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Abstract: We prove that a large class of N × N Gaussian random band matrices with
band widthW exhibits dynamical Anderson localization at all energies whenW � N 1/4.
The proof uses the fractional moment method (Aizenman and Molchanov in Commun
Math Phys 157(2):245–278, 1993. https://projecteuclid.org/journals/communications-in-
mathematical-physics/volume-157/issue-2/Localizationat-large-disorder-and-at-extreme-
energies–an/cmp/1104253939.full) and an adaptive Mermin–Wagner style shift.

1. Introduction

Let W ∈ N and
{
Tj
}∞
j=1 ,

{
Vj
}∞
j=1 be two sets of indepedent and identically distributed

W × W complex matrices distributed according to the Ginibre ensemble and Gaussian
Unitary Ensemble (GUE), respectively. For any n ∈ N define the random nW × nW
matrix

H :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

V1 −T ∗
1 0

−T1 V2 −T ∗
2

0 −T2 V3
. . .

. . .

Vn−2 −T ∗
n−2 0

−Tn−2 Vn−1 −T ∗
n−1

0 −Tn−1 Vn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (1.1)

In the present paper, we shall prove

Theorem 1.1. Let K ⊆ C be compact. Then there exists an s0 ∈ (0, 1) such that for all
s ∈ (0, s0) and z ∈ K there exist C < ∞, μ > 0, independent of n and W, such that

sup
z∈K

E

[∥∥∥(H − z1)−1
i, j

∥∥∥
s] ≤ WC exp

(
−μ

|i − j |
W 4

)
(i, j ∈ {1, . . . , nW }) .
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The operator H defined in (1.1) is the so-called Wegner W-orbital model, introduced
in [58], which is most natural for our methods. Theorem 1.1 states that this model ex-
hibits Anderson localization, with localization length � W 4. For this model, standard
arguments imply the full range of dynamical localization results; see below for a defini-
tion of these notions and Sect. 2 for the precise formulation of the model and results. In
Sect. 8 we explain how the proof may be modified to deal with the proper random band
matrix case (in which case the Tj ’s are lower triangular), real-valued matrices and other
possible generalizations.

1.1. Background. Anderson localization is a physical phenomenon wherein a quantum
particle becomes trapped because of disorder in its potential-energy “landscape.” This
phenomenon was first studied by Anderson [7] using the following model Hamiltonian
on �2(Zd):

(Hψ)x := −(Tψ)x + λVxψx (ψ ∈ �2(Zd), x ∈ Z
d) (1.2)

where (Tψ)x :=∑‖e‖=1 ψx+e is the discrete Laplacian (up to a constant) and {Vx }x∈Zd

is a set of independent and identically distributed random variables; the constant λ > 0
parameterizes the strength of the disorder. For λ 	 1, Anderson argued that interference
effects cause all eigenfunctions of this operator to decay rapidly at infinity, leading to
an absence of diffusion, i.e., localization.

The first mathematical proof of Anderson localization is due to Goldsheid, Molchanov
and Pastur [33], in the context of a related one-dimensional model. For Anderson’s model
(1.2) with d = 1, the first proof was due to Kunz and Souillard [39]. Then Fröhlich and
Spencer [30] used multi-scale analysis to prove that the Green’s function

G(x, y; E + i ε) = 〈δx , (H − (E + iε)1)−1δy〉 (1.3)

of Anderson’s model (in any dimension d) decays exponentially as ‖x − y‖ → ∞
with probability one, either at large disorder λ 	 1 or at extreme energies |E | 	
1, with bounds uniform in ε > 0. A different proof was obtained by Aizenman and
Molchanov [2,4], based on showing that fractional moments of the Green’s function,
i.e., E

[|G(x, y; z)|s] with 0 < s < 1, decay exponentially.
The relation between Green’s function decay, eigenfunction decay, and dynamical

bounds has been explored by a number of authors. Already in [30], Fröhlich and Spencer
proved the absence of diffusion; in follow up work with Martinelli and Scoppola [29] they
proved exponential localization of the eigenfunctions. From fractional moment bounds,
Aizenman [2] proved dynamical localization. More precisely, Aizenman showed that if
for some interval I ⊆ R there is an s ∈ (0, 1) such that at each E ∈ I we have

sup
η>0

E

[
|〈δx , (H − (E + i η)1)−1 δy〉|s

]
≤ C e−‖x−y‖/ξ (x, y ∈ Z

d) (1.4)

for some C, ξ < ∞, then one has strong exponential dynamical localization on I in the
sense that:

E

[
sup
t>0

∣∣〈δx , exp(− i t H)χI (H)δy〉
∣∣
]

≤ C ′ e−‖x−y‖/ξ ′
(x, y ∈ Z

d) (1.5)

with C ′ ∝ C and ξ ′ ∝ ξ . The parameter ξ (or ξ ′) is referred to as the localization length.
From (1.5) one may conclude, e.g., using the RAGE theorem [3, Theorem 2.6], that the
spectrum of H in I is pure point with exponentially decaying eigenfunctions.
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Although dynamical localization (1.5) is physically surprising, mathematically, the
problem of proving diffusion for energies in the center of the band when λ � 1, and
establishing the so-called metal-insulator transition as λ, E are varied, remains one of the
biggest open problems in mathematical physics. Furthermore, no transition is expected
in dimensions d = 1, 2, where localization is expected at all energies when λ > 0 [1];
this was proved for d = 1 in [33,39] but remains open in d = 2.

Ford = 1, the operator on a finite interval [1, n]∩Z, there is a transition from extended
states/GOE statistics to localized states/Poisson statistics if one takes λ ∝ 1/

√
n; see,

e.g., [38,47,57].
To shed light on the, as yet conjectural, metal-insulator transition for d ≥ 3 in

(1.2), it has been proposed [17,31,58] to study localization in the context of random
band matrices, where instead of varying λ one replaces Anderson’s model (1.2) by a
Hamiltonian with random hoppings up to range W . Before turning to the proper model
which is associated with this name, let us still think for a moment of infinite-volume
systems. Consider a self-adjoint operator H on �2(Z) where {Hxy := 〈δx , Hδy〉}x>y are
independent and identically distributed random complex variables and {Hxx }x are i.i.d.
real variables, and such that

Hxy = 0 (x, y ∈ Z
d : ‖x − y‖ > W ) (1.6)

for some range W ∈ N. To keep the spectrum of H of order 1 (as W → ∞), one may
choose the entries to be mean-zero with variance of order 1/W . In these models, the
range of the hopping W replaces the disorder strength λ. It is conjectured (e.g., [17,31])
that ξ , the localization length, should depend on the range of the hopping as

ξ ∝ W 2 . (1.7)

These models may be considered as quasi-one-dimensional, i.e., as being defined on the
strip of width W , �2(Z) ⊗ C

W , with a Hamiltonian given by

(Hψ) j := −T ∗
j ψ j+1 − Tj−1ψ j−1 + Vjψ j (ψ : Z → C

W ; j ∈ Z) (1.8)

where
{
Tj
}
j (resp.

{
Vj
}
j ) are random W × W complex triangular (resp. Hermitian)

matrices. Such models are known to be completely localized [15,36,40,49] for any W ,
but the localization length in these studies is not estimated quantitatively.

If, however, we restrict to finite volume, by truncating the operator in (1.8) to
the Hilbert space �2({1, . . . , n}) ⊗ C

W ∼= C
nW for some n, we get the proper one-

dimensional random band matrix model, which is a matrix of size N := nW and band
width W presented in (1.1) above.

If both asymptotic parameters W, N , with W ≤ N , go to infinity simultaneously,
[16,17,31,32] the following two distinct behaviors are expected depending on how this
limit is taken:

1. For W � √
N the eigenvectors of H are localized, with localization length ξ ∝

W 2 � N and the local eigenvalue statistics are asymptotically a Poisson point
process (as they are in the localized phase of Anderson’s model [43]). The Green’s
function should obey the fractional moment condition (1.4), and the diffusion constant
should be zero.

2. ForW 	 √
N the eigenvectors of H are delocalized and the local eigenvalue statistics

are asymptotically the same as those of GUE matrices, namely a Sineβ process with
β = 2. The system should exhibit “quantum unique ergodicity” (QUE) [10] (see also
[9,12,13,19–21] for recent QUE results for“mean-field” models, i.e. when W ∼ N ).
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In the present note, we study the localization side of this problem and establish the
fractional moment condition up to W � N 1/4 with localization length smaller than
N 1/4, see Theorem 2.1 below. Explicitly, we consider complex nW × nW random band
matrices (RBM) H with a band width W , thinking of the matrix H as an n × n block
matrix, with each block of size W , of the form (1.1). This is the so-called Wegner
W-orbital model, introduced in [58], which is most natural for our methods. Our main
result is that the localization length of this model is bounded above byCW 3 with distance
measured between blocks of size W . Thus, the matrix exhibits localization if n 	 W 3,
which is to say N = nW 	 W 4, i.e., W � N 1/4.

1.2. Our approach: fluctuations, localization, and the Mermin–Wagner theorem. The
study of disordered systems, including RBM, shares many ideas and methods with the
field of statistical mechanics. In the present paper we follow the basic argument already
presented in [48], which combines the a-priori bound on fractional moments of the
Green’s function with a lower bound on its logarithmic fluctuations. These two together
yield exponential decay of the Green’s function, as we will explain below.

The fact that fluctuations lead to a decay of correlations is the key idea behind the
Mermin–Wagner theorem on the absence of continuous symmetry breaking in two-
dimensional statistical mechanical models [41]. In the present paper, and in [48], a
quantitative lower bound on logarithmic fluctuations, and hence on the localization
length, is obtained via a collective microscopic deformation on all the random variables,
so as to exhibit a macroscopic lower bound. This argument is inspired by Dobrushin’s and
Shloshman’s proof of the Mermin–Wagner theorem [24]. The idea to use such arguments
in the context of random operators was proposed by Aizenman, as noted in [48].

The main idea of the proof is most conveniently explained in the context of the
classical XY model of statistical mechanics, which describes a circle-valued field θ :

 = [−L , L]2 ∩ Z

2 → [0, 2π) with Hamiltonian

HL(θ; θbc) = −
∑

x∼y

cos(θx − θy) −
∑

(x,y)∈∂


cos(θx − θbc
y ), ,

where ∼ denotes nearest neighbors, ∂
 is the boundary of 
 consisting of nearest
neighbor pairs with one element in 
 and one element in 
c, and θbc is a boundary
condition at points immediately outside 
. Given the boundary condition θbc, one takes
θ distributed according to the Gibbs measure 1

Zβ
exp(−βHL(θ)). The Mermin–Wagner

theorem asserts that the distribution of θ deep inside 
 (say, in some fixed neighborhood
of 0), is insensitive to the boundary condition θbc in the limit L → ∞. This is the absence
of symmetry breaking.

To exhibit a macroscopic fluctuation in θ (and hence rule out symmetry breaking),
we make a microscopic shift θ±

x = θx ± u(x), with u a yet unspecified function whose
gradients we assume to be small throughout 
 and zero at the boundary of 
. Our goal
is to choose u so that u(0) is of order one, while the change of the Hamiltonian is small.
The simplest argument, comparing HL(θ±) and HL(θ) to leading order in u leads to a
bound that is too large to be useful. A key observation, due to Pfister [45] in his proof of
the Mermin–Wagner theorem, is that by combining forward and backwards shifts this
leading order term is cancelled and one has

∣∣∣∣−
1

2
HL(θ+) − 1

2
HL(θ−) + HL(θ)

∣∣∣∣ �
∑

x∼y

(u(x) − u(y))2 . (1.9)
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Choosing u appropriately, we can obtain u(0) = O(1) with
∑

x∼y(u(x) − u(y))2 =
O(1/ ln L). From here it is a short argument to conclude that the distribution of the θ0
is asymptotically equal to Lebesgue measure on the circle as L → ∞.

The previous work on localization RBM [48] relied on a fluctuation argument that
did not make use of cancellations similar to those in (1.9). Because of the quasi-1d
nature of RBM models, there were still sufficient fluctuations at leading order to obtain
an estimate. In the present paper we make use of these cancellations, which enables us
to improve the localization length estimate from N 1/7 to N 1/4. Compared to previous
cases in which such Mermin–Wagner techniques have been used, e.g., [42,45], the nature
of our problem (which carries a double asymptotic parameter n,W → ∞) makes the
argument more delicate. We must balance the shifts (as a function of W ) so that they
on the one hand generate a macroscopic change, but on the other hand do not “cost” an
amount which diverges as W → ∞ too quickly. This cannot actually be ensured for
every single matrix, since, as n → ∞, it is certain that a portion of the blocks will behave
badly. To deal with this problem we introduce various cut-off functions into the shift and
use large deviation estimates to guarantee enough blocks behave well. Hence, the shifts
we make depend on the random realization and for this reason it would be appropriate
to call this an “adaptive” Mermin–Wagner argument. Such an adaptive approach first
appeared in [46] and subsequently also in e.g. [37,42].

1.3. Prior results on random band matrices. We now discuss the existing mathematical
literature in both the localized and delocalized regimes of RBM. The first result in the
localized regime [48] was a proof of localization of the eigenvectors for RBM with
W � N 1/8; this result has then been improved to W � N 1/7 in [44] for the Gaussian
models considered here. The main result of this paper is the proof of the localization for
W � N 1/4.

The convergence of the local eigenvalue statistics for RBM in the localized regime
to a Poisson point process is still open. In [14], Poisson statistics were proved to hold
in the limit N → ∞ with W fixed. A recent result establishes that any non-trivial limit
point of counting functions of local eigenvalue statistics is Poisson distributed [35], but
convergence to a single limit with intensity given by the semi-circle law density of states
has not been proved.

On the delocalized side of the transition, after several results about smaller and
smaller band width [8,25–28], the most recent results are in [11,13,61], where Bourgade,
Yang, Yau, and Yin proved both delocalization of eigenvectors and convergence of local
eigenvalue statistics to the corresponding GUE/GOE limiting correlation functions for
RBM withW 	 N 3/4. Using supersymmetric techniques (SUSY), M. and T. Shcherbina
proved the convergence of the 2-point correlation function to the corresponding GUE
counterpart for a specific model of RBM with complex entries down to the optimal
W 	 N 1/2, however they do not prove delocalization of eigenvectors [51,52].

At the edge of the spectrum S. Sodin proved that a phase transition occurs when
W ∼ N 5/6 [56]. In a series of works M. and T. Shcherbina [50] and T. Shcherbina [53–
55] computed, using SUSY techniques, the expectation of products of characteristics
polynomials in the whole regime 1 � W � N showing that a crossover appears at
W ∼ N 1/2; in [53] even the threshold regime W ∼ N 1/2 is analyzed.

RBM have also been studied in higher dimensions. Since the focus of this paper is on
1d RBM, we mention only a few significant results. The limiting density of states down
to arbitrary short scales has been derived in [22,23] for d = 2 and d = 3, respectively.
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More recently, Yang, Yau and Yin proved delocalization of eigenvectors of RBM with
a band width W 	 1 for d ≥ 8 [59,60].

Before posting this manuscript but after its completion we learnt that independently
Nixia Chen and Charles Smart have also obtained localization for W � N 1/4 for the
Gaussian random band matrix model [18]; the two preprints have appeared simulta-
neously. The two papers share the general philosophy of exhibiting exponential decay
through logarithmic fluctuations. However, while we use the so-called adaptive Mermin–
Wagner shift to generate logarithmic fluctuations, they, following Schenker’s original
paper [48], work by analyzing the marginal distribution of a scalar degree of freedom
and showing it is log-concave.

1.4. Organization of the paper. The rest of this paper is organized as follows. In Sect.
2, we present our main new result, Theorem 2.1, concerning localization at real energies
z with |z| �

√
W , and explain how this result implies Theorem 1.1. In Sect. 3 we reduce

the proof of Theorem 2.1 to a lower bound on logarithmic fluctuations of the Green’s
function and present our main tool to derive lower bounds on fluctuations: the Mermin–
Wagner estimate. This estimate is derived then for our particular model in Sect. 4. The
remaining technical estimates are delayed to Sects. 5 to 7 and Appendix A. In Sect. 8
we discuss generalizations to other models which may also be handled by our method.

1.5. Notations and conventions. For vectorsv, u ∈ C
W we take the usual scalar product:

〈v, u〉 ≡
W∑

i=1

vi ui ,

and let ‖v‖ = √〈v, v〉 denote the Euclidean norm. The corresponding matrix operator
norm for A ∈ C

W×W is

‖A‖ = sup
‖v‖=1

‖Av‖ .

Additionally, by |A|2 ≡ A∗A we denote the absolute value of a matrix, and by ‖A‖HS
we denote its Hilbert–Schmidt norm:

‖A‖2
HS ≡ tr

(
A∗A

) =
W∑

i, j=1

|Ai j |2 .

Finally, for positive quantities f, g we write f � g if there existsC > 0, independent
of any asymptotic parameter (in this paper, n and W , with n,W as in (1.1)) such that
f ≤ Cg, and we will write f ≈ g if f � g and g � f . Furthermore, we write f � g if
there exists a small c > 0, independent of n and W , such that f ≤ N−cg, with N = nW .

2. Main Results

In this section we collect together all statements which together constitute Theorem 1.1.
Strictly speaking the contribution of the present paper is Theorem 2.1, below.
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Let H be a random band matrix (RBM) as in (1.1). Explicitly, its distribution is given
by

1

Zn,W
exp

⎛

⎝−W tr

⎛

⎝
n∑

j=1

|Vj |2 +
n−1∑

j=1

|Tj |2
⎞

⎠

⎞

⎠ d V1 . . . d Vn d T1 . . . d Tn−1 , (2.1)

where d Vj , d Tj are the Lebesgue measures on Hermitian W × W matrices, and on
complex W × W matrices, and Zn,W is a normalization constant making (2.1) into a
probability distribution. Define the block Green’s function G(x, y; z) ∈ MatW (C) via
its matrix elements

G(x, y; z)i j := 〈δx ⊗ ei , (H − z1N )−1 δy ⊗ e j 〉CN (x, y ∈ Z; i, j ∈ {1, . . . ,W })
with

{
e j
}
j the standard basis ofCW and {δx }x the standard basis ofCn ; hence

{
e j ⊗ δx

}
j,x

is the standard basis ofCN ∼= C
W ⊗C

n . Here the indices x, y correspond to the (x, y)-th
W × W -dimensional block of H and (i, j) to the matrix elements within this block.

Our main result is:

Theorem 2.1. Assume that H is of the form (1.1) and distributed according to (2.1).
There exists an s0 ∈ (0, 1) such that for all s ∈ (0, s0) and z ∈ R with |z| < M, where
M ∈ (0,∞) and M �

√
W, there exist C < ∞, μ > 0, independent of n and W, such

that

E
[‖G(x, y; z)‖s] ≤ WC exp

(
−μ

|x − y|
W �

)
(x, y ∈ {1, . . . , n}) (2.2)

with � = 3.

We refer the reader to Sect. 8 for generalizations of this model which are also covered
by the same method of proof.

Remark 2.2. (Localization at asymptotically large energies) For n � eW , the spectrum
of H is contained in a fixed compact interval with good probability. To see this, note
that the norm of H is bounded by ‖H‖ ≤ max j

∥∥Vj
∥∥ + 2 max j

∥∥Tj
∥∥. For large W one

has

P
[{∥∥Vj

∥∥ > 2 + t
}]

� e−ct and P
[{∥∥Tj

∥∥ > 1 + t
}]

� e−ct .

Thus with probability at least (1 − e−ct/2)2n we have ‖H‖ ≤ 4 + t . For energies |z| > 3,
one may obtain in place of (2.2) the stronger estimate

E
[‖G(x, y; z)‖s] ≤ WC exp

(
−μ

|x − y|
log W

)

by using the Combes–Thomas bound [3, Theorem 10.5] to control the Green’s function
over long intervals for which z is not in the spectrum of a local restriction of H . The
details of such an argument are quite similar to the “finite volume criteria” used to prove
localization for Anderson’s model in the Lifschitz tails regime, e.g., in [6], with the
minor change that the a priori bound on the Green’s function (see Lemma 3.2) has a
factor of Ws , leading to the log W localization length. As a result, the main estimate
(2.2) can, in fact, be extended to all z ∈ R. Since our main purpose is in estimating the
much longer localization length in the bulk part of the spectrum we omit further details
here.
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Remark 2.3. (Localization at complex energies) We also remark that it is possible to
extend the localization estimate to complex energies. Since E

[‖G(x, y; z)‖s] is a sub-
harmonic function of z in the upper and lower half planes, its value at z /∈ R may be
bounded by its Poisson integral real axis, which in turn may be bounded by the extension
of (2.2) to all real energies as outlined above

E
[‖G(x, y; E + i ε)‖s] ≤ 1

π

∫

λ∈R
E
[‖G(x, y; λ)‖s] Im{ 1

λ − E − i ε
} d λ .

The two preceding remarks, combined with the main theorem Theorem 2.1 readily
imply Theorem 1.1.

We will in general not keep track of the polynomial W dependence in the estimates
below (we are mainly interested in the localization length), and so do not report on the
explicit value of C in (2.2) which our proof yields, though in principle one may do so.

By Theorem 2.1 and [6, Theorem A.1], we readily conclude the following

Corollary 2.4 (Eigenvector localization). Let H be defined as in (1.1), and let ψi , with
i ∈ {1, . . . , N }, be the orthonormal eigenvectors of H. Then there are constants D <

∞, ν > 0, independent of n and W, such that for any i, j ∈ {1, . . . , nW } it holds

E

⎡

⎣
∑

k∈{1,...,N }
|ψk(i)ψk( j)|

⎤

⎦ ≤ WD exp

(
−ν

|i − j |
W �+1

)
, (2.3)

with � = 3.

Remark 2.5. As is well known [3], the eigenvector correlation bound (2.3) implies di-
rectly that

E

[

sup
| f |≤1

∣∣〈δi , f (H)δ j 〉
∣∣
]

≤ WD exp

(
−ν

|i − j |
W �+1

)
,

where the supremum is taken over all Borel measurable f : R → R satisfying | f (x)| ≤ 1
everywhere. In particular, this implies strong dynamical localization

E

[
sup
t

∣∣∣〈δi , ei t H δ j 〉
∣∣∣
]

≤ WD exp

(
−ν

|i − j |
W �+1

)
.

Note that Corollary 2.4 implies exponential localization of all the eigenvectors of H
when its band width is of size W � N 1/4. Improving (2.2) to � = 1 would amount
to proving the

√
N -conjecture from the localization side. While the

√
N -conjecture is

formulated using the asymptotic parameter N , we find it more convenient to think of
the system as having n slices each of size W , and hence we measure distances between
slices. As such, the

√
N -conjecture is tantamount to localization up to W ≈ n (this is

also the reason for the fact that � in (2.2) is “a power off”).

3. Proof of Theorem 2.1

In this section we explain the main steps of the proof of Theorem 2.1.
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3.1. Reduction to a lower bound on logarithmic-fluctuations. Using finite rank pertur-
bation theory and the a-priori bound Lemma 3.2, it suffices to prove (2.2) for x = 1 and
y = n. The energy z plays very little role in our analysis and it is convenient to keep it
implicit in many formulas. We thus define,

Gn := G(1, n; z) , Xn := log (‖Gn‖) . (3.1)

The reason why we have defined the logarithm of the Green’s function is best explained
by the following lemma [48, Proposition 3]:

Lemma 3.1. Let 0 < r < s < 1 and Y ≥ 0 be a random variable. Then

E
[
Yr ] = E

[
Y s]r/s exp

(
−
∫ s

0
fr,s(q)Varq

[
log (Y )

]
d q

)
. (3.2)

where

fr,s(q) := 1

s
min ({r, q}) (s − max ({r, q})) (q ∈ (0, s)) .

Here Varq denotes the variance with respect to the q-weighted-probability measure

Varq [X ] = Eq [
(
X − Eq [X ])2] , Eq [·] := E[· eqX ]

E[eqX ] . (3.3)

For completeness we give a simple proof of Lemma 3.1 in Appendix A.
The next crucial ingredient is the a-priori bound on fractional moments of Gn :

Lemma 3.2 (a-priori bound). For all s ∈ (0, 1) there exists Cs < ∞ such that

sup
n

E
[‖Gn‖s

] ≤ CsW
s . (3.4)

Such bounds for the resolvents of random operators are by now “classical” in the
literature and have appeared many times elsewhere, starting from [4], without the supre-
mum and for the case n = 1 using (rank-1) finite rank perturbation theory, and then in
[34, Lemma 5] for n ≥ 1 using (rank-2) finite rank perturbation theory. For our purposes
this is essentially [48, Eq. (1.7)], but as stated here with the optimal Ws factor, can be
derived from [5, Eq. (1.7)] (the optimal factor is not important for our proof since any
polynomial factor in W is negligible for Theorem 2.1).

Combining Lemma 3.2 and Lemma 3.1, we see that proving Theorem 2.1 reduces to
establishing the bound

Varq [Xn] � Dq
n

W �
(3.5)

for some q-dependent constant Dq ∈ (0,∞). In fact, since the integrand in the expo-
nential in (3.2) is positive, to get a lower bound we may restrict the integration to

q ∈
[ s

2
, s
]

. (3.6)
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3.2. The Mermin–Wagner route to a lower bound on fluctuations. Our main tool to
establish a lower bound on fluctuations is the following

Lemma 3.3. Let X be a real-valued random variable distributed according to the mea-
sure P and such that there are some 0 < α < a and ε ∈ (0, 1), β ∈ (0,∞) with
which

P [{|X | ≤ α}] ≤ β
√
P [{X ≥ a}]P [{X ≤ −a}] + ε . (3.7)

Then the following lower bound holds:

E

[
X2
]

≥ 1 − ε

1 + 1
2β

α2 . (3.8)

As phrased this lemma is inspired by [42], though it goes all the way back to the proof of
the Mermin–Wagner theorem in the context of classical statistical mechanics by Pfister
[45]. Its simple proof is postponed to Appendix A.

We define the centered observable Xn := Xn − Eq [Xn] with which our main goal
for the rest of the paper is thus to prove

Proposition 3.4. Let ξ > 0 and s ∈ (0, 1) be fixed parameters independent of n and W.
For the variables defined in (3.1) above, if n and W are sufficinetly large and

E

[
e
s
2 Xn
]

≥ e−ξn , (3.9)

then for all q ∈ (s/2, s) we have

Pq
[{|Xn| ≤ α

}] ≤ β

√
Pq
[{
Xn ≥ 2α

}]
Pq
[{
Xn ≤ −2α

}]
+ ε (3.10)

where β ≈ 1, ε < 1/2, and

α ≈
√

n

W �

with � ≥ 3.

We now discuss in more detail how the main result Theorem 2.1 follows from Propo-
sition 3.4. First note that if (3.9) fails, then (2.2) holds with � = 0 and C = 1, which is
stronger than the bound we seek to prove. So, we may assume that (3.9) holds without
loss of generality. Then Proposition 3.4 and Lemma 3.3 together show that (3.5) holds.
Using this estimate on the right hand side of (3.2) we find that

E[er Xn ] ≤ E[esXn ]r/s exp
(
−c

n

W �

)
,

which implies (2.2) after using the a priori bound Lemma 3.2 to estimate E[esXn ]. Thus,
Theorem 2.1 will be proved once we obtain Proposition 3.4.

4. The Proof of the Main Estimate, Proposition 3.4

In this section we present the proof of our main technical result Proposition 3.4. Its proof
is divided into two step: first in Sect. 4.1 we perform a change of variables for the V ’s
in the density (2.1), which yields a convenient factorization of the resolvent Gn ; then
in Sect. 4.2 we describe the Mermin–Wagner shift argument (inspired by [42]) which
yields (3.10).
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4.1. Factorization of Gn and replacing V with �. Before starting with the actual proof
of (3.10), it is convenient to first factorize Gn (this is performed closely along the lines
of [48, Section 3]):

Lemma 4.1. Let Gn be defined in (3.1), then it holds that

Gn = �−1
1 T ∗

1 �−1
2 T ∗

2 . . . �−1
n−1T

∗
n−1�

−1
n , (4.1)

where

�1 := V1 − z1 ; � j := Vj − z1 − Tj−1�
−1
j−1T

∗
j−1 ( j = 2, . . . , n) . (4.2)

Proof. y the resolvent formula, we have

G[1,n] (1, n; z) = G[1,n−1] (1, n − 1; z) T ∗
n−1G[1,n](n, n; z)

where H[x,y] denotes the matrix H restricted to be non-zero only between slices x and
y, and G[x,y] denotes its resolvent. Iterating this identity n times, and defining

� j := G[1, j] ( j, j; z)−1 ( j = 1, . . . , n), (4.3)

we conclude (4.1). Finally, the fact that � j can be written in the form (4.2) readily
follows by the Schur complement formula. ��

Since � j does not depend on Vk for k > j , a change of variables

Vj �→ � j ( j = 1, . . . , n)

is triangular and its Jacobian has determinant equal to 1. After the change of variables,
we thus obtain the density

1

Zn,W
exp (−WE(�, T )) d �1 . . . d �n d T1 . . . d Tn−1

where d � j is the Lebesgue measure on HermW (C) and d Tj is the Lebesgue measure
on MatW (C), and where we define the “energy” functional

E(�, T ) ≡ tr

⎛

⎝|�1 + z1|2 +
n∑

j=2

|� j + z1 + Tj−1�
−1
j−1T

∗
j−1|2 +

n−1∑

j=1

|Tj |2
⎞

⎠ .

4.2. Plus-minus collective deformations. The main idea behind establishing a bound
such as (3.10) is to perform a collective change of variables that has a minimal effect
(quantified in our case by β) on the measure whereas the cumulative effect on the
observable (i.e., χ[−α,α](Xn)) is significant. This is done little by little, spread “across
the volume.” Furthermore, the deformation is done simultaneously in two directions,
designed precisely so that the linear term between the two cancels.

There are many possible choices for the deformation; below is a relatively simple
one which yields � = 3. Part of the simplicity comes from the fact we are using the
randomness of both the hopping terms T and the onsite potential V . It is reasonable
to guess that one could obtain the same result (with considerable complications to the
proof) by using the randomness of only one of T or V .
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We define the following transformation on the set of hopping matrices. Let

ϕ : [0,∞) → [0, 1]
be a smooth function satisfying

χ[0,K ] ≤ ϕ ≤ χ[0,2K ] and |ϕ′| ≤ χ[0,2K ] ,

with K > 1 a constant independent of n and W to be fixed below. Next,we define the
shifts

T±
j := exp

(±δFj
)
Tj ( j = 1, . . . , n − 1) , (4.4)

where δ > 0 is a parameter, which we choose depending on n and W below, and Fj is
a number given by

Fj := ϕ

(∥∥Tj
∥∥2

HS

W

)

ϕ

(∥∥Vj+1
∥∥2

HS

W 2

)

ϕ

(∥∥� j+1
∥∥2

HS

W 2

)

ϕ

⎛

⎜
⎝

∥∥∥�−1
j

∥∥∥
2

HS

W 2

⎞

⎟
⎠ , (4.5)

for any j ∈ {1, . . . , n}. Since we consider T and � as integration variables rather than
T and V , in (4.5) we use Vj+1 only for convenience of notation; it should be understood
as a function of both T and �, i.e.,

Vj+1 = Vj+1(� j+1, �
−1
j , Tj ) = � j+1 + z1 + Tj�

−1
j T ∗

j .

Clearly, conditioned on the � variables, Fj is a function of Tj alone (and no other Tk
for k �= j), so that this transformation is diagonal in the variable j . We point out that
this choice for (4.5) is what dictates � ≥ 3, as will become clear below.

It is useful to consider this change of variables abstractly using the maps η± :
MatW (C) → MatW (C) defined by

η±(A) ≡ η±(A;G, G̃)

= exp

⎛

⎜
⎝±δγ (G, G̃)ϕ

(
‖A‖2

HS

W

)

ϕ

⎛

⎜
⎝

∥∥∥G + z1 + AG̃A∗
∥∥∥

2

HS

W 2

⎞

⎟
⎠

⎞

⎟
⎠ A (4.6)

where G, G̃ ∈ HermW (C) and γ (G, G̃) := ϕ

(
‖G‖2

HS
W 2

)
ϕ

(∥∥∥G̃
∥∥∥

2

HS
W 2

)

; z ∈ R with |z| �
√
W . We will need the following lemma (whose proof is postponed to Sect. 5).

Lemma 4.2. For δW � 1 the maps ησ : MatW (C) → MatW (C) are injective for any
choice of G, G̃ ∈ HermW (C).

In (4.4) η± are used with G := � j+1, G̃ := �−1
j ∈ HermW (C). By a slight abuse of

notation, we will use ησ , σ = ±, to also denote the corresponding product maps

{Tj }n−1
j=1 �→ {η±(Tj ;� j+1, �

−1
j )}n−1

j=1
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on MatW (C)n−1.
With this transformation, Xn transforms as

X±
n = Xn ± δF (4.7)

with F :=∑n
j=1 Fj . Another trivial but useful fact is that

Xn = 1

2
X+
n +

1

2
X−
n . (4.8)

By (4.7) we get

Sα := {Xn ∈ Bα(0)
} = {X±

n ∈ Bα(Eq [Xn] ± δF)
} =

{
X±
n ∈ Bα(±δF)

}
(4.9)

where Bα(t) := [t − α, t + α] and X±
n := X±

n − Eq [Xn].
For any event M , we have

Q(M) := Pq [Sα ∩ M]E
[
eqXn

]
Zn,W

=
∫

(�,T )∈M
eqXn−WE(�,T ) χ{Xn∈Bα(0)

} d � d T

=
∫

(�,T )∈M
e+WR(�,T )

∏

σ∈{±}

√
eqXσ

n −WE(�,T σ ) χ{Xσ
n ∈Bα(σδF)

} d � d T ,

where we have defined the “remainder term” for the energy functional to be

R(�, T ) := 1

2
E(�, T +) +

1

2
E(�, T−) − E(�, T ) . (4.10)

Next we define the Jacobian determinant

J± := ∣∣det
(Dη±)∣∣ = 1

∣∣∣det
(
D (η±)−1

)∣∣∣ ◦ η±
,

with D being the total differential of the map (the Fréchet derivative), and the second
equality follows from the chain rule for D and f −1 ◦ f = 1. We thus have

Q(M) =
∫

(�,T )∈M
e+WR(�,T )

∏

σ∈{±}

√

eqXσ
n −WE(�,T σ ) χ{Xσ

n ∈Bα(σδF)
} Jσ (T )

1

Jσ (T )
d � d T

≤
∥∥∥∥∥∥

eWR ∏

σ∈{±}

1√
Jσ

∥∥∥∥∥∥
L∞(M)

∏

σ∈{±}

√∫

M
eqXσ

n −WE(�,T σ ) χ{Xσ
n ∈Bα(σδF)

} Jσ d � d T .

where we have used the Cauchy-Schwarz inequality after an L∞ bound on the pre-factor.
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At this point we would like to apply the change of variables formula to the two inte-
grals on the right hand side, however the characteristic function depends in a complicated
way on the variables {Tj }n−1

j=1 through the function F , making it difficult to determine
the domain of integration. To circumvent this difficulty we note that on the event M ,

Bα(±δF) ⊆ ±(δ inf
M

F − α,∞)

where −(a,∞) = (−∞,−a). Thus

Q(M) ≤
∥∥∥∥∥∥

eWR ∏

σ∈{±}

1√
Jσ

∥∥∥∥∥∥
L∞(M)

∏

σ∈{±}

√∫

M
eqXσ

n −WE(�,T σ ) χ{Xσ
n ∈±(δ infM F−α,∞)

} Jσ d � d T

=
∥∥∥∥∥∥

eWR ∏

σ∈{±}

1√
Jσ

∥∥∥∥∥∥
L∞(M)

∏

σ∈{±}

√∫

M
eqXn−WE(�,T ) χ{Xn∈±(δ infM F−α,∞)

} d � d T .

where we have applied the change of variables formula
∫

f ◦ησ Jσd�dT = ∫ f d � d T ,
which is valid by Lemma 4.2 provided we choose δ so that δW → 0 (which we will).
Dividing by E

[
eqXn

]
Zn,W we obtain the estimate

Pq [Sα ∩ M] ≤
∥∥∥∥∥∥

eWR ∏

σ∈{±}

1√
Jσ

∥∥∥∥∥∥
L∞(M)

∏

σ∈{±}

√

Pq

[{
Xn ∈ σ(δ inf

M
F − α,∞)

}]

(4.11)
This concludes the bound on the q-probability of the set Sα ∩ M .

We now estimate the q-probability of the complementary set, Sα ∩ Mc:

Pq
[
Sα ∩ Mc] = E

[
eqXn χSα∩Mc

]

E
[
eqXn

] .

To bound the denominator, we use the assumption (3.9) to obtain

E

[
eqXn

]
≥ E

[
e
s
2 Xn
] 2q

s ≥ e−2ξn,

where in the middle step we have used Jensen’s inequality, which is valid because
s
2 < q < s. For the numerator, we use Cauchy-Schwarz and Jensen’s inequality again
to obtain

E

[
eqXn χSα∩Mc

]
≤
√
E
[
e2qXn

]√
P [Mc] ≤ W

1
2
q
s C2s
√
P [Mc] ,
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where we have applied the a priori bound Lemma 3.2 in the last step. Putting these
estimates together we find that

Pq
[
Sα ∩ Mc] =≤ W

1
2
q
s C2s e+2ξn

√
P [Mc] (4.12)

Combining (4.11, 4.12) we find

Pq
[{
Xn ∈ Bα(0)

}] ≤
∥∥∥∥∥∥

eWR ∏

σ∈{±}

1√
Jσ

∥∥∥∥∥∥
L∞(M)

∏

σ∈{±}

√

Pq

[{
Xn ∈ σ(δ inf

M
F − α,∞)

}]

+ W
1
2
q
s C2s e+2ξn

√
P [Mc] .

Note that this last estimate is of the form (3.10), yielding Varq [Sα] � n
W � , if we can

find an event M for which the following three conditions are simultaneously satisfied:

1. infM F ≥ φn for some φ ∈ (0, 1] independent of n,W .
2. The β term is of order 1, i.e.,

∥∥∥∥∥∥
eWR ∏

σ∈{±}

1√
Jσ

∥∥∥∥∥∥
L∞(M)

� 1 . (4.13)

3. The ε term is smaller than 1/2, i.e.,

W
1
2
q
s C2s e+2ξn

√
P [Mc] < 1/2 . (4.14)

Such an event does indeed exist. Fix some

φ ∈
(

0,
1

6

)
(4.15)

and define

Mφ := {(�, T )|F ≥ φn} , (4.16)

which clearly fulfills the first condition. The requirement that δφn − α = 2α fixes δ:

δ := 3

φn
α = 3

φ

1√
nW �

. (4.17)

The proof of Theorem 2.1 will hence be completed with the demonstration of (4.13, 4.14)
for the specific choice M = Mφ , which is the contents of Sects. 6 and 7 respectively. In
the proof of (4.13) we will see that it is necessary to take � ≥ 3. We start, however, with
the calculation of the Jacobian associated to the change of variables used above.
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5. The Derivative of the Change of Variables, Dη

In this section we explicitly calculate the Jacobian of the map η defined in (4.6) and
prove Lemma 4.2. Note that η is in fact not C-differentiable (since, e.g., MatW (C) �
A �→ ‖A‖2

HS is not). This does not matter, since for the change of variable T �→ T±
we are concerned with above R-differentiability suffices. So we shall use the (obvious)
isomorphism MatW (C) ∼= R

2W 2
when calculating the Jacobian.

We use the notation for the (Fréchet, or total) derivative which may be characterized
as the linear approximation, i.e.,

η(A + εB) = η(A) + ε (Dη)A B + o (ε ‖B‖) (A, B ∈ MatW (C); ε → 0+) . (5.1)

Thus schematically, from the definition (4.6) and the notation

�(A) := γ ϕ

(
‖A‖2

HS

W

)

ϕ

⎛

⎜
⎝

∥∥∥G + z1 + AG̃A∗
∥∥∥

2

HS

W 2

⎞

⎟
⎠ (A ∈ MatW (C)),

using the product rule, we have

(Dη)A B = exp (σδ�(A)) B + exp (σδ�(A)) (σδ (D�)A B) A

= exp (σδ�(A)) (B + σδ ((D�)A B) A)

where it should be noted that since � is scalar-valued, (D�)A : R2W 2 → R is a 1×2W 2

matrix, i.e., (D�)A B is just a number. By the Riesz representation theorem there exists
some vector QA ∈ R

2W 2
such that (D�)A B = 〈QA, B〉

R2W2 . With this notation we all
together have

(Dη)A = exp (σδ�(A))
(
1
R2W2 + σδA ⊗

R2W2 Q∗
A

)
. (5.2)

We now proceed to calculate QA.
If A ∈ MatW (C), we have two matrices AR, AI ∈ MatW (R) defined via their

elements

(AR)i j := Re{Ai j }, (AI )i j := Im{Ai j }
which yield then a vector (AR, AI ) ∈ R

2W 2
. In terms of this notation,

1. If f : MatW (C) → R is defined by f (A) = ‖A‖2
HS then

1

2
(D f )A B = Re{〈A, B〉HS} = 〈AR, BR〉

RW2 + 〈AI , BI 〉
RW2

= 〈(AR, AI ), (BR, BI )〉
R2W2 .

2. If g : MatW (C) → R is defined by g(A) =
∥∥∥Gz + AG̃A∗

∥∥∥
2

HS
(with Gz := G + z1,

but we write G for Gz in this calculation for simplicity of notation) then

1

2
(Dg)A B = Re{〈G + AG̃A∗, BG̃A∗ + AG̃B∗〉HS}

= 〈((GAG̃ + AG̃|A|2G̃)R, (GAG̃ + AG̃|A|2G̃)I ), (BR, BI )〉
R2W2

+ 〈((G̃∗A∗G + G̃∗|A|2G̃ A∗)T,R, −(G̃∗A∗G + G̃∗|A|2G̃ A∗)T,I ), (BR, BI )〉
R2W2

where by T we mean the transpose.
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Thus since �(A) = γ ϕ
(

f (A)
W

)
ϕ
(
g(A)

W 2

)
, we find

(D�)A = γ ϕ′
(

f (A)

W

)
ϕ

(
g(A)

W 2

)
1

W
(D f )A + γ ϕ

(
f (A)

W

)
ϕ′
(
g(A)

W 2

)
1

W 2 (Dg)A .

Collecting everything together we can read off QA (written now, for convenience, back
as an element in MatW (C)):

QA = γ ϕ′
(

f (A)

W

)
ϕ

(
g(A)

W 2

)
2

W
A+ (5.3)

+ γ ϕ

(
f (A)

W

)
ϕ′
(
g(A)

W 2

)
4

W 2

(
(G + z1)AG̃ + AG̃|A|2G̃

)
. (5.4)

We now prove the following basic estimate, which will be used within the proof of
Lemma 4.2 (which is presented at the end of this section) and for other estimates later
on.

Lemma 5.1. For A and QA as defined above,

‖A‖HS ‖QA‖HS � W . (5.5)

Proof. e will use the facts that |ϕ′| ≤ χ[0,2K ] and that γ controls the size of G and G̃
(which follows by (4.5)). Thus, in all of these estimates, due to the various factors of

ϕ, we can always assume that: ‖A‖2
HS � W , ‖G‖HS � W ,

∥∥∥G̃
∥∥∥

HS
� W , as well as

∥∥G + z1 + AG̃ A∗∥∥
HS � W .

Using the triangle inequality and submultiplicativity of the Hilbert–Schmidt norm,
under the assumption that all these expressions are multiplied by appropriate factors of
ϕ, for ‖A‖HS ‖QA‖HS we find:

1. 1
W ‖A‖2

HS � 1.

2. 1
W 2 ‖A‖HS

∥∥∥GAG̃
∥∥∥

HS
� 1

W 2 W
3 = W and 1

W 2 ‖A‖HS

∥∥∥zAG̃
∥∥∥

HS
� |z| 1

W 2 W
2 = |z|.

This last error is negligible since we are assuming |z| �
√
W .

3. For the last term, we replace AG̃A∗ by G + z1 + AG̃A∗ − G − z1, whose Hilbert–

Schmidt norm is bounded by W , and so, 1
W 2 ‖A‖HS

∥∥∥AG̃|A|2G̃
∥∥∥

HS
� 1

W 2 W
3 = W .

��
We conclude this section with the proof of Lemma 4.2.

Proof of Lemma 4.2. If 1
RW2 − η is a contraction then η is injective, which would be

guaranteed (using the mean-value theorem e.g. on [0, 1] � t �→ η(t A + (1 − t)B)) if∥∥∥1
RW2 − (Dη)A

∥∥∥ < 1 for all A ∈ R
2W 2

.

Starting from (5.2), we see that to prove this it suffices to show that
∥∥∥(1 − eσδ�(A))1

R2W2 − eσδ�(A) σ δA ⊗
R2W2 Q∗

A

∥∥∥
operator norm of R2W2 < 1 .

Since δ ∼ 1√
nW �

, using the triangle inequality, it suffices to concerntrate only on the sec-

ond term. We remark that for any u, v ∈ R
m , ‖u ⊗ v∗‖op. norm of Rm ≤ ‖u‖Rm ‖v‖Rm and
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that the Euclidean norm on R
2W 2

is precisely the Hilbert–Schmidt norm on MatW (C),
i.e.

∥∥∥(AR, AI )

∥∥∥
R2W2 = ‖A‖HS .

It is thus enough to ensure that

2δ ‖A‖HS ‖QA‖HS < 1/2 . (5.6)

Using Lemma 5.1 to estimate ‖A‖HS ‖QA‖HS � W and the fact that δ ∼ n−1/2W−3/2,
we have together

δ ‖A‖HS ‖QA‖HS � n−1/2W−1/2 .

so we can certainly fulfill (5.6). This concludes the proof of this lemma. ��

6. The β Bound: Proof of (4.13)

The goal of this section is to establish (4.13). We do this separately for eWR and for the
product of the two Jacobians.

6.1. The remainder termR. We divide the remainder term R into the part that depends
on T directly and the part that depends on T through �:

RI
j := 1

2

∥∥∥T +
j

∥∥∥
2

HS
+

1

2

∥∥∥T−
j

∥∥∥
2

HS
− ∥∥Tj

∥∥2
HS ,

RI I
j := 1

2

∥∥∥V +
j

∥∥∥
2

HS
+

1

2

∥∥∥V−
j

∥∥∥
2

HS
− ∥∥Vj

∥∥2
HS ,

where

Vj ≡ � j + z1 + Tj−1�
−1
j−1T

∗
j−1 .

For RI
j , a Taylor expansion yields

|T±
j |2 = |Tj |2

(
1 ± 2δFj + 4δ2F2

j + O(δ3Fj )
)

.

Applying

1

2
‖A + B‖2

HS +
1

2
‖A − B‖2

HS − ‖A‖2
HS = ‖B‖2

HS

we find

RI
j ≤ δ2Fj

∥∥Tj
∥∥2

HS (4 + O(δ)) � δ2KW

where in the last step we have used (4.5). We have n terms summed in R, which is also
multiplied by W outside, so that inside the exponent we have all together for this term,
W 2nδ2 ∼ W 2−� and � = 3 even makes the δ2 term vanish in the limit W → ∞, since
by (4.17), δ ∼ 1√

nW �
.
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ForRI I
j , defining A, B,C through (omitting terms of order δ3 and even higher powers

as above)
∣∣∣� j + z1 + T±

j−1�
−1
j−1

(
T±
j−1

)∗∣∣∣
2 =:

∣∣∣A ± δB + δ2C
∣∣∣
2

yields

RI I
j = δ2 ‖B‖2

HS + δ2
Re{〈C, A〉HS}

where we have used

1

2
‖A + B + C‖2

HS +
1

2
‖A − B + C‖2

HS − ‖A‖2
HS = ‖B‖2

HS + 2Re{〈C, A〉HS} .

Hence we need to estimate, first:

‖B‖2
HS = 4F2

j−1

∥∥∥Tj−1�
−1
j−1T

∗
j−1

∥∥∥
2

HS

= 4F2
j−1

∥∥Vj − � j − z1
∥∥2

HS

� F2
j−1

(∥∥Vj
∥∥2

HS +
∥∥� j
∥∥2

HS + z2W
)

� KW 2 + z2W

where in the last step we’ve used (4.5) and here it is clear that � = 3 is precisely the
threshold to make the δ2 term O(1). Again we have used the fact |z| �

√
W .

Second, we have

Re{〈C, A〉HS} = 2F2
j−1Re{

〈
Tj−1�

−1
j−1T

∗
j−1, Vj

〉

HS
}

which is bounded in a similar manner as the B term above after using a Schwarz in-
equality.

We conclude that, even without restricting to the event Mφ , just from the construction
of F in (4.5),

∥∥∥eWR
∥∥∥∞ � eO(1) � 1 .

6.2. The product of the two Jacobians. Recall that we have abused the notation in the
sense that η± was both the map on the single hopping matrix Tj �→ T±

j and also
the symbol for the collective map MatW (C)n → MatW (C)n for all hopping matrices.
Hence, for a single j , based on the definition of δ in (4.17) and the map η as in (4.6) it
would suffice to show

∣∣det
(Dη+)∣∣ ∣∣det

(Dη−)∣∣ � e−δ2W 3

which is equivalent (multiplying n such terms and using that δ2W 3 ∼ 1
n ) to

∥∥∥∥∥∥

∏

σ∈{±}

1√
Jσ

∥∥∥∥∥∥
L∞

� eO(1) � 1 .
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We now use the calculation for Dη from Section 5. When multiplying the two Jaco-
bians, the scalar exponential exp

(±δFj
)

cancels between the two and we have, using
the notation MA := A ⊗ Q∗

A for brevity,
∣∣det

(Dη+)∣∣ ∣∣det
(Dη−)∣∣ = |det (1 + δMA)| |det (1 − δMA)|

=
∣∣∣det

(
1 − δ2|MA|2

)∣∣∣

= exp
(

tr
(

log
(
1 − δ2|MA|2

)))

where in the second equality we have used the fact that | det X | = | det X∗| and in the
last equality we have used δ ‖MA‖ < 1 which was established in the proof of Lemma
4.2 in Sect. 5.

By the spectral theorem, since log(1 − α) ≥ −α/(1 − α) for α ∈ (0, 1), we have as
a relation on self-adjoint operators,

log
(
1 − δ2|MA|2

)
≥ −δ2|MA|2(1 − δ2|MA|2)−1 ≥ −2δ2|MA|2,

where we used that δ ‖MA‖ < 1/2, and hence the same monotonicity holds when taking
the trace. We thus get

∣∣det
(Dη+)∣∣ ∣∣det

(Dη−)∣∣ ≥ exp

(
−1

2
δ2 tr

R2W2

(
|MA|2

))
.

Now we have tr(|u ⊗ v∗|2) = ‖u‖2 ‖v‖2 and, as was already remarked above, the
Euclidean norm in R

2W 2
is the Hilbert–Schmidt norm in MatW (C). Thus we are left

with

tr
R2W2

(
|MA|2

)
= ‖A‖2

HS ‖QA‖2
HS � W 2

where the last step follows by Lemma 5.1.

7. The ε Bound: Proof of (4.14)

The goal of this section is to prove that

P[Mc
φ] ≤ e−�n, (7.1)

for some fixed � > 0, which gives exactly (4.14). Here we also recall that

Mφ := {(�, T )|F ≥ φn} ,

for some φ ∈ (0, 1), which we will choose later in this section, and F = ∑ j Fj , with
Fj being defined as in (4.5).

As a first step we notice that M̃φ ⊂ Mφ , with M̃φ defined as

M̃φ :=
{
(�, T )|

∥∥∥�−1
j

∥∥∥
HS

,
∥∥� j+1

∥∥
HS ,

∥∥Vj+1
∥∥

HS ,
∥∥Tj
∥∥2

HS ≤ KW, for at least φn indices
}

(7.2)
Then, by the definition

� j+1 = Vj+1 + z + Tj�
−1
j T ∗

j
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for any j , and a “pigeon hole principle” we readily see that

M1 ∩ M2 ∩ M3 ∩ M4 ⊂ M̃φ, (7.3)

since the map V �→ � is measure preserving, where we defined

M1 : =
{∥∥∥(Vj − A j )

−1
∥∥∥

HS
≤ KW/(3C2) for at least (1 − φ)n indices

}
,

M2 : = {∥∥Vj+1
∥∥

HS ≤ KW/3 for at least (1 − φ)n indices
}
,

M3 : =
{∥∥Tj

∥∥2
HS ≤ KW for at least (1 − φ)n indices

}
,

M4 : = {∥∥Tj
∥∥ ≤ C for at least (1 − φ)n indices

}
,

(7.4)

where we now choose any φ ∈ (0, 1/5) as in (4.15). Here 0 < C <
√
K is a fixed

constant, with K which will be chosen shortly, and A j = A j (Vj−1, Tj−1, . . . , V1, T1).
Note that here we used that the change of variables Vj → � j is measure preserving.
Additionally, by P we denote the joint probability measure of all the Vj ’s and Tj ’s.

Combining all this we readily see that

P[Mc
φ] ≤

4∑

i=1

P[Mc
i ].

Hence, to conclude the proof of (4.14) we now separately show that P[Mc
i ] is ex-

ponentially small in n for any i = 1, 2, 3, 4. To make the presentation shorter we only
present the bound for M1, all the other estimates being completely analogous after re-
placing (7.6) with

P

(∥∥Tj
∥∥2
HS > KW

)
≤ e−W 2

, (7.5)

and a similar well-known bound for
∥∥Tj
∥∥ and

∥∥Vj+1
∥∥

HS.
By [5, Theorem 1] we have that

PVj

(∥∥∥(Vj − A)−1
∥∥∥
HS

> KW/(3C2)
)

≤ C̃
C2

K
, (7.6)

for some fixed constant C̃ > 0, and for any K ≥ 1 uniformly in deterministic matrices
A, and W . HerePVj (E) := EVj [1E ], for any event E , whereEVj denotes the expectation
with respect to the measure of a single Vj .

Next, using (7.6), we get

P[Mc
1 ] = P

(∥∥∥(Vj − A j )
−1
∥∥∥
HS

> KW/(3C2) for at least (1 − 6φ)n indices
)

=
n∑

m=(1−6φ)n

P

(∥∥∥(Vj − A j )
−1
∥∥∥
HS

> KW/(3C2) for exactly m indices
)

=
n∑

m=(1−6φ)n

∑

S⊂{1,...,n}
|S|=m

P

(∥∥∥(Vj − A j )
−1
∥∥∥
HS

> KW/(3C2) for j ∈ S
)

�
n∑

m=(1−6φ)n

∑

S⊂{1,...,n}

(
n
m

)
(C̃C2)|S|

K |S| ≤ (2C2C̃)n

K (1−6φ)n
,

(7.7)
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where we used that we can perform the Vj -integration one by one for any realization
of A j (starting from the largest index and proceeding in a decreasing order), and that
(7.6) holds uniformly for any fixed A j . This concludes the proof of (7.1) choosing K
sufficiently large so that

(2C2C̃)n

K (1−6φ)n
≤ e−�n .

8. Generalizations

In this section we discuss other and more general models to which our proof applies. We
begin by outlining the most general class of models we can treat, and then point which
special choices correspond to models of interest.

8.1. Mixture of Gaussian vectors taking values in general vector spaces. LetF ∈ {R,C}
and for � ∈ {1, 2}, let V� be two R-vector spaces of dimension W 2 � dim V� � W 2.
Assume further that there are R-linear injections i2 : V2 → MatW (F) and i1 : V1 →
HermW (F).

Definition 8.1. (Mixture of Gaussian measures) Let f : R
m → (0,∞) be a density

function (associated to a probability measure which is absolutely continuous w.r.t. to the
Lebesgue measure on R

m). We say that f is a mixture of Gaussians iff there is a positive
measure μ on (0,∞) (which depends on f , but not on m) such that

f (v) =
∫ ∞

λ=0
e−λ

√
m‖v‖2

d μ(λ) (v ∈ R
m) (8.1)

where we use the Euclidean norm on R
m .

Let p� be a density on V� which is a mixture of Gaussians as in (8.1), and further
assume that the associated measures μ� have support of diameter independent of n,W ,
i.e.,

supp(μ�) ⊆ [0, D�] (8.2)

for some constant D� > 0 independent of n,W .

Remark 8.2. The same proof generalizes also to measures μ� which do not have compact
support, but sufficient decay at infinity so as to guarantee that the L∞ estimates further
below on the remainder term R go through, when replaced by integration. We do not
pursue this further generalization here, but point out that (8.2) heavily restricts the class
of measures possible, in the sense that without lifting it, since we treat this coupling
λ as quenched, we are effectively taking the Ginibre, GUE distribution on each matrix
but allowing the variances to vary with j . Since there are classes of interesting models
covered if (8.2) were lifted, we phrased the condition as a mixture of Gaussians. An
example of such a model is:

M �→ 1

Z
exp
(−ξ ‖M‖α

HS

)

with α ∈ (0, 2).
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We define now the random Hamiltonian H which is an nW × nW F-valued matrix
as in (1.1), but generalized so that

{
Vj
}n
j=1 is an i.i.d. sequence of matrices each taking

value in i1(V1) ⊆ HermW (F) and distributed according to p1 and
{
Tj
}n−1
j=1 is an i.i.d.

sequence of matrices each taking values in i2(V2) ⊆ MatW (F) and distributed according
to p2. Since we required that each element in i1(V1) is self-adjoint, H itself is a self-
adjoint matrix over F. Explicitly, the distribution of H is given as follows. For any
measurable f : MatF(W ) → C,

E [ f (H)] ≡
∫
V1,...,Vn∈i1(V1); T1,...,Tn−1∈i2(V2)

(∏n−1
j=1 p1(Vj )p2(Tj )

)
p1(Vn) f (H) d V d T

∫
V1,...,Vn∈i1(V1); T1,...,Tn−1∈i2(V2)

(∏n−1
j=1 p1(Vj )p2(Tj )

)
p1(Vn) d V d T

where by d V d T we mean the Lebesgue measures d V1 . . . d Vn d T1 . . . d Tn−1.

Theorem 8.3 (Generalization of Theorem 2.1). Assume that H is distributed as detailed
in the present section. Assume further that the large deviation estimate (7.5) holds for
both p1 and p2,1 Then there exists an s0 ∈ (0, 1) such that for all s ∈ (0, s0) and
z ∈ R with |z| < M, where M ∈ (0,∞) and M �

√
W, there exist C < ∞, μ > 0,

independent of n and W, such that

E
[‖G(x, y; z)‖s] ≤ WC exp

(
−μ

|x − y|
W �

)
(x, y ∈ {1, . . . , n}) (8.3)

with � = 3.

Sketch of proof. The first step is to expand all the factors of p1, p2 using (8.1). Once this
is done, conditioned on all factors the variances λ�; j , where � = 1 correspond to Vj and
� = 2 corresponds to Tj , we get the following distribution on H . For any measurable
f : MatW (F) → C,

Ẽ [ f (H)] ≡
∫
V1,...,Vn∈i1(V1); T1,...,Tn−1∈i2(V2)

e
−W tr

(
λ1;n |Vn |2+

∑n−1
j=1 λ1; j |Vj |2+λ2; j |Tj |2

)

f (H) d V d T

∫
V1,...,Vn∈i1(V1); T1,...,Tn−1∈i2(V2)

e
−W tr

(
λ1;n |Vn |2+

∑n−1
j=1 λ1; j |Vj |2+λ2; j |Tj |2

)

d V d T

.

The proof as outlined above now goes through verbatim the same way, with minor modi-
fications. Those modifications are as follows: instead of working with MatW (C) ∼= R

2W 2

for the change of variables for the Tj ’s in Sect. 5, we will have Rdim V2 . Furthermore, the
constants in the large deviation estimates in Sect. 7 will also change. The assumption
on the support of the measures μ�, (8.2), will guarantee that the estimates in Sect. 6 go
through (the R term will contain λ�; j factors) via a simple L∞ bound. ��

1 It is actually enough that (7.5) holds with e−W2
replaced by the inverse of a large constant K , independent

of W , as in (7.6) and that (7.6) holds for p1.
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8.2. Models of interest.

1. To get the proper “RBM” model rather than the Wegner W-orbital model we have
analyzed here, one replaces the Ginibre distribution used above for Tj ’s, which takes
values in the vector space MatW (C) with a Gaussian distribution on the vector space
of triangular W × W complex matrices. The distribution of the Vj ’s is unaltered.

2. To get real-valued rather than complex-valued matrices (and hence replace the GUE
distribution of the Vj ’s with a GOE distribution, and use the real Ginibre distribution

on MatW (R) for the Tj ’s), use the vector spaces V1 := R
W 2

,V2 := R
W 2

.
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A. Technical Results

Here we present proofs for some of the technical lemmata.

Proof of Lemma 3.1. It is enough to establish

1

s

∫ s

0
fr,s(q)Varq

[
log (Y )

]
d q = log

(
E
[
Y s
]r/s

E [Yr ]

)

.

Starting from the left hand side, we use the identity

∂2
q log

(
E
[
exp (qX)

]) = Varq [X ]
and place it into the integral. Separating the integration over [0, s] to [0, r ] and [r, s],
the function fr,s simplifies and may then be integrated by parts (twice, for each segment
of integration), yielding the right hand side. ��
Proof of Lemma 3.3. We have the following chain of inequalities

P
[
[−α, α]c

] = P [(−∞,−α)] + P [(α,∞)]

≥ P [(−∞,−a]] + P [[a,∞)] ,
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since a > α. By the arithmetic mean-geometric mean inequality, this is further bounded
below

≥ 2
√
P [(−∞,−a]]P [[a,∞)]

≥ 2

β
(P [[−α, α]] − ε)

= 2

β

(
1 − P

[
[−α, α]c

]− ε
)

,

where in the middle step we have applied the hypothesis (3.7). The final expression
implies

P
[
[−α, α]c

] ≥ 1 − ε

1 + 1
2β

.

We conclude with a simple Markov inequality

E

[
X2
]

≥ α2
P [{|X | ≥ α}] ≥ α2

P [{|X | > α}] .

��
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8. Bao, Z., Erdős, L.: Delocalization for a class of random block band matrices. Probab. Theory Relat.
Fields 167(3), 673–776 (2017)

9. Benigni, L., Lopatto, P.: Fluctuations in local quantum unique ergodicity for generalized Wigner matrices.
Commun. Math. Phys. 391(2), 401–454 (2022)
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