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ARTICLE INFO ABSTRACT

MSC: This paper introduces an extension of the Morley element for approximating solutions to
primary 65N30 biharmonic equations. Traditionally limited to piecewise quadratic polynomials on triangular
65N12 elements, the extension leverages weak Galerkin finite element methods to accommodate higher
65N15 degrees of polynomials and the flexibility of general polytopal elements. By utilizing the Schur
;escfsnodary 35845 complement of the weak Galerkin method, the extension allows for fewest local degrees of
Keywords: freedom while maintaining sufficient accuracy and stability for the numerical solutions. The

numerical scheme incorporates locally constructed weak tangential derivatives and weak second
order partial derivatives, resulting in an accurate approximation of the biharmonic equation.
Optimal order error estimates in both a discrete H?> norm and the usual L?> norm are established

Weak Galerkin
Finite element method
Morley element

Biharmonic equation to assess the accuracy of the numerical approximation. Additionally, numerical results are
Weak tangential derivative presented to validate the developed theory and demonstrate the effectiveness of the proposed
Polytopal partitions extension.

1. Introduction

This paper is concerned with the new development of high order Morley elements for the biharmonic equation by using the
weak Galerkin (WG) method. For simplicity, we consider the biharmonic equation that seeks an unknown function u satisfying

Ay = g, in Q,

u=¢, onadLR, (1.1)
% =¢&, on oL,
on

where 2 c R?(d = 2,3) is a bounded polytopal domain with Lipschitz continuous boundary 92, and n is the unit outward normal
vector to d£2.
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A weak formulation of (1.1) seeks u € H?(£) satisfying u|,, = ¢ and g—: lg = & such that

d
2 (05u,0},0) = (g,v), Vv € Hy(), 1.2)
ij=1

where H2(Q) = {v € HX(Q) : v]yo =0, Vv|yo = 0}.

The H?2-conforming finite element method for the biharmonic equation is well-known but requires a C!-continuity of piecewise
polynomials on simplicial elements, which poses practical difficulties. To address this issue, various nonconforming finite element
methods were introduced. Among these methods, the Morley element has the fewest degrees of freedom on each triangular element,
making it not only a popular research topic but also a practically useful method. Previous works such as [1-3] extended the Morley
element to higher dimensions. Other works, including [4-8], proposed generalizations of the Morley element for different types of
meshes. Parallel algorithms and multigrid methods for the Morley element were developed in [9-12]. Since then, rapid progress
has been made in various numerical methods for the biharmonic equation on polytopal meshes, such as discontinuous Galerkin
finite element methods [13-15], virtual element methods [16,17], and weak Galerkin methods [18-27]. The WG finite element
method was first proposed for second-order elliptic problems in [28]. The WG method is a natural generalization of classical finite
element methods as it relaxes the continuity requirement for the approximating functions. This weak continuity of the numerical
approximation allows for high flexibility in constructing weak finite elements with any desired order of convergence. To the best
of our knowledge, no high-order extension has been developed that combines the advantages of the Morley element, including its
minimal degrees of freedom, with the ability to handle general polytopal partitions.

The objective of this paper is to present a high-order generalization of the Morley element using the weak Galerkin method.
Inspired by the de Rham complexes for weak Galerkin spaces [29], we propose innovations to the original weak finite element
procedures. These innovations involve the introduction of additional approximating functions defined on the (d — 2)-dimensional
sub-polytopes and (d — 1)-dimensional sub-polytopes of d-dimensional polytopal elements, resulting in a reduction of the degrees
of freedom. To enhance the numerical scheme, we incorporate a locally designed weak tangential derivative operator and a
weak second-order partial derivative operator. Furthermore, we establish optimal order error estimates for the resulting numerical
approximations in both the energy norm and the L? norm.

The main contributions of this paper can be summarized as follows. Firstly, unlike the original Morley element, the proposed WG
extension allows for higher-order polynomial approximation with the local minimum number of degrees of freedom, while also being
applicable to general polytopal elements. This extension broadens the scope of problems that can be effectively addressed. Secondly,
in comparison to existing results on WG methods, we introduce a novel technique within the WG framework that significantly
reduces the number of unknowns. This advancement enhances the efficiency and computational feasibility of the method. Finally,
the versatility of the new WG method enables its application to various modeling problems, including those that involve the Hessian
operator in their weak formulation.

The paper is structured as follows. In Section 2, we provide a review of the definitions of the discrete weak tangential derivative
and the discrete weak second-order partial derivatives. Section 3 presents the weak Galerkin scheme and introduces its Schur
complement. Section 4 establishes the solution existence and uniqueness for this new scheme. Section 5 is devoted to the derivation
of an error equation for the weak Galerkin scheme, providing insights into the accuracy of the method. In Section 6, we present
some technical results that are utilized in the subsequent section. Section 7 is dedicated to establishing error estimates for the
numerical approximation, considering both the energy norm and the L? norm. Finally, in Section 8, we present numerical results
that demonstrate the effectiveness of the developed theory.

This paper will follow the standard notations for the Sobolev space. For an open bounded domain D c R? with Lipschitz
continuous boundary D, we denote by || - ||;p and |- [, p the norm and semi-norm in the Sobolev space H*(D) for any s > 0.
When s = 0, we use (-,-) and | - |p to denote the usual integral inner product and semi-norm, respectively. The subscript will be
omitted when D = Q. Moreover, we use “A < B” to denote the inequality “A < CB” where C stands for a generic constant
independent of the meshsize or the functions appearing in the inequality.

2. Discrete weak derivatives

Let 7, be a polytopal partition of £ satisfying the shape regular assumptions described in [30]. For T € T}, denote by 0T the
boundary of T consisting of (d — 1)-dimensional polytopal elements (called “face” for simplicity). For each face 7 c dT, denote by
OF the boundary of F consisting of (d — 2)-dimensional polytopal elements (called “edge” for simplicity). Denote by F,, the set of
all faces for all elements in 7, and T’2 = F, \ 0 the set of all interior faces. Analogously, denote by &, the set of all edges for all
elements in 7, and 82 = &, \ 022 the set of all interior edges. Moreover, denote by Ay the meshsize of T and h = maxrey, hy the
meshsize of 7,,. For any given integer r > 0, denote by P,.(T') and P,.(dT) the space of polynomials on 7" and T with degrees no more
than r, respectively.

For each element T € 7, we introduce a weak function v = {vy, v, Uy, 7,0}, where v, represents the value of v in the interior
of T, v, and v, , represent the values of v on the edge e and face 7 respectively, n, is the assigned unit normal vector to 7, and
v, represents the normal derivative of v on 0T along the direction n,.

For any given integer k > 3, denote by V,(T) the discrete space of local weak functions given by

Vi(T) = {{vg, Vpe» Ub’f,unnf} D vy € P(T), v, € Py_y(e), Vs € P,_5(F),
v, € P_»(F),F CdT,e CIF}.

2
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It should be pointed out that v, , = const from problems in 2D.
On each face ¥, we introduce a finite element space W,_,(F) as polynomial vectors of degree k — 2 tangential to F:

W (F)={w : we[P,(P), y-n;=0}.

Definition 2.1 ([29]).(Discrete weak tangential derivative) The discrete weak tangential derivative for any weak function v € V,(T),
denoted by V , ;. > 70, is defined as the unique polynomial in W),_,(F) satisfying

(Vuakarts W Xns)p = =0y 1, (VXW) - np)p +(Upe. W - Thor 2.1
for all y € W,_,(F). Here, 7 represents the tangential unit vector on o7 that is set such that 7 and n, obey the right hand rule.

With the normal derivative v, and the discrete weak tangential derivative V,,, ,_, rv, we can define the weak gradient of v on
the face 7 as follows:

Vg =0,n; + Vw,qu_zyrv. (2.2)

Definition 2.2 ([19]). (Discrete weak second order partial derivative) For any v € V,(T), the discrete weak second order partial
derivative, denoted by 0?/. v, is defined as a unique polynomial in P,_,(T) satisfying

Jw,k=2,T
(0,-2/.#,,,(_211), @) = (v, a?,fp)r = Uy, £, 0;@0) g1 + (Vgir @1} )ar (2.3)
for any ¢ € P,_,(T). Here, n = (ny,...,n,) represents the unit outward normal vector to dT, and v,; is the ith component of the

vector v, given in (2.2).
By utilizing the integration by parts to the first term on the right-hand side of (2.3) we obtain
(aizj,w,k—z,TU’ Q)r = (612/”0’ @) +{(Wo = Uy, )Ny, 0;9) g1 — (9,00 = Ugi» @1 )t @4

for any ¢ € P,_,(T).
3. Weak Galerkin schemes

We construct a global finite element space V), by patching V,(T) over all the elements T € 7, through common values v,, on
&), vy, and v,n, on FY; i,
Vi ={v="{vg, Uy, 0 0,0s} 1 Vlp €V(T), T €T}
Denote by Vp? the subspace of V), given by
V0={v:v€EV, vy,l, =0, v,/lp =0, v,lr =0, eCoQ, F CoQ}.

For convenience, denote by V , v the discrete weak tangential derivative V,, ., , rv and af/. U the discrete weak second order

. . . 2 .l
partial derivative al_ij_k_” v; i.e.,

2 2
(Vw,rv)lT = Vw,f,kfz,T(U|T)7 (a,-/-‘wU)|T = a,-ij’k_z,T(Uh), veEV,.

Denote by Qp, O, and Q, the usual L? projection operators onto P,_,(e), P,_3(F) and P,_,(F), respectively. In V, x V},, we
introduce the following bilinear forms:

d
2 2 2 2
@pw,zv)= Y (3 ,w,0 Vs

TET, ij=1
s(w,0) = Y W (Qyt0g = Wye, Oyl = Upe)or
TET,
-3
+ Z h7™Q pwy — wy, 1, Q 0o = Uy f)ar
TETy,
-1
+ Y hE0,(Vwg) ny = w,, Q,(Vvg) -y = v,)or
TeT,
+5 hz'Q,D,wy -V, ,w,0,D,v9— V.V
k.3 T nZtWo w, e ZnF %0 w,tY/0T>
TETy,

ag(w,v) = (0301,0, 6300) + s(w, v),

where 0, D, w, = Q,(n; X (Vw, Xn,)) and §; 5 is the usual Kronecker’s delta with value 1 when k = 3 and value 0 otherwise.

Weak Galerkin Algorithm 1. A numerical approximation for the model Eq. (1.1) based on the weak formulation (1.2) can be obtained
by seeking uj, = {ug, uy .. uy, s u,n,} €V, satisfyingu,, = Q,¢ one C 9, u, , = 0, and u, = 0,& on F C L2 and the following equation

ay(uy,v) = (g,vp),  Yoe V). 3.1
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Up, e, Un4
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Fig. 3.1. Local degrees of freedom for the finite element space V5(T) on a triangular element (left) and a pentagonal element (right).
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Fig. 3.2. Local degrees of freedom for the finite element space V;(T) on a hexahedral element.

One may apply the Schur complement approach to the weak Galerkin scheme (3.1), yielding an equivalent formulation with
reduced number of unknowns in the resulting linear system. More specifically, the Schur complement for (3.1) seeks u;, =
(D(upostty g ttys 8)sUposthp gy} € Vyy such that uy,, = Q¢ on e C 92, u, , = Q¢ and u, = Q,¢ on F C 9L satisfying

a,({ D(ub’e, Up rsUpy, £, Upe>Up fsUyDy }b,v)=0 (3.2)
for all v = {0, v, v f,v,n,} € V,?, where uy = D(uy,,,up, 7, u,, g) is obtained by solving the following equation
ag({ug, up e, Uy g, uym g}, 0) = (g, Vo) (3.3)

for all v = {1y,0,0,0} € V0.

Remark 3.1. The weak Galerkin scheme (3.1) is equivalent to its Schur complement (3.2)—(3.3). The proof is similar to that in [31].
As an illustration, when k = 3, the degrees of freedom on a triangular element, a pentagonal element and a hexahedral element are
shown in Figs. 3.1 and 3.2, respectively.

4. Solution existence and uniqueness

On each element T € 7}, denote by Q, the usual L? projection operator onto P (T). For any ¢ € H>(2), let

0,0 ={000.0;0,0,¢,0,(Vd -ny)n,}.
Similarly, denote by Q, the L? projection operator onto P,_,(T).

Lemma 4.1. For any ¢ € H*(T), the following commutative property holds true

Vi Qn = Q,(m; X (Ve xn,)), 4.1)
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07 (Qnd) = QuOLD). ij=1.....d. (4.2)

Proof. First of all, the identity (4.1) has been established in [29]. Hence, the gradient representation (2.2) for (th.’;)g has the
following form

Qrd)y =0, (Vo -npn; + 0,y X (Ve Xny))
=0,(Ve).

In other words, the weak gradient of Q¢ is the L? projection of the classical gradient of ¢ on each face F  T. Thus, from (2.3)
and the usual integration by parts we obtain

(0}, (Qn$). ©)r
=(Qo ¢, 5J,<P)T =(Qrdn;, 0;0)ar +(Qu(VP);, on;)or
=(¢, aﬁfp)r = {n;. ;@) g1 + (V). o1} )ar
=(9;,¢. )1
_(Qh(a ), o)
for all ¢ € P,_,(T). This verifies the identity (4.2).

(4.3)

Observe that the bilinear form a (v, v) induces a semi-norm in the finite element space V), given by

loll = (ay(0,0) 2. (4.4)
Lemma 4.2. The semi-norm ||v|| defined by (4.4) is a norm in the subspace V,?.

Proof. It suffices to show that ||v|| = 0 implies v = 0. To this end, assume |[|v|| = O for some v € V0 From (4.4) we have 62 v=0
and s(v,v) = 0, which implies 62 Ww=0fori,j=1,....,d oneach T, Qyv, = v, on each oF, Q vy = v, ; and Q,(Vvy) - n; = v, on
each 0T. Thus, on each element T € T, we have Q,, vy = v so that by using (4.2)

2 2 2 2 -
al.jvo = Q,,a,.juo = 6,.j’w(th0) = 0l.j’wu =0, i,j=1,...,d.

Hence, Vv, = const on each T € 7. Note that on each face 7 € 9T we have
Vug =(Vug -neng +ng X (Vog Xng),

which, together with Q,(n; X (Vv xny)) = V,, v and Q,(Vvy) - n, = v,, gives rise to Vv, = v,n, +V,, v on each face F € F,
and hence Vu, € C%(Q). Next, with vy =0 on each 7 C 02 and v;,, = 0 on each e C 02 we have from (2.1) that V,,,v = 0 on
each 7 C 0Q. This, together with v, = 0 on each ¥ c 922, gives Vv, = 0 on 7 C R and further Vv, = 0 in the domain Q since
Vg = const on each T and Vy, € C%(). Hence, v, = 0 on each F and v, = const on each T. This further leads to vy = Q,uy = vy,
on each 0F and vy = Q) = v, ; on each 9T, and hence v, € C°(L2). From v, = 0 on e C 32 and v, ; = 0 on each F c 92 we have
vg = 0 in Q. Finally, from v,, = Q,v, on each oF and v, , = Q,v, on each 0T we have v,, = 0 on each 0F and v, ; = 0 on each
oT. This completes the proof of the lemma.

Lemma 4.3. The weak Galerkin scheme (3.1) has one and only one numerical approximation.

Proof. It suffices to verify the uniqueness of the numerical approximation. To this end, assume that u(l)

of (3.1). It is clear that

and uf) are two solutions

a,@l —u®P v)=0, ey (4.5)
By letting v = uhl) - uf) € V,? in (4.5) we obtain
1 2
e =l =0

D

which implies u; = uf) from Lemma 4.2. This completes the proof of the lemma.

5. Error equations

Let u be the exact solution of the model Eq. (1.1) and u;, € V), be the numerical solution of the WG scheme (3.1), respectively.
Denote by
e, =Qupu—uy (5.1

the error function between the L? projection of the exact solution and its WG finite element approximation u,.
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Lemma 5.1. The error function e, defined in (5.1) satisfies the following error equation
aglep,v) =4,(0),  YwEV, (5.2)

where §,(v) is given by

d
GO =5Qpuv)+ D Y (vg = vy 7, 0,(Qu(0%) = 0%, ) o1

TeT,, i.j=1
P (5.3)
+ D (9w — vy, (O u = Q07 u)n; Yo
T€T), ij=1
Proof. Letv e V,?. On any face 7 C 022, we have v, , =0 and v,, = 0 on e C 9F. Thus, from (2.1) we have
(V@ xng)p ==y 1, (VXW) np)p +(Upe W - T)gp =0
for any y € W;_,(F). Hence, V,, ;v = 0 on 9£. This, together with (2.2) and v, = 0 on 942, gives rise to v, = 0 on 0.
By testing the model Eq. (1.1) against v, and then using the usual integration by parts we have
(& v) = ) (Au,vp)r
TET,
d
=Y D (@Fu 0% vg)r — (0, 0,00m; Yo7 + (0,05 W, voYor
T€T), ivj=1 (5.4)
d
= ) Y (0}u, 6} v0)r — (9Fu, (0,09 — v N oy
TET), i,j=I

+ (0j(6fju)ni, vy — Ub,f>5T,
where we used the fact that

d
2 Z (0i2ju, Uginj)aT =0,

T€ET), i.j=1
d
> ¥ (9,08 wn;, vy pYar =0,
TeTy i.j=1
and vy =0, v, =0o0nF C 0Q.
To handle the first term on last line in (5.4), we choose ¢ = @h(afju) € P,_,(T) in (2.4) and then use Lemma 4.1 to obtain
(07,09, 0;,u)r =(0]; 09, Qu(0 )7
=0}, 0 QW) = (g = vy Iy, 0,(Qp (O U))or
+ (9100 = Ui Qu(0]0n; or (5.5)
=(0};.140 05 @7 = (o = Uy Iy, 0;(Qu(0}u))or
+ (0,09 — vy, Qh(a,-zju)”j>ar-
Substituting (5.5) into (5.4) gives
d
& v0) = 2, D0}, 0}, Ouidr + (v = vy 4, 0,9} u = Qp(@ 1)) o7
Tet, ij=1 (5.6)
+ (900 = Ugi» (Qu(O7w) = 07w, ) o7
Subtracting (3.1) from (5.6) gives rise to Lemma 5.1.

6. Technical results

Note that for any T € 7;, and ¢ € H'(T), the following trace inequality [30] holds true:
615 < A 1017 + hrlI VeI (6.1)
If ¢ is a polynomial on the element T € 7,, we have from the inverse inequality that

I3, < At llpllZ. 6.2)
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Lemma 6.1. Assume that T, is a finite element partition satisfying the regular assumptions described in [30]. Then, for any 0 < s < 2,

the following error estimates [30,32] hold true:
Y, hEld = 0ol S K<V,

TET,
d

XX hEN05 b - Q@ IR, S PEIBI,

TET) irj=1

Lemma 6.2. For any v € V,, there holds

(Y Zh 10,0,00) = vgill ) S Mol

TEeT), i=

Proof. From Vuy, = (Vv - nong +ng X (Vog Xng) and (2.2) we have

d
3 h10,@0rvy) — vl

TeT), i=1
= Y 1110, (Vo) — vgllyy
TEeT,
= Y W10, (Vo - npny + 0,y X (Voo X)) = (0,0, + Y, 03,
TeT,
S 2 W1 (Vug - mp) = 0,5 + hp 10, X (Vog X)) = V0l
TEeT),
SHel? + Y, AzM 10,y x (Vog xnp) =V, lf3..
FEF)

Next, from (2.1) and the Stokes theorem we have
KQ,(my X (VogXny)) =V, 0,9 Xn,)p|
= Qv = Uy ps (VXW) - p)p + Uy, — Qplo ¥ - Thopl

< ||QfU0 - Ub,f”r”V Xyllp + vy — Qpvollor llwllor
1
S 0Qvg = v bz Wl + loge = Qpollorhy? Wiy

for all y € W, _,(F). Hence,

1

10, ; X (Voo xn ) =V, 0l S hp Qv = vy sl + hy 2 vy, — Qpuollor-

Substituting the above estimate into (6.6) gives rise to the desired inequality (6.5).

Lemma 6.3. For any v € V), there yields

2 2
Y 1wol3y S ol

T€T,

Proof. By taking ¢ = 92 Y0 € Po(T) in (2.4) we have

(0” wVs 5 ;o)

—(0 uo,a,]uo)T + ((vg — vy, N> /(01,U0)>6T (0,09 — vg,-,aizjvonj)”

_(() ;lo> 13 Uo)T +{(Qfvo — vy pI;, j(l),j vo)Yar — $Q,(0;09) — Ugn(),?on"j)aT-

Hence,

1

> ool s( X Z 103,,012)* (X Z llo? v0||2)

TEeTy, TET), i,j=1 TET, i,j=1

1 d 1
+ (Xm0 -l ) (X X a0, @kenliy )}

T€T, TeTh ij=1

(Z Zh 110,(8v0) - vgill2 ) (Z Ztha ool )

TeT, i=1 TeTy ij=1

2 2
shon( Y 1eor )’

TeT),

(6.3)

6.4

(6.5)

(6.6)

6.7)
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This completes the proof of the lemma.

Denote by [v,] the jump of v, on the face F shared by two adjacent elements T} and Ty, i.e., [vy] = vglp, nr = Volrgnr-

Lemma 6.4. Let k > 3. For any v € V,, and ¢ € H**'(Q), there holds

d
1Y, D (wo = 000, 0,(Qu0% @) = ZIn)or | S Kl llvll, (6.8)
TeTy i.j=1
1
(X 7' 10,D0o0) = V10010l ) S Wl 6.9
TeT,

Proof. We first note the following identity

d
Ji= YN (v - Q00,0050 — Q@ o) Yoy
TET, ij=1
d

= > D (v = 0rv0.0;070m)er

TET), ij=1

d
= Z Z (vg — Q vy, (I — Qf)aja,'zj(pni>(3T

TET), i,j=1

d
= z Z ([vo] = Oyl (I - Qf)aja?j(pn,.)r_

FeFy i,j=1
For k > 3, the finite element space on face F consists of linear functions so that

Klvol — Qslvgl, (I — Q)90 9n; ) x| < CRA|[wolllo 7 I — Q)92 @llg 55

J7ij J7ij

which can be used to derive the desired inequality (6.8) without any difficulty.
For the case of k = 3, the finite element space on face F consists of constants only so that

[{[vg] = Qflvol, (I = Qf)ajaizjfﬂni)ﬂ < Ch|I[D volllg T — Qf)ajﬂ,-zj(ﬂno,r,

where D, v, stands for the tangential derivative on F. It follows from the trace inequalities (6.1)-(6.2) and the inverse inequality
that

1
115( Y, RID.v0] = Q1D toDIE + 212, (D DI )
FeF,

d 1

_ 2 2

(XD H I = 00,03 01 + kel - 00,00l )
TeTy i.j=1

1 1
S HHID vl + R0, (D 00D = [Vl ) (X 1Nl 1)
FeF, TET),
1

5 5
3 2 2 2 2 k=5
S(X Moy + X HI0.Dv0 = Vvl ) A gl
TEeTy, TeT),

S B ol vl
which, together with (4.4), completes the proof of (6.8).
To verify (6.9), we recall that Q,D,w, = Q,(n r X (Vwy Xny)). Hence, from (4.1), the trace inequality (6.1), and (6.3) we arrive
at

Y, 1710, (D00®) = V. Oyl

TET,

= Y 170,y X (VOy@ X 1)) = Q,(n) X (Vo xn )3,
TeT),

S Y hMIng X (VQu@ xnp) —ny X (Vo xnp)||2,
TeT,

S Y rEIVQye - Voll3,
TeT),

k-1
Sh ||(P||k+1-

This completes the proof of the lemma.
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7. Error estimates

The following is an error estimate for the numerical scheme (3.1) with respect to the natural “energy” norm.

Theorem 7.1. Let u be the exact solution of Eq. (1.1) and u;, € V), be its numerical approximation arising from the WG scheme (3.1).
Under the assumption of u € H**1(Q), the following error estimate holds true:

Nenll S A llull s - 7.1)

Proof. By taking v=-¢, € Vho in (5.2) we have

llepll* =¢,(ep)

d
=s(Quti,ep)+ Y, D (e — ey, 0;(Q(07u) = Owm oy
TETy i,j=1

d (7.2)
+ D Y (9eg = egy (0% u = Qu02uDn; Yoy

TeT), i,j=1
=l + L+
For I, we have from the Cauchy-Schwarz inequality that

[1;| = [s(Qpu,ep)l

< Y WP (04(Qou) — Oy Oy — €5, )or |

TET,

+ D hP KO (Qou) — Qu, Qreg = e for|

TET),

+ Y A (Q,(VQyu) -1y — 0, (Vu-n;),0,(Vey) ny = e,)or|
TETy,

+ 5k,3 z hj_"l |<QnD‘rQ0u - Vw,TQhu’ QnDreO - Vw.‘reh>r)T|
TeT,

1
S( X nPogu—ule)* (X h10se0 — encll3y )

TeT, TeT,

)=

1 1
+ (Xm0 —uldy ) el + (X A IVQou = VullZy ) eal

TeT, TeT,

1
+ 53 X 10,0, 00 =V 0yl ) Hlesl

TeT,

Next, using the trace inequality (6.1) and the estimates (6.3) and (6.9) we arrive at

1
- - p)
i1 5( Y A7 IQgu = ully + ! 1V Qg = Va2 ) eyl
TEeT,

1
- — 2
+ (X rrtIQou = ull: + kY Qg = Vul2 ) lley
TEeT,

+ (X W71V Qou = Vullh +1Qou = ull ) lewll + 6 sh* lullley
i, 7.3)

1
- - 2
S(( Xm0 = ull + H72 IV Qou = VallZ ) el
TeT),
1

) 2 2 2 2
+ (X m71VQou = Vully +1Qou = ull ) lewll + 6 sh* lullle
TeT),

k-1
S A ullgsr Mep -
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For the term I,, we have from (6.8), the Cauchy-Schwarz inequality, and the trace inequality (6.1) that

d
IAED) Z(eo—eb,f’aj(Qh(a,»zju)—a,-z,-”)"i>aT|

T€ET) i,j=1

d
=1 D Y (e — O, 0;(Qu(0}w) — FZt)n;) oy

TET, ij=1

d
+ Z Z<Qfeo_eb,_ﬁaj(Qh(a[ZJ-“)_aizj“)ni>dT|

TET), ij=1 7.9
1
Sl llenll + (Y, A0 e = en sl )
TeT,
d 1
(X X 0, @u@iw -l )’
TET), i,j=1
< P Ml el
As to I3, we have from the Cauchy-Schwarz inequality, Lemmas 6.2-6.3, the trace inequality (6.1), and (6.4) that
d
151 =1 ), D (deq — egis (07 — Qi (37D, Yor |
TeTy ij=1
d 1
(X DA 10,0 e = el + hr' 10,60 = Q0103 )
TeT), i=1
\ > 2 2 \2 (7.5)
(XD rlodu-u@ i)
TeT, i.j=1
1
S(eal® + Y leol3 )l

TeT,
S R Nl ey
~ Ul liepll-

Substituting (7.3)-(7.5) into (7.2) gives rise to (7.1). This completes the proof of the theorem.

To establish an optimal order error estimate for the numerical solution in the L? norm, we consider the dual problem that seeks
@ satisfying

A®=¢y, in Q,

@ =0, on 02, (7.6)
@ =0, on 0Q.
on

Assume that the problem (7.6) has the H*-regularity in the sense that there exists a constant C such that
I@ll4 < Cllegll- 7.7)

Theorem 7.2. Let u € H*"(Q) be the exact solution of the problem (1.1) and u;, € V;, be its numerical solution arising from the WG
scheme (3.1). Under the H*-regularity assumption (7.7), we have the following error estimate

k+1
lleoll < A" Hlully-

Proof. First, using (2.1) with e, , =0 on each 7 C 92 and e, , = 0 on each e C 9L gives V,, ;e, = 0 on each 7' C 9. This, together
with e, = 0 on 02 and (2.2), gives e, = 0 on 9. Next, we test the dual problem (7.6) against ¢, and use the integration by parts
to obtain

lleoll* =(4*®, eq)

d
=Y D (@@, eq)r — (0D, e, ot + (0;(0} @Iy eq)ar
TET), i,j=1
d
=Y D (@2, 0%eg)r — (0L P, (9¢0 — )N, Yor
TeTy ij=1

+ (0,0 @Ins.eg — ey p)ars

(7.8)

where we have used Y77 2?;:1 (a,?qu, eginj)or =0and Yrer zj’j=l<aj(a§j¢)n,., ey r)or =0 since e, , =0 and e, = 0 on 9£2.

10
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Analogous to (5.5), we have
(@%@, 0% e0)r =02 5.2, 0, @)1 + (e, — eIy, 0,(Qu(02@))r
+ (d;eq — eg,.,Qh(aszp)nj)aT,
which, together with (5.2) and (7.8)—(5.3), leads to

d
lleol® = Y D (07 yen 05 Qn®)r + (0,00 = egn;, Qy (07, @) — O%D) o
TeT) i.j=1

+ ((eg = ep )y, 90;(97:® — Qu(0], D)oy
=Cu(Qh‘p) - C¢(eh)

3
= 2 Ji = Lolep),
i=1

where J; are given as in (5.3) with v = 0, ®.

The rest of the proof amounts to the estimate for each of the four terms on the last line in (7.9).

Journal of Computational and Applied Mathematics 443 (2024) 115757

(7.9)

For J;, we have from Cauchy-Schwarz inequality, (6.9), the trace inequality (6.1), (6.3), and the H* regularity assumption (7.7)

that
EA
= Y h7(04(Qou) = Oy, 04(Qy®) — Oy @)y

TeT,

+ h72(0 1 (Qou) — O, O (Qy®P) — O, Pyr

+ h;l (0,(VQqu) - n;—0,(Vu-ng),0,(VQ0y®) -ny — Q, (VD - nf»aT
+ k3 2 h3'(Q, D, Qo = V,,,0u,0,D,00® -V, .0, P)yr|

TET,
1 1
(X oo —ul ) (Y H 10 - @l )
TET, TET,
1 1
(2 o —uld ) (Y h oy - @)’
TET, TET)
1 1
+ (2 v - vul ) (X mIvee - Vel )
TET, TET),

4
+ 03" lullylI@lly
k+1
S el | 171/ Py -

S R ull g lleo -
For the term J,, we have
d
=Y Y A0y — 0®,0,(Q,0%u) — 0Fuwm Yoy

TET), i,j=1

d
=) D Q@ — @)+ (@ — 0, ), 0;(Q;(0}w) — 0} w7

TETy, i.j=1

d
=Y D 0P — ®,0,((Q) — Djwn;)or + (D — Qs @, 9,07 wn;) o7

TET) i,j=1

d
= z Z (Qy® — cb,a'(Qhaizj” - a?j”)",’)()Ta

TET, ij=1

where we used the fact that Yo, Zjl j=1(@- qu>,a.(ai2ju)n,.),,7 = 0. It follows that

1 d 1
11 5( 2 oy - o2 ) (X X 10,@u0kw - w3 )
TET,

TET), i,j=1
k+1
S Ny Nl

k+1
S B ull g lleol-
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For the term J;, we note that the weak gradient of the L? projection of a smooth function is the same as the L? projection of
its classical gradient on the boundary of each element, see (4.3). Hence,

d
Ji= D Y 9,00 — 0, (0,®), (0 u = Qp(0}uDn;Yor-

TeT), i,j=1

It follows from the Cauchy-Schwarz inequality, the trace inequality (6.1), Lemma 6.1, and the regularity assumption (7.7) that

[SIE

151 5( X 1 1V00@ = VoI + hr [VQu - VoI )
TET,

d 1
(X X 10 - QU@ + b IV@Fu - Q@ ) (7.12)
T€ET, i.j=1
S WD Nl

k+1
S B ull g lleoll-

To deal with the last term, using the same arguments as in (7.3)—(7.5) with u = @ and then combining (7.1) with (7.7), there
yields

1Cp(ep)] SR2IDl4lle, I
SH T ull ey 121

K+
SH Tl lleoll-

(7.13)

Finally, substituting (7.10)-(7.13) into (7.9) completes the proof of the theorem.

We further introduce the following measure for the numerical solutions on element boundaries:

1
2 2 \2
leselle, =( X Hllencl3y ).

TET,

1
lew,sllr, =( D Arllen I3 )’

TeT,

(X wrleiy)’

TeT,

leall,

Theorem 7.3. Under the assumptions of Theorem 7.2, there holds

lepelle, S A Nl 7.14)
||eb,f||7~*h s hk+1||u||k+1, (7.15)

lleallr, < P Null - (7.16)

Proof. From the triangular inequality, the trace inequality (6.2), (4.4), Theorems 7.1 and 7.2, there holds

1
2 2 )2
lenelle, =( X A3 llenel3 )

TET,

=

2 2 2 2
S( X 110wy + B ley, — Opeoll3y )
TET),

2 -1 2 232 2
S( X mnreoly + 1 el
TETy,

-1 2 4 5 2(k—1 2
S Akt eolly + mb Al )
TET,

e+l
SH ulle s

[STE

[NIE

which completes the proof for (7.14).
The proof for (7.15) and (7.16) can be obtained by using a similar argument.

8. Numerical experiments

In this section, the numerical scheme (3.1) will be implemented to verify the convergence theory established in the previous
sections. To this end, we first solve the biharmonic Eq. (1.1) on the unit square 2 = (0, 1)>, where g and the boundary conditions

12
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Table 8.1
The error profile for solving (8.1) on square grids shown in Fig. 8.1.

Grid 10 — Rate Qe =y I Rate

The P; WG finite element

5 0.1486E—-02 3.90 0.9339E+00 1.95
6 0.9595E-04 3.95 0.2373E+00 1.98
7 0.6092E—-05 3.98 0.5981E-01 1.99

The P, WG finite element

3 0.3791E-01 3.85 0.3692E+01 2.86

4 0.1330E-02 4.83 0.4803E+00 2.94

5 0.4232E-04 4.97 0.6068E-01 2.98
The P; WG finite element

2 0.2460E+00 5.05 0.1823E+02 5.21

3 0.5110E-02 5.59 0.9983E+00 4.19

4 0.8558E-04 5.90 0.5589E-01 4.16

Fig. 8.1. The first three levels of square grids used in Table 8.1 computation.

Fig. 8.2. The first three levels of triangular grids used in Table 8.2 computation.

are chosen so that the exact solution is
u(x, y) = 28(x — x)%(y - yH)%. 8.1)

Test Example 1. We take the square as the initial mesh, and subdivide each square into four to get subsequent meshes, as shown
in Fig. 8.1. One can see from Table 8.1 that the optimal rates of convergence are obtained in the usual L?> and H?-like triple-bar
norms for P;, P, and P; WG methods.

Test Example 2. We take the uniform triangular meshes, as shown in Fig. 8.2. One can see from Table 8.2 that optimal rates of
convergence are demonstrated in the usual L? and H?-like triple-bar norms for P;, P, and P; WG methods.

Test Example 3. We take polygonal meshes shown as in Fig. 8.3. Table 8.3 illustrates the corresponding numerical results which
clearly demonstrate optimal rates of convergence in the usual L? and H2-like triple-bar norms for P;, P, and P; WG methods.

Test Example 4. We solve the biharmonic Eq. (1.1) on the unit cubic domain £ = (0, 1)?>, where g and the boundary conditions
are chosen so that the exact solution is given by

u(x, y,z) = 2"2(x — x1)(y - y)*(z - 2% 8.2)

In this test, we use the uniform cube meshes shown as in Fig. 8.4. The results from the P; and P; WG methods are shown in Table 8.4.
The optimal order of convergence is achieved in all cases.

13
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Table 8.2
The error profile for solving (8.1) on triangular grids shown in Fig. 8.2.
Grid [10,u — uyll Rate 11Qu — uyll Rate
The P; WG finite element
5 0.8263E-03 3.97 0.7030E+00 1.98
6 0.5190E-04 3.99 0.1764E+00 2.00
7 0.3252E-05 4.00 0.4414E-01 2.00
The P, WG finite element
4 0.6526E—-03 4.86 0.2874E+00 2.88
5 0.2088E-04 4.97 0.3666E—-01 2.97
6 0.6563E-06 4.99 0.4606E—-02 2.99
The P; WG finite element
3 0.2622E-02 5.59 0.3941E+00 3.65
4 0.4362E—-04 5.91 0.2601E-01 3.92
5 0.6929E-06 5.98 0.1649E-02 3.98
Table 8.3
The error profile for solving (8.1) on polygonal grids shown in Fig. 8.3.
Grid [1Qu — upl Rate 11Q4u — u,lll Rate
The P, WG finite element
4 0.5052E-02 3.92 0.1724E+01 1.94
5 0.3207E-03 3.98 0.4355E+00 1.98
6 0.1999E-04 4.00 0.1092E+00 2.00
The P, WG finite element
3 0.4732E-02 4.96 0.9861E+00 3.04
4 0.1473E-03 5.01 0.1213E+00 3.02
5 0.4974E-05 4.89 0.1510E-01 3.01
The P; WG finite element
1 0.1201E+01 0.00 0.3857E+02 0.00
2 0.1468E-01 6.36 0.1683E+01 4.52
3 0.2705E-03 5.76 0.9122E-01 4.21

Fig. 8.3. The first two levels of quadrilateral-pentagon-hexagon grids used in Table 8.3 computation.

Fig. 8.4. The first three levels of cube grids used in the computation of Table 8.4.

14
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Table 8.4
The error profile for solving (8.2) on cube grids shown in Fig. 8.4.
Grid 110, — uyl Rate 1Qu — il Rate
The P; WG finite element
2 0.8474E-01 6.2 0.1633E+01 4.5
3 0.2583E-02 5.0 0.1846E+00 31
4 0.2063E-03 3.6 0.4861E-01 1.9
The P, WG finite element
2 0.2247E-01 9.8 0.1373E+01 6.9
3 0.4988E-03 5.5 0.1079E+00 3.7
4 0.1705E-04 4.9 0.1009E-01 3.4

Data availability

Data will be made available on request.
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