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Highlights
Heterotrimeric G-proteins are key con-
duits that connect signal perception by
receptors to their cognate effectors in
eukaryotic cells.

Extensive research in animals and fungi
has established a common mechanistic
model of G-protein signaling, which
has been extended to plants, using
arabidopsis (Arabidopsis thaliana) as
a representative species.

Several inherent knowledge gaps in the
proposed mechanisms and recent infor-
Heterotrimeric G-protein-mediated signaling is a key mechanism to transduce
a multitude of endogenous and environmental signals in diverse organisms. The
scope and expectations of plant G-protein research were set by pioneering
work in metazoans. Given the similarity of the core constituents, G-protein-
signaling mechanisms were presumed to be universally conserved. However, be-
cause of the enormous diversity of survival strategies and endless forms among
eukaryotes, the signal, its interpretation, and responses vary even amongdifferent
plant groups. Earlier G-protein research in arabidopsis (Arabidopsis thaliana) has
emphasized its divergence from Metazoa. Here, we compare recent evidence
from diverse plant lineages with the available arabidopsis G-protein model and
discuss the conserved and novel protein components, signaling mechanisms,
and response regulation.
mation from other plant species necessi-
tate redefining this model and moving
beyond the established arabidopsis-
centric paradigm.
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A brief history of G-protein signaling in plants
Initial studies of plant G-protein signaling were inspired by mammalian and yeast G-protein re-
search and used pharmacological compounds, such as GTPase inhibitors, GTPγS, and cholera
and pertussis toxin, to observe their effects on plant responses [1,2]. Although many of these
chemicals led to a response, their lack of specificity, stability, and uptake by plants remained a
concern [3–11]. Molecular cloning of genes coding for the Gα and Gβ proteins from arabidopsis
(Arabidopsis thaliana), rice (Oryza sativa), tomato (Solanum lycopersicum), and maize
(Zea mays) proved the existence of heterotrimeric G-protein components in plants [12–17]. The
functional characterization of G-proteins by genetic means began with identification of the Gα
loss-of-function mutant (d1) in rice and its potential role in gibberellic acid (GA) signaling
[16,18–20]. The first arabidopsis G-protein mutants were isolated during the early 2000s [12,13].
The availability of unparalleled genetic resources in arabidopsis allowed for elaborate characteriza-
tion of G-protein signaling in this species, which laid the foundation for the development of a
G-protein-signaling model in plants, somewhat distinct from metazoan systems [21–35].

Classic G-protein-signaling model in arabidopsis
Signaling pathways regulated by heterotrimeric G-proteins, their cognate receptors, regulators,
and effectors have been elegantly described in metazoan systems (Box 1 and Figure 1). The
arabidopsis genome encodes one canonical Gα (GPA1), one Gβ (AGB1), and two canonical
Gγ (AGG1, AGG2) proteins, implying a markedly reduced repertoire of G-proteins in plants.
Similarly to mammalian Gα proteins, GPA1 is catalytically active and binds/hydrolyzes GTP; Gβ
and Gγ proteins are obligate dimers; and the regulator of G-protein signaling (RGS) protein
accelerates the GTPase activity of the Gα-protein [24,36]. The 3D structure of GPA1 almost
fully overlaps with that of a human Gα protein, even though the proteins share relatively little
sequence similarity [37]. Furthermore, the interaction of a human RGS protein can accelerate
the GTPase activity of GPA1 and vice versa [36]. In a multitude of signaling and development
pathways, loss-of-function mutants of arabidopsis genes encoding Gα, Gβ, and Gγ exhibit
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Box 1. G-protein-signaling mechanism

The Gα, Gβ, and Gγ subunits of heterotrimeric G-proteins, along with a guanine nucleotide, constitute a molecular switch that
transduces environmental and hormonal signals from the GPCRs to effector proteins. In the resting stage, the Gα protein is
GDP bound and remains associated with the Gβ and Gγ subunits. Signal perception by a cognate GPCR causes a change
in its conformation so that the bound GDP is released and Gα binds to GTP. GTP-bound Gα dissociates from the Gβγ dimer;
thus, both these components (Gα andGβγ) are free to bind to their effector proteins, resulting in signal propagation. The inherent
GTPase activity of Gα hydrolyzes the bound GTP to GDP, resulting in its association with the Gβγ and reconstitution of the
heterotrimer. In addition to this simple switch-like on–off mechanism, G proteins also act as molecular timers because specific
stages determine the speed and amplitude of signal propagation. Guanine nucleotide disassociation inhibitor (GDI) proteins
(e.g., Gβγ dimers) inhibit the rate of GDP release from Gα, whereas guanine nucleotide exchange factors (GEFs), such as
GPCRs, regulate the rate of GDP/GTP exchange. The regulator of G-protein signaling (RGS) and specific phospholipase
C (PLC) enzymes accelerate the rate of GTP hydrolysis and are known as GTPase-activating proteins (GAPs). GDI,
GEF, and GAP proteins have a vital role in fine-tuning the signal propagation.
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similar (Gα-mediated signaling) or opposite (Gβγ-mediated signaling) phenotypes [38]. The
phenotypes of plants lacking GPA1 are generally opposite to those of plants lacking RGS1, as
expected based on the role of RGS as a GTPase activity-accelerating protein (GAP). G-protein-
coupled receptor 1 (GCR1), a protein that shows some similarity to non-plant G-protein-coupled
receptors (GPCRs), interacts with GPA1 and is involved in the regulation of G-protein-dependent
pathways [39]. These observations suggested that the basic framework of the heterotrimeric
G-protein core has remained largely unchanged during more than 1 billion years of evolution.

In vitro biochemical characterization of the Gα proteins from arabidopsis (and a few other plant
species) demonstrated that these have exceptionally fast GTP binding, coupled with very slow
TrendsTrends inin PlantPlant ScienceScience

Figure 1. Classic G-protein signaling mechanism. The G-protein heterotrimer, comprising one subunit each of the Gα
Gβ, andGγ proteins, switches between the inactive and active forms depending on the nucleotide-binding status of Gα. GDP
to GTP exchange on Gα causing its activation is facilitated by ligand binding to a cognate G-protein-coupled recepto
(GPCR), which acts as a guanine nucleotide exchange factor (GEF). Inherent GTP hydrolysis by Gα is aided by the
GTPase activity-accelerating proteins (GAPs), such as regulator of G-protein signaling (RGS) and specific phospholipase C
(PLC). Figure created using BioRender (biorender.com).
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GTPase activity (an order of magnitude slower than the slowest mammalian Gα) [36,40–42].
Based on the quantification of GTP binding, GTP/GDP exchange, and GTP hydrolysis rates
of GPA1, it was proposed that plant Gα proteins are inherently GTP bound, that is, they are
self-activated and, thus, do not require a guanine nucleotide exchange factor (GEF) activity-
possessing GPCR [40–42]. These studies also proposed that GTPase activity is the rate-
limiting step of the plant G-protein cycle (opposite to mammalian models, where GDP–GTP
exchange is the rate-limiting step); consequently, the GAP activity of RGS1 is the central regulator
of plant G-protein-signaling pathways. A four-state model has been proposed to explain the
RGS1-dependent regulation of dynamic signal inputs in arabidopsis [43].

However, the extrapolation of this arabidopsis-centric model to other crop species has yielded
many surprises. We now know that the presence of specific components, the complexity of
signaling networks, and their potential regulation and usage vary significantly within different
plant groups, necessitating modification of this existing model.

Expanse, diversity, and loss of G-protein constituents in plants
One of the stark differences observed during the early days of plant G-protein research was the
apparent paucity in the number of core G-protein components. The fully sequenced genomes of
arabidopsis and rice have genes encoding only one Gα and one Gβ protein each, whichwas gen-
eralized to be the situation in the entire plant lineage [44]. Furthermore, the rice genome lacks an
RGS-coding gene, which was extended as a general rule to differentiate the G-protein repertoire
in monocots (without RGS) versus eudicots (with RGS) [45]. Work in recent years demonstrated
that both these generalizations were myopic and do not represent the true picture of G-protein
components in plants.

The diversity of G-protein components in plants is attributed to the presence of several unique
variants of G-protein subunits and their multiplicity [24]. These include variants of the canonical
Gα protein, the extra-large Gα (XLGα), and of the Gγ proteins, the type I, type II, and type III Gγ
(also known as type/group A, B, and C Gγ, respectively) (Figure 2). The XLGα proteins, as the
name suggests, are larger Gα proteins and have a 300–500 amino acid N-terminal extension
TrendsTrends inin PlantPlant ScienceScience

Figure 2. Canonical and plant-specific G-protein components. Plant Gα proteins share several conserved features with
mammalian Gα, such as myristoylation and palmitoylation sites for membrane anchoring, the GTPase domain containing G1–G5
motifs and a helical insert between the G1 and G2 motif. XLGα1, XLGα2, XLGα3, and XLGα4 are plant-specific variants o
canonical Gα. XLGα are large proteins with a nuclear localization signal (NLS) and cysteine-rich (C-rich) domain. The plan
regulator of G-protein signaling (RGS) proteins have a seven-transmembrane (7TM) domain, attached to the RGS domain. Only
canonical Gβ are present in plants, which have an α-helical domain, used for interaction with Gγ, and seven WD40 repeats
Type I Gγ are canonical proteins with an α-helical domain for interaction with Gβ, and a prenylation site for membrane
anchorage. Plant-specific variants include type II and type III Gγ. Type II Gγ is similar to type I but lacks the prenylation motif
while type III Gγ has acquired a C-terminal C-rich domain. Figure created using BioRender (biorender.com).
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fused with a Gα-like domain. The proteins are distinct from the extra-large Gα proteins found in
mammals, which are a result of the alternative splicing of a Gα-coding gene [46,47]. Plant
XLGα proteins are coded by distinct genes and may be nuclear localized [48]. In contrast to
canonical Gα proteins, XLGα proteins are present in multiple copies in most diploid plant species;
for example, arabidopsis and rice have one canonical Gα but three and four XLGα proteins,
respectively [27,49–52]. Although XLGα proteins were identified in arabidopsis during the early
days of G-protein signaling using biochemical approaches [53,54], the focus on following the
metazoan G-protein model hindered their acceptance as core trimeric G-proteins. This was
also aided by their proposed nuclear localization, an altered GTPase domain lacking a few
amino acids identified to be critical for G-protein activity based on metazoan studies [43,55],
and subtle developmental phenotypes of the complete loss-of-function mutants in arabidopsis,
even though specific phenotypes, such as abscisic acid (ABA) responsiveness and root pheno-
types of xlg mutants, were similar to those of agb1 mutants [48,56]. The first concrete evidence
of XLGα proteins working with the Gβ protein came from the reference moss species,
Physcomitrium (formerly Physcomitrella) patens. This moss presented a unique opportunity
because it does not have a canonical Gα protein and, thus, enables evaluation of the role of
XLGα without the confounding effects of having two types of Gα protein interacting with the
same Gβ. P. patens mutants lacking the XLGα or Gb gene shared similar phenotypes: they
grew slower, their gametophytes did not elongate as much as those of wild-type (WT) moss,
and they did not form sporophytes [57].

Gγ proteins in plants are diverse and classified into three groups: type I, which are the canonical
metazoan-type Gγ; type II, which are similar to type I but lack the C-terminal prenylation motif
found in all type I Gγ; and type III, which are found only in vascular plants [58]. The type III Gγ
are modular proteins with an N-terminal Gγ domain with a C-terminal cysteine-rich extension of
75–500 amino acids [59–61]. Although only one type III Gγ is present in arabidopsis (AGG3),
most plants have multiple copies of these proteins (e.g., DEP1, GS3, and GGC2 in rice). In plants
with multiple type III Gγ proteins, the Gγ domain is of similar length, whereas the C-terminal
cysteine-rich region can vary in length [62]; for example, the rice proteins GS3, GGC2, and
DEP1 have 117, 223, and 306 amino acid-long C-terminal regions, respectively [63,64]. The
diversity is further magnified because many plant species are recent polyploids and maintain
multiple copies of G-protein components in their genome (i.e., no significant losses occurred
during allopolyploidy), resulting in elaborate plant G-protein complexes. For example, the soy-
bean genome has 16 Gα (four canonical and 12 XLGα), four Gβ, and 14 Gγ proteins, which
may give rise to 896 different trimeric combinations [58,65]. Just in terms of subunit numbers,
it is similar to the human genome, which encodes 23 Gα, five Gβ, and 12 Gγ proteins [66,67].

These nonconventional G-proteins regulate diverse signaling and development pathways, with
varying degrees of functional overlaps with the canonical G-protein components. For example,
in arabidopsis, using quadruple mutants lacking the three XLGa and the canonical Ga genes, it
has been demonstrated unequivocally that the XLGα proteins primarily mediate plant immune
responses, while canonical Gα regulates most developmental phenotypes, with varying degrees
of functional overlap [27,68]. Different Gγ proteins also regulate distinct responses; that is, type I
and II Gγ proteins typically mediate biotic stress responses, while type III Gγ proteins are primarily
involved in modulating abiotic stress responses and grain size control [60,64,69–72].

One point that is debated in the field is whether these expanded networks due to duplicated
genes truly add to the diversity of signaling mechanisms. The multiplicity that has emerged
from recent genome duplications results in very similar proteins. For example, the four soybean
Gα proteins are more than 90% identical at the protein sequence level [65]; however, they exhibit
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differences in their rates of GTP binding and hydrolysis [65,73], which is reflected in their biological
function. Knockdown of one subgroup of soybean Gα (GmGα 2 and 3) led to stronger nodulation
phenotypes compared with the other subgroups (GmGα 1 and 4) [74]. Furthermore, cross-
complementation of arabidopsis and yeast gpa1 mutants with the four soybean Gα proteins
showed that GmGα 2 and 3 were able to restore the arabidopsis gpa1 mutant phenotype [75],
whereas GmGα 1 and 4 were able to restore the yeast gpa1 mutant phenotypes [76]. This
suggests that, although recent, such duplications can provide selectivity to the protein function.
The ability of soybean GmGα 1 and 4 to complement the yeast gpa1 mutant also implied that
they could be activated by a canonical GPCR system, which was not considered a possibility
based on complementation studies with arabidopsis GPA1 [76].

Another unique aspect of plant G-proteins is the loss of specific core components in different
lineages. Initial studies in arabidopsis identified all proteins of the heterotrimer, RGS1, and one
GPCR-like protein (GCR1), which implied a one-to-one relationship with the metazoan proteins,
albeit in a significantly reduced quantity [44]. P. patens was the first species identified that did not
have a Gα and RGS homolog, but a functional Gβ protein [57], suggesting that the constituents
and signaling mechanisms do not necessarily follow the signaling models proposed based on
studies in arabidopsis.

A detailed evolutionary analysis of G-proteins throughout the plant lineage has confirmed this
hypothesis (Figure 3). It is now established that many green algae, especially Chlorophyta, have
lost all G-protein components and the presence of G-proteins in algal lineages is sporadic [77].
This was unexpected because, due to their presence in all opisthokonts, this signaling complex
TrendsTrends inin PlantPlant ScienceScience

Figure 3. Evolutionary history of plant G-protein components. The gene tree of eachG-protein component is representedwith different colored lines and labels. The splits in
the horizontal and vertical lines represent ancient and lineage-specific gene duplications, respectively. The duplicated gene clades are also labeled. Broken linesmark the absence of
a component in many but not all species. The presence of a component is marked by a circle at the tip of the line. The ambiguity in gene duplication timeline is labeled by a question
mark. The cladogram is drawn based on [77]. The divergence of XLG3 and a new clade, named XLG4, is depicted as per [52]. However, the timeline of this event occurring before
the origin of gymnosperms is poorly supported. Similarly, Gγ divergence before the origin of land plants remains ambiguous. Common names used to represent different plant
lineages are marked at the top. Figure created using BioRender (biorender.com). Abbreviation: RGS, regulator of G-protein signaling.
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was thought to be ubiquitous in eukaryotes [67]. Another surprising observation was that not only
P. patens, but alsomany other species, including the entire group of Bryopsidamosses, have lost
their Gα protein [77]. Intriguingly, the XLGα proteins, which appear for the first time in Charophyte
algae (pre-dating land plants), are present in all plant lineages [78,79]. The Gβ proteins remain
constant in both number and structure (no variants identified, to date) but Gγ diverged at some
point between the emergence of land plants and vascular plants and underwent changes in
protein domains, which led to three distinct subtypes [77]. XLGα and Gγ also exhibit many
lineage-specific gene duplications. This distribution of G-proteins supports an alternative
model in which XLGα, Gβ, and Gγ form the minimal core of the heterotrimer in all land plants
[77]. Intriguingly, RGS appears to be under relaxed selection and is lost frequently in many
plant groups [36,77].

Essential versus nonessential roles of G-proteins in plants
Another striking revelation of studying plant G-proteins beyond arabidopsis is the identification
of their essential role in regulating plant life. In arabidopsis, G-proteins are involved in several
developmental signaling pathways and regulate cell division and expansion, ion channel activities,
responses to several endogenous signals, and the external environment [23,29,32,80]. However,
G-proteins are nonessential for arabidopsis. The loss of all Gα, Gβ, or Gγ proteins, individually
or in different combinations, causes several phenotypic changes, but the plants survive and
complete their life cycles [27,51,68]. This had led to the hypothesis that ‘plant’ G-proteins mainly
modulate different pathways to achieve optimal growth [81].

Research with several plant species has now confirmed that the roles of these proteins are not
only modulatory, but essential for completion of the life cycle in several plant lineages. As men-
tioned earlier, P. patens lacking a functional XLGα or one of the two Gβ genes never develop a
sporophyte, the only diploid tissue of the moss [57]. Furthermore, rice and maize plants (and
probably other monocots) lacking all XLGa genes or the Gb gene are seedling lethal [32,82,83].
Seedling lethality was also reported recently for tomato Gβmutants [84], suggesting that the phe-
notypes of G-protein mutants in arabidopsis and other closely related species, for example,
Camelina sativa [85] are an exception to the norm. The underlying mechanisms of essential ver-
sus non-essential roles of G-proteins in distinct lineages are not yet fully explored but have
been proposed to be dependent on altered regulation of plant immune responses by G-
proteins [82,84]. The G-protein subunits themselves are highly similar, structurally and
functionally, within the plant lineage. An arabidopsis XLGa or Gb can restore the phenotypes
of P. patens XLGa and Gb mutants, respectively [57]. Similarly, a Ga gene from rice or
Brachypodium distachyon (brachypodium) can fully complement all arabidopsis Gα (gpa1)
mutant phenotypes [86]. These observations suggest that the distinct effects are not due to
the intrinsic differences in the proteins per se, but that their developmental signaling networks
differ among different lineages.

Conserved and nonconserved features of the metazoan model of G-protein
signaling in plants
The plant G-protein model (Figure 2) explains G-protein signaling, to some extent in arabidopsis,
and continues to be discussed as the universal G-protein regulatory mechanism in plants [28,43].
However, the lack of an RGS protein in many plants already questions its general applicability.
Interestingly, the G-protein cycle itself does not differ between plants with or without an RGS
protein [87]. A comparative analysis of two monocot models, brachypodium (no RGS gene in
the genome) and Setaria viridis (setaria) (with an RGS gene in the genome), demonstrated that
the loss of Ga function resulted in shorter plants with broader cells, leaves, and seeds in both
species. RGS present in setaria is functional, as demonstrated by its overexpression in setaria
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(native) or brachypodium, which resulted in plant phenotypes similar to suppression of their
respective Ga genes [87]. Furthermore, the brachypodium Ga gene fully complements the
phenotypes of arabidopsis gpa1 mutants [86].

The role of RGS in plants remains enigmatic. It is present in all eudicots but is frequently lost in
other plant lineages [77], without any known effect on plant fitness. However, when present, it
is functional and involved in regulating important plant traits [87–91]. It is also notable that the
presence of the RGS-coding gene in plant genomes is linked with the presence of Gα-coding
genes. There are no instances where an RGS-coding gene is present in the genome in the
absence of a Gα-coding gene [77], although the reverse is not true. The role of RGS proteins in
the context of XLGα proteins is also perplexing. XLGα proteins, which constitute the core of
the plant G-protein trimer, exhibit substantially reduced GTP binding and almost no GTPase
activity, and their interaction with the RGS protein is debatable [28,32,92–94].

Canonical GPCR-like proteins present a somewhat similar situation. Several proteins that
‘appear’ similar to canonical metazoan GPCRs are present in plants [95]. Of these, GCR1
remains the most well-characterized protein in the context of G-protein signaling. GCR1 and its
homologs in a few other plant species have been shown to have critical roles in the regulation
of G-protein-coupled pathways, based on genetic [39,96–101] and transcriptomics analyses
[102–104], and a recent report showed its binding with ABA and gibberellin [105]. However, its
role as a canonical GPCR with GEF activity, similar to that of metazoan GPCRs, remains to be
established. Additionally, the absence of some of the well-established effectors of mammalian
G-proteins, such as adenyl cyclases, β arrestins, or GPCR kinases, necessitates the exploration
of alternative signalingmechanisms, not necessarily regulated by the classic GPCR/RGSmodule.

Plant-specific, noncanonical signaling mechanisms
Two major recent developments corroborate the idea that plant G-protein signaling is regulated
by mechanisms other than those universally established: (i) several studies have demonstrated
that plant G-proteins are regulated by receptor-like kinase (RLK)-mediated phosphorylation/
dephosphorylation-based signaling mechanisms; and (ii) nucleotide exchange may not be the
central regulatory mode of G-proteins in plants, with nucleotide exchange-independent activation
also having a role.

Phosphorylation-dependent regulation of G-protein signaling
G-proteins are physically and genetically coupled with RLKs and receptor-like proteins (RLPs)
prevalent in plants [25]. Plant G-protein and RGS have been identified as phosphoproteins in
several nontargeted studies. Furthermore, multiple RLKs phosphorylate specific G-protein
components under in vitro conditions, suggesting a key role of these modifications [89,106].

In recent years, several studies have shown regulation of the G-protein cycle by RLKs by
phosphorylation/dephosphorylation-based mechanisms. During regulation of the immune
response in arabidopsis, the well-established receptor complex FLS2/BAK1/BIK2 has been
proposed to regulate G-protein signaling, in a guanine nucleotide-dependent manner but in
the context of the unusual biochemistry of plant G-proteins [32,92,93]. In this model, during the
resting stage, the G-protein trimer (either Gα or XLGα with Gβγ) is associated with the receptor
complex and maintained as such by the GAP activity of RGS1. Signal perception by the receptor
(FLS2) causes a change in its interaction with BAK1 and activates BIK1, which phosphorylates
RGS1, causing its dissociation from the receptor complex [92,93,107]. In an alternate model,
BAK1 directly phosphorylates RGS1, which is then released from the receptor complex and
endocytosed [89,106,108]. The removal of RGS1 from the complex releases Gα, which, due to
Trends in Plant Science, Month 2023, Vol. xx, No. xx 7
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its spontaneous GTP binding, dissociates from Gβγ. Both freed entities can interact with
downstream effectors to transduce the signal. This mechanism, in general, still depends on the
canonical ‘on/off’ status of the G-protein heterotrimer, but, in contrast to activation by a classical
GPCR, is regulated by the removal of the deactivator protein (RGS1) from the complex [32]. The
relevance of this mechanism to plant species that do not have an RGS homolog is unclear. A
recent report in rice suggests that phosphorylation of XLG proteins by plasma membrane
RLKs promotes their nuclear localization and further regulation of defense responses by nuclear
protein kinases [109].

Another example of phosphorylation-based regulation is demonstrated during nodule develop-
ment in soybean. Gα proteins are negative and Gβγ proteins are positive regulators of nodulation
[74]. During nodule development, a two-pronged approach of deactivating Gα and making Gβγ
available for signaling has been demonstrated. On the one hand, the nod factor receptor, NFR1,
phosphorylates and activates the RGS proteins, which deactivate Gα (i.e., inactivation of the neg-
ative regulator) [110]. On the other hand, an additional RLK of the nod factor receptor complex,
SymRK, directly phosphorylates Gα proteins. Phosphorylated Gα cannot bind to the Gβγ
dimer, thus setting the dimer free to interact with downstream effectors (i.e., the availability of
positive regulators) [111]. Given that the role of XLGα during nodule development is not yet
known, it is possible that either the freed Gβγ becomes exclusively available to XLGα or that
XLGα is also phosphorylated, and the free Gβγ primarily regulates downstream events.

Additional examples of the involvement of RLKs in G-protein signaling include the interaction of
maize Gα (Ct2) with the Clavata receptor signaling module for shoot apical meristem development
[112–114], arabidopsis G-proteins with Feronia for stomatal aperture control and salinity
responses [115,116], interaction of BRI/BAK1 in the sugar response [117], and of zygotic
arrest 1 (ZAR1) and AGB1 during asymmetric cell division in zygotes [118]. However, the
mechanistic details of these physiological observations or genetic interactions have not yet
been fully established.

Nucleotide exchange-independent mechanism
Nucleotide binding-, exchange-, and hydrolysis-dependent activation/deactivation are the defin-
ing characteristics of G-proteins. Nonetheless, the idea of nucleotide exchange-independent ac-
tivation has been discussed in mammalian models for some time [119]. Activation of the G-
protein cycle by inducing conformational changes in Gα or in Gβγ by proteins other than classic
GPCRs has been demonstrated [120,121]. However, such mechanisms are not the norm and
may exist only under specific conditions. For the most part, until recently, the classic mammalian
model was also expected to be the mechanism for plant G-protein signaling. In fact, most
arabidopsis G-protein signaling models are based on the exceptionally fast nucleotide binding
and exchange activity of the Gα protein combined with its slow rate of GTP hydrolysis
[40,42,122], although the limitations of such a model, beyond arabidopsis, are also already
clear. There are additional inconsistencies, even when considering arabidopsis Gα. For example,
a constitutively active Gα (GPA1Q222L or GPA1CA), which can bind to GTP but not hydrolyze it,
can still bind to the Gβγ dimer [123,124]. Furthermore, in humans, an analogous mutation results
in the expected overactivation of the G-protein cycle, resulting in higher cAMP levels and uncon-
trolled cell growth. The phenotypes of arabidopsis that express constitutively active Gα or lack an
RGS protein are subtle, and do not align well with the proposed central roles of these proteins
[125]. The role of constitutively active Gα proteins in rice and maize is confounding, compared
with arabidopsis. In rice, the expression of constitutively active Gα produced longer grains com-
pared with WT plants, supporting continuous signaling, but, when expressed in rice Gαmutants,
restored the phenotype to WT levels, and did not overcompensate for it [126,127]. In maize, a
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constitutively active Gα only partially complemented the mutant phenotypes, implying that it is a
weak allele of Gα [128]. Contrary to arabidopsis, the maize constitutively active protein version
does not interact with Gβγ proteins [128]. The XLGα proteins add additional complication to
this scenario because their nucleotide binding, exchange, and hydrolysis is poorly characterized,
even in vitro.

Recent work in arabidopsis using a point mutant version of GPA1, GPA1S52C, a protein variant
that is unable to bind or hydrolyze GTP due to a substitution in its GTP-binding site, provides cre-
dence to the existence of an alternative mechanism. Genetic complementation of a gpa1mutant
with the GPA1S52C variant restored most plant phenotypes to the WT level, suggesting no role of
GTP-binding or hydrolysis in these responses [49,124]. A structure–function study with
arabidopsis XLG2 suggests that the protein is not in a nucleotide-bound state ‘in planta’ and
functions only by sequestering the Gβγ from other Gα proteins [49].

More compelling data for the guanine nucleotide-independent role of G-proteins are from soybean,
during regulation of nodulation signaling [111]. Two of the sites phosphorylated by SymRK are vital
for GTP-binding byGα proteins. Thus, phosphorylation of Gαmakes it unable to bind (or hydrolyze)
GTP. However, in this case, contrary to that reported for arabidopsis GPA1, the phosphorylated
protein cannot bind Gβγ and, therefore, frees it for signal propagation [111].

Roles of G-proteins in regulating important signaling and developmental
processes for their use in future agricultural modifications
The study of G-proteins in arabidopsis determined their roles in modulating several signaling and
developmental pathways and set the foundation for future research. In eudicots, G-proteins have
been studied for their agronomically important roles in rice, soybean, tomato, cotton [84,129–132],
Camelina, pea [133,134], and Brassica [135–138] species (Figure 4). In soybeans, specific sub-
units of G-proteins and RGS proteins regulate nodule development and, consequently, their ability
TrendsTrends inin PlantPlant ScienceScience

Figure 4. Summary of agronomic traits affected by G-proteins in plants. The illustration showsG-protein-dependen
agronomic traits in different crop plants. Positive or negative regulations are denoted by lines ending with an arrow head o
bar, respectively. G-protein components with no known effects as yet are not shown. The number of plants and
agronomic traits detailed are example only and do not represent the complete list. Abbreviation: NUE, nitrogen-use efficiency
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to fix nitrogen, which is important for sustainable agriculture. In Camelina, overexpression of
arabidopsis AGG3 led to higher seed yield, more oil, and improved stress tolerance. Interestingly,
knocking down the Camelina Gb gene increased the oil content of the seeds [85]. In tomato, pea,
and Brassica, specific subunits of G-proteins are involved in regulating responses to several biotic
and abiotic stresses. The underlying mechanism for these responses remains mostly unknown,
but, in tomato, a low light-dependent sensing of glucose by the RGSprotein and consequentmod-
ulation of the G-protein cycle have been demonstrated to regulate response to bacterial pathogens
[132]. Although these studies have highlighted the potential of modulating G-protein signaling to
improve future agriculture, their true impact is illustrated only when evaluating them in crop plants,
especially rice. Several studies have highlighted the roles of rice G-protein subunits, especially the
Gα subunit, RGA1, in regulating stress and developmental responses and nutrient-use efficiency
[139,140]. However, the identification of type III Gγ proteins as some of the most critical grain
size-related quantitative trait loci (QTL), has transformed the field for evaluating the agronomic po-
tential of G-protein signaling in plants. In fact, type III Gγ proteins were identified as the underlying
QTL for grain size regulation (grain size 3,GS3) and panicle architecture (Dense and Erect Panicle 1,
DEP1) before their discovery in arabidopsis and their functional assignment as plant-specific Gγ
proteins [63,141–143]. Rice GS3 and DEP1 are some of the most extensively researched genes
for their biotechnological applications. The favorable allele of GS3 is highly enriched in a set of cul-
tivated accessions (34%) compared with in a set of wild accessions (4%) [141]. A survey of rice lit-
erature revealed more than 100 publications, ranging from the discovery of these genes as major
QTL for several agronomic traits, their application in breeding, an artificial positive selection of spe-
cific alleles in domesticated varieties, GWAS and haplotype analysis, RNAi- and CRISPR-based
gene editing, and the expression of specific domains, to multiyear field trials [64,71,72,143–168].
The overall conclusion is that GS3 is a key regulator of grain size. Rice varieties carrying a wild-
type GS3 allele produce grains of normal length. Rice varieties carrying the complete loss-of-
function allele eliminating the entire GS3 protein produce long grains, whereas rice varieties,
which express a truncated protein (i.e., an intact Gγ domain but no C-terminal region) produce
very short grains [72]. In addition to its role in controlling grain size, GS3 has been implicated in im-
proving nitrogen use efficiency (NUE) in the long grain japonica rice varieties, and in improving cold
tolerance and seed quality [158,162,169]. A recent study identified the role of GS3 in thermotoler-
ance using QTL analysis and named it thermo-tolerance 2 (TT2), expanding its functional repertoire
[170]. The second type III Gγ gene in rice, DEP1, was identified as a key determinant of panicle ar-
chitecture [63,171,172]. Specific substitutions in DEP1 led to erect panicles with more branches
and seeds, or smaller panicles with fewer branches and fewer seeds. The phenotypes appear to
depend on whether mutations remove the entire protein or only the C-terminal region, leaving
the Gγ domain intact [150,173]. DEP1 has also been identified as a major QTL for NUE in rice
and implicated in several abiotic stress responses [63,171,172,174–176]. Mutations in GGC2,
the third type III Gγ homolog in rice, also result in altered plant architecture, including changes in
panicle and seed morphology [72,145,177]. GGC2 has been proposed to have overlapping func-
tion with DEP1. Several groups have now generated mutants in different combinations of specific
alleles of GS3, DEP1, and GGC2 in rice, to uncover their redundant versus specific roles in grain
size regulation [71,72,150,178]. These studies suggest a complex interaction of these three Gγ
subunits with the sole Gβ subunit of rice [72].

The opposite phenotypes caused by distinct mutations in GS3 or DEP1 have been explained
based on the modular nature of type III Gγ proteins. The consensus in the rice G-protein field is
that the C-terminal region of the protein acts as a negative regulator of the Gγ domain function.
Mutations that cause deletion of the C-terminal region abolish this negative regulation, allowing
the Gγ domain to function. By contrast, mutations that remove the entire protein result in the
loss of the Gγ domain function. Consequently, C-terminal versus full-length deletions result in
10 Trends in Plant Science, Month 2023, Vol. xx, No. xx
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Outstanding questions
How are plant Gα proteins activated?

What is the relevance of GTP binding
and hydrolysis if these activities are
not involved in response regulation?

Why are some canonical G-proteins
lost in specific plant groups?

Why do plants without an RGS protein
not have any fitness penalties?

How is specificity achieved in plant G-
protein signaling?

What are the downstream effectors of
plant G-proteins?

Why are G-proteins essential for
many (e.g., rice) but not all plants
(e.g., arabidopsis)?

What is the significance of the long and
varied cysteine-rich region of type III Gγ
proteins?

How do G-proteins integrate develop-
mental and stress-mediated responses?
opposite phenotypes [71,72,179]. Attempts to identify signaling modules and downstream effec-
tors of these proteins have led to disparate mechanisms, ranging from Ca2+/CaM-dependent
pathways, MAP kinases, lipid signaling, ubiquitin proteasome-mediated inhibition, interaction
with several transcription factors, and more [71,159,161,164,170,174,180–183].

The sorghum homolog of DEP1 (SbDEP1) has been identified as a possible locus responsible for
grain size differences between different landraces of sorghum [184], whereas the GS3 homolog
(SbGS3) has been identified as the gene underlying QTL qTGW1a, which is a negative regulator
of seed size [185]. The same locus has been identified as the causal gene that controls the glume
coverage in sorghum seeds and was named Glume coverage 1 (GC1) [181]. Analysis of 915 di-
verse accessions of sorghum for glume coverage and its relationship to domestication identified
GC1 as the main cause of, and stable locus for, this trait. Transgenic expression of truncated ver-
sions of GC1 (SbGS3) in sorghum resulted in seeds with reduced glume coverage. Surprisingly,
this study did not identify any strong association between these variations and grain size. A recent
study has identified the GS3 homolog of sorghum as the locus responsible for tolerance to alka-
line soil (Alkaline Tolerance 1, AT1). The genotypes with truncated alleles of AT1 (at1 allele, C-
terminal truncation) caused increased sensitivity, whereas the complete gene knockout conferred
tolerance to alkaline soil, respectively, in several crop species. The protein is proposed to function
via affecting aquaporin phosphorylation, thereby controlling oxidative stress [186].

A few studies in wheat, barley, and maize assessed the roles of the homologs of type III Gγ pro-
teins with varying degrees of success. A 12-year field study in barley showed that the loss of func-
tion of HvDEP1 resulted in consistent effects on stem elongation and grain size but conferred
either a significant increase or decrease in harvestable yield depending on the environment
[187]. In retrospect, such results appear obvious given that these proteins regulate responses
to both environmental and endogenous developmental cues. In wheat, a survey of DEP1 se-
quences in species with normal, compactoid, and compact spikes did not identify any specific
changes that correlated with the phenotype [188]. Some association has been seen in kernel
size andGS3 variation in maize, but unlike rice, the gene does not appear to be under any positive
selection [189,190].

Knockout mutants of canonical Gα in grasses, such as rice, brachypodium, setaria, and maize,
are semi-dwarf, which in itself is a desirable agronomic trait [125]. However, these mutants also
have associated nonpreferred phenotypes, especially low yield, which has restricted their use
in agricultural practices. Nevertheless, by introducing a constitutively active biochemical variant
of canonical Gα in maize [114], which can bind to, but not hydrolyze GTP, several beneficial traits
were observed. CT2CA acted as a weak allele of CT2 and led to a higher spikelet density and
kernel row number, larger ear inflorescence meristems (IMs), and more upright leaves, causing
an improved yield [128].

Concluding remarks and future perspectives
The study of G-proteins frommultiple plant species in recent years has established the diversity of
signaling components, mechanisms, and regulatory pathways. At the level of G-protein compo-
nents, it is clear that these are lost in several algal lineages, necessitating a redefinition of their pro-
posed ubiquitous presence in all eukaryotes. Furthermore, XLGα proteins appear to be the key
component of the heterotrimer with the Gβγ proteins in plants. RGS proteins maintain their
basic biochemistry, that is, deactivating the canonical Gα, and are active and relevant when pres-
ent, but their loss is frequent and tolerated without any major consequences. This observation is
even more pertinent in the context of the unusual activation/deactivation mechanisms of plant G-
proteins and the possibility of a nucleotide exchange-independent protein function. Overall, it
Trends in Plant Science, Month 2023, Vol. xx, No. xx 11

CellPress logo


Trends in Plant Science
appears that the G-protein core has beenmodified and rewired to suit specific needs in the green
plant lineage.While the core biochemical properties of individual G-protein components aremain-
tained, these might not be utilized in accordance with the established mammalian model.

It is also evident that G-proteins are essential for many but not all plant groups and are involved
in regulating key agronomic traits. Moreover, small differences in their biochemistry or the
presence/absence of specific domains have tremendous effects on plant phenotypes, but
the magnitude of these effects differs even among a few species studied to date. These
observations suggest that not only their study in additional plant species, but also a better
understanding of their signaling mechanisms is needed to realize their full potential (see also
Outstanding questions).
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