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a b s t r a c t

We present an efficient valuation approach for guaranteed minimum maturity benefits
(GMMBs) embedded in variable annuity (VA) contracts in a regime-switching jump diffu-
sion model. We allow early surrender of the VA contract and impose surrender charges,
which are important in practice to discourage early termination/lapse of the contract. We
consider both continuously-monitored and discretely-monitored surrender behaviors
before maturity, and utilize an intensity-based framework. Based on the continuous-time
Markov chain (CTMC) approximation combined with the Fourier cosine series expansion
method, we find that the valuation problem can be solved under a regime-switching
jump diffusion framework. Both error analysis and numerical experiments demonstrate
the accuracy and efficiency of the proposed method.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

With the increased life expectancy, there is an increasing need for the management of longevity risks and investment
ost retirement. A variable annuity (VA) is a contract between the insurance company and the policyholder in which the
olicyholder pays premium during the accumulation phase and the insurer guarantees minimum periodic payments. It
s a long-term insurance contact aimed at meeting retirement and other long-term investment planning goals. The VA
ontracts can be roughly divided into two major categories: guaranteed minimum death benefits (GMDBs) and guaranteed
inimum living benefits (GMLBs). GMDBs provide guaranteed payments of the accumulated premium values to the
eneficiaries in the event of death of policyholder. GMLBs provide living protection of the policyholder’s income against
arket risk during either the accumulation phase and/or the annuitization phase. Within GMLBs there are several sub-
ategories, with one particular popular product being the guaranteed minimum maturity benefits (GMMBs), which at
aturity provide the greater of the accumulated account value and the guaranteed minimum benefits.
VA contracts embedded with GMMBs have received increasing attention in recent literature. Under the Black–Scholes

odel, where asset value follows a geometric Brownian motion (GBM), Shen et al. [1] proposed a numerical approach
or the pricing of GMMBs, derived the corresponding pricing partial differential equation (PDE) and proposed an integral
epresentation of the solution using Dunhamel principle. Ng et al. [2] utilized the conditional Esscher transform to study
he valuation of investment guarantees in a GARCH-type model. In a Heston-type stochastic volatility setting, Cui et al.
3] priced a GMMB with VIX-linked fees. Kang and Ziveyi [4] extended the framework presented in Bernard and Kwak
5], and designed a dynamic hedging algorithm to relieve the insurance company of the net liability. Feng and Volkmer
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[6] presented a new application of the spectral expansion method for the quantitative risk management in GMMB, which
was found to be an efficient and accurate method for the computation of risk measures.

Another strand of literature focuses on the policyholder’s behavior since the surrender of the VA contract has a great
impact on both the insurer and the policyholder. On one hand, for the insurer, the surrender of the contract causes
loss of premium revenue, and consequently affect its asset–liability structure and solvency. On the other hand, for the
policyholder, the surrender will make her lose the protection function of the insurance component and affects the long-
term financial planning. Therefore, the problem of surrender risk has become an active area of research. As pointed out
in Shen et al. [1], Kang and Ziveyi [4], Bernard et al. [7], Jeon and Kwak [8], the surrender option embedded in VAs has
great similarity with and hence can be treated as an American put option. Equivalently, the optimal surrender problem
in VA contracts can be represented as optimal stopping problems. A common theme of the above literature is that the
surrender option is the consequence of endogenous rational choice. However, the surrender option is also influenced by
exogenous factors such as personal motivations outside the financial consideration, i.e. surrender decisions in reality are
usually not fully financially rational. This exogenous viewpoint is shared by Consiglio and De Giovanni [9], De Giovanni
[10] and Russo et al. [11]. Inspired by Russo et al. [11], we shall adopt an intensity-based framework for modeling the
surrender behaviors in this paper.

In general, the maturities of VAs usually span for several decades, hence potential regime shifts in social policy and
economic development have a great impact on the valuation of VAs. This motivates us to cast the valuation problem
under the regime-switching jump diffusion model, which involves Markov-modulated geometric Brownian motions with
jumps. Under the regime-switching jump diffusion model, Buffington and Elliott [12] priced the American option. Since
the market is incomplete, Elliott et al. [13] and Lin et al. [14] used Esscher transform to determine an equivalent martingale
measure. Siu et al. [15] adopt the Laplace transform to value the contingent options. Ignatieva et al. [16] used Fourier space
time-stepping (FST) algorithm to price and hedge the guaranteed minimum benefits (GMBs) embedded in VAs. Mamon
et al. [17] obtained the semi-closed-form solution of GMMB price by a series of measure changes, and employed the Fourier
transform to carry out numerical approximation of the price. In addition, many researches have studied the valuation of
related financial products in the regime-switching jump diffusion model. See, for example, Zhang and Guo [18], Cui et al.
[19], Cui et al. [20], Kang et al. [21], Kirkby et al. [22], Kirkby and Nguyen [23], Wang et al. [24], Ai and Zhang [25], etc.

In light of the above, we shall focus on the pricing problems of VAs under the regime-switching jump diffusion
model and with surrender risk modeled based on the intensity-based framework. We consider GMMB benefits with
both continuous and discrete surrender behaviors. Due to the change in the cash flows of its riders from surrender,
this puts forward higher requirements for the insurance company to price the product. To model the dynamics of the
underlying fund, we use regime-switching jump diffusion model, which is more general than pure Lévy processes. For
the determination of the surrender time, we apply a continuous-time Markov chain (CTMC) method to approximate
the corresponding intensity process. The CTMC has recently gained popularity as an efficient and accurate method for
approximating diffusion processes. The CTMC method discretizes the state space, but preserves the continuous time
nature of the original diffusion model, which has several clear advantages. One clear advantage is the avoidance of time
discretization and also the need for recursive valuations such as in a discrete-time lattice such as binomial tree. The CTMC
approximation method was proposed by Mijatović and Pistorius [26] to price barrier options. In the one-dimensional case,
many scholars use the CTMC method to approximate Markov process and carry out research on the valuation of various
financial products. Lo and Skindilias [27] generalized the CTMC approximation method, and proposed a nonuniform grid
design for stochastic differential equations with jumps. The grid design has been adopted in Ding et al. [28], Kirkby and
Nguyen [23], Cui et al. [29], Kirkby et al. [22]. Cai et al. [30] priced both continuously and discretely monitored Asian
options and obtained the closed-form double transform approximation formulas. Cui et al. [31] generalized the results
of Cai et al. [30], and they obtained explicit single Laplace transforms for Asian options. Zhang et al. [32] developed
two algorithms for solving the perpetual optimal stopping problem. An updated account of the extant literature on the
applications of the CTMC method can be found in Cui et al. [33] and the references therein. Recently, Zhang and Li [34]
and Li and Zhang [35] established the precise convergence rate of the CTMC method with a newly designed grid scheme.
Other methods of stochastic approximation can be found in Kushner and Yin [36]. In order to handle the early surrender
feature, we also utilize the Fourier cosine (COS) series expansion method. The COS method was first proposed in Fang
and Oosterlee [37], and has consequently been applied in finance and insurance, see Fang and Oosterlee [37], Ruijter and
Oosterlee [38], Zhang and Oosterlee [39], Zhang and Oosterlee [40], Chau et al. [41], Zhang [42], Xie and Zhang [43], etc.

The contributions of the paper are three-fold: First, we consider a general regime-switching jump diffusion model
with consideration of the surrender option, and this generalizes previous literature which primarily considers diffusion
models without one or all of the three features: regime switching, jumps, and the surrender option. Second, with the
previous literature considering only continuous surrender, our framework also incorporates the more practical case of
discrete surrender structure. Third, we present explicit closed-form formulas for the value of the GMMB contract by
novelly combining the method of CTMC approximation and Fourier cosine expansions. The closed-form valuation formulas
allow us to also compute the hedging parameters, i.e. Greeks, in closed-form, which is relevant to the sensitivity analysis
and risk management of VAs under surrender risk.

The remainder of the paper is organized as follows. In Section 2, we present the regime switching jump diffusion model
with the surrender option. Section 3 introduces the CTMC approximation method. Sections 4 and 5 discuss the valuation
f the surrender option in continuous and discrete monitoring cases, respectively. Error analysis of our method is carried
ut in Section 6. In Section 7, our method is shown to be both efficient and accurate. Finally, Section 8 concludes the
aper.
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2. Problem formulation

2.1. The model

In this paper, all stochastic quantities are considered in a filtered probability space (Ω, G,F,Q), where F = (Gt )t≥0 is
a filtration augmented in the usual way, and Q is the risk-neutral probability measure. The underlying price process is
described by a regime-switching jump diffusion process as follows. Suppose {α1(t), t ≥ 0} is a continuous-time Markov
chain (CTMC), which makes transitions between states in a finite state space M1 = {1, 2, . . . ,m1}. The transition law of
α1(t) is governed by an intensity matrix Λ = (λjk)m1×m1 . The elements λjk of Λ satisfy: (i) λjj ≤ 0, and λjk ≥ 0, if j ̸= k,
and (ii)

∑
k λjk = 0, ∀ j ∈ M1. In terms of λjk, α1(t) makes transitions according to

Q(α1(t +∆t ) = k|α1(t) = j, α1(t ′), 0 ≤ t ′ ≤ t) = λjk∆t + o(∆t ), ∀j ̸= k,

for some small time increment ∆t > 0.
The underlying price process (St )t≥0 is modeled by

dSt
St−

= (r − κα1(t))dt + σα1(t)dW
1
t +

∫
x∈R

[ex − 1]Nα1(t)(dx, dt),

where r is the risk-free interest rate and (W 1
t )t≥0 is a standard Q-Brownian motion. Here for each regime j ∈ M1,

σj > 0 is the diffusion volatility parameter, Nj(dx, dt) is a Poisson random jump measure with Lévy measure Πj, and
κj =

∫
[ex − 1]Πj(dx) is finite. The log price process Xt = log[St/S0] is a regime-switching jump diffusion process that

satisfies the dynamics

dXt =

(
r − κα1(t) −

1
2
σ 2
α1(t)

)
dt + σα1(t)dW

1
t +

∫
x∈R

xNα1(t)(dx, dt).

For ∆t > 0 and ω ∈ R, the risk-neutral characteristic function of X∆t is given by

E[eiωX∆t |α1(0 ≤ s ≤ ∆t ) = j] := eψ
X
j (ω)t

, ω ∈ R, j ∈ M1,

where E(·) denotes the expectation operator associated with Q and

ψX
j (ω) = iω(r − κj −

1
2
σ 2
j )−

1
2
σ 2
j ω

2
+

∫
(eiωx − 1)Πj(dx)

s called the characteristic exponent.
In this paper, matrix and vector symbols will be used frequently in our analysis. We use ej to denote a column vector

f zeros with appropriate dimension, except for the value 1 in the position j. We use I to denote the identity matrix with
ppropriate dimension. For any matrix A and vector a, we use A′ and vector a′ to denote their transposes. For a square
atrix A, the corresponding matrix exponential is defined by Exp(A) =

∑
∞

n=0
An

n! .

.2. GMMB with surrender option

In this subsection, we introduce the VA contract with GMMB riders under the above regime-switching models. Assume
hat the insurer continuously takes out a constant rate c > 0 from the policyholder’s account as compensation for the VA
ontract provided. Then the policyholder’s account value at time t is given by

Ft = e−ctSt , t ≥ 0.

et T > 0 denote the maturity of the VA contract, the value of a VA contract without the surrender option at initial time
s given by

E[e−rT max(FT ,GT )] = e−rTE[FT ] + e−rTE[(GT − FT )+],

where GT is the guaranteed minimum payoff at time T , and for any real number x, x+ := max(x, 0).
Jeon and Kwak [8] consider a VA contract with surrender option, in which the policyholder is allowed to surrender the

embedded guarantee and receive a surrender benefit with a penalty at any time before maturity, and the policyholder
will receive his/her account value at maturity. In this paper, we shall also assume that the policyholder could exercise
the surrender option at time t before maturity T , with surrender benefit

P(t)(Gt − Ft )+, t > 0,

where Gt denotes the guarantee level at time t , and P(·) is an increasing penalty function satisfying 0 < P(t) < 1 for
0 ≤ t < T , and P(t) = 1 for t ≥ T . For this GMMB with surrender option, we assume that surrender is only possible after
a pre-specified time t1 > 0, and denote the random variable τ as the policyholder’s surrender time. Then the value of VA
with surrender option is given by

e−rTE[F ] + E
[
e−r(τ∧T )P(τ ∧ T )(G − F )

]
, (2.1)
T τ∧T τ∧T +

3
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where the first term in (2.1) is the expected discounted account value, and is given by

e−rTE[FT ] = e−cT F0,

since the discounted process e−rtSt is a Q-martingale. Hence, it remains to compute the second term in (2.1) which
corresponds to the value of the surrender option.

For the surrender risk, we use an intensity-based approach to model the surrender time. Let νt denote the surrender
intensity, which satisfies the following stochastic differential equation

dνt = µ̂(νt )dt + σ̂ (νt )dW 2
t , (2.2)

where (W 2
t )t≥0 is a standard Brownian motion satisfying E[dW 1

t dW
2
t ] = ρdt for some ρ ∈ (−1, 1). We suppose that the

coefficients µ̂ and σ̂ satisfy the following Lipschitz condition and linear growth condition, i.e. there exist some constants
C1, C2 > 0 satisfying

|µ̂(x)− µ̂(y)| + |σ̂ (x)− σ̂ (y)| ≤ C1|x− y|, |µ̂(x)|2 + |σ̂ (x)|2 ≤ C2(1+ x2)

for all x, y in the state space of νt . Note that the above conditions ensure that there exists a unique strong solution νt
satisfying the strong Markov property. Throughout this paper, we suppose that σ̂ (·) > 0 on the domain of νt .

In this paper, we shall consider the following two types of surrender structures:

• (continuous surrender): The surrender is possible continuously on the interval [t1, T ), and the conditional proba-
bility that surrender does not occur before time t is

Q(τ ≥ t|Gt ) = e−
∫ t
0 νsds, t ≥ 0.

• (discrete surrender): The surrender is possible only at a sequence of pre-specified payment times 0 < t1 < · · · <

tM−1 < tM = T , where tm+1 − tm = ∆t for m = 1, . . . ,M − 1 and ∆t > 0. In this case, we suppose that for
m = 1, . . . ,M − 1, 1{τ=tm} = 1{τ≥tm} − 1{τ≥tm+1} with

Q(τ ≥ tm|Gtm ) = e−
∫ tm
0 νsds, m = 1, 2, . . . ,M.

Under above assumptions, we shall pay attention to computing the following conditional expectation

Vj(ν0) = E
[
e−r(τ∧T )P(τ ∧ T ) · (Gτ∧T − Fτ∧T )+

⏐⏐⏐⏐ν0, α1(0) = j
]
, ν0 > 0, j ∈ M1, (2.3)

which is the value of the surrender option.

3. CTMC approximation

In this section, we shall apply the CTMC method to approximate the intensity process νt , so that our valuation problem
can be solved under a regime-switching framework. Note that the two Brownian motionsW 1

t andW 2
t are not independent.

In order to use the CTMC approximation method, it is more convenient to separate these two Brownian motions into two
independent components. For this purpose, we adapt the strategy in Kirkby et al. [22].

First, define the following auxiliary functions under regime j ∈ M1,

f̂j(x) =
∫ x

·

σj

σ̂ (u)
du, hj(x) = µ̂(x)f̂ ′j (x)+

1
2
σ̂ 2(x)f̂ ′′j (x), fj(ν0, νt ) = ρ[f̂j(νt )− f̂j(ν0)].

y Ito’s lemma, we have

dfj(ν0, νt ) = ρσjdW 2
t + ρhj(νt )dt. (3.1)

urthermore, define

W ∗

t :=
W 1

t − ρW 2
t√

1− ρ2
, t ≥ 0,

which is also a standard Q-Brownian motion, and independent of W 2
t . Using W ∗

t and formula (3.1) we obtain

dXt =

(
r − κα1(t) −

1
2
σ 2
α1(t)

)
dt + σα1(t)

(
ρdW 2

t +

√
1− ρ2dW ∗

t

)
+

∫
x∈R

xNα1(t)(dx, dt)

=

(
r − κα1(t) −

1
2
σ 2
α1(t)

)
dt + dfα1(t)(ν0, νt )− ρhα1(t)(νt )dt

+ σα1(t)
√
1− ρ2dW ∗

t +

∫
x∈R

xNα1(t)(dx, dt),
4
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which yields, for X̃t := log(St/S0)− fα1(t)(ν0, νt ),

dX̃t =

(
r − κα1(t) −

1
2
σ 2
α1(t) − ρhα1(t)(νt )

)
dt + σα1(t)

√
1− ρ2dW ∗

t +

∫
x∈R

xNα1(t)(dx, dt). (3.2)

ow the stock price process can be expressed as

St = S0eX̃t+fα1(t)(ν0,νt ), t ≥ 0. (3.3)

Next, we construct the CTMC approximation of the intensity process νt . Let (α2(t))t≥0 be a CTMC that makes transitions
n the state space M2 := {1, 2, . . . ,m2}. The transition dynamics of α2(t) are determined by the generator matrix
= (qjk)m2×m2 . The elements qjk of Q satisfy: (i) qjj ≤ 0, and qjk ≥ 0, if j ̸= k, and (ii)

∑
k qjk = 0, ∀ j ∈ M2. Starting from

state j ∈ M2, α2(t) makes transitions according to

Q(α2(t +∆t ) = k|α2(t) = j, α2(t ′), 0 ≤ t ′ ≤ t) = qjk∆t + o(∆t ), ∀k ̸= j, (3.4)

or a small time increment ∆t > 0.
For the intensity process νt , we approximate it by a CTMC ν̄α2(t), which has a state space ν = {ν̄1, . . . , ν̄m2} with

ν̄i < ν̄i+1 and k = {k1, . . . , km2−1}, with the set of grid spacing ki = ν̄i+1 − ν̄i. Assume that the initial value ν0 ∈ ν, and
inspired by Lo and Skindilias [27], we construct the entries in the generator matrix Q as

qij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

µ̂−(ν̄i)
ki−1

+
σ̂ 2(ν̄i)− (ki−1µ̂

−(ν̄i)+ kiµ̂+(ν̄i))
ki−1(ki−1 + ki)

, if j = i− 1,

µ̂−(ν̄i)
ki

+
σ̂ 2(ν̄i)− (ki−1µ̂

−(ν̄i)+ kiµ̂+(ν̄i))
ki(ki−1 + ki)

, if j = i+ 1,

−qi,i−1 − qi,i+1, if j = i,
0, if j ̸= i− 1, i, i+ 1.

In addition, if the set k satisfies

0 < max
1≤i≤m2−1

{ki} ≤ min
1≤i≤m2

{
σ̂ 2(ν̄i)
| µ̂(ν̄i) |

}
,

hen, we have

σ̂ 2(ν̄i) ≥ max
1≤i≤m2−1

{ki}· | µ̂(ν̄i) |≥ max
1≤i≤m2−1

{ki} · (µ̂+(ν̄i)− µ̂−(ν̄i)) ≥ ki−1µ̂
−(ν̄i)+ kiµ̂+(ν̄i).

herefore, qij ≥ 0 for 1 ≤ i ̸= j ≤ m2, and
∑m2

j=1 qij = 0, i = 1, . . . ,m2.
In order to apply the CTMC approximation, we determine the variance grids {ν̄j}

m2
j=1 as follows. According to Tavella

nd Randall [44], we define a non-uniform grid as

ν̄j = ν0 + ᾱ sinh
(
c2

j
m2

+ c1

(
1−

j
m2

))
, j = 2, . . . ,m2 − 1,

here

c1 = arcsinh
(
ν̄1 − ν0

ᾱ

)
,

and

c2 = arcsinh
(
ν̄m2 − ν0

ᾱ

)
.

A smaller ᾱ can make the grid more dense, and in this paper we set ᾱ =
ν̄m2−ν̄1

2 . Further, for grid boundaries ν̄1 and
¯m2 , we define µ̄(t) = E[νt |ν0] and σ̄ (t) is the standard deviation under ν0. If νt is a positive process, then we let
¯1 = max{ν̄, µ̄(t) − γ σ̄ (t)}, and otherwise, ν̄1 = µ̄(t) − γ σ̄ (t), where the constant t =

T
2 . Finally, we set constants

γ = 3 ∼ 5 and 0 < ν̄ ≪ 1.

Remark 1. Unlike other discrete approximations, such as the lattice methods, the CTMC method eliminates time-
discretization error. From Cui et al. [45], when the scheme satisfies certain regularity conditions, it is weakly convergent,
and achieves a convergence order O(m−2

2 ). Furthermore, for a continuous function of νt , the convergence order in the
spatial variable is of second order. Similar convergence order results appear in Ma et al. [46].

Based on the CTMC approximation ν̄α2(t), we can further approximate X̃t by a regime-switching jump diffusion process
X̄t , whose dynamics are given by

dX̄t =

(
r − κα1(t) −

1
σ 2
α1(t) − ρhα1(t)(ν̄α2(t))

)
dt + σα1(t)

√
1− ρ2dW ∗

t +

∫
xNα1(t)(dx, dt).
2 x∈R

5
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It follows from formula (3.3) that

St = S0eX̃t+fα1(t)(ν0,νt ) ≈ S̄t := S0eX̄t+fα1(t)(ν̄α2(0),ν̄α2(t)).

Note that the process X̄t is driven by a two-dimensional CTMC (α1(t), α2(t)). For the convenience of the following
nalysis, we introduce a new CTMC with state space Mβ = {1, 2, . . . ,m1 ·m2} and generator matrix

G =

⎛⎜⎜⎝
λ11I + Q λ12I · · · λ1m1 I
λ21I λ22I + Q · · · λ2m1 I
...

...
. . .

...

λm11I λm12I · · · λm1m1 I + Q

⎞⎟⎟⎠ .
efine two mappings πi : Mβ → Mi, i = 1, 2, by

π1(n) = j, π2(n) = k, n ∈ Mβ ,

here j ∈ M1, k ∈ M2, and n = (j− 1)m2 + k. It is easy to see that αj(t) is identical in law to πj(β(t)), j = 1, 2.
Now for each n ∈ Mβ , let

µ̄n = r − κπ1(n) −
1
2
σ 2
π1(n) − ρhπ1(n)(νπ2(n)),

σ̄n = σπ1(n)
√
1− ρ2, N̄n(dx, dt) = Nπ1(n)(dx, dt),

and define a new regime-switching jump diffusion process Yt by

dYt = µ̄β(t)dt + σ̄β(t)dW ∗

t +

∫
x∈R

xN̄β(t)(dx, dt),

For n1, n2 ∈ Mβ , let

f̃n1,n2 = fπ1(n2)(ν̄π2(n1), ν̄π2(n2)).

It is easy to see that X̄t and Yt have the same probability law, which further imply that the processes S̄t and S0eYt+f̃β(0),β(t)

have the same probability law.
For any real numbers θ1, θ2, we have

d
(
θ1

∫ t

0
ν̃β(s)ds+ θ2Yt

)
= (θ1ν̃β(t) + θ2µ̄β(t))dt + θ2σ̄β(t)dW ∗

t +

∫
x∈R

θ2xN̄β(t)(dx, dt).

Hence, the process θ1
∫ t
0 ν̃β(s)ds+θ2Yt is also a regime-switching jump diffusion process. By Asmussen [47], we know that

the conditional moment generating function of
(∫ t

0 ν̃β(s)ds, Yt

)
is given by

E[eθ1
∫ t
0 ν̃β(s)ds+θ2Yt ;β(t) = n1|β(0) = n0] = e′n0Exp(tK (θ1, θ2))en1 , (3.5)

where

K (θ1, θ2) = G + diag(ψ11(θ1, θ2), . . . , ψ1m2 (θ1, θ2), . . . , ψm11(θ1, θ2), . . . ,ψm1m2
(θ1, θ2))

with

ψjk(θ1, θ2) = θ1ν̄k − ρθ2hj(ν̄k)+ ψX
j (−iθ2).

By analytic continuation, we find that the formula (3.5) still holds true when θ1 and θ2 are complex numbers.

4. Valuation under continuous surrender

In this section, we pay attention to the valuation of surrender options under continuous monitoring. Throughout this
section, suppose that the guarantee level at time t is given by

Gt = G0ewt , t ≥ 0,

where G0 > 0 is the initial guarantee and w is the rolled-up rate of guarantee. We further suppose that the penalty
function P(t) is also an exponential function taking the form

−δ(T−t)
P(t) = e , 0 ≤ t ≤ T , δ ≥ 0.
6
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Under the above assumptions, the conditional expectation in (2.3) becomes

Vj(ν0) =
∫ T

t1

e−rte−δ(T−t)E
[
νte−

∫ t
0 νsds ·

(
G0ewt

− Ft
)
+

⏐⏐⏐ν0, α1(0) = j
]
dt

+ e−rTE
[
e−

∫ T
0 νsds ·

(
G0ewT

− FT
)
+

⏐⏐⏐ν0, α1(0) = j
]

=

∫ T

t1

e(w−r)te−δ(T−t)E
[
νte−

∫ t
0 νsds ·

(
G0 − e−(w+c)tSt

)
+

⏐⏐⏐ν0, α1(0) = j
]
dt

+ e(w−r)TE
[
e−

∫ T
0 νsds ·

(
G0 − e−(w+c)T ST

)
+

⏐⏐⏐ν0, α1(0) = j
]
. (4.1)

n the remainder of this section, we shall focus on how to compute Vj(ν0) based on the above formulas.

.1. Valuation by CTMC approximation

In order to use the CTMC approximation, suppose that ν0 = ν̄α2(0) = ν̄k for some k ∈ M2. Then we have

Vj(ν0) ≈ V̂j(ν0)

:=

∫ T

t1

e(w−r)te−δ(T−t)E
[
ν̄α2(t)e

−
∫ t
0 ν̄α2(s)ds ·

(
G0 − S0eX̄t−(w+c)t+fα1(t)(ν̄α2(0),ν̄α2(t))

)
+

⏐⏐⏐α1(0) = j, α2(0) = k
]
dt

+ e(w−r)TE
[
e−

∫ T
0 ν̄α2(s)ds ·

(
G0 − S0eX̄T−(w+c)T+fα1(T )(ν̄α2(0),ν̄α2(T ))

)
+

⏐⏐⏐α1(0) = j, α2(0) = k
]

=

∫ T

t1

e(w−r)te−δ(T−t)E
[
ν̃β(t)e−

∫ t
0 ν̃β(s)ds ·

(
G0 − S0eȲt+f̃β(0),β(t)

)
+

⏐⏐⏐β(0) = (j− 1)m2 + k
]
dt

+ e(w−r)TE
[
e−

∫ T
0 ν̃β(s)ds ·

(
G0 − S0eȲT+f̃β(0),β(T )

)
+

⏐⏐⏐β(0) = (j− 1)m2 + k
]
,

where for t ≥ 0, Ȳt = X̄t − (w + c)t , and for n ∈ Mβ , ν̃n = ν̄π2(n). It follows that we only need to compute the following
functions: for n0 ∈ Mβ ,

V̂n0,1 =

∫ T

t1

e(w−r)te−δ(T−t)E
[
ν̃β(t)e−

∫ t
0 ν̃β(s)ds ·

(
G0 − S0eȲt+f̃β(0),β(t)

)
+

⏐⏐⏐β(0) = n0

]
dt,

V̂n0,2 = e(w−r)TE
[
e−

∫ T
0 ν̃β(s)ds ·

(
G0 − S0eȲT+f̃β(0),β(T )

)
+

⏐⏐⏐β(0) = n0

]
.

For V̂n0,1, we have

V̂n0,1 =

∑
n1∈Mβ

e−δT ν̃n1

∫ T

t1

e(w+δ−r)tE
[
e−

∫ t
0 ν̃β(s)ds ·

(
G0 − S0eȲt+f̃n0,n1

)
+

;β(t) = n1

⏐⏐⏐β(0) = n0

]
dt

=

∑
n1∈Mβ

e−δT ν̃n1

∫ T

t1

e(w+δ−r)t
∫

+∞

−∞

(
G0 − S0ex+f̃n0,n1

)
+

· gn0,n1 (x; t)dxdt, (4.2)

here for each t > 0 and n0, n1 ∈ Mβ , gn0,n1 (x; t) is a conditional density function satisfying

gn0,n1 (x; t)dx = E
[
e−

∫ t
0 ν̃β(s)ds, Ȳt ∈ dx;β(t) = n1

⏐⏐⏐β(0) = n0

]
, x ∈ R.

Similarly, we have

V̂n0,2 =
∑

n1∈Mβ

e(w−r)TE
[
e−

∫ T
0 ν̃β(s)ds ·

(
G0 − S0eȲT+f̃β(0),β(T )

)
+

;β(T ) = n1

⏐⏐⏐β(0) = n0

]
=

∑
n1∈Mβ

e(w−r)T
∫

+∞

−∞

(
G0 − S0ex+f̃n0,n1

)
+

· gn0,n1 (x; T )dx. (4.3)

ence, we still need to compute the integrals in (4.2) and (4.3), which will be discussed in details in the next subsection.

.2. Valuation by Fourier cosine expansions

In this subsection, we apply the Fourier cosine expansion of Fang and Oosterlee [37,48] to compute the integrals in
4.2) and (4.3). This method is very efficient for approximating an integrable function as long as it has a closed-form
7



W. Zhong, Z. Cui and Z. Zhang Journal of Computational and Applied Mathematics 422 (2023) 114914

m

B

w

U

w

Fourier transform. For an integrable function g(·), define its Fourier transform by

Fg(ω) =
∫

+∞

−∞

eiωxg(x)dx, ω ∈ R.

On a finite interval [a, b], we can approximate the density function g by its Fourier-cosine series expansion as follows,

g(x) ≈ g̃(x) :=
L−1∑
l=0

′ Al(g) · cos
(
lπ

x− a
b− a

)
, x ∈ [a, b],

where the positive integer L is the truncation parameter, and the
∑

′ indicates that the first term in summation is
ultiplied by 1/2. The COS series coefficients Al(g) are given by

Al(g) =
2

b− a
ℜ

{
Fg

(
lπ

b− a

)
e−ilπ a

b−a

}
, l = 0, 1, . . . , L− 1,

where ℜ(·) means taking the real part of the complex number in bracket.
For the conditional density function gn0,n1 (x; t), it does not have a closed-form expression. However, it has a closed-form

Fourier transform given by

Fgn0,n1 (ω; t) =
∫

+∞

−∞

eiωxgn0,n1 (x; t)dx

= E
[
e−

∫ t
0 ν̃β(s)ds+iωȲt ;β(t) = n1

⏐⏐⏐β(0) = n0

]
= E

[
e−

∫ t
0 ν̃β(s)ds+iωYt−iω(w+c)t

;β(t) = n1

⏐⏐⏐β(0) = n0

]
= e′n0Exp(t (K (−1, iω)− iω(w + c)I))en1 .

y the COS method, we can approximate gn0,n1 (x; t) by

g̃n0,n1 (x; t) :=
L−1∑
l=0

′ Al(gn0,n1 (·; t)) · cos
(
lπ

x− a
b− a

)
, x ∈ [a, b],

here for l = 0, 1, . . . , L− 1,

Al(gn0,n1 (·; t))

=
2

b− a
ℜ

{
Fgn0,n1,l

(
lπ

b− a
; t
)
e−ilπ a

b−a

}
=

2
b− a

ℜ

{
e′n0Exp

(
t
(
K
(
−1, i

lπ
b− a

)
− i

lπ
b− a

(w + c)I
))

en1e
−ilπ a

b−a

}
. (4.4)

sing the COS approximation g̃n0,n1 (x; t), we can approximate V̂n0,1 as follows

V̂n0,1 ≈ Ṽn0,1 (4.5)

:=

∑
n1∈Mβ

e−δT ν̃n1

∫ T

t1

e(w+δ−r)t
∫ b

a

(
G0 − S0ex+f̃n0,n1

)
+

· g̃n0,n1 (x; t)dxdt

=e−δT
L−1∑
l=0

′
∑

n1∈Mβ

ν̃n1

∫ T

t1

e(w+δ−r)tAl(gn0,n1 (·; t))dtVn0,n1,l, (4.6)

here

Vn0,n1,l =

∫ b

a

(
G0 − S0ex+f̃n0,n1

)
+

· cos
(
lπ

x− a
b− a

)
dx, n0, n1 ∈ Mβ , l = 0, 1, . . . , L− 1.

By formula (4.4), the integral in (4.5) can be explicitly computed as follows∫ T

t1

e(w+δ−r)tAl(gn0,n1 (·; t))dt

=
2

∫ T

e(w+δ−r)t
ℜ

{
e′n0Exp

(
t
(
K
(
−1, i

lπ )
− i

lπ
(w + c)I

))
en1e

−ilπ a
b−a

}
dt
b− a t1 b− a b− a
8
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a

=
2

b− a
e′n0ℜ

{
e−ilπ a

b−a

∫ T

t1

Exp(tP l)dt
}
en1

=
2

b− a
e′n0ℜ

{
e−ilπ a

b−a P−1
l [Exp(TP l)− Exp(t1P l)]

}
en1 ,

here

P l = K
(
−1, i

lπ
b− a

)
− i

lπ
b− a

(w + c)I + (w + δ − r)I .

ence, formula (4.5) becomes

Ṽn0,1 ≈
2e−δT

b− a

L−1∑
l=0

′e′n0ℜ
{
e−ilπ a

b−a P−1
l [Exp(TP l)− Exp(t1P l)]

}
a1,l,

here for l = 0, 1, . . . , L− 1,

a1,l = [ν̃1Vn0,1,l, ν̃2Vn0,2,l, . . . , ν̃m1m2Vn0,m1m2,l]
′.

Similarly, V̂n0,2 in (4.3) can be approximated as follows

Ṽn0,2 ≈ V̂n0,2

:=

∑
n1∈Mβ

e(w−r)T
∫ b

a

(
G0 − S0ex+f̃n0,n1

)
+

· g̃n0,n1 (x; T )dx

=e(w−r)T
L−1∑
l=0

′
∑

n1∈Mβ

Al(gn0,n1 (·; T ))Vn0,n1,l

=
2e(w−r)T

b− a

L−1∑
l=0

′e′n0ℜ
{
e−ilπ a

b−a Exp (T (P l − (w + δ − c)I))
}
a2,l,

here for l = 0, 1, . . . , L− 1,

a2,l = [Vn0,1,l, Vn0,2,l, . . . , Vn0,m1m2,l]
′.

emark 2. The integral in Vn0,n1,l can also be explicitly computed. Usually, the domain truncation parameters a and b
atisfy a < ln( G0S0 )− f̃n0,n1 < b. In this case, we have

Vn0,n1,l =

∫ ln( G0S0
)−f̃n0,n1

a

(
G0 − S0ex+f̃n0,n1

)
· cos

(
lπ

x− a
b− a

)
dx

=G0

∫ ln( G0S0
)−f̃n0,n1

a
cos

(
lπ

x− a
b− a

)
dx− S0ef̃n0,n1

∫ ln( G0S0
)−f̃n0,n1

a
ex · cos

(
lπ

x− a
b− a

)
dx.

urthermore, for x1 < x2, set

χl(x1, x2) :=
∫ x2

x1

ey cos
(
lπ

y− a
b− a

)
dy

=
1

1+ ( lπ
b−a )

2

[
cos

(
lπ

x2 − a
b− a

)
ex2 − cos

(
lπ

x1 − a
b− a

)
ex1

+
lπ

b− a
sin
(
lπ

x2 − a
b− a

)
ex2 −

lπ
b− a

sin
(
lπ

x1 − a
b− a

)
ex1
]

nd

ζl(x1, x2) :=
∫ x2

x1

cos
(
lπ

y− a
b− a

)
dy =

{
b−a
lπ

[
sin
(
lπ x2−a

b−a

)
− sin

(
lπ x1−a

b−a

)]
, l ̸= 0,

x2 − x1, l = 0.

Then we have

Vn0,n1,l = G0ζl

(
a, ln

(G0 )
− f̃n0,n1

)
− S0ef̃n0,n1χl

(
a, ln

(G0 )
− f̃n0,n1

)
.

S0 S0
9
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Remark 3. The Greeks for the GMMB contract can be straightforwardly computed as follows:

∆ ≈
2e−δT

b− a

L−1∑
l=0

′e′n0ℜ
{
e−ilπ a

b−a P−1
l [Exp(TP l)− Exp(t1P l)]

}
a∆1,l

+
2e(w−r)T

b− a

L−1∑
l=0

′e′n0ℜ
{
e−ilπ a

b−a Exp (T (P l − (w + δ − c)I))
}
a∆2,l,

here

a∆1,l = [ν̃1V∆n0,1,l, ν̃2V
∆
n0,2,l, . . . , ν̃m1m2V

∆
n0,m1m2,l]

′

nd

a∆2,l = [V∆n0,1,l, V
∆
n0,2,l, . . . , V

∆
n0,m1m2,l]

′

ith

V∆n0,n1,l = G0ζ
∆
l

(
a, ln

(G0

S0

)
− f̃n0,n1

)
− ef̃n0,n1χl

(
a, ln

(G0

S0

)
− f̃n0,n1

)
+ S0ef̃n0,n1χ∆l

(
a, ln

(G0

S0

)
− f̃n0,n1

)
,

ζ∆l

(
a, ln

(G0

S0

)
− f̃n0,n1

)
=

⎧⎪⎨⎪⎩ −
1
S0

cos

(
lπ

ln
(

G0
S0

)
−f̃n0,n1−a

b−a

)
, l ̸= 0,

−
1
S0
, l = 0

nd

χ∆l

(
a, ln

(G0

S0

)
− f̃n0,n1

)
=−

1
S0

1

1+
( lπ
b−a

)2
[
cos

(
lπ

ln
( G0
S0

)
− f̃n0,n1 − a

b− a

)
·

(
eln
(

G0
S0

)
−f̃n0,n1 +

(
lπ

b− a

)2
)

−
lπ

b− a
sin

(
lπ

ln
( G0
S0

)
− f̃n0,n1 − a

b− a

)
eln
(

G0
S0

)
−f̃n0,n1

]
.

eanwhile, we can also calculate Γ , which is shown to be

Γ ≈
2e−δT

b− a

L−1∑
l=0

′e′n0ℜ
{
e−ilπ a

b−a P−1
l [Exp(TP l)− Exp(t1P l)]

}
aΓ1,l

+
2e(w−r)T

b− a

L−1∑
l=0

′e′n0ℜ
{
e−ilπ a

b−a Exp (T (P l − (w + δ − c)I))
}
aΓ2,l,

here

aΓ1,l = [ν̃1VΓn0,1,l, ν̃2V
Γ
n0,2,l, . . . , ν̃m1m2V

Γ
n0,m1m2,l]

′

and

aΓ2,l = [VΓn0,1,l, V
Γ
n0,2,l, . . . , V

Γ
n0,m1m2,l]

′

with

VΓn0,n1,l

=G0ζ
Γ
l

(
a, ln

(G0

S0

)
− f̃n0,n1

)
+ 2ef̃n0,n1χ∆l

(
a, ln

(G0

S0

)
− f̃n0,n1

)
+ S0ef̃n0,n1χΓl

(
a, ln

(G0

S0

)
− f̃n0,n1

)
,

ζ Γl

(
a, ln

(G0

S0

)
− f̃n0,n1

)
=

⎧⎪⎨⎪⎩
1

S02

(
cos

(
lπ

ln
(

G0
S0

)
−f̃n0,n1−a

b−a

)
−

lπ
b−a sin

(
lπ

ln
(

G0
S0

)
−f̃n0,n1−a

b−a

))
, l ̸= 0,

1 , l = 0

S02

10
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and

χΓl

(
a, ln

(G0

S0

)
− f̃n0,n1

)
=−

1
S0
χ∆l

(
a, ln

(G0

S0

)
− f̃n0,n1

)
+

1
S02

1

1+
( lπ
b−a

)2
×

[
cos

(
lπ

ln
( G0
S0

)
− f̃n0,n1 − a

b− a

)
eln
(

G0
S0

)
−f̃n0,n1

(
1−

(
lπ

b− a

)2
)

+ sin

(
lπ

ln
( G0
S0

)
− f̃n0,n1 − a

b− a

)(
−2

lπ
b− a

eln
(

G0
S0

)
−f̃n0,n1 −

(
lπ

b− a

)3
)]

.

. Valuation under discrete surrender structure

In this section, we consider the valuation of surrender option under discrete surrender. First, for j ∈ M1 we have

Vj(ν0) =
M∑

m=1

e−rtmP(tm)E
[
1{τ=tm} · (Gtm − Ftm )+|ν0, α1(0) = j

]
=

M∑
m=1

e−rtmP(tm)E
[
1{τ≥tm} · (Gtm − Ftm )+|ν0, α1(0) = j

]
−

M−1∑
m=1

e−rtmP(tm)E
[
1{τ≥tm+1} · (Gtm − Ftm )+|ν0, α1(0) = j

]
=

M∑
m=1

e−rtmP(tm)E
[
e−

∫ tm
0 νsds ·

(
Gtm − S0eX̃tm−ctm+fα1(tm)(ν0,νtm )

)
+

⏐⏐⏐ν0, α1(0) = j
]

−

M−1∑
m=1

e−rtmP(tm)E
[
e−

∫ tm+1
0 νsds ·

(
Gtm − S0eX̃tm−ctm+fα1(tm)(ν0,νtm )

)
+

⏐⏐⏐ν0, α1(0) = j
]
. (5.1)

In order to apply the CTMC approximation, we again assume that ν0 = ν̄α2(0) = ν̄k for some k ∈ M2. Then by formula
(5.1) we obtain

Vj(ν0) ≈ V̂j(ν0)

:=

M∑
m=1

e−rtmP(tm)E
[
e−

∫ tm
0 ν̄α2(s)ds ·

(
Gtm − S0eX̄tm−ctm+fα1(tm)(ν̄α2(0),ν̄α2(tm))

)
+

⏐⏐⏐α1(0) = j, α2(0) = k
]

−

M−1∑
m=1

e−rtmP(tm)E
[
e−

∫ tm+1
0 ν̄α2(s)ds ·

(
Gtm − S0eX̄tm−ctm+fα1(tm)(ν̄α2(0),ν̄α2(tm))

)
+

⏐⏐⏐α1(0) = j, α2(0) = k
]

=

M∑
m=1

e−rtmP(tm)E
[
e−

∫ tm
0 ν̃β(s)ds ·

(
Gtm − S0eȲtm+f̃β(0),β(tm)

)
+

⏐⏐⏐β(0) = (j− 1)m2 + k
]

−

M−1∑
m=1

e−rtmP(tm)E
[
e−

∫ tm+1
0 ν̃β(s)ds ·

(
Gtm − S0eȲtm+f̃β(0),β(tm)

)
+

⏐⏐⏐β(0) = (j− 1)m2 + k
]
, (5.2)

where Ȳtm = X̄tm − ctm. For the second expectation, we have

E
[
e−

∫ tm+1
0 ν̃β(s)ds ·

(
Gtm − S0eȲtm+f̃n0,β(tm)

)
+

⏐⏐⏐β(0) = (j− 1)m2 + k
]

=

∑
n1∈Mβ

E
[
e−

∫ tm+1
0 ν̃β(s)ds ·

(
Gtm − S0eȲtm+f̃n0,n1

)
+

;β(tm) = n1

⏐⏐⏐β(0) = (j− 1)m2 + k
]

=

∑
n1∈Mβ

E
[
e−

∫ tm
0 ν̃β(s)ds ·

(
Gtm − S0eȲtm+f̃n0,n1

)
+

;β(tm) = n1

⏐⏐⏐β(0) = (j− 1)m2 + k
]

×E
[
e−

∫ tm+1
tm ν̃β(s)ds

⏐⏐⏐β(tm) = n1

]
.

11
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Hence, formula (5.2) yields

V̂j(ν0) =
M∑

m=1

∑
n1∈Mβ

e−rtmP(tm)Û(j−1)m2+k,n1 (tm)

−

M−1∑
m=1

∑
n1∈Mβ

e−rtmP(tm)Û(j−1)m2+k,n1 (tm)× E
[
e−

∫ tm+1
tm ν̃β(s)ds

⏐⏐⏐β(tm) = n1

]
, (5.3)

where for n0, n1 ∈ Mβ ,

Ûn0,n1 (tm) = E
[
e−

∫ tm
0 ν̃β(s)ds ·

(
Gtm − S0eȲtm+f̃β(0),β(tm)

)
+

;β(tm) = n1

⏐⏐⏐β(0) = n0

]
.

Since the conditional expectation in (5.3) is given by

E
[
e−

∫ tm+1
tm ν̃β(s)ds

⏐⏐⏐β(tm) = n1

]
= E

[
e−

∫∆t
0 ν̃β(s)ds

⏐⏐⏐β(0) = n1

]
= e′n1Exp(∆tK (−1, 0)),

hen we only need to determine the conditional expectation Ûn0,n1 (tm).

.1. Deterministic guarantee

In this subsection, we compute the conditional expectation Ûn0,n1 (tm) under the condition that Gt is a deterministic
unction of t . For m = 1, . . . ,M , let pn0,n1 (x, tm) denote the conditional density function satisfying

pn0,n1 (x; tm)dx = E
[
e−

∫ tm
0 ν̃β(s)ds, Ȳtm ∈ dx;β(tm) = n1

⏐⏐⏐β(0) = n0

]
, x ∈ R.

hen we have

Ûn0,n1 (tm) ≈ Ũn0,n1 (tm) :=
∫ b

a

(
Gtm − S0ex+f̃n0,n1

)
+

p̃n0,n1 (x; tm)dx, (5.4)

here the COS approximation p̃n0,n1 (x; tm) is given by

p̃n0,n1 (x; tm)

=
2

b− a

L−1∑
l=0

′
ℜ

{
Fpn0,n1

(
lπ

b− a
; tm

)
e−ilπ a

b−a

}
cos

(
lπ

x− a
b− a

)

=
2

b− a

L−1∑
l=0

′
ℜ

{
e′n0Exp

(
∆t

(
K
(
−1, i

lπ
b− a

)
− i

lπ
b− a

cI
))

en1e
−ilπ a

b−a

}
cos

(
lπ

x− a
b− a

)
. (5.5)

ubstituting formula (5.5) into (5.4), we obtain

Ũn0,n1 (tm)

=
2

b− a

L−1∑
l=0

′
ℜ

{
e′n0Exp

(
∆t

(
K
(
−1, i

lπ
b− a

)
− i

lπ
b− a

cI
))

en1e
−ilπ a

b−a

}
Vn0,n1,l(tm),

where for l = 0, 1, . . . , L− 1,

Vn0,n1,l(tm) =
∫ b

a

(
Gtm − S0ex+f̃n0,n1

)
+

cos
(
lπ

x− a
b− a

)
dx.

In particular, for a < ln( GtmS0 )− f̃n0,n1 < b, we have

Vn0,n1,l(tm) = G0ζl

(
a, ln

(Gtm

S0

)
− f̃n0,n1

)
− S0ef̃n0,n1χl

(
a, ln

(Gtm

S0

)
− f̃n0,n1

)
.

5.2. Geometric average guarantee

In this subsection, the guarantee is assumed to be the geometric average of the account value process given by

Gtm = κ ·

(
m∏

Ftl

) 1
m+1

,

l=0

12
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where κ > 0 is a constant.
Using the CTMC approximation, we have

Ûn0,n1 (tm)

= E

⎡⎣e−
∫ tm
0 ν̃β(s)ds

⎛⎝κ · ( m∏
l=0

S0eȲtl+f̃n0,β(tl)

) 1
m+1

− S0eȲtm+f̃n0,n1

⎞⎠
+

;β(tm) = n1

⏐⏐⏐⏐β(0) = n0

⎤⎦
= κS0E

⎡⎣e−
∫ tm
0 ν̃β(s)ds+Ȳtm

⎛⎝( m∏
l=0

eȲtl+f̃n0,β(tl)

) 1
m+1

e−Ȳtm − κ−1ef̃n0,n1

⎞⎠
+

;β(tm) = n1

⏐⏐⏐⏐β(0) = n0

⎤⎦ ,
here(

m∏
l=0

eȲtl+f̃n0,β(tl)

) 1
m+1

e−Ȳtm = exp

{
1

m+ 1

m∑
l=1

[Ȳtl + f̃n0,β(tl)] − Ȳtm

}
:= exp {Zm} . (5.6)

or m = 1, . . . ,M , let Bn0,n1 (x; tm) denote the conditional density function satisfying

Bn0,n1 (x; tm)dx = E
[
e−

∫ tm
0 ν̃β(s)ds+Ȳtm , Zm ∈ dx;β(tm) = n1

⏐⏐⏐β(0) = n0

]
, x ∈ R,

hen we have

Ûn0,n1 (tm) = κS0

∫
∞

−∞

(
ex − κ−1ef̃n0,n1

)
+

Bn0,n1 (x; tm)dx. (5.7)

or m = 1, . . . ,M , let

B̃n0,n1 (x; tm) =
2

b− a

L−1∑
l=0

′
ℜ

{
FBn0,n1

(
lπ

b− a
; tm

)
e−ilπ a

b−a

}
cos

(
lπ

x− a
b− a

)
e its COS approximation, where the Fourier transform of Bn0,n1 (x; tm) is given by

FBn0,n1 (ω; tm) =
∫

+∞

−∞

eiωxBn0,n1 (x; tm)dx

=E
[
eiωZm−

∫ tm
0 ν̃β(s)ds+Ȳtm ;β(tm) = n1

⏐⏐⏐β(0) = n0

]
.

he above Fourier transform can be determined as follows, first, it follows from (5.6) that

eiωZm−
∫ tm
0 ν̃β(s)ds+Ȳtm

= exp

{
iω

m+ 1

m∑
l=1

[Ȳtl + f̃n0,β(tl)] − iωȲtm −

∫ tm

0
ν̃β(s)ds+ Ȳtm

}

= exp

{
−

∫ tm

0
ν̃β(s)ds+

m∑
l=1

iω
m+ 1

f̃n0,β(tl) +
(
1− iω

m
m+ 1

)
Ȳtm +

m−1∑
l=1

iω
m+ 1

Ȳtl

}

= exp

{
−

m∑
l=1

∫ tl

tl−1

ν̃β(s)ds+
m∑
l=1

iω
m+ 1

f̃n0,β(tl) +
m∑
l=1

(
1− iω

l
m+ 1

)
(Ȳtl − Ȳtl−1 )

}

= exp

{
m∑
l=1

[
−

∫ tl

tl−1

ν̃β(s)ds+
iω

m+ 1
f̃n0,β(tl) +

(
1− iω

l
m+ 1

)
(Ȳtl − Ȳtl−1 )

]}
.

Next, by conditioning on the transition states of the CTMC β(t) at times t0, t1, . . . , tm, we can obtain the following explicit
expression

FBn0,n1 (ω; tm) = e′n0 [Nm,1(ω)Hm(ν̄0, ω)] × · · · × [Nm,m(ω)Hm(ν̄0, ω)]en1 , (5.8)

here for l = 1, . . . ,m,

Nm,l(ω) = Exp
(
∆t

(
K
(
−1, 1− iω

l )
− c

(
1− iω

l )
I
))
m+ 1 m+ 1
13
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and

Hm(ν̄0, ω) = diag
(
e

iω
m+1 f1(ν̄0,ν̄1), . . . , e

iω
m+1 f1(ν̄0,ν̄m2 ), . . . , e

iω
m+1 fm1 (ν̄0,ν̄m2 )

)
.

Finally, replacing Bn0,n1 (x; tm) by its COS approximation in (5.7), we obtain

Ûn0,n1 (tm) ≈ Ũn0,n1 (tm)

:=κS0

∫ b

a

(
ex − κ−1ef̃n0,n1

)
+

B̃n0,n1 (x; tm)dx

=
2κS0
b− a

L−1∑
l=0

′
ℜ

{
FBn0,n1

(
lπ

b− a
; tm

)
e−ilπ a

b−a

}∫ b

a

(
ex − κ−1ef̃n0,n1

)
+

cos
(
lπ

x− a
b− a

)
dx, (5.9)

here for a < f̃n0,n1 − ln κ < b, we have∫ b

a

(
ex − κ−1ef̃n0,n1

)
+

cos
(
lπ

x− a
b− a

)
dx = χl(f̃n0,n1 − ln κ, b)− κ−1ef̃n0,n1 ζl(f̃n0,n1 − ln κ, b).

. Error analysis

In this section, we shall present an error analysis of our method proposed in Sections 4 and 5. In the remainder of this
section, we use C to denote a positive generic constant, which may vary at different steps. Note that for both continuous
surrender and discrete surrender, we have the following error decomposition:

Total Error = CTMC Error+ COS Error,

where the analysis of the COS error is very standard and we shall give a brief analysis as follows.
Let us consider continuous surrender. Recall that we use the COS method to approximate the density function

gn0,n1 (x; t) by g̃n0,n1 (x; t), and then approximate the following integral∫
+∞

−∞

(
G0 − S0ex+f̃n0,n1

)
+

· gn0,n1 (x; t)dx

via replacing gn0,n1 (x; t) by g̃n0,n1 (x; t). In the above approximation procedure, there exist two types of errors. The first
type is the integration range truncation error given by

ϵ1 :=

∫
R\[a,b]

(
G0 − S0ex+f̃n0,n1

)
+

· gn0,n1 (x; t)dx.

The second type error comes from the approximation of gn0,n1 (x; t), which is given by

ϵ2 :=

∫ b

a

(
G0 − S0ex+f̃n0,n1

)
+

· |gn0,n1 (x; t)− g̃n0,n1 (x; t)|dx

≤ G0 · (b− a) · sup
x∈[a,b]

|gn0,n1 (x; t)− g̃n0,n1 (x; t)|.

It is known that the error ϵcos := supx∈[a,b] |gn0,n1 (x; t)− g̃n0,n1 (x; t)| depends on the smoothness of the density function
gn0,n1 (x; t); see e.g. Section 4 in Fang and Oosterlee [48]. If the density function is infinitely times differentiable, we can
obtain exponential decay rate given by

ϵcos ≤ Pn0,n1 (L) exp
(
−(L− 1)vn0,n1

)
,

where vn0,n1 > 0 is constant, and the term Pn0,n1 (L) varies less than exponentially with respect to L. Otherwise, the error
can be bounded by

ϵcos ≤
P̄n0,n1 (L)

(L− 1)λn0,n1−1 ,

where P̄n0,n1 (L) is a constant and λn0,n1 ≥ 1. In our paper, if the Brownian motion term exists in each regime, we can
obtain exponential decay rate for ϵ2, and the first error will not dominate the COS error.

Because the analysis of other errors due to the COS method is exactly as above, we shall omit the detailed arguments.
In the next two subsections, we shall pay attention to the CTMC error.

6.1. CTMC error under the continuous surrender

In this subsection, we study the CTMC error under the continuous surrender. Before performing the analysis, we need
to make the following assumptions.
14
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Assumption 1. Suppose that the surrender intensity νt takes values in a compact set B with reflecting or absorbing
oundaries, and µ̂(·) ∈ C3(B), σ̂ (·) ∈ C4(B).

ssumption 2. Suppose that for each j ∈ M1, hj(x) satisfies the following Lipschitz condition

|hj(x)− hj(y)| ≤ C |x− y|.

It follows from (3.2) that (̃Xt )t≥0 can be expressed as

X̃t = Jt −
∫ t

0
ρhα1(s)(νs)ds,

where Jt , independent of the surrender intensity process νt , is given by

Jt =
∫ t

0

(
r − κα1(s) −

1
2
σ 2
α1(s)

)
ds+

∫ t

0
σα1(s)

√
1− ρ2dW ∗

s +

∫ t

0

∫
x∈R

xNα1(s)(dx, ds). (6.1)

ow the stock price process can be expressed as

St = S0eJt+fα1(t)(ν0,νt )−
∫ t
0 ρhα1(s)(νs)ds.

o highlight the dependence on the intensity process νt , we put

Γ ν(t) = νte−
∫ t
0 νsds ·

(
G0 − e−(w+c)tS0eJt+fα1(t)(ν0,νt )−

∫ t
0 ρhα1(s)(νs)ds

)
+

, 0 < t < T , (6.2)

nd

Γ̃ ν(T ) = e−
∫ T
0 νsds ·

(
G0 − e−(w+c)T S0eJT+fα1(T )(ν0,νT )−

∫ T
0 ρhα1(s)(νs)ds

)
+

, (6.3)

o that we can write (4.1) as

Vj(ν0) =
∫ T

t1

e(w−r)te−δ(T−t)E[Γ ν(t)|ν0, α1(0) = j]dt + e(w−r)TE[Γ̃ ν(T )|ν0, α1(0) = j].

imilarly, after replacing νt by its CTMC approximation ν̄α2(t) in (6.2) and (6.3), we find that the CTMC approximation
j(ν0) can be expressed as

V̂j(ν0) =
∫ T

t1

e(w−r)te−δ(T−t)E[Γ ν̄α2(·)(t)|ν0, α1(0) = j]dt + e(w−r)TE[Γ̃ ν̄α2(·)(T )|ν0, α1(0) = j].

ence, the CTMC approximation error can be bounded as follows,

|Vj(ν0)− V̂j(ν0)| ≤
∫ T

t1

e(w−r)te−δ(T−t)E1,j(t; ν0)dt + e(w−r)TE2,j(T ; ν0), (6.4)

here

E1,j(t; ν0) = |E[Γ ν(t)|ν0, α1(0) = j] − E[Γ ν̄α2(·)(t)|ν0, α1(0) = j]|,
E2,j(t; ν0) = |E[Γ̃ ν(T )|ν0, α1(0) = j] − E[Γ̃ ν̄α2(·)(T )|ν0, α1(0) = j]|.

In the remainder of this subsection, we are devoted to the error E1,j(t; ν0), since the analysis of E2,j is very similar.
ext, we discretize the processes νt and να2(t) by defining

ν̂s = νk∆, ν̂α2(s) = ν̄α2(k∆), k∆ ≤ s < (k+ 1)∆, k = 0, 1, . . . , nν − 1,

here ∆ = t/nν and nν is a large integer. Note that the above discretely modified processes ν̂s and ν̂α2(s) are right
ontinuous and satisfy ν̂t = νt , ν̂α2(t) = να2(t). Furthermore, define Γ ν̂(t) and Γ ν̂α2(·)(t) via replacing ν by ν̂ and ν̂α2(·) in
6.2), respectively. Then by triangle inequality we obtain

E1,j(t; ν0) ≤ E[|Γ ν̂(t)− Γ ν(t)∥ν0, α1(0) = j] + E[|Γ ν̄α2(·)(t)− Γ ν̂α2(·)(t)∥ν0, α1(0) = j]
+ |E[Γ ν̂(t)|ν0, α1(0) = j] − E[Γ ν̂α2(·)(t)|ν0, α1(0) = j]|

:= E1,j,1(t; ν0)+ E1,j,2(t; ν0)+ E1,j,3(t; ν0). (6.5)

Now we study the error E1,j,1(t; ν0). First, |Γ ν(t)− Γ ν̂(t)| can be bounded as follows,

|Γ ν(t)− Γ ν̂(t)|

≤

⏐⏐⏐νte− ∫ t
0 νsds ·

(
G0 − S0e−(w+c)t+Jt+fα1(t)(ν0,νt )−

∫ t
0 ρhα1(s)(νs)ds

)
+

− ν̂te−
∫ t
0 ν̂sds ·

(
G0 − S0e−(w+c)t+Jt+fα1(t)(ν0,νt )−

∫ t
0 ρhα1(s)(νs)ds

) ⏐⏐⏐

+

15
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⏐⏐⏐ν̂te− ∫ t
0 ν̂sds ·

(
G0 − S0e−(w+c)t+Jt+fα1(t)(ν0,νt )−

∫ t
0 ρhα1(s)(νs)ds

)
+

− ν̂te−
∫ t
0 ν̂sds ·

(
G0 − S0e−(w+c)t+Jt+fα1(t)(ν̂0,ν̂t )−

∫ t
0 ρhα1(s)(ν̂s)ds

)
+

⏐⏐⏐
≤G0νt

⏐⏐⏐e− ∫ t
0 νsds − e−

∫ t
0 ν̂sds

⏐⏐⏐+ C · νte−(w+c)t+Jt+fα1(t)(ν0,νt )
⏐⏐⏐e− ∫ t

0 ρhα1(s)(ν̂s)ds − e−
∫ t
0 ρhα1(s)(νs)ds

⏐⏐⏐
≤C · νt

⏐⏐⏐ ∫ t

0
(νs − ν̂s)ds

⏐⏐⏐+ C · νte−(w+c)t+Jt+fα1(t)(ν0,νt )
⏐⏐⏐ ∫ t

0
hα1(s)(ν̂s)ds−

∫ t

0
hα1(s)(νs)ds

⏐⏐⏐. (6.6)

y the definition of ν̂, we have⏐⏐⏐⏐∫ t

0
(νs − ν̂s)ds

⏐⏐⏐⏐ ≤ nν−1∑
k=0

⏐⏐⏐ ∫ (k+1)∆

k∆
(νs − νk∆)ds

⏐⏐⏐ ≤ nν−1∑
k=0

max
k∆≤s≤(k+1)∆

⏐⏐⏐νs − νk∆⏐⏐⏐ ·∆. (6.7)

imilarly, by Assumption 2 we can obtain⏐⏐⏐ ∫ t

0
hα1(s)(ν̂s)ds−

∫ t

0
hα1(s)(νs)ds

⏐⏐⏐
≤

∑
j∈M1

∫ t

0

⏐⏐⏐hj(ν̂s)− hj(νs)
⏐⏐⏐1{α1(s)=j}ds

≤

∑
j∈M1

∫ t

0

⏐⏐⏐hj(ν̂s)− hj(νs)
⏐⏐⏐ds

≤

∑
j∈M1

C ·

∫ t

0

⏐⏐⏐ν̂s − νs⏐⏐⏐ds
≤C ·

nν−1∑
k=0

max
k∆≤s≤(k+1)∆

⏐⏐⏐νs − νk∆⏐⏐⏐ ·∆. (6.8)

Recall that Assumption 1 states the intensity process νt takes values in a compact set, then by (6.6)–(6.8) we have

E1,j,1(t; ν0) ≤ C
nν−1∑
k=0

∆E[νt · max
k∆≤s≤(k+1)∆

|νs − νk∆||ν0]

+ C
nν−1∑
k=0

∆E[νte−(w+c)t+Jt+fα1(t)(ν0,νt ) · max
k∆≤s≤(k+1)∆

|νs − νk∆||ν0]

≤ C
nν−1∑
k=0

∆

[
E
[

max
k∆≤s≤(k+1)∆

|νs − νk∆|
2
]] 1

2

, (6.9)

here the second step follows from Cauchy–Schwarz inequality.
Next, for k∆ ≤ s ≤ (k+ 1)∆, we have

(νs − νk∆)2 ≤
(∫ s

k∆
µ̂(νt )dt +

∫ s

k∆
σ̂ (νt )dWt

)2

≤ 2
(∫ s

k∆
µ̂(νt )dt

)2

+ 2
(∫ s

k∆
σ̂ (νt )dWt

)2

,

hich together with the Lipschitz condition of µ̂ and σ̂ yields

E
[

max
k∆≤s≤(k+1)∆

|νs − νk∆|
2
]

≤2E

[
max

k∆≤s≤(k+1)∆

(∫ s

k∆
µ̂(νt )dt

)2

+ max
k∆≤s≤(k+1)∆

(∫ s

k∆
σ̂ (νt )dWt

)2
]

≤C ·∆2
+ 2E

[
max

k∆≤s≤(k+1)∆

(∫ s

k∆
σ̂ (νt )dWt

)2
]
.
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From Doob’s inequality in Chung and Williams [49], we have

E

[
max

k∆≤s≤(k+1)∆

(∫ s

k∆
σ̂ (νt )dWt

)2
]
≤ 2E

[∫ (k+1)∆

k∆
σ̂ 2(νt )dt

]
≤ C ·∆.

herefore, we obtain

E
[

max
k∆≤s≤(k+1)∆

|νs − νk∆|
2
]
≤ C∆2

+ C∆,

hich together with (6.9) gives

E1,j,1(t; ν0) ≤ Cnν∆
3
2 = Ct∆

1
2 . (6.10)

By exactly the same arguments leading to (6.9), we can obtain

E1,j,2(t; ν0) ≤ C
nν−1∑
k=0

∆

[
E
[

max
k∆≤s≤(k+1)∆

|ν̄α2(s) − ν̄α2(k∆)|
2
]] 1

2

. (6.11)

or each k we have

E
[

max
k∆≤s≤(k+1)∆

|ν̄α2(s) − ν̄α2(k∆)|
2
]
≤ C · [1− Q(α2(s) = α2(k∆); k∆ ≤ s ≤ (k+ 1)∆)] ≤ C∆.

onsequently, (6.11) gives

E1,j,2(t; ν0) ≤ Cnν∆
3
2 = Ct∆

1
2 . (6.12)

Finally, we consider the error E1,j,3(t; ν0). By the definition of process {ν̂s}0≤s≤t , we have νk∆ = ν̂k∆ for k = 0, 1, . . . , nν .
sing the tower property of conditional expectation we can obtain

E[Γ ν̂(t)|ν0, α1(0) = j] = E[Hj(ν0, ν∆, . . . , νnν∆)|ν0],

here

Hj(ν0, ν∆, . . . , νnν∆) = E[Γ ν̂(t)|α1(0) = j, ν0, ν∆, . . . , νnν∆].

Let p(∆, x, y) be the transition kernel for the diffusion process νt which satisfies Q(ν∆ ∈ dy|ν0 = x) = p(∆, x, y)dy.
hen we have

E[Hj(ν0, ν∆, . . . , νnν∆)|ν0]

=

∫
· · ·

∫∫
Hj(ν0, x1, . . . , xnν )p(∆, xnν−1 , xnν )dxnν · p(∆, xnν−2 , xnν−1 )dxnν−1 · · · p(∆, ν0, x1)dx1. (6.13)

After discretizing the above integrals by the rectangle rule, we obtain

E[Hj(ν0, ν∆, . . . , νnν∆)|ν0]

=

∑
x1∈ν

· · ·

∑
xnν−1∈ν

∑
xnν ∈ν

Hj(ν0, x1, . . . , xnν )p(∆, xnν−1 , xnν )δxnν + O(δxnν )

· p(∆, xnν−2 , xnν−1 )δxnν−1 + O(δxnν−1 ) · · · p(∆, ν0, x1)δx1 + O(δx1)

=

∑
x1∈ν

· · ·

∑
xnν−1∈ν

∑
xnν ∈ν

Hj(ν0, x1, . . . , xnν )p(∆, xnν−1 , xnν )δxnν

· p(∆, xnν−2 , xnν−1 )δxnν−1 · · · p(∆, ν0, x1)δx1 + O(h), (6.14)

where h = maxi=1,...,m2−1(ki) and δν̄i = 1
2 (δ

+ν̄i + δ
−ν̄i) with δ+ν̄i = ν̄i+1 − ν̄i and δ−ν̄i = ν̄i − ν̄i−1.

Let p̄(∆, x, y) denote the transition kernel of the CTMC model which satisfies Q(ν̄α2(∆) = y|ν̄α2(0) = x) = p̄(∆, x, y)δy
for x, y ∈ ν. Then we have

E[Γ ν̂α2(·)(t)|ν0]

=

∑
x1∈ν

· · ·

∑
xnν−1∈ν

∑
xnν ∈ν

Hj(ν0, x1, . . . , xnν )p̄(∆, xnν−1 , xnν )δxnν · p̄(∆, xnν−2 , xnν−1 )δxnν−1 · · · p̄(∆, ν0, x1)δx1.

From Proposition 4 in Zhang and Li [34], we know that for x, y ∈ ν

p̄(∆, x, y) = p(∆, x, y)+ p(∆, x, y)
µ̂(y)

(δ+y− δ−y)+ O(h2),

σ̂ (y)
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which together with Assumption 1 yields

E[Γ ν̂α2(·)(t)|ν0]

=

∑
x1∈ν

· · ·

∑
xnν−1∈ν

∑
xnν ∈ν

Hj(ν0, x1, . . . , xnν )(
p(∆, xnν−1 , xnν )+ p(∆, xnν−1 , xnν )

µ̂(xnν )
σ̂ (xnν )

(δ+xnν − δ
−xnν )+ O(h2)

)
δxnν

·

(
p(∆, xnν−2 , xnν−1 )+ p(∆, xnν−2 , xnν−1 )

µ̂(xnν−1)
σ̂ (xnν−1)

(δ+xnν−1 − δ
−xnν−1)+ O(h2)

)
δxnν−1

· · ·

(
p(∆, ν0, x1)+ p(∆, ν0, x1)

µ̂(x1)
σ̂ (x1)

(δ+x1 − δ−x1)+ O(h2)
)
δx1

=

∑
x1∈ν

· · ·

∑
xnν−1∈ν

∑
xnν ∈ν

Hj(ν0, x1, . . . , xnν )p(∆, xnν−1 , xnν )δxnν

· p(∆, xnν−2 , xnν−1 )δxnν−1 · · · p(∆, ν0, x1)δx1 + O(h2). (6.15)

y (6.14) and (6.15), we have

E1,j,3(t; ν0) = O(h). (6.16)

inally, from (6.10), (6.12) and (6.16), we have

E1,j(t; ν0) = O(t∆
1
2 )+ O(h). (6.17)

imilarly, we can obtain E1,j(t; ν0) = O(t∆
1
2 ) + O(h). As a result, (6.4) yields that the CTMC error has the following

convergence rate

Vj(ν0)− V̂j(ν0) = O(∆
1
2 )+ O(h). (6.18)

.2. CTMC error under the discrete surrender

For deterministic guarantee, its error is similar to that of continuous guarantee. In this subsection, we only consider
rror under geometric average guarantee. Similar to Section 6.1, we put

Υ ν(tm) = e−
∫ tm
0 νsds ·

(
Gtm − S0eX̃tm−ctm+fα1(tm)(ν0,νtm )

)
+

, 1 ≤ m ≤ M,

Υ̃ ν(tm+1) = e−
∫ tm+1
0 νsds ·

(
Gtm − S0eX̃tm−ctm+fα1(tm)(ν0,νtm )

)
+

, 1 ≤ m ≤ M − 1.

hen, (5.1) can be reexpressed by

Vj(ν0) =
M∑

m=1

e−rtmP(tm)E
[
Υ ν(tm)

⏐⏐⏐ν0, α1(0) = j
]

−

M−1∑
m=1

e−rtmP(tm)E
[
Υ̃ ν(tm+1)

⏐⏐⏐ν0, α1(0) = j
]
.

eplacing νtm by its CTMC approximation ν̄α2(tm) in the above formula, we have

V̂j(ν0) =
M∑

m=1

e−rtmP(tm)E
[
Υ ν̄α2(·)(tm)

⏐⏐⏐ν0, α1(0) = j
]

−

M−1∑
m=1

e−rtmP(tm)E
[
Υ̃ ν̄α2(·)(tm+1)

⏐⏐⏐ν0, α1(0) = j
]
.

ence, the error caused by CTMC approximation is

|Vj(ν0)− V̂j(ν0)| ≤
M∑

m=1

e−rtmP(tm)Ē1,j(t; ν0)+
M−1∑
m=1

e−rtmP(tm)Ē2,j(t; ν0), (6.19)

here

Ē1,j(tm; ν0) =
⏐⏐⏐⏐E [Υ ν(tm)⏐⏐⏐ν0, α1(0) = j

]
− E

[
Υ ν̄α2(·)(tm)

⏐⏐⏐ν0, α1(0) = j
] ⏐⏐⏐⏐,
18
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Ē2,j(tm; ν0) =
⏐⏐⏐⏐E [Υ̃ ν(tm+1)

⏐⏐⏐ν0, α1(0) = j
]
− E

[
Υ̃ ν̄α2(·)(tm+1)

⏐⏐⏐ν0, α1(0) = j
] ⏐⏐⏐⏐.

In the following, we shall calculate Ē1,j(tm; ν0) since the analysis of Ē2,j(tm; ν0) is similar. First, we discretize the
processes νtm and να2(tm) according to

ν̂s = νk∆M , ν̂α2(s) = να2(k∆M ), k∆M ≤ s < (k+ 1)∆M , k = 0, 1, . . . , nM − 1,

where ∆M = tM/nM and nM is a large integer. Here without loss of generality we assume ν̂tm = νtm , ν̂α2(tm) = να2(tm), for
m = 1, . . . ,M .

Similar to (6.5), we have

Ē1,j(tm; ν0) ≤ E
[
|Υ ν̂(tm)− Υ ν(tm)||ν0, α1(0) = j

]
+ E[|Υ ν̄α2(·)(tm)− Υ ν̂α2(·)(tm)||ν0, α1(0) = j]

+ |E[Υ ν̂(tm)|ν0, α1(0) = j] − E[Υ ν̂α2(·)(tm)|ν0, α1(0) = j]|
:= Ē1,j,1(tm; ν0)+ Ē1,j,2(tm; ν0)+ Ē1,j,3(tm; ν0),

were Υ ν̂(tm), Υ ν̄α2(·)(tm), and Υ ν̂α2(·)(tm) are defined similar to Υ ν(tm).
Now we analyze the error Ē1,j,1(tm; ν0). First, using (5.6) and (6.1), we can bound

⏐⏐Υ ν̂(tm)− Υ ν(tm)
⏐⏐ as⏐⏐Υ ν̂(tm)− Υ ν(tm)

⏐⏐
≤

⏐⏐⏐⏐S0e− ∫ tm
0 νsds+Jtm−

∫ tm
0 ρhα1(s)(νs)ds+fα1(tm)(ν0,νtm )

(
κe

1
m+1

∑m−1
l=1

[
Jtl−

∫ tl
0 ρhα1(s)(νs)ds−ctl+fα1(tl)(ν0,νtl )

]

· e−
m

m+1 (Jtm−
∫ tm
0 ρhα1(s)(νs)ds)+fα1(tm)(ν0,νtm )− 1

m+1 ctm − e−ctm

)
+

− S0e−
∫ tm
0 νsds+Jtm−

∫ tm
0 ρhα1(s)(νs)ds+fα1(tm)(ν0,νtm )

(
κe

1
m+1

∑m−1
l=1

[
Jtl−

∫ tl
0 ρhα1(s)(ν̂s)ds−ctl+fα1(tl)(ν̂0,ν̂tl )

]

· e−
m

m+1 (Jtm−
∫ tm
0 ρhα1(s)(ν̂s)ds)+fα1(tm)(ν̂0,ν̂tm )− 1

m+1 ctm − e−ctm

)
+

⏐⏐⏐⏐
+

⏐⏐⏐⏐S0e− ∫ tm
0 νsds+Jtm−

∫ tm
0 ρhα1(s)(νs)ds+fα1(tm)(ν0,νtm )

(
κe

1
m+1

∑m−1
l=1

[
Jtl−

∫ tl
0 ρhα1(s)(ν̂s)ds−ctl+fα1(tl)(ν̂0,ν̂tl )

]

· e−
m

m+1 (Jtm−
∫ tm
0 ρhα1(s)(ν̂s)ds)+fα1(tm)(ν̂0,ν̂tm )− 1

m+1 ctm − e−ctm

)
+

− S0e−
∫ tm
0 ν̂sds+Jtm−

∫ tm
0 ρhα1(s)(ν̂s)ds+fα1(tm)(ν̂0,ν̂tm )

(
κe

1
m+1

∑m−1
l=1

[
Jtl−

∫ tl
0 ρhα1(s)(ν̂s)ds−ctl+fα1(tl)(ν̂0,ν̂tl )

]

· e−
m

m+1 (Jtm−
∫ tm
0 ρhα1(s)(ν̂s)ds)+fα1(tm)(ν̂0,ν̂tm )− 1

m+1 ctm − e−ctm

)
+

⏐⏐⏐⏐
:=ε1 + ε2.

ext, we study the errors ε1 and ε2, respectively. On the one hand, for the error ε1, by Lipschitz condition and
ssumption 2, we have

ε1 ≤C · eJtm−
∫ tm
0 ρhα1(s)(νs)ds+fα1(tm)(ν0,νtm )

·

⏐⏐⏐⏐ 1
m+ 1

m−1∑
l=1

(∫ tl

0
hα1(s)(ν̂s)− hα1(s)(νs)ds

)
+

m
m+ 1

∫ tm

0
hα1(s)(ν̂s)− hα1(s)(νs)ds

⏐⏐⏐⏐
≤C · eJtm−

∫ tm
0 ρhα1(s)(νs)ds+fα1(tm)(ν0,νtm )

nM−1∑
k=0

max
k∆M≤s≤(k+1)∆M

⏐⏐⏐νs − νk∆M

⏐⏐⏐ ·∆M .

n the other hand, for the error ε2, by Cauchy–Schwarz inequality, we obtain

ε2 ≤C · e2max0≤l≤m

(
Jtl−

∫ tl
0 ρhα1(s)ds+fα1(tl)(ν̂0,ν̂tl )

)
·

(∫ tm

0

⏐⏐νs − ν̂s⏐⏐ds+ ∫ tm

0

⏐⏐hα1(s)(ν̂s)− hα1(s)(νs)
⏐⏐ds)

≤C · e2max0≤l≤m

(
Jtl−

∫ tl
0 ρhα1(s)ds+fα1(tl)(ν̂0,ν̂tl )

)
·

nM−1∑
k=0

max
k∆M≤s≤(k+1)∆M

⏐⏐⏐νs − νk∆M

⏐⏐⏐ ·∆M .

ence, by exactly the same arguments as in the previous subsection, we get

Ē (t ; ν ) = O(t ∆
1
2 ).
1,j,1 m 0 m M
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Table 1
Model parameters for CIR and Vasicek model.
Model ην θν σν ν0 m2

CIR 0.5 0.02 0.15 0.05 95
Vasicek 3 0.05 0.15 0.05 15

For the errors Ē1,j,2(tm; ν0) and Ē1,j,3(tm; ν0), we can prove that they have convergence order O(tm∆
1
2
M ) and O(h), respec-

ively. Hence, we obtain

Ē1,j(tm; ν0) = O(tm∆
1
2
M )+ O(h).

imilarly, we have Ē2,j(tm; ν0) = O(tm∆
1
2
M )+O(h). Hence, (6.19) yields that the CTMC error has the following convergence

rate

Vj(ν0)− V̂j(ν0) = O(∆
1
2
M )+ O(h).

7. Numerical results

In this section, we shall provide some numerical experiments to illustrate the effectiveness of the proposed framework.
All experiments are assessed relative to the benchmark Monte Carlo simulation. This section is organized into three parts.
In Section 7.1, we present some model parameters. Comparisons of our method with the Monte Carlo simulations are
given in Section 7.2. In Section 7.3, we show the effects of some parameters through sensitivity analysis. All experiments
are conducted in Matlab 2019 on a personal computer with Intel(R) Core(TM) i7-10700F CPU @2.90 GHz.

7.1. Model parameters

In order to verify the effectiveness of our method comprehensively, we consider four popular regime-switching
processes, one of which is the Black–Scholes model (BSM) without jumps. The remaining three models are all with
jumps, including the double-exponential jump diffusion model (Kou, Kou [50]), Merton’s normal jump diffusion model
(MJD, Merton [51]) and the mixture of two normal jump diffusion model (MNJD, Florescu et al. [52]).

We consider two states regime-switching models with intensity matrix Λ given by

Λ =

[
−0.4 0.4
0.5 −0.5

]
.

We set t1 = 5, r = 0.01, ρ = −0.7, F0 = S0 = G0 = 100, w = 0.1, c = 0.01, δ = 0.01 and ∆t = 1. In particular, we use
affine stochastic processes for modeling stochastic surrender intensity. In order to explain the dynamics of the stochastic
surrender intensity in the analysis, we assume that surrender intensity satisfies Vasicek model by Vasicek [53],

dνt = ην(θν − νt )dt + σνdW 2
t .

Another important financial model is the Cox–Ingersoll–Ross (CIR) model proposed by Cox et al. [54],

dνt = ην(θν − νt )dt + σν
√
νtdW 2

t .

The latter model takes non-negative values under the Feller condition 2ηνθν > σ 2
ν . Table 1 summarizes the parameter

ettings used in the CIR and Vasicek models.
Since the interval of the integral has a great influence on the COS method, in order to have a better approximation

ffect, we need to select these parameters for continuous surrender and discrete surrender with deterministic guarantee.
y Fang and Oosterlee [48], we define cumulants to determine truncation interval [a, b] with

a = min
j∈M1,k∈M2

(aj,k), b = max
j∈M1,k∈M2

(bj,k),

where

[aj,k, bj,k] =

[
γ 1
j,kT − L

√
γ 2
j,kT +

√
γ 4
j,kT , γ 1

j,kT + L

√
γ 2
j,kT +

√
γ 4
j,kT

]
, j ∈ M1, k ∈ M2

with γ n
j,k, n = 1, 2, 4, are the nth cumulant. When the characteristic exponents are known, the cumulants are calculated

as

γ n
j,k =

1
n

∂n(ψg
j,k(ω))

n

⏐⏐⏐⏐ , n = 1, 2, 4, j ∈ M1, k ∈ M2,
i ∂ω ω=0
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Table 2
The characteristic exponent ψg

j,k(ω) under four regime-switching processes.

Model Characteristic exponent ψg
j,k(ω)

BSM ψ
g
j,k(ω) = iωζj,k − 1

2 (1− ρ
2)σ 2

j ω
2 ζj,k = r − 1

2σ
2
j − ρhk

j (νt )− w − c

MJD ψ
g
j,k(ω) = iωζj,k − 1

2 (1− ρ
2)σ 2

j ω
2
+ λj

(
eiωµ

J
j−

1
2 σ

J
j
2
ω2

− 1
)

ζj,k = r − 1
2σ

2
j − ρhk

j (νt )− w − c − λj

(
eµ

J
j+

1
2 σ

J
j
2

− 1
)

Kou ψ
g
j,k(ω) = iωζj,k − 1

2 (1− ρ
2)σ 2

j ω
2
+ λj

(
pjηj1
ηj1−iω +

(1−pj)ηj2
ηj2+iω − 1

)
ζj,k = r − 1

2σ
2
j − ρhk

j (νt )− w − c − λj
(

pjηj1
ηj1−1 +

(1−pj)ηj2
ηj2+1 − 1

)
MNJD ψ

g
j,k(ω) = iωζj,k − 1

2 (1− ρ
2)σ 2

j ω
2

+λj

(
pj exp

(
iωµJ

j1 −
σ
J
j1
2

2 ω2
)
+ (1− pj) exp

(
iωµJ

j2 −
σ
J
j2
2

2 ω2
)
− 1

)

ζj,k = r − 1
2σ

2
j − ρhk

j (νt )− w − c − λj

(
pj exp

(
µ

J
j1 +

σ
J
j1
2

2

)
+ (1− pj) exp

(
µ

J
j2 +

σ
J
j2
2

2

)
− 1

)

Table 3
The cumulants γ n

j,k .

Model Cumulant γ n
j,k

BSM γ 1
j,k = r − 1

2σ
2
j − ρhk

j (νt )− w − c , γ 2
j,k = (1− ρ2)σ 2

j , γ 4
j,k = 0

MJD
γ 1
j,k = r − 1

2σ
2
j − ρhk

j (νt )− w − c − λj

(
eµ

J
j+

1
2 σ

J
j
2

− 1
)
+ λjµ

J
j

γ 2
j,k = (1− ρ2)σ 2

j + λj

(
µ

J
j
2
+ σ

J
j
2)

γ 4
j,k = λj

(
µ

J
j
4
+ 6µJ

j
2
σ

J
j
2
+ 3σ J

j
4)

Kou
γ 1
j,k = r − 1

2σ
2
j − ρhk

j (νt )− w − c − λj
(

pjηj1
ηj1−1 +

(1−pj)ηj2
ηj2+1 − 1

)
+ λj

(
pj

ηj1−1 −
(1−pj)
ηj2+1

)
γ 2
j,k = (1− ρ2)σ 2

j + 2λj

(
pj
η2j1

+
(1−pj)

η2j2

)
γ 4
j,k = 24λj

(
pj
η4j1

+
(1−pj)

η4j2

)

MNJD

γ 1
j,k = r − 1

2σ
2
j − ρhk

j (νt )− w − c − λj

(
pj exp

(
µ

J
j1 +

σ
J
j1
2

2

)(
µ

J
j1 + σ

J
j1
2)

+(1− pj) exp
(
µ

J
j2 +

σ
J
j2
2

2

)(
µ

J
j2 + σ

J
j2
2))

γ 2
j,k = (1− ρ2)σ 2

j + λjpj
(
µ

J
j1
2
+ µ

J
j1
2)

+ λj(1− pj)
(
µ

J
j2
2
+ µ

J
j2
2)

γ 4
j,k = λjpj

(
µ

J
j1
4
+ 6µJ

j1
2
σ

J
j1
2
+ 3σ J

j1
4)

+ λj(1− pj)
(
µ

J
j2
4
+ 6µJ

j2
2
σ

J
j2
2
+ 3σ J

j2
4)

where ψg
j,k(ω) is the characteristic exponents of gn0,n1 (ω; t) and hk

j (νt ) represents the kth component in hj(νt ). The
haracteristic exponents and cumulants for the models are given in Tables 2 and 3.
Due to the unavailability of defining characteristic exponent under discrete surrender with geometric average guar-

ntee, we cannot follow Fang and Oosterlee [48] to determine truncation interval. By (5.8), we let C l
j,k(ω) denote the

(j − 1)m2 + k)th component of the diagonal matrix Nm,l(ω)Hm(ν̄0, ω) for j ∈ M1 and k ∈ M2. Similar to the method
bove, we set

γ n
j,k,l =

1
in
∂n(C l

j,k(ω))

∂ωn

⏐⏐⏐⏐
ω=0

, n = 1, 2, 4, l = 1, . . . ,m, j ∈ M1, k ∈ M2.

Then, we let

γ n
j,k =

∑m
l=1 γ

n
j,k,l

T
, n = 1, 2, 4, j ∈ M1, k ∈ M2

enote cumulants. For truncation interval [ā, b̄], we define

ā = min (āj,k), b̄ = max (b̄j,k),

j∈M1,k∈M2 j∈M1,k∈M2
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Table 4
Jump distribution parameters.
Regime BSM MJD Kou MNJD

1

σ1 = 0.15 σ1 = 0.15 σ1 = 0.15 σ1 = 0.15
λ1 = 1 λ1 = 1 λ1 = 1

µ
J
1 = 0.1 p1 = 0.2 p1 = 0.6

σ
J
1 = 0.3 η11 = 25, η12 = 15 µ

J
11 = −0.05, µJ

12 = 0.07

σ
J
11 = 0.02, σ J

12 = 0.03

2

σ2 = 0.3 σ2 = 0.3 σ2 = 0.3 σ2 = 0.3
λ2 = 1 λ2 = 1 λ2 = 1

µ
J
2 = −0.2 p2 = 0.7 p2 = 0.2

σ
J
2 = 0.15 η21 = 15, η22 = 5 µ

J
21 = 0.02, µJ

22 = 0.02

σ
J
21 = 0.01, σ J

22 = 0.04

Table 5
COS method vs. MC method for valuation under continuous surrender when α(0) = 1.
Model T CIR model Vasicek model

MC Tmc COS Tcos MC Tmc COS Tcos

BSM
10 130.8873 121.2461 129.4130 1.2434 113.4110 115.7205 113.3833 0.1969
15 235.9550 185.0392 235.8604 1.3256 189.0535 175.3153 189.1344 0.2040
20 385.3857 246.8375 385.3661 1.2569 279.9099 236.6649 280.0656 0.2094

MJD
10 144.1303 290.2876 143.1235 1.2543 125.5012 287.0285 125.4994 0.2056
15 249.7653 436.6214 249.8048 1.2478 201.6240 433.0064 201.6298 0.2030
20 397.5098 585.0833 398.9102 1.2452 292.3263 572.2915 292.4554 0.2388

Kou
10 131.1799 245.2560 131.6643 1.4753 115.3802 238.1089 115.3625 0.2147
15 238.0126 362.3474 237.8999 1.3269 190.9995 359.3161 191.0250 0.2131
20 386.6004 500.2120 387.1210 1.2528 281.7193 468.3871 281.8088 0.2134

MNJD
10 130.0062 241.3256 129.8440 1.2471 114.1069 244.0717 114.0746 0.2116
15 236.6377 370.5664 236.2167 1.2365 189.7301 366.6698 189.7553 0.2077
20 384.1844 495.1514 384.2412 1.2856 280.4855 491.0821 280.6285 0.2119

where

[āj,k, b̄j,k] =

[
γ 1

j,kT − L

√
γ 2

j,kT +

√
γ 4

j,kT , γ 1
j,kT + L

√
γ 2

j,kT +

√
γ 4

j,kT

]
, j ∈ M1, k ∈ M2.

According to testing, we found that L = 6 ∼ 12 has the best approximation effect. Without loss of generality, we shall
hoose L = 8 in this section.

7.2. Computational efficiency analysis

For all analysis in this subsection, we compare the performance of our COS method against the Monte Carlo (MC)
imulation under four regime-switching models, and list corresponding parameters for models in Table 4.
We use Tcos and Tmc to represent the time required for the calculation of COS method and Monte Carlo simulation,

espectively, and their units are seconds. Let L = 26 denote the number of grid points. In order to make the results of
onte Carlo simulation more accurate, we generate 106 paths to approximate value.
We first consider the valuation under continuous surrender. Table 5 presents efficiency comparisons between the

onte Carlo simulation and COS method. For Monte Carlo simulation, we discover that models with jumps require more
ime to fit the corresponding stochastic process. However, for our method, the complexity of the model does not increase
he computational cost greatly, and it usually requires one second to get the accurate prices of VAs. In particular, it can
e controlled within one second under Vasicek model for all regime-switching model. Moreover, we also find that when
increases, the time consumed by the Monte Carlo simulation increases, but the time consumed by the COS method

emains basically unchanged.
Tables 6 and 7 show price comparisons and the corresponding computational costs of the two methods under discrete

urrender. Same as the continuous case, the computational cost of the COS method is very low as compared to the Monte
arlo simulation method, which takes at least 63 s to generate comparable prices. For the geometric average guarantee,
t increases the computation time because it has a special form of characteristic exponent. In this case, we find that the
ime consumed by the COS method also increases slightly as T increases. From Tables 5–7, it can be seen that the method
e propose can be used to compute the value of VA within regime-switching models with/without jumps with very high
ccuracy. In the following subsection, we will consider the sensitivity analysis with respect to the model parameters.
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Table 6
COS method vs. MC method for valuation under discrete surrender with deterministic guarantee when α(0) = 1 and Gtm = 100.
Model T CIR model Vasicek model

MC Tmc COS Tcos MC Tmc COS Tcos

BSM
5 15.4213 67.9699 15.5905 1.3866 14.8563 65.2140 14.9538 0.1613
10 21.7243 133.8588 21.6379 2.6252 19.8510 122.5423 19.0888 0.2050
15 25.2807 200.9649 25.2908 4.1373 22.3758 191.9369 22.4153 0.2658

MJD
5 28.0338 152.0890 27.9193 1.3503 27.1350 148.0092 27.0599 0.1499
10 36.4535 303.0014 36.3897 2.6879 33.2461 297.1753 33.0936 0.2157
15 40.8381 458.1935 40.7871 4.1362 35.1904 446.4713 35.3547 0.2680

Kou
5 18.4501 129.5355 18.5417 1.3465 19.5383 124.6834 19.4813 0.1388
10 25.3738 257.5540 25.4078 2.6770 24.4726 249.8069 24.5717 0.1893
15 29.3699 376.1345 29.3800 4.1192 26.7075 374.5000 26.5675 0.2316

MNJD
5 16.3801 129.9332 16.2979 1.3600 17.3941 119.8989 17.5416 0.1434
10 22.4620 246.8446 22.4670 2.6622 22.2495 242.1594 22.1346 0.1861
15 26.1263 311.1033 26.1655 4.1081 23.7556 362.9118 23.9387 0.2355

Table 7
COS method vs. MC method for valuation under discrete surrender with geometric average guarantee when α(0) = 1 and κ = 1.8.
Model T CIR model Vasicek model

MC Tmc COS Tcos MC Tmc COS Tcos

BSM
5 74.7293 129.1535 74.9312 3.8210 75.2719 125.1641 75.5890 0.5203
10 70.2679 257.9193 71.1045 15.6325 72.2903 252.1618 71.7265 1.7337
15 66.5078 387.3206 65.1776 33.2185 69.7250 378.6062 69.7919 3.4712

MJD
5 71.5840 212.6325 71.4799 4.0329 73.1529 209.8843 74.0648 0.5396
10 67.7355 425.5256 67.0198 15.4547 70.1301 420.6285 70.0963 1.7821
15 64.2167 650.2159 63.8972 35.3946 67.2005 632.4209 67.3369 3.5871

Kou
5 73.3209 190.2563 73.5670 4.2541 74.4803 185.5614 73.6968 0.5657
10 69.2713 381.2412 69.7132 14.3296 71.3548 371.8221 71.5923 1.7812
15 66.1491 570.1978 66.1420 34.2690 68.9974 559.3843 68.7291 3.6095

MNJD
5 74.0556 180.4639 74.3407 4.2560 75.5104 180.5931 75.1703 0.5640
10 70.0206 330.2563 70.1201 15.2140 72.1343 363.6367 72.1693 1.8028
15 66.9273 450.2106 66.9494 33.6307 69.8865 545.2393 69.6251 3.6048

Fig. 1. The sensitivity of valuation under continuous surrender with regime-switching BSM model when T = 10. Left: S0 = 100. Right: G0 = 100.
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Fig. 2. The sensitivity of valuation under discrete surrender with regime-switching BSM model when Gtm = 100, T = 10 and α(0) = 1. Left: CIR
model. Right: Vasicek model.

Fig. 3. The sensitivity of valuation under discrete surrender with regime-switching Kou’s jump diffusion model when Gtm = 100. Left: T = 10. Right:
r = 0.1.

7.3. Sensitivity analysis

In the above subsection, we compared the COS method with Monte Carlo simulation. Here we illustrate the impact of
model parameters on the prices of VAs. Without loss of generality, we assume that the initial state is 1 in Figs. 1 and 2 .

In Fig. 1, for continuous surrender, we consider the VA price as a function of guarantee level G0 (Left) and price process
at initial time S0 (Right). In the BSM case, we can discover that the monotone impact of increasing G0, for any fixed σ1
and σ2 in the left plot. Interestingly, for a guarantee level at initial time, the price of VA is not necessarily monotonically
increasing in σ1 and σ2. From the right plot of Fig. 1, we also find a similar phenomenon. The difference is that as S0
increases, the price of VA decreases monotonically.

In Fig. 2, we consider the VA price as a function of the penalty factor δ. We plot the effect of three different correlation
coefficients on the price of VA under the CIR and Vasicek model. From Fig. 2, we find that the monotone decreasing impact
of increasing δ, for any fixed ρ in the left plot. And we also find that the correlation coefficient ρ has a greater impact on
the Vasicek model than the CIR model. Fig. 3 contains subfigures of the changes in VA prices with respect to changes in
the risk-free interest r and maturity of the contract T , respectively. From Fig. 3, we note that the VA price is a decreasing
24
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function of risk-free interest which is in line with increasing risk from the VA providers perspective. When the risk is high,
insurance companies need to increase the value of VA to deal with complex situations. From right of Fig. 3, regardless of
he initial state, we find that the value of VA is very sensitive to the contract maturity. From the above tables, we also
ound this phenomenon. Some scholars have found that the price of VA is concave with contract maturity in the previous
iterature (2.1). This is because we decomposed the value of VA into two parts in Section 2.2, one part of which increases
s maturity increases and the other part decreases as maturity increases. Finally, the two parts are combined to present
he effect of Fig. 3.

. Conclusion

In this paper, we have proposed an efficient method to valuate VA contracts embedded with GMMBs in a regime-
witching jump diffusion model with surrender risk. For regime-switching jump diffusion process, each regime has
ifferent characteristics, which naturally needs a Markov chain to drive transitions between regimes. For the surrender
isk, we use an intensity-based approach to model the surrender time, and apply the CTMC method to approximate the
ntensity process. We have considered two cases: (i) continuous surrender; (ii) discrete surrender, where deterministic
uarantee and geometric average guarantee are included in discrete surrender. In the above cases, we use the Fourier
osine expansion method to arrive at explicit closed-form expressions given the knowledge of the Fourier transform. In
umerical experiments, our method is compared with the Monte Carlo simulation method, and is demonstrated to be
ighly efficient and accurate.
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