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Abstract
In this paper we exhibit for every non amenable group that is initially sub-amenable (some-
times also referred to as LEA), two sofic approximations that are not conjugate by any
automorphism of the universal sofic group. This addresses a question of Pǎunescu and gen-
eralizes the Elek–Szabo uniqueness theorem for sofic approximations.

1 Introduction

In group theory and functional analysis, one is frequently interested in the study of approxi-
mate homomorphisms of groups. These are sequences of maps φn : G → Hn where G, Hn

groups, each Hn has a bi-invariant metric dn and the sequence satisfies

lim
n→∞ dn(φn(gh), φn(g)φn(h)) = 0.

Part of the interest in this stems from the situation where Hn is in some sense “finitary”
(e.g. Hn could be finite, or it could be a subgroup of the invertible operators on a finite-
dimensional space). Relaxing the homomorphism assumptions facilitated generalizations
of many interesting techniques to broader classes of groups. Particular instances of this
philosophy have led to Gromov’s notion of soficity of groups, Connes embeddability of
groups (sometimes called hyperlinearity) and their group von Neumann algebras (see [26]
for a survey), linear soficity (see [3]), weak soficity (see [16]) etc. These notions have led to
the resolution of several conjectures, as well as created entirely new fields of investigation,
such as sofic entropy (see [7]).

While approximate homomorphisms have great utility, an inherent difficulty in their
study is that, while we have many examples of groups having interesting approximate
homomorphisms, the classification of approximate homomorphisms themselves is incredibly
challenging. A natural candidate for, say, sofic approximations is uniqueness up to asymp-
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totic conjugacy: namely given a pair σn, φn : G → Sym(dn) classifying when there is a
pn ∈ Sym(dn) so that pnσn(g)p−1

n ≈ φn(g) as n → ∞ in the Hamming distance. A cele-
brated result, which is implicitly proved by Kerr-Li [21, Lemma 4.5], and explicitly stated
and proved independently by Elek–Szabo [15], states that when G is amenable any two sofic
approximations are asymptotically conjugate (the analogous statement for amenable groups
in the context of Connes embedding was first proved by Connes [12]). Separate proofs were
later given in [28, Theorem 5.1 and Corollary 5.2] and [18, Lemma 4]. The converse, that
a non amenable sofic group admits two non conjugate embeddings is also strikingly estab-
lished in [15], which is an analogue of the celebrated Jung’s theorem [19] (see also [4, 5] for
generalizations of Jung’s theorem that also motivate the present work).

In [25] Pǎunescu, following up on the operator algebraic setting in Brown [9], investigates
the space of approximate homomorphisms of a group G modulo approximate conjugacy and
shows that it has a natural convex structure. The Kerr-Li, Elek–Szabo uniqueness theorems
tells us this space is a pointwhenG is amenable, andPǎunescu showed that it is a nonseparable
metrizable space when G is not amenable.

A clean way to phrase this is by ultraproduct techniques. By taking a suitable met-
ric ultraproduct of symmetric groups, a sofic approximation turns into a genuine injective
homomorphism and approximate conjugacy turns into genuine conjugacy. We call such an
ultraproduct a universal sofic group (see Sect. 3 for the precise definition). Our main result
addresses a question of Pǎunescu (see the second paragraph in the introduction of [23]) which
asks about replacing conjugation with arbitrary automorphisms in the Elek–Szabo Theorem
(Theorem 2 of [15]). We say that two sofic embedddings π1, π2 of G into a universal sofic
group S are automorphically conjugate if there is an automorphism � ∈ Aut(S) so that
� ◦ π1 = π2. We say that G satisfies the generalized Elek–Szabo property if any two sofic
embeddings π1, π2 of G into a universal sofic group S are automorphically conjugate. The
following is an if and only if characterization of the above property, in the presence of one
additional assumption.

Theorem 1 Let G be a sofic group that is initially subamenable. Then G satisfies the gener-
alized Elek–Szabo property if and only if G is amenable.

Unpublished work of Farah-Hart-Sherman shows that the continuum hypothesis implies
that there are outer automorphisms of the universal sofic group (see Corollary 2.6.7 of [10]).
Thusonemayapriori askwhether or not a group satsifies thegeneralizedElek–Szaboproperty
is independent of ZFC. Our work shows an unconditional result for initially subamenable
groups.

A group is initially subamenable if for all F ⊆ G finite, there is an amenable group H and
an injective map φ : F → H so that φ(xy) = φ(x)φ(y) for all pairs (x, y) ∈ F × F with the
property that xy ∈ F (i.e. φ is a homomorphism “when it makes sense to be"). Equivalently,
a group G is initially subamenable if it is the limit of a sequence of amenable groups in the
space of marked groups. In [11], this property is referred to as LEA or locally embeddable
into amenable groups. This is a large family of sofic groups containing all residually finite
groups. Gromov asked if all sofic groups are initially subamenable (see [17]) and this was
answered in the negative by Cornulier in [14].

Remark 1 One of our motivations for obtaining Theorem 1 is the existence problem of a non
sofic group. Recall that an amalgamated product of sofic groups with amenable amalgam is
sofic (see [15]). In the absence of the amenability assumption for the amalgam, the proof
breaks down early on because of the inability to “patch” the embedding in the amalgam.
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Therefore, the first step to constructing a non sofic group in thisway, is to carefully understand
the space of sofic embeddings up to conjugacy.

The proof of the above theorem combines three ideas: first is the identification of L∞
functions on the Loeb measure space inside the weak operator topology closure of the span
of the universal sofic group viewed inside a matrix ultraproduct. We also have to show that
any automorphism of the universal sofic group induces an automorphism of L∞ functions
on the Loeb measure space which intertwines the actions of the universal sofic group on the
Loeb measure space. Both of these rely on a theorem of Pǎunescu that every automorphism
of the universal sofic group is pointwise inner [23]. The second idea is the theory of extreme
points of sofic embeddings of non amenable groups in the work of Pǎunescu [24]. The third
idea is the original result of Elek–Szabo (Theorem 2 in [15]) which allows one to construct
an embedding whose commutant does not act ergodically on the Loeb measure space. The
proof is carried out in Section 3.

Remark 2 Our proof of Theorem 1 essentially shows that if G is a non amenable group that
admits a sofic embedding whose commutant action on the Loeb space is ergodic, thenG does
not satisfy the generalized Elek–Szabo property. Hence the initial subamenability assumption
in Theorem 1 can be removed if there is a positive answer to the following conjecture.

Conjecture 1 Every sofic group G admits an embedding π : G → S whose centralizer acts
ergodically on the Loeb measure space.

We remark that in [25, Theorem 4.8] that if one works with the ultrapower of the full
group of the hyperfinite equivalence relation instead of the universal sofic group, then having
a centralizer which acts erogdically characterizes being an extreme point in the space of
sofic embeddings. Thus one should expect the above conjecture to follow by proving that the
convex structure in [24] always has an extreme point.

Remark 3 We thank the anonymous referee for pointing out that our results also apply in
the situation of multiples: one can consider various universal sofic groups by considering
instead S f := ∏

n→ω(Symn f (n), dn f (n)) where f : N → N, and naturally consider for
any sofic embedding π : G → S the amplification π f : G → S f given by π f (g) =
(π(g) ⊗ 1 f (n))n→ω. From Proposition 2.8 of [24] and the fact that Elek–Szabo’s original
proof handles the multiples case as well (see also Theorem 6.18 in [4]), we arrive at the
result that if G is a non amenable initially subamenable group then G admits two sofic
embeddings π1, π2 so that all their multiples are not automorphically conjugate (see Sect. 4
and in particular, Corollary 2 for a precise statement).

2 Notation and preliminaries

Groups with bi-invariant metrics:

Throughout we consider G to be a countable group. Let Symn denote the finite symmetric
group of rank n. Recall the normalized Hamming distance which is a bi-invariant metric on
Symn :

dn(σ, ρ) = |{i | σ(i) 	= ρ(i)}|
n

.

Recall the following:
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Definition 1 A sequence of maps σn : G → Symn is said to be an approximate homomor-
phism if for all g, h ∈ G we have

lim
n→∞ dn(σn(gh), σn(g)σn(h)) = 0.

Definition 2 A sequence of maps σn : G → Symn is said to be a sofic approximation if (σn)n
is an approximate homomorphism and for all g ∈ G\{e} we have

lim
n→∞ dn(σn(g), 1n) = 1.

For the results in Section 3 we will need the notion of ultraproducts of groups with bi-
invariant metrics. Let ω be a free ultrafilter on N. Let (Gn, dn) be countable groups with
bi-invariant metrics. Denote by

∏

n→ω

(Gn, dn) = {(gn)n∈N}
{(gn)| limn→ω dn(gn, 1Gn ) = 0} .

Observe that, by the bi-invariance property of the metrics dn , the subgroup {(gn)| limn→ω

dn(gn, 1n) = 0} is indeed a normal subgroup.

Tracial von Neumann algebras

Let H be a Hilbert space. Recall that a unital ∗-subalgebra M of B(H) is said to be a von
Neumann algebra if it is closed in the weak operator topology given by the convergence
Tn → T if 〈(Tn − T )ξ, η〉 → 0 for all ξ, η ∈ H. A normal homomorphism between von
Neumann algebras M, N is a linear 
 : M → N which preserves products and adjoints and
such that 


∣
∣{x∈M :‖x‖≤1} is weak operator topology continuous. Such maps are automatically

norm continuous [13, Proposition 1.7 (e)].
We say that 
 is an isomorphism if it is bijective, it is then automatic that
−1 is a normal

homomorphism [13, Proposition 46.6]. A pair (M, τ ) is a tracial von Neumann if M is a von
Neumann algebra, and τ is a trace, meaning that τ : M → C, is a positive linear functional
such that τ(ab) = τ(ba) and τ(1) = 1, and so that τ

∣
∣{x∈M :‖x‖≤} is weak operator topology

continuous. Given a Hilbert space H and E ⊆ B(H), we let W ∗(E) be the von Neumann
algebra generated by E .

We need the following folklore result (see the discussion in [6, Section 2] for a proof).

Corollary 1 Let G be a group, and (Mj , τ j ), j = 1, 2 tracial vonNeumann algebras. Suppose
that for j = 1, 2, we have representations π j : G → U(Mj ). If τ1 ◦ π1 = τ2 ◦ π2, then there
is a unique normal isomorphism 
 : W ∗(π1(G)) → W ∗(π2(G)) with 
 ◦ π1 = π2.

We also need the notion of ultraproducts of tracial von Neumann algebras: Let ω be a free
ultrafilter on N. Let (Nk, τk) denote a sequence of tracial von Neumann algebras. Denote the
ultraproduct by

∏

k→ω

(Nk, τk) = {(xk)k∈N | sup
k

‖xk‖ < ∞}/{(xk)| lim
k→ω

‖xk‖2 = 0}.

If (xk)k ∈ ∏
k Nk with supk ‖xk‖ < +∞, we use (xk)k→ω for its image in

∏
k→ω(Nk, τk).

By the proof of [8, Lemma A.9] the ultraproduct is a tracial von Neumann algebra and is
equipped with a canonical trace τ((xn)n→ω) = limn→ω τn(xn).
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3 Proof of themain result

Let ω ∈ β(N)\N be a non principal ultrafilter on N. Denote by S := ∏
n→ω(Symn, dn),

where Symn denote the symmetric groups on n points. We call S a universal sofic group.
Denote by χ the trace on S, given by χ((pn)n→ω) = 1− limn→ω dn(1, pn) where we recall
that dn is the normalized Hamming metric on Sym. For an n ∈ N define tr : Mn(C) → C by

tr(A) = 1

n

n∑

j=1

A j j .

SetM := ∏
n→ω(Mn(C), tr), and let τM be the trace onM. By identifying each permutation

with the corresponding permutation matrix we get an embedding S ≤ U(
∏

n→ω Mn(C)) :=
M. We let L2(M), L2(W ∗(S)) be the Hilbert space completions of M,W ∗(S) under the
inner product

〈x, y〉 = τM(y∗x)

the inclusion W ∗(S) ↪→ M naturally extends to an isometry L2(W ∗(S)) ↪→ L2(M) and
because of this we will identify L2(W ∗(S)) with a subspace of L2(M). Observe that χ =
τM|S .

Wewill need the following fact that shows that automorphisms of the universal sofic group
S extend nicely to the von Neumann algebra W ∗(S) generated by S.
Lemma 1 For any � ∈ Aut(S), there exists a unique trace preserving ∗-automorphism
�∗ : W ∗(S) → W ∗(S) such that �∗|S = �, where W ∗(S) denotes the von Neumann
algebra generated by S.
Proof From the main result of [23] for any element x ∈ S, there exists y ∈ S satisfying
�(x) = yxy−1, therefore χ(x) = χ(�(x)). The conclusion then follows from Corollary 1.

��
Denote by L∞(L) the Loeb algebra, that is the ultraproduct of the diagonal subalge-

bras
∏

n→ω Dn(C) in M. The notation here is justified because there is a point realization
of

∏
n→ω Dn(C). Namely, there is an underlying probability measure space (L, μ) so that∏

n→ω Dn(C) is naturally isomorphic to L∞ functions on (L, μ). The actual space is incon-
sequential for our results; we just need the algebra of functions on the space. For this reason,
we do not give the construction of the space and instead refer the reader to [22] for its def-
inition. We remark that we may view S itself in von Neumann algebraic terms. In fact, by
arguments similar to [27, Remark 3.4] one can show that S is the normalizer of L∞(L)

inside M (e.g. see the discussion following Theorem 0.3 in [28]). In this framework, our
consideration of W ∗(S) is similar to the notion of approximate conjugacy in [1].

The following lemma is the main place where we use von Neumann algebra closures in
the proof of our first main result.

Lemma 2 For any projection p ∈ L∞(L) there exists an element ψ ∈ S such that ψn → p
in the weak operator topology. In particular, L∞(L) ⊂ W ∗(S).

Proof By [2, Lemma 5.4.2 (i)] we may find a sequence En ⊆ {1, . . . , n} so that p =
(1En )n→ω. Note that if limn→ω

|Ec
n |
n = 0, then p = 1, and we can simply chose ψ = 1. So

we may, and will, assume that

lim
n→ω

|Ec
n |
n

> 0
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38 Page 6 of 11 B. Hayes, S. U. Elayavalli

and thus that p 	= 1. Choose a sofic approximation σn : Z → Sym(Ec
n). E.g. we can

construct σn by letting φ ∈ Sym(Ec
n) have order |Ec

n | and setting σn(k) = φk . Define
ψ̂ = (σn(1))n→ω ∈ ∏

n→ω Sym(Ec
n). Regard ψ̂ ∈ U((1 − p)M(1 − p)), and equip

(1−p)M(1−p)with the trace τ1−p(x) = 1
τ(1−p) τ (x) (this trace iswell defined as 1−p 	= 0).

Then, for every k ∈ Z:

τ1−p(ψ̂
k) = lim

n→ω

1

|Ec
n |

|{ j ∈ Ec
n : σn(k)( j) 	= j}|

= lim
n→ω

dHamm(σn(1)
k, 1) = δk=0 = 〈λ(k)δ0, δ0〉,

where λ : Z → U(�2(Z)) is the left regular representation. By Corollary 1, this implies that
we have an injective, normal ∗-homomorphism


 : W ∗(λ(Z)) → U((1 − p)M(1 − p))

satisfying 
(λ(k)) = ψ̂k . Since normal ∗-homomorphisms are WOT continuous on the unit
ball,

WOT − lim
k→∞ ψ̂k = 
(WOT − lim

k→∞ λ(k)) = 0.

Set ψn = idEn

⊔
σn(1), and ψ = (ψn)n→ω = p + ψ̂ . Note that ψ̂ ∈ U((1− p)M(1− p))

and thus ψ̂ p = 0 = ψ̂ p. We now compute:

WOT − lim
n→∞ ψk = WOT − lim

n→∞ p + ψ̂k = p,

as required. Being a von Neumann algebra, L∞(L) is the norm closure of the linear span of
its projections [13, Proposition 13.3 (i)], proving the “in particular" part. ��

We have moreover that any automorphism of S preserves L∞-functions on the Loeb
measure space.

Lemma 3 For any� ∈ Aut(S)wehave that�∗(L∞(L)) = L∞(L).Moreover,�∗ preserves
the trace on L∞(L).

Proof The fact that �∗ preserves the trace on L∞(L) is contained in Lemma 1. So we focus
on proving that�∗(L∞(L)) ⊆ L∞(L). Fix a projection p ∈ L∞(L). FromLemma 2, choose
ψ ∈ S such that ψn → p weakly. Since � is pointwise inner by [23], we see that �(ψ) =
φψφ∗ for some φ ∈ S. Now we compute �∗(p) = �∗(limWOT

n→∞ ψn) = limWOT
n→∞ �(ψn) =

limWOT
n→∞ �(ψ)n = limWOT

n→∞ φψnφ∗ = φ(limWOT
n→∞ ψn)φ∗ = φ pφ∗ ∈ L∞(L) as required.

Since L∞(L) is the norm closed linear span of its projections [13, Proposition 13.3], we
have that �∗(L∞(L)) ⊆ L∞(L). Repeating the argument with � replaced by �−1 proves
the opposite inclusion. ��

Note that S acts naturally on L∞(L) by

φ · f = φ f φ−1.

Observe that ifφ = (φn)n→ω ∈ S and f = ( fn)n→ω ∈ L∞(L), thenφ· f = (φn fnφ−1
n )n→ω.

If we identify a diagonal matrix in D ∈ Mn(C)with an element of f ∈ �∞(n), then φnDφ−1
n

corresponds to f ◦ φ−1
n . So we can think of this action as being induced from the natural

action of Symn on {1, . . . , n}. The last piece of the argument involves identifying a useful
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On sofic approximations... Page 7 of 11 38

invariant of automorphic equivalence of embeddings, for which we need some terminology.
If H is a subgroup of S, then we say that H acts ergodically on L∞(L) if

{ f ∈ L∞(L) | h f h−1 = f for allh ∈ H} = C1.

Given a subgroup H of S we let

H ′ ∩ S = {φ ∈ S | φh = hφ for allh ∈ H}.
We say that a sofic approximation σn : G → Symn has ergodic commutant with respect to
ω if σ(G)′ ∩ S acts ergodically on L∞(L), where σ(g) = (σn(g))n→ω. We will often drop
the “with respect to ω" if it is clear from context.

Lemma 4 Let π1, π2 : G → S be two sofic embeddings of G such that there exists � ∈
Aut(S) satisfying π1 = � ◦ π2. Then π1(G)′ ∩ S acts ergodically on L∞(L) if and only if
π2(G)′ ∩ S acts ergodically on L∞(L).

Proof Assume that π1(G)′ ∩S acts ergodically on L∞(L). Suppose f ∈ L∞(L) is such that
φ f φ∗ = f for all φ ∈ π2(G)′ ∩ S. Then we have �(φ)�∗( f )�(φ)∗ = �∗( f ). By Lemma
3 we have that �∗( f ) ∈ L∞(L). By ergodicity of the action of π1(G)′ ∩ S, this means that
�∗( f ) = λ1 for some constant λ. Since �∗ is a von Neumann algebra automorphism, this
implies that f = λ1. The reverse implication follows by replacing � with �−1. ��

We collect two more results due to Pǎunescu (adapting work of Kerr-Li) that are crucial.

Lemma 5 (Theorem 2.13 in [24], following up on Theorem 5.8 of [20]) If G is an initially
subamenable group, then there exists a sofic embedding π : G → S such that π(G)′ ∩ S
acts ergodically on L∞(L).

Lemma 6 (Theorem 2.10 in [24] combined with Theorem 2 of [15]) If G is a non amenable
sofic group, then there exists a sofic embedding π : G → S such that π(G)′ ∩ S does not
act ergodically on L∞(L).

Proof Using two non conjugate sofic embeddings from Theorem 2 of [15], one takes a non
trivial convex combination (in the sense of [24]) to obtain an embedding π : G → S such
that π(G)′ ∩ S does not act ergodically on L∞(L) by Theorem 2.10 of [24]. ��

Definition 3 Let G be a sofic group. Say that it satisfies the generalized Elek–Szabo property
if for any two embeddings π1, π2 : G → S, there exists� ∈ Aut(S) satisfying�◦π1 = π2.

We are now ready to prove the main result.

Theorem 2 Let G be a sofic group that is initially subamenable. Then G satisfies the gener-
alized Elek–Szabo property if and only if G is amenable.

Proof If G is amenable, this follows from Theorem 2 in [15]. Conversely, if G is initially
subamenable but not amenable, from Lemma 5 there exists a sofic embedding π : G → S
such that π(G)′ ∩S acts ergodically on L∞(L). Moreover, from Lemma 6 there exists a sofic
embedding ρ : G → S such that ρ(G)′ ∩ S does not act ergodically on L∞(L). These two
embeddings cannot be automorphically conjugate from Lemma 4. ��
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4 Automorphic conjugacy in the context of multiples

In this section, we prove a generalization of Theorem2wherewe are allowed to takemultiples
of our sofic embeddings. We thank the referee for the suggestion to consider and include
results in this general setting.

Definition 4 Let G be a group and let σ j : G → Symd j
for j = 1, 2 be maps. Define their

direct sum

σ1 ⊕ σ2 : G → Symd1+d2

by

(σ1 ⊕ σ2)(g)( j) =
{

σ1(g)( j), if1 ≤ j ≤ d1
σ2(g)( j − d1) + d1, ifd1 + 1 ≤ j ≤ d1 + d2.

We use σ⊕r for the direct sum of σ with itself r -times.

Note that if (σn, j )n, j = 1, 2 are sofic approximations, then so is σn,1 ⊕ σn,2. We recall the
equivalence between sofic approximations introduced by Pǎunescu. Let σn, j : G → Symkn, j

be sofic approximations and ω a free ultrafilter on N. In [24], Pǎunescu defined that σn,1 and
σn,2 to be equivalent if there are nonnegative integersqn, j , j = 1, 2 so that kn,1qn,1 = kn,2qn,2

and a π ∈ ∏
n→ω(Symkn,1qn,1

, dkn,1qn,1) with

π(σ
⊕qn,1
n,1 (g))n→ωπ−1 = (σ

⊕qn,2
n,2 (g))n→ω, for allg ∈ G.

In [24] it was also shown how to embed the space of equivalence classes as a closed convex
subset of a Banach space.Wewill not go into the precise definition of the convex combination
of two sofic approximations and refer the reader to [24] for the definitions. For a sofic
approximation σn : G → Symkn , we use [(σn)n] for the equivalence class of (σn)n under
this equivalence. We already implicitly used this convex structure in the proof of Theorem 2.
Since we need to use this structure in a more explicit manner in the context of multiples, we
highlight the main features we used about it in the proof of Theorem 2 (which we will once
again need in this more general setting of multiples):

• if G is a sofic group, then the above space of equivalence classes reduces to a single
point if and only if G is amenable (this is a consequence of the uniqueness theorems of
Kerr-Li, Elek–Szabo, see [24, Observation 1.9]),

• as a consequence of the above, if G is a nonamenable sofic group, then there is a sofic
approximation which is not extremal in Pǎunescu’s convex structure, (take a nontrivial
convex combination of two inequivalent sofic approximations),

• if σ is a sofic approximation with ergodic commutant, then [σ ] is extremal [24, Theorem
2.10].

For k ∈ N, we use tk : G → Symk for the trivial homomorphism.

Lemma 7 Let σn : G → Symkn be a sofic approximation. Let rn be a sequence of integers
such that rn

kn+rn
→n→∞ 0. Let σ̃n = σn ⊕ trn . Fix a free ultrafiler ω on N. Then (σn)n has

ergodic commutant with respect to ω if and only if (̃σn)n has ergodic commutant with respect
to ω.

Proof Set

S =
∏

n→ω

(Symkn , dkn ),

123
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S̃ =
∏

n→ω

(Symkn+rn , dkn+rn ).

Letσ : G → S, σ̃ : G → S̃ be the homomorphisms induced from (σn)n , (̃σn)n . If (ψn)n→ω ∈
σ(G)′ ∩ S, then (ψn ⊕ trn )n→ω ∈ σ̃ (G)′ ∩ S. Conversely, if (φn)n→ω ∈ σ̃ (G)′ ∩ S̃, set
En = φ−1

n ({1, . . . , kn}) ∩ {1, . . . , kn}. Since rn
kn+rn

→n→∞ 0, we have that |En |
kn

→ 1. For
each n, choose an arbitrary bijection

αn : {1, . . . , kn}\En → {1, . . . , kn}\[φn({1, . . . , kn}) ∩ {1, . . . , kn}],
and set φ̂n = φn

∣
∣
En

� αn . It is then direct to check from the fact that (φn)n→ω ∈ σ̃ (G)′ ∩ S̃
that (φ̂n)n→ω ∈ σ(G)′ ∩ S. Moreover these operations are inverse to each other (remember
in S we mod out by sequences whose distance to each other tends to 0 along ω).

From these observations, the lemma can be proved as follows. Set

L∞(L) =
∏

n→ω

Dkn (C),

L∞(L̃) =
∏

n→ω

Dkn+rn(C).

If f = ( fn)n→ω ∈ L∞(L) is fixed by σ(G)′ ∩ S and not a scalar, then ( fn1{1,...,kn })n→ω

is fixed by σ̃ (G)′ ∩ S̃ and not a scalar. Conversely, if f̃ = ( f̃n)n→ω ∈ L∞(L̃) is fixed by
σ̃ (G)′ ∩ S̃ and not a scalar, then ( f̃n |{1,...,kn})n→ω is fixed by σ(G)′ ∩ S and not a scalar. ��
Proposition 1 Let G be a countable group and suppose that σn, j : G → Sym(mn, j ) are sofic
approximations for j = 1, 2. Fix ω ∈ β(N)\N and for j = 1, 2 define sofic embeddings σ j

of G by σ j (g) = (σn, j (g))n→ω. Suppose that σ1 has ergodic commutant and that [σ2] is not
extremal in Pǎunescu’s convex structure.

Then σ1, σ2 do not have automorphically conjugate multiples in the following sense. Sup-
pose we have (mn, j )

∞
n=1, (qn, j )

∞
n=1, (rn, j )

∞
n=1 sequences of integers for j = 1, 2 satisfying:

qn,1mn,1 + rn,1 = qn,2mn,2 + rn,2 for alln, and

lim
n→∞

rn, j

qn, jmn, j + rn, j
= 0, for j = 1, 2.

For j = 1, 2 define sofic approximations

φn, j : G → Sym(kn)

by φn, j = σ
⊕qn, j
n, j ⊕ trn, j . For j = 1, 2 set φ j (g) = (φn, j (g))n→ω. Then φ1, φ2 are not

automorphically conjugate.

Proof By Lemma 4, it suffices to show φ1 has ergodic commutant and that φ2 does not. It
follows from [24, Proposition 2.8] and Lemma 7 that φ1 has ergodic commutant. Set

S ′
2 =

∏

k→ω

(Symqn,2mn,2
).

and define φ′
2 : G → S ′

2 by φ′
2(g) = (σ

⊕qn,2
n,2 (g))n→ω. Then φ′

2 and σ2 are equivalent in
Pǎunescu’s convex structure, so φ′

2 is also not extremal in this convex structure. By [24,
Theorem 2.10], it follows that φ′

2 does not have ergodic commutant. In particular, by Lemma
7 we have that φ2 does not have ergodic commutant. ��

123
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Corollary 2 Let G be an nonamenable group which is initially subamenable. Fix a free ultra-
filter ω ∈ βN\N. Then there are sofic approximations σn, j : G → Symmn, j

, j = 1, 2 so that
if qn, j , rn, j are any sequences of integers with qn,1mn,1 + rn,1 = qn,2mn,2 + rn,2 and

lim
n→∞

rn, j

qn, j kn, j + rn, j
= 0, for j = 1, 2

then settingφ j = (σ
⊕qn, j
n, j ⊕trn, j )n→ω we have thatφ1, φ2 are not automorphically conjugate.

Proof Since G is intially subamenable, from Lemma 5 we can choose a sofic approix-
mation σ1 = (σn,1 : G → Symmn,1

)n as in the statement of the corollary so that that
g �→ (σn,1(g))n→ω has ergodic commutant. Since G is not amenable, by taking nontriv-
ial convex combinations we can choose σ2 = (σn,2 : G → Symmn,2

)n as in the statement of
the corollary so that g �→ (σn,2(g))n→ω is not extremal in Pǎunescu’s convex structure. The
corollary now follows from Proposition 1. ��
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