well generating the full accompanying spectra of
both tetraquark and pentaquark exotic multiplets in multiple
flavor sectors [23—-30]. These advances include the incorpo-
ration of effects such as spin- and isospin-dependent inter-
actions, SU(3)g,.; Mixing, and, most recently, mixing
between diquark-antidiquark states and nearby dihadron
thresholds [31].

While the original dynamical-diquark model calculations
were performed assuming that dihadron thresholds close in
mass to those of the diquark-antidiquark states can be
neglected—which imposes the framework of the Born-
Oppenheimer (BO) approximation—the incorporation of
dihadron threshold mixing can be accomplished through its
rigorous generalization; this so-called diabatic formalism
was originally developed for, and has long been used in,
molecular physics [32]. First introduced into hadronic
physics by Ref. [33] to analyze exotic states produced
by the mixing of heavy quarkonium QQ with dihadron
thresholds, the diabatic framework also provides a method
through which diquark-antidiquark states mixing with
dihadron thresholds can be analyzed [31].

Almost all exotic states lie above the energy threshold of
the lowest possible open-heavy-flavor hadron pair with the
same JPC and flavor quantum numbers. While these states
may, in some cases, be approximated as bound states
(which is the assumption of Refs. [31,33,34]), the more
accurate treatment is to view these states as resonant poles
within scattering processes. The unification of the diabatic
formalism with scattering theory, again using Q Q/dihadron
mixing, was pioneered in Ref. [35]. Here, we expand upon
the work of Ref. [31] by developing the same techniques
for 6-6/dihadron mixing.

This paper is organized as follows. In Sec. I, we define
the features of the dynamical-diquark model, which gen-
erates the spectrum of heavy-quark exotic hadrons studied
here. Section III describes the diabatic formalism that
generalizes the adiabatic formalism inherent in the BO
approximation used by the original dynamical-diquark
model. The diabatic formalism is incorporated in Sec. IV

into scattering theory, particularly in order to study open-
flavor heavy-meson elastic scattering processes, in which
exotic resonances (ultimately originating as dynamical-
diquark states) may occur. In Sec. V, we first reprise our
previous bound-state calculations and then present numeri-
cal results for hidden-charm scattering cross sections and
discuss the diverse interesting features that arise. Section VI
summarizes our conclusions and indicates the next direc-
tions for research.

II. THE DYNAMICAL-DIQUARK MODEL

The dynamical-diquark picture [22] provides key con-
text for the construction of the full scattering model
developed in this paper. In the original picture, quark pairs
(gQ) and (gQ) in (attractive) color-triplet configurations
(Q being heavy) are produced within relative proximity of
each other and with a high relative momentum with respect
to the opposite pair; such a scenario occurs in an appreci-
able fraction of QQ production processes. Thus, the
diquarks 6 = (¢Q)5 and 6 = (§Q)5 can naturally form as
compact objects, especially since heavy Q have less Fermi
motion. Because of confinement, § and & remain bound to
each other via a color flux tube. The kinetic energy associated
with the high relative momentum is then converted into the
potential energy of the flux tube as the distance between the
diquarks increases, the -6 separation eventually reaching a
maximum as the relative momentum between the compact
diquarks drops toward zero. With an appreciable distance
now separating the quark-antiquark pairs that can form color
singlets, this configuration has difficulty hadronizing,
allowing it to persist long enough to be observed as an
exotic tetraquark resonance. The analogous process for the
pentaquark case [36] can also be described using this
mechanism by substituting 6 — @, where the color-triplet
triquark is defined by 6 = [0(q,9,)3]s.

The dynamical-diquark model is then constructed from
this picture by implementing the BO approximation for
QCD, as described in detail in Sec. III. This approximation,
which has been extensively used to study heavy hybrid
mesons, provides the most natural formalism for describing
such a quasistatic system. The end result of applying the
BO approximation is the generation of a set of effective
static potentials, which, in turn, are used to produce a full
spectrum of state multiplets. These BO potentials may be
explicitly calculated on the lattice (see, e.g., Refs. [37-39]).
The multiplets of states within these potentials are denoted
by a set of five quantum numbers: A5 (nL), where Aj define
the BO potentials through the symmetries of the light
degrees of freedom (d.o.f.), and n and L indicate the
familiar radial and angular momentum quantum numbers,
respectively, defining the orbitals of each BO potential.
Explicitly, the labels Aj designate irreducible representa-
tions of the group D, which describes the symmetries
inherent to a cylinder whose axis coincides with the
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characteristic radial separation vector © of the heavy
quasiparticle pair.

A more detailed discussion of these potentials, as well
as their application to 86 and &6 systems, may be found
in Refs. [23,24]. For the purpose of this analysis,
Refs. [24,26,27] are especially important by providing clear
numerical indications that these potentials correctly describe
multiplet mass averages for heavy-quark exotic states in each
light-flavor sector (e.g., ccqg’ in 1S and 1P states, ccqqq,
cess, and bbgg'), and these multiplets are shown to
accommodate the J”¢ quantum numbers of all known
exotics. The multiplet mass averages may then be resolved
into a fine-structure spectrum by introducing Hamiltonian
spin- and isospin-dependent operators that are expected to be
the ones most relevant for describing the fine-structure
effects. In general, the number of free parameters in the
model is then (n + 1), the coefficients of the n fine-structure
operators included in the analysis, plus the diquark (triquark)
mass mg(mg). A phenomenological fixing of these param-
eters, where one fits to the numerical value of each so that
the best-understood exotic states emerge naturally, is the
approach of Refs. [24-30]; a mass prediction for every
member of the complete spectrum of states then immediately
follows.

I1II. THE DIABATIC APPROACH

The incorporation of the diabatic approach into the
dynamical-diquark model [31] signifies a departure from
the strict framework of the BO approximation to its
rigorous generalization [32], and we reprise its develop-
ment for hadronic systems here. To describe a (nonrela-
tivistic) system consisting of two heavy color sources
interacting through light (quark and gluon) fields, one
begins with the Hamiltonian

2
_ __p
H = Kpeayy + Hiight = 5=+ Hijghes (2)
2Iuheavy

where Hy;,p, contains the light-field static energy, as well as
the heavy-light interaction. Under the BO framework, one
writes the solutions to the corresponding Schrodinger
equation as

W)= [ il )

where |r) are defined as states of heavy source pairs with
separation vector r and |&;(r)) is the ith eigenstate of H jgp,.
Note that the heavy and light states here reference the same
value of r; Eq. (3) is called the adiabatic expansion,
although the expression at this point remains general.
The set {|&(r))} forms a complete, orthonormal basis
for the light d.o.f. at any given r, but, in general,
configuration mixing occurs at different values of r:

(¢;(r')|&;(r)) #0 even for j+# i Inserting Eq. (3) into
the Schrodinger equation and taking inner products with

(¢;(r)|, after some manipulations, one arrives at
h2
5 (=g (V4B V) - E10, ol =0 (4
i 200 ' ’

where the functions z(r);, known as nonadiabatic cou-

pling terms (NACTs), are defined as

7;i(r) = (&;(r)| V& (r)). (5)

If, in addition, the heavy d.o.f.’s are sufficiently heavy
compared to the light d.o.f’s, then one may approximate
the light d.o.f.’s as instantaneously (adiabatically) adapting
to changes in the heavy-source separation, which in this
notation reads (&;(r')|&;(r)) ~ 1 for small changes r’' #r,
the adiabatic approximation. Additionally, at values of I/, r
where the light-field eigenstates do not appreciably mix,
one has (£;(r')|&;(r)) 0 for j# i, which is called the
single-channel approximation. These two approximations
define the full BO approximation and are conveniently
summarized by the single condition on the NACTs:

7ji(r) = (&;(r)[V&(r)) = 0. (6)

For systems containing a heavy (hence, static) QQ pair,
unquenched lattice-QCD calculations have long found that
this approximation works well in regions far from energy
thresholds for on-shell dimeson production. Close to these
thresholds, the static light-field energies experience an
avoided level crossing, thus demonstrating the explicit
breaking of the single-channel approximation [40,41]. In
order to discuss more general mixed states that may have
such energies, one may adopt the rigorous generalization of
the BO approximation known as the diabatic formalism
[32]. This method rewrites the expansion of the solution
Eq. (3) as

W =% [an@mlae). 0

where r is a free parameter. Here again, the completeness
of the basis {|&;(r))}, regardless of the choice of r, is
crucial. In analogy to the previous procedure, one inserts
the expansion Eq. (7) into the Schrodinger equation and
takes inner products with (£;(ry)|, thus producing

2

13 -
Z [—2—M5ijvz + V;i(r,x9) — E§ji |Wr:(r,19) = 0. (8)

Now the object of interest is V;;, which is known as the

diabatic potential matrix; it is defined as
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Vji(r, o) = (&;(ro) | Hiigne|&:(ro))- )

The NACT method and the diabatic-potential method are
rigorously equivalent, as shown in Refs. [32,33], but the
latter is more convenient for our numerical simulations. As
discussed in Ref. [33], one may choose r, far from
potential-energy level crossings, such that the states
|Ei(rg)) may be unambiguously identified with pure,
unmixed configurations. For the specific application to
dynamical-diquark states with a fixed value of r,;, we
identify the diagonal elements of this matrix as the
static light-field energies Vg5 associated with a pure 56
i=1,2,...,N. Explicitly, V;; may then be written as

state and its corresponding dimeson thresholds V

1
Vi) Vi@ - Vi)
(1) (1)
Vmix(r) VM]M2<r)
V= ., (10)
(N) (N)
Vmix (I‘) VM1M2 (l‘)

where we ignore direct mixing terms between any two
dimeson configurations (i.e., the suppressed elements are
zero). For the purposes of this work, we set each pure
dimeson energy to be the free energy of the state, i.e.,

Vi i (0) = Tag iz, = myg, + mag,. (11)

. (i) .
One could, of course, instead replace Vit (r) with a

mildly attractive potential (e.g., pion-exchange interactions

or the effects of triangle singularities), as suggested in

Ref. [31].

IV. SCATTERING THEORY

As noted in the introduction, the diabatic formalism
provides a method to study mixed but still formally bound
states. In contrast, nearly all of the exotic candidates have
been observed solely through their strong-interaction decays
and, therefore, should properly be treated as resonances in
scattering theory, i.e., as poles in a scattering S matrix.

Here, we review the construction of the K-matrix
formalism as a method of retrieving the § matrix for
coupled-channel eigenstates of the Schrodinger equation,
specifically using the method of Ref. [42]. The K matrix has
several advantages over the S matrix, in particular, that it can
be chosen to be real and symmetric (assuming time-reversal
symmetry) and that pole terms induced by distinct reso-
nances, even heavily overlapping ones, may be simply added
together in the K matrix (unlike for the S matrix). In this
work, we consider only elastic scattering of asymptotically
pure dimeson configurations. As discussed in Ref. [34], this
type of scattering, mediated by the short-range mixing of

dimeson and & states, is the natural physical process in
which to study the asymptotic behavior of solutions to
Eq. (8). Collecting the set of linearly independent solutions
to the Schrodinger equation into a matrix ¥, one may write
the asymptotic behavior as

¥(r) = J(r) - N(r)K, (12)

where K denotes the K (or reaction) matrix and J and N are
the (diagonal) solutions to the Schrédinger equation in the
r — oo limit, at which only the centrifugal part of the
potential remains significant. Following Ref. [42], we choose
the closed-channel elements (channels with thresholds above
the total energy E) of both matrices to be proportional to their
corresponding modified spherical Bessel functions i, and
kfj (x; = rk;, where k; is the wave number for the ith

channel):

J
N

=X; g, (xi)dyj,

=X kfj(xi)5ija (13)

ij
i
while the open-channel elements (channels with thresholds
below the total energy E) are set to be the Riccati-Bessel
functions:

Jij = X; ‘jf-(xi)5ij,

J

Nij = x; - "f,(xi)‘s (14)

ije
Formally, one may then write K as a function of J, N, and the
log-derivative y of the matrix solution ¥, y = /¥~

K=yN-N)"'(yJ-J). (15)

In the sign convention for K imposed by Eq. (12) (see
Ref. [43] for alternate sign conventions for all of these
quantities), the S matrix is obtained as

S = (I - iKOO)_l(I + iKoO)’ (16)

where K, denotes the submatrix of K containing only
elements that connect open channels to other open channels.
That Eq. (16) can be expressed solely in terms of K, relies
directly upon the specific forms of Egs. (13) and (14), as is
thoroughly explained in Ref. [44]. Reference [42] also
provides a method for numerically calculating Eq. (15) using
the reduced Numerov method, which has already been
employed extensively for solving dynamical-diquark
Schrodinger equations (starting with Ref. [24]).

We now briefly comment on the form of the solutions
contained in W. Since this analysis is concerned only with
the elastic scattering of asymptotically pure dimeson states,
we restrict this discussion to the elements of ¥ associated
with those states. With V), 7. (r) = Ty, iz, the well-known
unmixed solutions are
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(i) 2 iy ; J, R
l//leC’mJ (r) e ;M(l)p(l)l k ‘]f;(i) (p(l) r>Yf§f:l;£l> (l’), (17)
where YJ " are irreducible tensors of rank J,

Ask

J,
Y or;” = (¢
‘i Sk

chg‘r;zx m,Ym/ f') ms’

My my

(18)

built with the conventional Clebsch-Gordan coefficients
Cy"™ , spherical harmonics Yy (t), and spinors & In
addition, k and (i) denote the kth partial wave of the ith
dimeson threshold with quantum numbers J7€, while j, is

the Zth spherical Bessel function of the first kind, p<i) =
2u)(E—=TW) is the relative momentum (or wave

number) of the dimeson pair, and /2 pl?) is a factor

introduced in Ref. [35] to normalize the full solution in
terms of energy E:

(Wp|¥g) = 6(E' - E). (19)

One may go further by using the large-argument asymptotic
expression for spherical Bessel functions:

This form allows for mixed solutions to be clearly
expressed using well-known elastic scattering theory
[e.g., Eq. (11.17) in Ref. [45] ]: The effect of mixing with
a short-range attractive state, in this case 55, enters as a
channel- and momentum-dependent phase shift 6 in the
unmixed asymptotic wave functions of the dimeson con-
figurations. Explicitly,

1 . 4 OEE ; i
p(—wrsm (p(’)r—fg) ee’ﬁi)msm (p(’)r—fg—ké(f)).

(1)

Summing over all partial waves k (and adopting the
notation of Ref. [35] as closely as possible), we have

. 1 Zﬂ(i) T
l//(jgc,m,(r) =- mzk:lfk aﬁc;k

| @) \ylm
xmmn( ()r—sz—l-(sjpck) fi).s{f)(r)’

(22)

(i)

JPC;k
the weighted amplitude that each partial wave contributes
to the overall JPC state. Finally, one may now write the

asymptotic wave function of a dimeson to dimeson

where the usual scattering coefficients a keep track of

jo(pr) - isin < pr— gﬁ)‘ (20) scattering state (i < i’), in specific partial waves
pr 2 k/ = (l/ﬂ(il)’s(i/)) — k = (f<i>’s(i))’ as
|
i 120 0 . i)y 07 it i(p D=5 | domy g
Y pre mj;k/(l'):; ﬂp(i>zk:l « |8 sin | pir — £} 5 + pl fjpckk,e PETaCD Y (F), (23)

: i—i
with f15¢, o -
the present analysis,

being the partial-wave scattering amplitude. In
S?Ci:k,k’ are the objects of interest,
since one may extract the elastic-scattering cross sections
directly from these scattering amplitudes.

We do so, again following the work of Ref. [35], and,
thus, provide a proof-of-concept calculation of elastic-
scattering cross sections for the dimeson configurations
(mediated by coupling to 6 states) as discussed in Sec. III.
This may be done using the S matrix by calculating the
scattering amplitude

(S -1
2ip)

=i’ __
Jre =

(24)

with which one may calculate the J”C-specific partial cross
section

- 4n (2J+1) ,
o5l = |z<—z' /|2' (25)
T @y + 1 kzz; S

For the purposes of this calculation, we instead calculate a
normalized cross section ¢ [35]:

l‘—l i i’
JP(, - E |p jP(, kk/

kK

, (26)

which allows for a clearer investigation of the behavior near
threshold (where phase space, and hence o, vanishes), as
well as providing more unequivocal indications of resonant
behavior, in which fully saturated resonances are expected
to reach the maximum allowed value of unity for .
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V. RESULTS

In this analysis, we assume the mixing elements of the
diabatic-potential matrix in Eq. (10) to have the simple
Gaussian form [33]

b

where A is the strength of the mixing and A is a width
parameter, both with units of energy. To produce mean-
ingful results, A must be large enough to induce sufficient
mixing with 86 states that clearly indicates the importance
of nearby dimeson thresholds, while A must be small
enough not to induce excess mixing with thresholds far
from the original 56 state; until lattice-QCD simulations are
able to provide specific values for these parameters, their
magnitudes remain constrained only by these qualitative
constraints. One may rewrite A as

. Vis(r) =T T
(i) o A 1 { 60 MM
|Vmix(’”)| —ZGXP{—z A2 —

A = po, (28)

where p may be identified as the radial scale of the mixing,
while o is the string tension of the 66 configuration. As
discussed in Ref. [33], this particular form of the mixing
potential, which is motivated by results of lattice QCD [41],
acts as a phenomenological placeholder, in anticipation of
future precision lattice simulations. This mixing potential is
also a different creature than the one used in the original
diabatic works such as Ref. [33]; in the original calculations
it refers to Q0 — (Qg)(Qq) string breaking, while in the
present calculations it refers to the rearrangement inter-
action (Qq)(Qq) — (Q4)(Qq).

In fact, if one truly wishes to rigorously perform the
calculations of this work with the intention of accurate
comparison to experiment, then the form of the mixing
potential will likely be more complicated. A complete
treatment should include every fundamental channel (both
open and closed flavor) in the diabatic potential matrix of
Eq. (10), transitions between these configurations must be
considered, and, in order to couple to these channels to
allow realistic decays, the mixing potential must allow for
more complicated forms than a simple universal Gaussian
function. Additionally, in contrast to the work in Ref. [33],
the mixing potential connecting 86 states to meson-meson
thresholds may have strong correlations with the particular
spin state of the diquarks, and such a dependence should be
included in some form as well.

With these caveats in mind, we start by reproducing the
results of the bound-state formalism in Ref. [31], with a
slight variation of model parameters:

p =0.165 fm, (29)

A =0.295 GeV, (30)

TABLEII. Calculated eigenvalues and component-state admix-
tures for the ccqg’ sector obtained from solving Eq. (8) for
specific JPC€ numbers. Suppressed entries indicate contributions
that are individually finite but <1% or that give no contribution.

JPC E (MeV) 86 DD* DD, D*D* D:D:
0t  3903.83 69.8% 22.7% 6.9%
1™t 3871.65 9.1% 90.9%
2T 3917.44  86.0% 1.5% 104% 1.5%
DD, DD; D*D,
1 4269.58 44.0% 51.2% 2.4% 1.5%
TABLE III. The same as in Table II, for the ccss sector.
JPC  E (MeV) 56 DD, D*'D* D,D: D:D:
0t  3921.69 557% 35.4% 71% 1.2%
1™t 3968.47 90.4% 1.2%  7.8%
2t 394933 82.1% 15.5% 2.1%
meg = Mgz = 1927.1 MeV, (31)
mes = mg = 1944.6 MeV, (32)
and, for the ground-state BO potential X,
a
Vs(r) = —;—f—ar—l— Vo + ms + mg, (33)

where a, o, and V, are 0.053 GeV - fm, 1.097 GeV/fm,
and —0.380 GeV, respectively [46]. Hence, A in Eq. (27) is
0.181 GeV. We note that applying the hybrid QQ potential
inputs obtained from lattice simulations for the 86 case is
reasonable, since both are color 3-3 potentials between two
heavy sources. For BO potentials above X, which gen-
erally tend to mix with each other, the extension of this
formalism is straightforward. However, in this work we
focus solely on the X potential, since all exotics found to
date appear to be accommodated within its orbitals [24].
These results are presented in Tables I[I-IV. As in Ref. [31],
the mixing parameters are retrieved by fitting to the
X1(3872) mass central value 3871.65 MeV reported by
the PDG [17] while keeping the same diquark mass m.;
[Eq. (31)] found in Ref. [30]. Additionally, the mixing
parameters are moderately constrained to reproduce certain

TABLE IV. The same as in Tables II and III, for the ccgs5 sector.

JP E (MeV) 86 D*D; DD: D*D:
ot 3969.04 95.2% 4.5%
1+ 3912.73 71.9% 13.7% 13.4%

2+ 3951.42 92.5% 1.5% 1.5% 4.5%
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behaviors of the mixing angle between the 66 and DD*
components: i.e., the mixing angle () must smoothly and
quickly vary between 0 and /2 as r decreases or increases
away from the critical radius r., which is defined as the
separation for which Vg(r,.) equals the DD* threshold
mass (see Refs. [31,33]). Again, we note that these mixing
parameters p and A are not uniquely defined by this fit and,
thus, serve only as working values for the present analysis.
With these inputs, the diquark mass m.; is then fixed
[Eq. (32)] by requiring the 0" *ccss state to have mass
equal to the central value 3921.7 MeV for X(3915) given
by the PDG [17].

Once these parameters are fixed, the diabatic dynamical-
diquark model Hamiltonian (not yet including fine struc-
ture) for each tetraquark flavor sector, ccqq’, ccqs, and
ccss, is completely specified. This assertion, of course,
assumes that the mixing parameters are universal and not
unique to each threshold or flavor sector. Some work
toward this end, specifically to include heavy-quark
spin-symmetry-breaking effects, has been carried out in
Ref. [47], where the author calculates transition rates
between the elementary state (in that case, QQ) and its
corresponding thresholds. The primary result of this work
is a demonstration of how to handle the threshold nonun-
iversality that occurs between different dimeson thresholds
(e.g., DD* vs D*D*), which constitutes one direction in
which one may move past the universality assumption of our
mixing potential. Using the formalism described in Sec. IV,
we may then directly produce flavor- and J*C-specific cross
sections as functions of center-of-mass energy. In aggregate,
these results are presented in Figs. 1-11. Some universal
characteristics include the stability of all major functional
features in & [Eq. (26)] upon minor variations of the
phenomenologically determined parameters p, A, and m;.
Additionally, we find resonant behavior to occur in all but

Lo

one of the cross sections, which is consistent with the
calculations performed under the bound-state framework
in Refs. [31,33]. That is, we find resonances in the near
proximity of all predicted bound states.

A. ccqq’

Unique among the c¢cqg’ sector are the 17 results
presented in Fig. 1. Here, in addition to 55, we incorporate
a cc channel [representing the fundamental y ., (2P) state]
into the diabatic-potential matrix, with a mixing potential
connecting this channel to the (same) corresponding dimeson
thresholds. This particular simulation, unlike others in the
ccqq' category, necessarily produces only isosinglet ampli-
tudes. The mixing, for which we adopt the same form as that
for 86 — MM, is parametrized using the results in Ref. [33]:
specifically, p.z; = 0.3 fm and A; = 0.130 GeV. A direct
comparison with Fig. 2, in which the cc¢ channel is removed,
reveals that its inclusion in Fig. 1 can result in the formation
of a secondary peak containing significant overlap with the
peak appearing at the mass of y.;(3872). Additional con-
tributions from the processes D*D* and D D: are also
induced by the inclusion of the y.; (2P) component in Fig. 1.
We also note the appearance of threshold effects at the D D
mass (~4081 MeV) in Figs. 1 and 2, since this model makes
no attempt to address the Okubo-Zweig-lizuka (OZI) sup-
pression required for transitions between states containing
qq and s5. Lastly, we find (but do not exhibit here) that the
usual elastic scattering phase 6., defined by

S = 207 (34)
exhibits resonant behavior (sharp transitions in 6 reaching

above 7/2) at both major peaks in Fig. 1. However, this
conclusion is true only for the mixed S-D partial wave,

0.8

3.80 3.85 3.90 3.95

4.00 4.05 4.10 4.15

Ecu (G(‘\-")

FIG. 1. The dimensionless cross sections & in Eq. (26) (solid lines) for elastic open-charm DE?DE? scattering processes as functions of
center-of-momentum frame energy E. . The & curves are presented in the same order as that of increasing mass for their corresponding
thresholds 7 (dashed lines). This figure presents results for the flavor content cZqg in the isosinglet channel with J¥¢ = 1+ and

includes a contribution from the conventional c¢ state y.;(2P).
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0.8 1
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T ccqq

0.44

0.24

0.0

3.80 3.85 3.90 3.95

4.00 4.05 4.10 4.15

Ecyp (GeV)

FIG. 2. The same as in Fig. 1, except suppressing the y,; (2P) contribution and (if the small DD contributions are also suppressed)

not necessarily limited to the isoscalar combination of ccqq’.

i.e.,, DD*(¢ = 0) <> DD*(¢ = 2). The pure S-wave proc-
ess, DD*(¢ = 0) <> DD*(¢ = 0), nearly reaches /2 at the
Zc1(3872) mass and then smoothly trails off at higher
energies; but if one varies the parameters p or A, then it is
possible to induce a value of § that rises above /2 in the pure
S-wave process at the same mass. Under this variation, the
same resonant behavior as in the other partial-wave channels
is still observed. This result implies that the current frame-
work can easily accommodate a pair of resonant states 56 and
Xc1(2P), either fully overlapping or clearly discernable, each
mixing with nearby dihadron thresholds. The results in Fig. 2
may also be used to extract the corresponding decay width for
the DD* channel if one converts the data back to the physical
cross section in Eq. (25). We find 0.4 MeV for the width of the
peak, which may be compared to the PDG value 0.44 £+
0.13 MeV for y,,(3872) decaying to D°D*° [17]. We note
that our result is found through extrapolation, since the full

peak structure is cut off by the threshold itself. Although this
assumption must be taken with some caution, the closeness
of these two values implies that it is straightforward to find
values of p and A that exactly accommodate exactly both the
correct mass and width of y.(3872).

In fact, the case of y.(3872) is particularly interesting,
because it indicates limitations on the freedom to choose
diabatic couplings. While we have noted the stability of
basic morphological features of & under variations of the
parameters p, A, and m, the fact that the precise mass and
width of y.,(3872) are now highly constrained means that
the values of the diabatic parameters, given a particular
functional form such as in Eq. (27), must be carefully
chosen in order to maintain agreement with experiment.
These adjustments must be revisited as additional channels
le.g., J/wrntn~ for y.(3872)] and spin- and isospin-
dependent couplings in the Hamiltonian are incorporated

1.0
—— DD
0.8 1 — Dst
— DD’
e Ipp
g D G DS DS
= ---- Tpp
5
& 04
0.2
0.0 T T T T T : ——
3.80 3.85 3.90 3.95 1.00 105 1.10 4.15
Ecn (GeV)
FIG. 3. The same as in Fig. 2, for elastic open-charm czqg D'/ D'

(5D scattering processes with JPC =0t
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FIG. 4. The same as in Fig. 2, for elastic open-charm ccqq’ DE:‘)) DE

into future iterations of these calculations. Even so, certain
features such as the large DD* content and small but
significant 86 content of y.,(3872) should remain robust.

Our 0" results in Fig. 3 show a wide, fully saturated peak
at 3900 MeV in the process DD — DD, with nontrivial
modifications from both DD and D*D* thresholds as well.
This result is consistent with expectations inferred from
Table II, where the bound-state approximation produces
significant contributions from the corresponding thresholds
to a state with matching energy, 3903.83 MeV. In Fig. 3, the
impacts of threshold effects in the line shapes are clearly
visible.

Conversely, for 2"+ scattering (Fig. 4), we observe a sharp
peak in DD near 3910 MeV, which can be unambiguously
assigned to the corresponding state (3917.44 MeV) in
Table II. Outside of this peak in the 2+ cross section, there
are relatively small contributions in all but the D* D* channel.
We also observe the same preferential 27+ coupling to D*D*

3 scattering processes with JP¢ = 2++,

in Table II, despite its threshold (~4014 MeV) being
significantly higher in mass than the D D, threshold
(~3937 MeV). In Ref. [31], this enhancement is attributed
to the fact that the D* D* threshold coupling to 2*+ allows an
S-wave coupling, which is naturally expected to dominate
over # > 0 configurations (D-wave for D ;) D(y) in 2*%) in
scattering processes.

While the sharpness of the peak in Fig. 4 suggests the
existence of a clear 56 resonance with J©¢ = 2+ that should
be immediately detectable by experiment, it is important to
remind the reader that these widths arise from calculations
using incomplete physical information. A more detailed
treatment of the threshold couplings and mixing potential, as
discussed at the beginning of Sec. V, is essential before the
widths may be compared with experiment.

For example, in the present case, the isoscalar 2+
channel is already known to feature the cc¢ candidate
Yo (2P) at 3922.5 + 1.0 MeV [17] (which could certainly

1.0 ,
T I
—— DD, !
08{ —— DD, i
- 1
—— D*Dy !
% 1
' 061 D*D, i
- 1
O — A
IQ: _ ]
I 0dq === TDD1 :
1
—— YwD.ﬁI :
1
0.2 T, :
1
1
1

0.0 . . . . . =
4.15 4.20 4.25 4.30 4.35 4.40 4.45 4.50
Ecum (GeV)

FIG. 5.

The same as in Fig. 2, for elastic open-charm cZqg’ scattering processes with J©¢ = 17, The energy range has been adjusted

to 4.15-4.50 GeV in order to capture the relevant behavior of the cross section. The thresholds are all S wave, except for D* D}, which is

P wave.
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FIG. 6. The same as in Fig. 3, but now for the c&s5 channel J*¢ = 0+,

have been included in this analysis, in the same manner as
done in Fig. 1), and this state has a substantial width of
about 35 MeV, likely largely due to its observed (D-wave)
DD decay mode. A comparison between the calculation of
widths through conventional methods (i.e., as performed in
Ref. [34] for cc states in the diabatic formalism) with those
obtained from the scattering formalism will appear in
future work.

In this work, we now include bound-state results
(Table II) for the 17~ c¢cqqg’ channel (which did not
appear in the results of Ref. [31]) and also present the
corresponding cross section (Fig. 5). The energy interval
(4.15-4.50 GeV) exhibited for the analysis in this channel
is restricted to impose stringent requirements upon which
thresholds to include, in order to admit only those expected
to generate the most physically significant effects. Thus, we
include only thresholds for meson pairs with relatively
small individual widths (<50 MeV) and (with the excep-
tion of D:D?) that couple to 17~ in an S wave. This
calculation produces a resonant peak with an extraordi-
narily small width (only 4.2 MeV), but again we caution the
reader that the widths of states appearing in these plots are
based upon incomplete physical input. At a mass of about
4240 MeV, this peak is clearly sensitive to the DiD}
threshold, which again requires an OZI-suppressed ampli-
tude to couple to ccgg. It is natural to identify this peak
with y(4230), even though this state’s open-charm decay
modes are poorly known (only 7+ D°D*~ has thus far been
seen [17]). We also note a nearly 30-MeV shift of the
resonant peak from the bound-state energy predicted by the
corresponding state in Table II. While we have yet to
explicitly calculate the expected bound-state mass shifts
that arise from the perturbative introduction of couplings to
open thresholds, Ref. [34] provides a rough estimate of
what might be expected through their analogous calculation
in c¢ — Dg:; DE;) mixing. A comparison to the largest shift
noted in that work, roughly 28 MeV, allows for the

reasonable identification of the peak in Fig. 5 with the
17~ bound state in Table II. Beyond this peak, the 17~
channel as displayed in Fig. 5 exhibits an abundance of
threshold behaviors in all presented cross sections.

B. cess and cegs

The full suite of ccs5s results is presented in Figs. 638,
while the ccgs (or ccsg) results appear in Figs. 9—11.
Beginning with our 0" findings for the c¢ss sector
(Fig. 6), we observe further agreement with our bound-
state predictions (Table III) in the appearance of a fully
saturated peak at 3920 MeV in DD — DD. One may note
the similarity of this line shape with the analogous one in
the ccqq’ sector (Fig. 3). Such results are a direct result
of the fact that this formalism is currently “blind” to any
effects due to strangeness, other than through explicit
differences in diquark and meson masses. We expect this
effect to diminish as additional SU(3)g,.,, Symmetry
breaking is incorporated.

In the 17" results for this sector (Fig. 7), we find a
relatively wide peak centered at 3925 MeV in the DD* —
DD* cross section. While this result may appear to
discourage assignment to the 17T state in Table III
(3968.47 MeV), we note the relatively long tail present
in this peak structure and also recall the up-to-30 MeV
downward shift that may be caused by the introduction of
open thresholds. These two facts argue that an assignment
of the peak in Fig. 7 to the 17" bound state in Table III is
not unreasonable and, indeed, show how strong threshold
effects can be in certain channels. As threshold structures
are abundant throughout the full results of this analysis, we
draw attention to their absence in both hidden-flavor 1+
resonances (Figs. 2 and 7) at the D*D* threshold. As
symmetry forbids an S-wave 1717 — 17" coupling, this
threshold has only a D-wave coupling to 1*". Thus, these
results provide further evidence for the dominance of
S-wave couplings in scattering processes.
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FIG. 7. The same as in Fig. 6, for the c¢s5 channel J©€ = 17+,
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FIG. 8. The same as in Fig. 6, for the c¢s5 channel J©C€ = 2++,

Lastly, we find the 21" -channel scattering (Fig. 8) to yield
a sharp (but not fully saturated) peak around 3925 MeV,
which falls within the aforementioned 30-MeV interval for
reasonable identification with the corresponding bound state
in Table I1I. In Fig. 8, we observe a uniquely interesting case,
in which the state appears to be dragged below the previously
open threshold of DD, [although Table III disallows
admixture to this state, because the bound state
(3949.33 MeV) was found to lie above the D D, threshold
(~3937 MeV)]. In the scattering context, D;D, couples to
2+ only through a D wave and, therefore, is still expected to
be suppressed compared to S waves.

The ccgs sector provides another opportunity to exam-
ine the nearly unbroken SU(3)q,,,; Symmetry present in
this calculation. A near-perfect overlap is observed for 17
elastic D*D, and DD? scattering processes (Fig. 9). We
find no resonant behavior in these results, consistent with
the 17 prediction in Table IV, which indicates an eigenstate
(391273 MeV) below the lowest available dimeson

threshold (~3975 MeV). Additionally, we find fully satu-
rated peaks in both the 0T (Fig. 10) and 27 (Fig. 11) results,
centered just above and just below 3950 MeV, respectively.
Of the two, the peak found in 2* DD, — DD, notably has
the smallest apparent width of any appearing in this
analysis (but with the same caveats discussed above). In
both cases, the location of the peak differs only slightly
from the predictions in Table IV, which, interestingly, our
calculations show can be attributed to the introduction of
the DD, threshold (~3833 MeV), which lies well below
the predicted eigenvalues. One may also contrast the
contributions of the D*D, and DD} processes in Figs. 9
and 11. We see that a bound-state calculation in which over
90% of the content is 65 (i.e., Fig. 11 but not Fig. 9)
produces no obvious structure in & for scattering processes
with thresholds far above the resonance. This conclusion is
corroborated by the results in Figs. 7 and 10.

In addition, the inputs in this sector are completely fixed
by the phenomenological fits to the other flavor sectors and,
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thus. provide useful benchmarks for comparison against
experiment. The 17 state in Table IV (3912.73 MeV), in
particular, which is generally unaffected by the changes
introduced in the present calculation, may ultimately be
associated with the observed Z.;(3985) [17], once multi-
plet fine-structure effects are included, especially the
mixing of strange states in distinct 17 SU(3),,o, multiplets
[30]. This assignment works especially well when one
compares the admixtures of the Table IV state with the fact
that Z.,(3985) has been observed as a D,D* + D:D
resonance [48]. The difference between these two masses
(~70 MeV) is well within the largest fine-structure mass-
splitting effect predicted for diquark-antidiquark states in
this sector [30].

An additional comparison is available from the 11 state
in Table III: Although the mass difference is much larger
[~170 MeV, corresponding to the c¢css candidate
Xc1(4140)], it is not yet known how the fine structure of
diabatic dynamical-diquark states differs from that of states
that are blind to threshold effects, particularly once effects
sensitive to the larger strange-quark mass are properly
included.

VI. CONCLUSIONS

We have reviewed the incorporation of the diabatic
formalism, a rigorous extension of the well-known Born-
Oppenheimer approximation that is designed to include
effects due to the presence of two-particle thresholds, into
the dynamical-diquark model. While our previous work
addresses states formed in the immediate vicinity of these
thresholds (the bound-state approximation), this paper
develops a scattering framework capable of describing
not only exotic states lying close to such thresholds, but
also those that lie quite far from them (and, thus, have no
obvious interpretation as a dihadron molecular state).

Using the bound-state approximation, we first reproduce
our previous flavor- and J¥¢-specific calculations of energy
eigenvalues and fractions of both diquark-antidiquark and
dimeson components within the corresponding eigenstates.
We then summarize the construction of the K-matrix
formalism as a method to retrieve the S-matrix, in order
to calculate asymptotic scattering amplitudes of coupled-
channel, elastic meson-meson collision processes (the most
natural ones in which to study resonance and threshold
behaviors). We validate the physical expectation that
asymptotically free meson-meson pairs develop resonance
structures through their short-range interaction with diquark-
antidiquark channels. These scattering amplitudes are calcu-
lated numerically for the hidden-charm system (with zero,
hidden, and open strangeness) and then are directly used to
produce all corresponding c.m. energy-dependent cross
sections, which comprise the main results of this work.

We confirm the expected resonant behavior in all flavor-
and JPC-specific cross sections and also observe several
instances of threshold-induced structures such as cusp
effects. In addition, the peak of every resonance is
calculated to occur not far from the energy of its corre-
sponding bound-state eigenvalue. We observe shifts of
these resonances down from the bound-state energies once
the couplings to open thresholds are included, in agreement
with expectations that thresholds are generally “attractive.”
While nearly all of these resonant behaviors reach the
maximum value allowed by unitarity, some prominent
examples reach as low as ~75% of this value.

Although this analysis is mostly limited to meson-meson
scattering coupled to diquark-antidiquark channels
described by the dynamical-diquark model, we find evi-
dence that the conventional cc¢ state y. (2P) may be
incorporated separately into the ccgg 17" channel, pro-
ducing two resonant components that may overlap to form
xc1(3872). In general, a complete calculation would
include all diquark-antidiquark and cc states in every
allowed JPC channel.

While these results are quite promising, they do not yet
distinguish explicit spin- and isospin-multiplet members.
The incorporation of such fine-structure analysis has been
accomplished for multiple flavor sectors in the original
(adiabatic) dynamical-diquark model and, thus, will be
straightforward to include in its diabatic form; this exten-
sion will be one major thrust of future work. In addition,
this analysis does not incorporate SU(3)q,,,, Symmetry-
breaking effects beyond explicit differences in the diquark

masses m., and m,, and in meson masses npy., m p» etc.
s

Such additional effects, not to mention OZI suppression,
are expected to have substantial impact on the scattering
processes discussed here. Lastly, the widths of the reso-
nances implied by these cross-section plots are not always
suitable for direct comparison with experiment, as they are
calculated using a universal and, hence, incomplete set of
couplings to meson-meson thresholds, as well as (aside
from the one example in Fig. 1) lacking couplings to
closed-flavor channels. Thus, future work will also use
well-known techniques to calculate physical strong-decay
widths and shifts of energy eigenvalues due to open-
threshold dimeson pairs that lie well below the diabatically
mixed eigenstates studied here—i.e., the pairs that re-
present their physical decay channels.
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