

1 Title: The mRNACalc webserver accounts for the hypochromicity of modified
2 nucleosides and enables the accurate quantification of nucleoside-modified mRNA.

3

4 Authors: Esteban Finol^{*1}, Sarah E. Krul², Sean J. Hoehn², Xudong Lyu¹, Carlos E.
5 Crespo-Hernández^{*2}.

6 These authors contributed equally: Sarah E. Krul and Sean J. Hoehn.

7 * To whom correspondence should be addressed.

8 ¹Programme in Emerging Infectious Diseases, Duke-NUS Medical School, National
9 University of Singapore, Singapore, 169857, Singapore.

10 ²Department of Chemistry, Case Western Reserve University, Cleveland, Ohio,
11 44106, United States of America.

12 E-mail address: esteban.finol@duke-nus.edu.sg ; carlos.crespo@case.edu

13 **Abstract:**

14 Nucleoside-modified mRNA technologies necessarily incorporate N1-
15 methylpseudouridine into the mRNA molecules to prevent the over-stimulation of
16 cytoplasmic RNA sensors. Despite this modification, mRNA concentrations remain
17 mostly determined through the measurement of UV absorbance at 260 nm wavelength
18 (A_{260}). Herein, we report that the N1-methylpseudouridine absorbs approximately 40%
19 less UV light at 260 nm than uridine, and its incorporation into mRNAs leads to the
20 under-estimation of nucleoside-modified mRNA concentrations, with 5-15% error, in
21 an mRNA sequence dependent manner. We therefore examined the RNA
22 quantification methods and developed the mRNACalc webserver. It accounts for the
23 molar absorption coefficient of modified nucleotides at 260 nm wavelength, the RNA
24 composition of the mRNA, and the A_{260} of the mRNA sample to enable accurate
25 quantification of nucleoside-modified mRNAs. The webserver is freely available at
26 <https://www.mrnacalc.com>.

27 **Introduction:**

28 The therapeutic use of messenger RNA (mRNA) has sparked great optimism in the
29 development of novel vaccines and therapeutics against a myriad of infectious or yet
30 incurable diseases.¹ The mRNA technology enables the production of antigenic,
31 functional, and/or therapeutic proteins by introducing mRNA into the human body and
32 cells.² Since mRNAs act in the cytoplasm transiently, they do not bear any risk of
33 integration into the host cell genome. Most importantly, the mRNA technology enables
34 rapid, cost-efficient, and scalable production, which is free of cellular (cell cultures) or
35 animal materials.³ Thus, mRNA technologies facilitate manufacturing and allow for a
36 rapid response to emerging infectious diseases, as emphatically underscored by the
37 rapid rollout of COVID-19 mRNA vaccines in many parts of the world. Modified
38 nucleosides, such as pseudouridine (Ψ), N1-methylpseudouridine ($m^1\Psi$), and 5-
39 methylcytidine (m^5C), are often incorporated into the mRNA molecules. Such
40 modifications reduce stimulation of cytoplasmic RNA sensors, such as toll-like
41 receptors 3 and 7, for improved safety profiles and enhanced mRNA translation.^{4,5}
42 However, how modified nucleosides affect mRNA concentration measurements and
43 potentially confound pre-clinical dosing, efficacy, and toxicology studies, which could
44 make or break further clinical development of any therapeutic, remains undefined.

45 The determination of RNA concentration often relies on measurements of its UV
46 absorbance at 260 nm wavelength (A_{260}) and the implementation of the Beer–Lambert
47 law.⁶ The accuracy of these measurements is scattered by the variable hypochromicity
48 of RNA due to its sequence-dependent folding. The molar absorption coefficient (MAC
49 or extinction coefficient, ϵ) of a folded RNA at 260 nm (ϵ_{260}) is reduced as compared
50 to its unfolded state.⁷ This difference is buffer- and concentration-dependent and
51 arises from changes in the chemical environment of the nucleobases – the main

52 chromophore, due to base-pairing, stacking, intermolecular interactions, and other
53 conformational changes. Considering these variabilities, a rough estimation for the
54 MAC₂₆₀ of any single stranded RNA (ssRNA), 40 µg/ml per absorbance unit, is
55 extensively used and its associated ±10–20 % error in the estimation of RNA
56 concentration is widely accepted.⁶ This error range may suffice to assess dose-
57 response for mRNA therapeutics across several orders of magnitude *in cellula* or *in*
58 *vivo* experiments. Yet it would be valuable to know concentrations at higher accuracy
59 for the development of mRNA technologies. Our particular concern is in
60 measurements of self-amplifying RNAs (saRNA) and nucleoside-modified mRNAs.
61 The logarithmic amplification of saRNA can convert a 20 % accepted error in RNA
62 concentration into several-fold differences in dose-response between one experiment
63 and the subsequent replicates. The chemical modifications on the nucleobases of
64 mRNA can also induce profound changes in the mRNA MAC, hindering the accurate
65 quantification of nucleoside-modified mRNA concentrations.

66 To attain greater accuracy in RNA quantification, RNA molecules are hydrolysed prior
67 to UV absorbance determination using a combination of thermal and alkaline
68 hydrolysis.^{6,8} The RNA hydrolysis shifts the hypochromic folded state of the RNA to
69 the hyperchromic state of the single monophosphate nucleotides.⁹ Since the precise
70 MAC of the four standard nucleotides in aqueous buffered solution is known, the molar
71 absorption of any hydrolysed mRNA can be calculated as the sum of the molar
72 absorption of its nucleotide compositions. Thus, upon the A₂₆₀ determination, the RNA
73 concentration can be quantified with an error of ~ 4 % using these methods.⁶ The
74 incorporation of modified nucleosides can alter the RNA molar absorption and
75 increase the error of the measurements in an RNA sequence-dependent manner.
76 Other non-UV-spectroscopic methods relying on the unspecific RNA binding of

77 fluorophores for the determination of RNA concentration may help to overcome any
78 change in the MAC of modified-nucleoside mRNA. However, the impact of RNA
79 modifications on the binding affinity of these fluorophores also remains unknown.

80 Herein, we report our effort to revisit and determine the MAC of modified nucleosides
81 (Ψ , $m^1\Psi$, and m^5C). We also examined three different methods for RNA hydrolysis and
82 provided them along with the mRNACalc webserver. This web tool incorporates the
83 most recently revised MAC₂₆₀ for standard, modified, and mRNA capping nucleosides,
84 allowing the accurate determination of standard and nucleoside-modified mRNAs
85 using UV spectroscopy.

86 **Results:**

87 To assess the impact of chemical modifications on the spectrophotometric parameters
88 of pyrimidine nucleosides for mRNA quantification, we determined and compared the
89 molar UV absorption curves of standard nucleosides (U and C) and the modified
90 nucleosides that have recently been employed in nucleoside-modified mRNA
91 technologies (Ψ , $m^1\Psi$, and m^5C). For the cytidine to 5-methylcytidine comparisons, a
92 shift of +7 nm in the peak maximum ($\Delta\lambda_{\max}$) was observed with a 20.8 % reduction in
93 the ϵ_{260} for the m^5C nucleoside (Figure 1A and 1B). For the Ψ and $m^1\Psi$ curves, a
94 similar shift was detected ($\Delta\lambda_{\max} = +9$ nm in $m^1\Psi$, Figure 1C), with a reduced molar
95 absorption at 260 nm for $m^1\Psi$ ($\Delta\epsilon_{260} = -22.8$ %). More importantly, $m^1\Psi$ is hypochromic
96 as compared to uridine at λ_{\max} ($\Delta\epsilon_{\max} = -21$ %) and, due to the λ_{\max} shift, $m^1\Psi$ absorbs
97 39.8 % less than uridine at 260 nm (Figure 1D), suggesting that $m^1\Psi$ -incorporated
98 mRNAs can have reduced molar absorption coefficients.

99 To assess whether the complete U-to- $m^1\Psi$ substitution alter the UV absorbance of an
100 mRNA, the same mRNA was transcribed using either U, Ψ , or $m^1\Psi$. These mRNA also
101 encoded a dimeric-Broccoli (dBroc) aptamer in their 3' untranslated region (Figure 2A).
102 Once the DFHBI-1T fluorophore was bound to the G-quadruplex in the Broccoli
103 aptamer, the mRNA emitted green light upon excitation.¹⁵ We also confirmed that the
104 brightness, melting point, and affinity of the DFHBI-1T-Broccoli complex are not
105 significantly perturbed by the U-to- Ψ or U-to- $m^1\Psi$ substitutions (Table S1 and Figure
106 S1). After normalizing the UV absorbance (A_{260}) of each mRNA by its corresponding
107 fluorescence (F_{507}), it was observed that in practice the relative UV absorbance of the
108 nucleoside-modified mRNA was significantly reduced as compared to the standard
109 mRNA ($\Delta A_{260} = -10.6$ %, Figure 2B and 2C). This hypochromicity was also

110 independently observed in two additional mRNAs with either higher or lower $m^1\Psi$
111 composition ($\Delta A_{260} = -11.8\%$, and -6.7% , respectively in Figure 2C). These findings
112 confirmed that $m^1\Psi$ -mRNAs are hypochromic and their hypochromicity is dependent
113 on the nucleoside composition. To correct for the observed hypochromicity in
114 nucleoside-modified mRNA, we built the mRNACalc software that calculates the
115 expected MAC₂₆₀ of a hydrolysed mRNA. It considers its nucleotide composition and
116 the MAC of standard and modified nucleosides, including the nucleosides in the mRNA
117 cap (Documentation in Text S1 and Tables S2-S6). We used this software to predict
118 MAC₂₆₀ for the different U-, Ψ -, and $m^1\Psi$ -dBroc-mRNAs in Figure 2C and plotted their
119 Ψ -/U-mRNA and $m^1\Psi$ -/U-mRNA MAC₂₆₀ ratio against the experimentally determined
120 normalized A_{260}/F_{507} ratio (Figure 2D). The observed linearity in this graph
121 corresponds to the expected linearity in the Beer-Lambert law for standard and
122 modified nucleosides and its implementation in ssRNAs, such as mRNA.

123 To enable accurate measurement of nucleoside-modified mRNA, we also assessed
124 different RNA hydrolysis methods. The modern analytical use of alkaline hydrolysis of
125 RNA is known since 1922, when Steudel and Peiser demonstrated that 1 M NaOH
126 hydrolysed yeast RNA, whereas thymus DNA resisted the NaOH hydrolysis.¹⁷ The
127 alkali-promoted transesterification of RNA occurs due to the nucleophilic attack of the
128 2'-OH in the ribose to the 3',5'-phosphodiester bond, explaining the alkali-resistance
129 of the 2'-deoxyribonucleotides (Figure 3A).¹⁸ This reaction is further catalysed with the
130 introduction of heat. However, the combination of thermal and alkaline hydrolysis, e.g.,
131 1 M NaOH at 95 °C, also catalyses the deamination of cytosine to uridine in a small
132 percentage of residues.^{19,20} Thus, a compromise between the two methods is often
133 applied. In our hands, three of such protocols showed a similar increase in A_{260} upon
134 hydrolysis of yeast RNA – a historical standard sample for these methods (Figure 3B).

135 One of these methods (0.8 M NaOH at 37 °C) was also applied on U- and m¹Ψ-mRNAs
136 (Figure 3C), the use of RNA hydrolysis indeed increased the A₂₆₀ of both types of
137 mRNA, confirming the importance of performing RNA hydrolysis to remove the effect
138 of RNA folding on the mRNA UV absorption and therefore allow a more accurate
139 determination of mRNA concentrations. We also applied the RNA hydrolysis methods
140 on U- and m¹Ψ-mRNAs and determined their concentration by measuring their A₂₆₀
141 and using the mRNACalc software to correct for hypochromicity. The concentration of
142 these mRNAs was then reassessed by performing direct A₂₆₀ measurements, without
143 prior RNA hydrolysis and implementing the extensively used MAC₂₆₀ for ssRNA (40
144 µg/ml per absorbance unit), or by using a commercially available fluorescence-based
145 assay. We could observe that both methods differentially estimated the nucleoside-
146 modified and standard mRNA concentrations, with an underestimation of the m¹Ψ-
147 mRNA concentration (Figure S2).

148 **Discussion:**

149 Pseudouridine is an isomer of uridine – the standard nucleoside in RNA.
150 Pseudouridine, as opposed to other nucleosides, is a carbon-carbon ribofuranosyl
151 nucleoside, i.e., the uracil nucleobase is linked to the ribose through its fifth carbon,
152 instead of an N1-linkage.¹⁰ This unique arrangement places the N1-imino group
153 toward the so-called “C-H” edge of the pyrimidine ring and confers additional
154 properties to this edge in pseudouridine. This imino hydrogen proton is susceptible to
155 hydrogen bonding, chemical exchange, and chemical modifications such as N1-
156 methylation. Thus, the N1-methylpseudouridine, as well as the m⁵C, represents a
157 modification of the C-H edge of the pyrimidine nucleobase. The influence of a 5-methyl
158 substituent on the UV molar absorption of pyrimidine rings is well known since the
159 1940's when Sister Miriam Michael Stimson showed that a similar 5-methyl

160 modification also differentiates uridine from thymidine and provokes a subtle reduction
161 in molar absorbance ($\Delta\text{MAC}_{\text{max}} = -3\%$) and a shift of the peak maximum ($\Delta\lambda_{\text{max}} = +5$
162 nm) to a longer wavelength – a bathochromic shift.^{11–14} In combination, these two
163 effects provoke a substantial MAC_{260} reduction for the thymidine nucleoside (ΔMAC_{260}
164 = -11.4%). In our study, similar differences were observed for the C-to- m^5C and Ψ -to-
165 $\text{m}^1\Psi$ comparisons, with a more pronounced MAC_{260} difference for the U-to- $\text{m}^1\Psi$
166 comparison. Thus, the substitution of uridine by $\text{m}^1\Psi$ in mRNA technologies can
167 substantially modify the spectrophotometric properties of the mRNA.

168 In principle, the modified nucleosides may also promote mRNA folding and reduce its
169 UV absorption. This is particularly relevant for the pseudouridine modification. Its N1-
170 hydrogen can engage in additional hydrogen bonds, promoting and stabilizing RNA
171 folding. For instance, the U-to- Ψ substitution in tRNA stabilizes the folded structure
172 that is essential for translation.¹⁶ However, the $\text{m}^1\Psi$ nucleobase lacks this additional
173 hydrogen bonding capability, and it is expected to have little or no effect on the RNA
174 folding of less structured RNA molecules such as mRNAs. Considering that both Ψ -
175 and $\text{m}^1\Psi$ -mRNAs followed the anticipated hypochromicity that is associated with the
176 modified nucleosides' hypochromicity at 260 nm wavelength (Figure 1) and their
177 abundance in the mRNA (Figure 2C), rather than the expected distinct contribution of
178 Ψ and $\text{m}^1\Psi$ to RNA folding, we can conclude that the observed reduction in the UV
179 absorption of nucleoside-modified mRNA is mainly determined by the nucleobase
180 composition and the intrinsic MAC of the nucleosides in the purified mRNAs.
181 Importantly, the UV absorption spectrum of the $\text{m}^1\Psi$ -mRNA also depicted a broad
182 absorption peak and a bathochromic shift, which brings additional implications for the
183 assessment of the RNA sample purity (Figure 2B and Text S2). These findings indicate

184 that, for accurate determination of nucleoside-modified mRNA concentrations and
185 proper interpretation of dose-ranging preclinical studies, the reported UV
186 spectroscopic differences must be accounted for. Otherwise, nucleoside-modified
187 mRNA concentrations may be underestimated by 5 to 15 %, depending on the
188 proportion of $m^1\Psi$ in the mRNA composition.

189 Considering that traditional methods underestimate the nucleoside-modified mRNA
190 concentrations and to ease the implementation of the reported UV absorption
191 parameters, we provide the mRNACalc software as an open-source webserver to
192 calculate the MAC_{260} for nucleoside-modified mRNAs. It accounts for the
193 hypochromicity of modified nucleosides as well as for the nucleoside composition of
194 the mRNA, including the mRNA cap. Once the RNA sequence, the A_{260} , and the RNA
195 stock volume values are provided as input, the mRNACalc webserver calculates the
196 RNA stock concentration in nM and ng/ μ l and the total RNA mass in μ mole and μ g.
197 The webserver also includes the revisited experimental protocols and a workflow that
198 implements a linear regression model from multiple measurements at serial dilutions
199 (Figure 4). This workflow aims at reducing the impact of sample handling variation.
200 Hence, the mRNACalc webserver represents a freely available and all-inclusive tool
201 for the determination of nucleoside-modified mRNA concentrations using UV
202 spectroscopy.

203

204 **Materials and Methods:**

205 The Beer-Lambert experiments

206 Pseudouridine (≥ 98% purity), 5-methylcytidine (≥ 99% purity), Cytidine (99% purity)
207 and Uridine (99% purity) were purchased from Sigma-Aldrich. N1-
208 methylpseudouridine (>95% purity) was purchased from Biosynth Carbosynth. They
209 were used as received. Phosphate buffer solutions with a total phosphate
210 concentration of 16 mM from monosodium and disodium phosphate salts dissociated
211 in ultrapure water (Milli-pore) were freshly prepared on the day of each experiment.
212 The pH of the solution was adjusted using 0.1 M solutions of NaOH and HCl to the
213 desired pH of 7.4 (± 0.1 pH units). Steady-state absorption was recorded using a Cary
214 100 spectrometer. Serial dilutions of known concentration were carried out such that
215 the absorbance reading at the respective lambda maximum (local maximum
216 absorbance) remained below 1.0, within the linear range of the instrument. The MACs
217 were experimentally determined using the slope from the linear regression from
218 plotting absorbance versus concentration. The correlation constant for the linear
219 regression analysis of the Beer-Lambert's Law data for determining molar absorption
220 constants was >0.9999 showing a strong linear relationship.

221 mRNA *in vitro* transcription and purification

222 The Plasmid DNA template (pUCIDT plasmid) was grown in DH5 alpha *E. coli* (New
223 England Biolabs, Inc.) in 300 ml of Luria-Bertani broth supplemented with Kanamycin
224 (50 µg/ml) and a maxi preparation was performed using the QIAGEN® Plasmid Plus
225 Maxi Kit following manufacturer instructions. The plasmid-encoded a T7 promoter
226 followed by the mCherry gene with a degradation tag (1449 nucleotides) plus the 3'
227 and 5' untranslated regions (UTR) of the BNT162b2 mRNA vaccine (541 nucleotides).

228 The double broccoli aptamer was encoded within the poli-adenine region in the 3'UTR.
229 The plasmid was linearized by EcoRV restriction enzyme digestion at the end of the 3'
230 UTR.

231 A standard T7 transcription reaction included 30 mM Tris-HCl, pH 7.9, 2 mM
232 spermidine, 30 mM MgCl₂, 5 mM NaCl, 10 mM DTT, 50 µg/ml BSA (New England
233 Biolabs, Inc.), 0.005% Triton X-100, 2% polyethylene glycol (PEG8000), 5 mM of each
234 triphosphate ribonucleotide (standard nucleotides were purchased from Jena
235 Bioscience GmBH and pseudouridine and N1-methylpseudouridine from BOC
236 sciences), 2 µM linearized plasmid DNA template, 3.5 µM T7 RNA Polymerase (in
237 house produced and purified) and 0.0025 units of *E. coli* inorganic PPase (New
238 England Biolabs, Inc). All reagents were purchased from Sigma-Aldrich, unless
239 otherwise stated. The reactions were incubated at 37 °C for 2.5 hours and stopped by
240 the addition of 500 mM EDTA, pH 8 to a final concentration of 35 mM.

241 The mRNA was purified using anion exchange chromatography. A PRP-X600 Anion
242 exchange column (Hamilton Company, Inc.) was equilibrated in Buffer A (85:15 100
243 mM TRIS, pH 8/Acetonitrile). RNA samples were loaded onto the column at a flow rate
244 of 3 ml/min and eluted with a 40-minute gradient of 0-40% buffer B (85:15 100 mM
245 TRIS 2.5 M LiCl, pH 8/Acetonitrile). Fractions containing the mRNA were collected and
246 the mRNA molecules were precipitated using standard Butanol extraction.²¹ The purity
247 of the mRNA preparation was assessed using high-resolution automated
248 electrophoresis in the Agilent 2100 Bioanalyzer system using the Bioanalyzer RNA
249 6000 pico assay (Agilent Technologies, Inc).

250 Determination of the mRNA UV absorption spectrum

251 To determine the UV absorption spectrum of mRNAs, the mRNAs stocks were diluted
252 to approximately 25 nM into a buffer containing 40 mM HEPES pH 7.4, 5 mM MgCl₂,
253 and 100 mM KCl to a final volume of 2 ml. Five independent mRNA samples were
254 prepared per mRNA set (U-, Ψ -, and $m^1\Psi$ -mRNA). The UV absorption spectra were
255 recorded for each mRNA sample using in a UV-3600i plus UV-VIS spectrophotometer
256 (Shimadzu Corp.).

257 Excitation-emission experiments on the DFHBI-1T bound mRNAs

258 After UV absorption determination, the mRNA samples were bound to the DFHBI-1T
259 fluorophore, by adding 100 μ M DFHBI-1T, 100% DMSO to a 500 nM concentration
260 into the 2-ml mRNA samples. Fluorescence was measured using a Fluorolog-3
261 spectrofluorometer (Horiba Scientific) using the excitation and emission wavelengths
262 commonly used for DFHBI-1T (Excitation: 472 nm, emission: 507 nm).¹⁵

263 Determination of the relative UV absorbance (A_{260})

264 The A_{260}/F_{507} ratios were calculated for each mRNA sample. The mean A_{260}/F_{507}
265 values for U-, Ψ -, and $m^1\Psi$ -mRNA were calculated. The A_{260}/F_{507} values of each
266 sample were normalized using the mean A_{260}/F_{507} value from the U-mRNA as a
267 reference and they were plotted in a dot plot. The t-tests were applied to compare the
268 mean A_{260}/F_{507} values across each pair of mRNA sets, using a p-value of 0.005 as a
269 cut-off of significance.

270 Methods of RNA hydrolysis

271 Two methods of RNA hydrolysis were tested in this study. Torula yeast RNA was used
272 as a standard RNA sample (Sigma-Aldrich). The Yeast RNA stock was prepared at
273 1000 μ g/ μ l in water. Thus, after 1/25 dilution, the UV absorbance of this RNA sample

274 would be within the linear range of the instrument (UV-3600i plus UV-VIS
275 spectrophotometer, Shimadzu Corp.).

276 The most extensively used alkaline RNA hydrolysis method involves adding 1 part of
277 RNA and 4 parts of 1 M NaOH and incubating them at 37 °C for 1 hour.²² To test this
278 method, twelve yeast RNA samples were hydrolysed. Every 10 minutes, a sample was
279 neutralised with 4 parts of 1 M HCl and diluted to 1/25 with 16 parts of water. Three
280 UV absorbance measurements were performed on every sample. Similarly, a room
281 temperature variation of this method is often used for overnight RNA hydrolysis.
282 Therefore, twelve RNA samples were hydrolysed and incubated at 20 °C for up to 15
283 hours. Samples were neutralized and diluted hourly followed by three UV absorbance
284 measurements.

285 A second method of thermal hydrolysis at neutral pH was also tested.⁸ To test this
286 method, twelve yeast RNA samples hydrolysed (1 part of RNA in 9 parts of 60 mM
287 Na₂CO₃ pH 8) with an incubation at 95 °C for up to 2 hours. Every 20 minutes, a
288 sample was diluted to 1/25 with 15 parts of water, and three UV absorption
289 measurements were performed on every sample.

290 **Data and code availability**

291 The data that support the findings of this study are available from the corresponding
292 author upon reasonable request. The webserver is available at
293 <https://www.mrnacalc.com>. The website is free and open to all users and there is no
294 login requirement. The html script for the mRNACalc webserver is available under
295 GNU general public licence from <https://github.com/estebanfbfc/mRNACalc>. It can
296 be downloaded free of charge and run locally without internet access.

297 **Acknowledgements**

298 The authors would also like to thank Prof. Eng Eong Ooi for his invaluable advice and
299 generosity throughout this work and Prof. Guillermo C. Bazan for providing access to
300 the UV-Vis and fluorescence spectrometers in his laboratory. This work was supported
301 by the National Medical Research Council of Singapore through an Open Fund - Large
302 Collaborative Grant, granted to Prof. Eng Eong Ooi, and by the National Science
303 Foundation (Grant No. CHE-2246805), granted to Prof. Carlos E. Crespo-Hernández.

304 **Author Contributions**

305 E.F. conceived the study. E.F. and C.E.C-H. supervised the project. E.F. developed
306 the mRNACalc webserver. S.E.K. and S.J.H. performed the Beer-Lambert
307 experiments and prepared the corresponding figure panel. E.F. and X.L. performed
308 the relative absorbance of mRNA experiments and analysed the data. E.F. prepared
309 figures, wrote the initial draft of the manuscript and edited the submitted version of the
310 manuscript with contributions from all the authors.

311 **Declaration of Interests**

312 Authors declare no competing interests.

313 **Keywords**

314 N1-methylpseudouridine, pseudouridine, modified-nucleoside, mRNA, UV absorption.

315 **References**

316 1. Chaudhary, N., Weissman, D., and Whitehead, K.A. (2021). mRNA vaccines for
317 infectious diseases: principles, delivery and clinical translation. *Nat Rev Drug*
318 *Discov* 20, 817–838. 10.1038/s41573-021-00283-5.

319 2. Sahin, U., Karikó, K., and Türeci, Ö. (2014). mRNA-based therapeutics —
320 developing a new class of drugs. *Nat Rev Drug Discov* 13, 759–780.
321 10.1038/nrd4278.

322 3. Webb, C., Ip, S., Bathula, N.V., Popova, P., Soriano, S.K.V., Ly, H.H., Eryilmaz,
323 B., Nguyen Huu, V.A., Broadhead, R., Rabel, M., et al. (2022). Current Status
324 and Future Perspectives on mRNA Drug Manufacturing. *Mol Pharm*,
325 *acs.molpharmaceut.2c00010*. 10.1021/acs.molpharmaceut.2c00010.

326 4. Karikó, K., Muramatsu, H., Welsh, F.A., Ludwig, J., Kato, H., Akira, S., and
327 Weissman, D. (2008). Incorporation of Pseudouridine Into mRNA Yields Superior
328 Nonimmunogenic Vector With Increased Translational Capacity and Biological
329 Stability. *Molecular Therapy* 16, 1833–1840. 10.1038/mt.2008.200.

330 5. Andries, O., Mc Cafferty, S., De Smedt, S.C., Weiss, R., Sanders, N.N., and
331 Kitada, T. (2015). N1-methylpseudouridine-incorporated mRNA outperforms
332 pseudouridine-incorporated mRNA by providing enhanced protein expression
333 and reduced immunogenicity in mammalian cell lines and mice. *Journal of*
334 *Controlled Release* 217, 337–344. 10.1016/j.jconrel.2015.08.051.

335 6. Cavaluzzi, M.J., and Borer, P.N. (2004). Revised UV extinction coefficients for
336 nucleoside-5'-monophosphates and unpaired DNA and RNA. *Nucleic Acids Res*
337 32, e13. 10.1093/nar/gnh015.

338 7. Tinoco, I.Jr. (1960). Hypochromism in Polynucleotides. *J. Am. Chem. Soc.* 82,
339 4785–4790. 10.1021/ja01503a007.

340 8. Wilson, S.C., Cohen, D.T., Wang, X.C., and Hammond, M.C. (2014). A neutral
341 pH thermal hydrolysis method for quantification of structured RNAs. *RNA* 20,
342 1153–1160. 10.1261/rna.045856.114.

343 9. Doty, P., Boedtker, H., Fresco, J.R., Haselkorn, R., and Litt, M. (1959).
344 Secondary structure in ribonucleic acids*. *Proceedings of the National Academy*
345 *of Sciences* 45, 482–499. 10.1073/pnas.45.4.482.

346 10. Cohn, W.E. (1960). Pseudouridine, a Carbon-Carbon Linked Ribonucleoside in
347 Ribonucleic Acids: Isolation, Structure, and Chemical Characteristics. *Journal of*
348 *Biological Chemistry* 235, 1488–1498. 10.1016/S0021-9258(18)69432-3.

349 11. Stimson, M.Michael. (1949). The Ultraviolet Absorption Spectra of Some
350 Pyrimidines. Chemical Structure and the Effect of pH on the Position of λ_{max} . *J.*
351 *Am. Chem. Soc.* 71, 1470–1474. 10.1021/ja01172a093.

352 12. Sharonov, A., Gustavsson, T., Marguet, S., and Markovitsi, D. (2003).
353 Photophysical properties of 5-methylcytidine. *Photochem Photobiol Sci* 2, 362–
354 364. 10.1039/b212664h.

355 13. Shugar, D., and Fox, J.J. (1952). Spectrophotometric studies of nucleic acid
356 derivatives and related compounds as a function of pH: I. Pyrimidines.
357 *Biochimica et Biophysica Acta* 9, 199–218. 10.1016/0006-3002(52)90147-9.

358 14. Rabczenko, A., and Shugar, D. (1971). Studies on the conformation of
359 nucleosides, dinucleoside monophosphates and homopolynucleotides containing
360 uracil or thymine base residues, and ribose, deoxyribose or 2'-O-methylribose.
361 *Acta Biochim Pol* 18, 387–402.

362 15. Filonov, G.S., Moon, J.D., Svensen, N., and Jaffrey, S.R. (2014). Broccoli: Rapid
363 Selection of an RNA Mimic of Green Fluorescent Protein by Fluorescence-Based
364 Selection and Directed Evolution. *J. Am. Chem. Soc.* 136, 16299–16308.
365 10.1021/ja508478x.

366 16. Lorenz, C., Lünse, C.E., and Mörl, M. (2017). tRNA Modifications: Impact on
367 Structure and Thermal Adaptation. *Biomolecules* 7, 35. 10.3390/biom7020035.

368 17. Steudel, H., and Peiser, E. (1922). Über Nucleinsäure-Eiweißverbindungen. 122,
369 298–306. 10.1515/bchm2.1922.122.4-6.298.

370 18. Lipkin, D., Talbert, P.T., and Cohn, M. (1954). The Mechanism of the Alkaline
371 Hydrolysis of Ribonucleic Acids. *J. Am. Chem. Soc.* 76, 2871–2872.
372 10.1021/ja01640a004.

373 19. Wang, R.Y.-H., Kuo, K.C., Gehrke, C.W., Huang, L.-H., and Ehrlich, M. (1982).
374 Heat- and alkali-induced deamination of 5-methylcytosine and cytosine residues
375 in DNA. *Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression*
376 697, 371–377. 10.1016/0167-4781(82)90101-4.

377 20. Shen, J.C., Rideout, W.M., and Jones, P.A. (1994). The rate of hydrolytic
378 deamination of 5-methylcytosine in double-stranded DNA. *Nucleic Acids Res* 22,
379 972–976. 10.1093/nar/22.6.972.

380 21. Green, M.R., and Sambrook, J. (2017). Concentrating Nucleic Acids by
381 Extraction with Butanol. *Cold Spring Harb Protoc* 2017, pdb.prot093401.
382 10.1101/pdb.prot093401.

383 22. Bock, R.M. (1967). [29] Alkaline hydrolysis of RNA. In *Methods in Enzymology*
384 Nucleic Acids, Part A. (Academic Press), pp. 224–228. 10.1016/S0076-
385 6879(67)12035-1.

386

387 **List of Figure Captions**

388 **Figure 1: The nucleobase methylation and its bathochromic effect on the UV**
389 **molar absorption spectra of pyrimidines.**

390 (A) Skeletal formula of uridine, thymidine, cytidine, 5-methylcytidine, pseudouridine
391 and N1-methylpseudouridine. The methyl substituents are highlighted in red. These
392 λ_{max} , ϵ_{max} and ϵ_{260} values are implemented in the mRNACalc webserver. The source
393 of these values is provided in the supplemental material. (B) Steady-state absorption
394 spectra of cytidine (black line) and 5-methylcytidine (red line) at pH 7.4. (C) Steady-
395 state absorption spectra of pseudouridine (orange line) and N1-methylpseudouridine
396 (green line) at pH 7.4. (D) Steady-state absorption spectra of uridine (light blue line)
397 and N1-methylpseudouridine (green line) at pH 7.4. The ϵ_{260} for U and $\text{m}^1\Psi$ are shown.
398

399 **Figure 2: The hypochromicity of nucleoside-modified mRNA can be predicted**
400 **from their nucleoside composition.**

401 (A) Schematic representation of the mRNAs that were designed to determine the
402 normalized A_{260}/F_{507} values (B) Relative UV absorption curves from mRNAs with
403 uridine or N1-methylpseudouridine nucleosides. They were normalized to the
404 corresponding F_{507} values and plotted relative to the peak maximum of the U-mRNA.
405 (C) The normalized A_{260}/F_{507} values from five replicates of the U-, Ψ -, and $\text{m}^1\Psi$ -
406 mRNAs are shown for dBroc-mRNA1. Similar measurements in two additional U-, and
407 $\text{m}^1\Psi$ -mRNAs are shown. the black lines correspond to the average absorbance.
408 Values are relative to the average absorbance of the U-mRNA. All comparisons of the
409 mean relative A_{260}/F_{507} values were significant (t-test; $p < 0.005$). (G) The normalized
410 A_{260}/F_{507} values in Figure 2C were plotted against their predicted hypochromicity using
411 the mRNACalc software.
412

413 **Figure 3: RNA hydrolysis is essential for the determination of mRNA**
414 **concentrations.**

415 (A) Alkali-promoted transesterification allows RNA hydrolysis and mRNA
416 quantification. Under alkaline conditions, the reactive -OH triggers the nucleophilic
417 attack of the 2'-OH on the 3',5'-phosphodiester linkage, converting the ground-state
418 configuration of RNA into a penta-coordinated intermediate and leading to a 2'3'-cyclic
419 phosphodiester. This cyclic form is then known to form 3' and 2' monophosphate
420 nucleotides (not shown). (B) Thermal and/or alkaline hydrolysis of RNA over time.
421 Yeast RNA was hydrolysed using three different previously described methods and
422 the ΔA_{260} was determined using an UV spectrophotometer at different intervals. For
423 expedite RNA hydrolysis (1- or 2-hours incubation), a combination of thermal and
424 alkaline hydrolysis can be used (dark blue dots, 0.8 M NaOH at 37 °C; red dots, 0.5 M
425 Na₂CO₃ pH 8 at 95 °C). For overnight incubation, alkaline hydrolysis suffices (light
426 blue dots, 0.8 M NaOH at 20 °C, the last four measurements were performed after an
427 overnight incubation). Dots indicate the mean value of three measurements. Error bars
428 correspond to standard deviations. (C) Hydrolysis of U-mRNA and $\text{m}^1\Psi$ -mRNA
429 increases the UV absorption of mRNA. This mRNA corresponds to dBroc-mRNA3 in
430 Figure 2C. A_{260} values are normalized to the mean A_{260} values of the non-hydrolysed
431 U-mRNA.
432

433 **Figure 4: Experimental workflow for the determination of RNA concentration**
434 **using the mRNACalc webserver.** The coloured dots refer to the different RNA
435 hydrolysis methods in Figure 2B.