

Feature Review

Moving beyond the arabidopsis-centric view of G-protein signaling in plants

Boominathan Mohanasundaram ,¹ and Sona Pandey ,^{1,*,@}

Heterotrimeric G-protein-mediated signaling is a key mechanism to transduce a multitude of endogenous and environmental signals in diverse organisms. The scope and expectations of plant G-protein research were set by pioneering work in metazoans. Given the similarity of the core constituents, G-protein-signaling mechanisms were presumed to be universally conserved. However, because of the enormous diversity of survival strategies and endless forms among eukaryotes, the signal, its interpretation, and responses vary even among different plant groups. Earlier G-protein research in arabidopsis (*Arabidopsis thaliana*) has emphasized its divergence from Metazoa. Here, we compare recent evidence from diverse plant lineages with the available arabidopsis G-protein model and discuss the conserved and novel protein components, signaling mechanisms, and response regulation.

A brief history of G-protein signaling in plants

Initial studies of plant G-protein signaling were inspired by mammalian and yeast G-protein research and used pharmacological compounds, such as GTPase inhibitors, GTPγS, and cholera and pertussis toxin, to observe their effects on plant responses [1,2]. Although many of these chemicals led to a response, their lack of specificity, stability, and uptake by plants remained a concern [3–11]. Molecular cloning of genes coding for the G α and G β proteins from arabidopsis (*Arabidopsis thaliana*), rice (*Oryza sativa*), tomato (*Solanum lycopersicum*), and maize (*Zea mays*) proved the existence of heterotrimeric G-protein components in plants [12–17]. The functional characterization of G-proteins by genetic means began with identification of the G α loss-of-function mutant (*d1*) in rice and its potential role in gibberellin acid (GA) signaling [16,18–20]. The first arabidopsis G-protein mutants were isolated during the early 2000s [12,13]. The availability of unparalleled genetic resources in arabidopsis allowed for elaborate characterization of G-protein signaling in this species, which laid the foundation for the development of a G-protein-signaling model in plants, somewhat distinct from metazoan systems [21–35].

Classic G-protein-signaling model in arabidopsis

Signaling pathways regulated by heterotrimeric G-proteins, their cognate receptors, regulators, and effectors have been elegantly described in metazoan systems (Box 1 and Figure 1). The arabidopsis genome encodes one canonical G α (GPA1), one G β (AGB1), and two canonical G γ (AGG1, AGG2) proteins, implying a markedly reduced repertoire of G-proteins in plants. Similarly to mammalian G α proteins, GPA1 is catalytically active and binds/hydrolyzes GTP; G β and G γ proteins are obligate dimers; and the regulator of G-protein signaling (RGS) protein accelerates the GTPase activity of the G α -protein [24,36]. The 3D structure of GPA1 almost fully overlaps with that of a human G α protein, even though the proteins share relatively little sequence similarity [37]. Furthermore, the interaction of a human RGS protein can accelerate the GTPase activity of GPA1 and vice versa [36]. In a multitude of signaling and development pathways, loss-of-function mutants of arabidopsis genes encoding G α , G β , and G γ exhibit

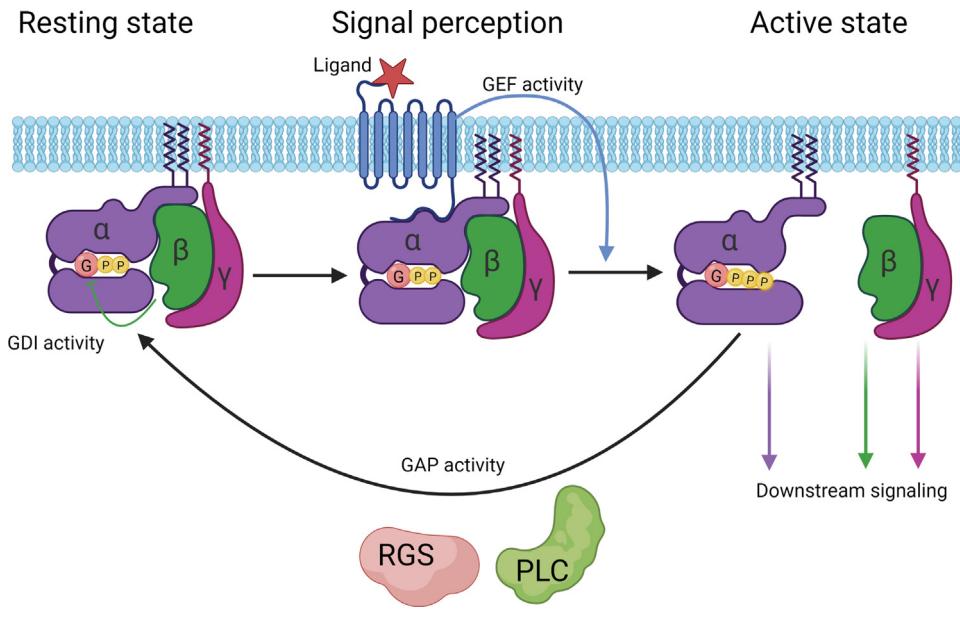
Highlights

Heterotrimeric G-proteins are key conduits that connect signal perception by receptors to their cognate effectors in eukaryotic cells.

Extensive research in animals and fungi has established a common mechanistic model of G-protein signaling, which has been extended to plants, using arabidopsis (*Arabidopsis thaliana*) as a representative species.

Several inherent knowledge gaps in the proposed mechanisms and recent information from other plant species necessitate redefining this model and moving beyond the established arabidopsis-centric paradigm.

¹Donald Danforth Plant Science Center, 975 N. Warson Road, St Louis, MO 63132, USA


*Correspondence:
spandey@danforthcenter.org
(S. Pandey).
†Twitter: @SonapandeyLab

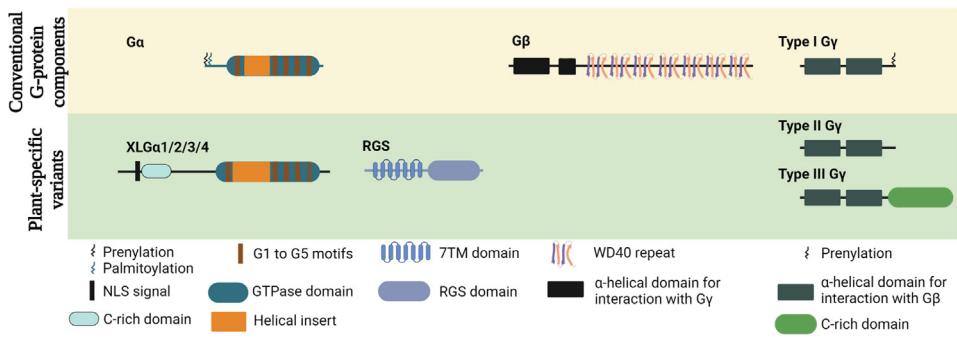
Box 1. G-protein-signaling mechanism

The $\text{G}\alpha$, $\text{G}\beta$, and $\text{G}\gamma$ subunits of heterotrimeric G-proteins, along with a guanine nucleotide, constitute a molecular switch that transduces environmental and hormonal signals from the GPCRs to effector proteins. In the resting stage, the $\text{G}\alpha$ protein is GDP bound and remains associated with the $\text{G}\beta$ and $\text{G}\gamma$ subunits. Signal perception by a cognate GPCR causes a change in its conformation so that the bound GDP is released and $\text{G}\alpha$ binds to GTP. GTP-bound $\text{G}\alpha$ dissociates from the $\text{G}\beta\gamma$ dimer; thus, both these components ($\text{G}\alpha$ and $\text{G}\beta\gamma$) are free to bind to their effector proteins, resulting in signal propagation. The inherent GTPase activity of $\text{G}\alpha$ hydrolyzes the bound GTP to GDP, resulting in its association with the $\text{G}\beta\gamma$ and reconstitution of the heterotrimer. In addition to this simple switch-like on-off mechanism, G proteins also act as molecular timers because specific stages determine the speed and amplitude of signal propagation. Guanine nucleotide disassociation inhibitor (GDI) proteins (e.g., $\text{G}\beta\gamma$ dimers) inhibit the rate of GDP release from $\text{G}\alpha$, whereas guanine nucleotide exchange factors (GEFs), such as GPCRs, regulate the rate of GDP/GTP exchange. The regulator of G-protein signaling (RGS) and specific phospholipase C (PLC) enzymes accelerate the rate of GTP hydrolysis and are known as GTPase-activating proteins (GAPs). GDI, GEF, and GAP proteins have a vital role in fine-tuning the signal propagation.

similar ($\text{G}\alpha$ -mediated signaling) or opposite ($\text{G}\beta\gamma$ -mediated signaling) phenotypes [38]. The phenotypes of plants lacking *GPA1* are generally opposite to those of plants lacking *RGS1*, as expected based on the role of RGS as a GTPase activity-accelerating protein (GAP). G-protein-coupled receptor 1 (GCR1), a protein that shows some similarity to non-plant G-protein-coupled receptors (GPCRs), interacts with *GPA1* and is involved in the regulation of G-protein-dependent pathways [39]. These observations suggested that the basic framework of the heterotrimeric G-protein core has remained largely unchanged during more than 1 billion years of evolution.

In vitro biochemical characterization of the $\text{G}\alpha$ proteins from *arabidopsis* (and a few other plant species) demonstrated that these have exceptionally fast GTP binding, coupled with very slow

Figure 1. Classic G-protein signaling mechanism. The G-protein heterotrimer, comprising one subunit each of the $\text{G}\alpha$, $\text{G}\beta$, and $\text{G}\gamma$ proteins, switches between the inactive and active forms depending on the nucleotide-binding status of $\text{G}\alpha$. GDP to GTP exchange on $\text{G}\alpha$ causing its activation is facilitated by ligand binding to a cognate G-protein-coupled receptor (GPCR), which acts as a guanine nucleotide exchange factor (GEF). Inherent GTP hydrolysis by $\text{G}\alpha$ is aided by the GTPase activity-accelerating proteins (GAPs), such as regulator of G-protein signaling (RGS) and specific phospholipase C (PLC). Figure created using BioRender (biorender.com).


GTPase activity (an order of magnitude slower than the slowest mammalian G α) [36,40–42]. Based on the quantification of GTP binding, GTP/GDP exchange, and GTP hydrolysis rates of GPA1, it was proposed that plant G α proteins are inherently GTP bound, that is, they are self-activated and, thus, do not require a guanine nucleotide exchange factor (GEF) activity possessing GPCR [40–42]. These studies also proposed that GTPase activity is the rate-limiting step of the plant G-protein cycle (opposite to mammalian models, where GDP–GTP exchange is the rate-limiting step); consequently, the GAP activity of RGS1 is the central regulator of plant G-protein-signaling pathways. A four-state model has been proposed to explain the RGS1-dependent regulation of dynamic signal inputs in *arabidopsis* [43].

However, the extrapolation of this *arabidopsis*-centric model to other crop species has yielded many surprises. We now know that the presence of specific components, the complexity of signaling networks, and their potential regulation and usage vary significantly within different plant groups, necessitating modification of this existing model.

Expanse, diversity, and loss of G-protein constituents in plants

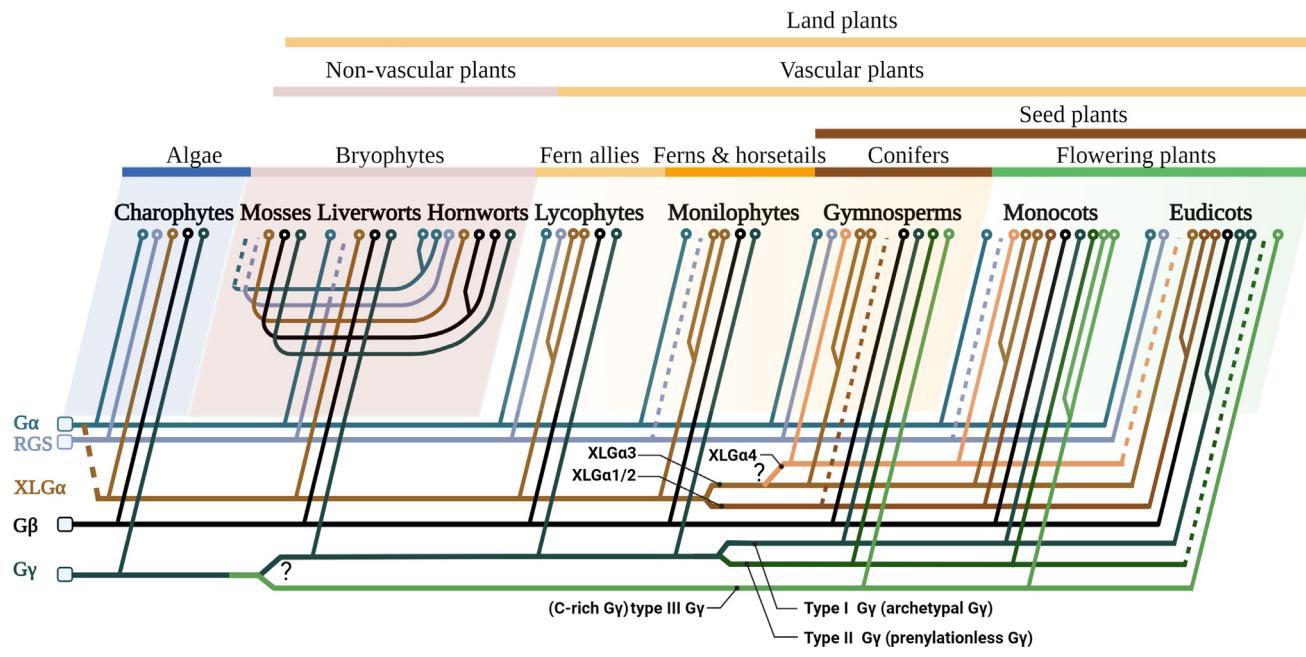
One of the stark differences observed during the early days of plant G-protein research was the apparent paucity in the number of core G-protein components. The fully sequenced genomes of *arabidopsis* and rice have genes encoding only one G α and one G β protein each, which was generalized to be the situation in the entire plant lineage [44]. Furthermore, the rice genome lacks an RGS-coding gene, which was extended as a general rule to differentiate the G-protein repertoire in monocots (without RGS) versus eudicots (with RGS) [45]. Work in recent years demonstrated that both these generalizations were myopic and do not represent the true picture of G-protein components in plants.

The diversity of G-protein components in plants is attributed to the presence of several unique variants of G-protein subunits and their multiplicity [24]. These include variants of the canonical G α protein, the extra-large G α (XLG α), and of the G γ proteins, the type I, type II, and type III G γ (also known as type/group A, B, and C G γ , respectively) (Figure 2). The XLG α proteins, as the name suggests, are larger G α proteins and have a 300–500 amino acid N-terminal extension

Figure 2. Canonical and plant-specific G-protein components. Plant G α proteins share several conserved features with mammalian G α , such as myristylation and palmitoylation sites for membrane anchoring, the GTPase domain containing G1–G5 motifs and a helical insert between the G1 and G2 motif. XLG α 1, XLG α 2, XLG α 3, and XLG α 4 are plant-specific variants of canonical G α . XLG α are large proteins with a nuclear localization signal (NLS) and cysteine-rich (C-rich) domain. The plant regulator of G-protein signaling (RGS) proteins have a seven-transmembrane (7TM) domain, attached to the RGS domain. Only canonical G β are present in plants, which have an α-helical domain, used for interaction with G γ , and seven WD40 repeats. Type I G γ are canonical proteins with an α-helical domain for interaction with G β , and a prenylation site for membrane anchorage. Plant-specific variants include type II and type III G γ . Type II G γ is similar to type I but lacks the prenylation motif, while type III G γ has acquired a C-terminal C-rich domain. Figure created using BioRender (biorender.com).

fused with a G α -like domain. The proteins are distinct from the extra-large G α proteins found in mammals, which are a result of the alternative splicing of a G α -coding gene [46,47]. Plant XLG α proteins are coded by distinct genes and may be nuclear localized [48]. In contrast to canonical G α proteins, XLG α proteins are present in multiple copies in most diploid plant species; for example, arabidopsis and rice have one canonical G α but three and four XLG α proteins, respectively [27,49–52]. Although XLG α proteins were identified in arabidopsis during the early days of G-protein signaling using biochemical approaches [53,54], the focus on following the metazoan G-protein model hindered their acceptance as core trimeric G-proteins. This was also aided by their proposed nuclear localization, an altered GTPase domain lacking a few amino acids identified to be critical for G-protein activity based on metazoan studies [43,55], and subtle developmental phenotypes of the complete loss-of-function mutants in arabidopsis, even though specific phenotypes, such as abscisic acid (ABA) responsiveness and root phenotypes of *xlg* mutants, were similar to those of *agb1* mutants [48,56]. The first concrete evidence of XLG α proteins working with the G β protein came from the reference moss species, *Physcomitrium* (formerly *Physcomitrella*) *patens*. This moss presented a unique opportunity because it does not have a canonical G α protein and, thus, enables evaluation of the role of XLG α without the confounding effects of having two types of G α protein interacting with the same G β . *P. patens* mutants lacking the XLG α or G β gene shared similar phenotypes: they grew slower, their gametophytes did not elongate as much as those of wild-type (WT) moss, and they did not form sporophytes [57].

G γ proteins in plants are diverse and classified into three groups: type I, which are the canonical metazoan-type G γ ; type II, which are similar to type I but lack the C-terminal prenylation motif found in all type I G γ ; and type III, which are found only in vascular plants [58]. The type III G γ are modular proteins with an N-terminal G γ domain with a C-terminal cysteine-rich extension of 75–500 amino acids [59–61]. Although only one type III G γ is present in arabidopsis (AGG3), most plants have multiple copies of these proteins (e.g., DEP1, GS3, and GGC2 in rice). In plants with multiple type III G γ proteins, the G γ domain is of similar length, whereas the C-terminal cysteine-rich region can vary in length [62]; for example, the rice proteins GS3, GGC2, and DEP1 have 117, 223, and 306 amino acid-long C-terminal regions, respectively [63,64]. The diversity is further magnified because many plant species are recent polyploids and maintain multiple copies of G-protein components in their genome (i.e., no significant losses occurred during allopolyploidy), resulting in elaborate plant G-protein complexes. For example, the soybean genome has 16 G α (four canonical and 12 XLG α), four G β , and 14 G γ proteins, which may give rise to 896 different trimeric combinations [58,65]. Just in terms of subunit numbers, it is similar to the human genome, which encodes 23 G α , five G β , and 12 G γ proteins [66,67].


These nonconventional G-proteins regulate diverse signaling and development pathways, with varying degrees of functional overlaps with the canonical G-protein components. For example, in arabidopsis, using quadruple mutants lacking the three XLG α and the canonical G α genes, it has been demonstrated unequivocally that the XLG α proteins primarily mediate plant immune responses, while canonical G α regulates most developmental phenotypes, with varying degrees of functional overlap [27,68]. Different G γ proteins also regulate distinct responses; that is, type I and II G γ proteins typically mediate biotic stress responses, while type III G γ proteins are primarily involved in modulating abiotic stress responses and grain size control [60,64,69–72].

One point that is debated in the field is whether these expanded networks due to duplicated genes truly add to the diversity of signaling mechanisms. The multiplicity that has emerged from recent genome duplications results in very similar proteins. For example, the four soybean G α proteins are more than 90% identical at the protein sequence level [65]; however, they exhibit

differences in their rates of GTP binding and hydrolysis [65,73], which is reflected in their biological function. Knockdown of one subgroup of soybean G α (GmG α 2 and 3) led to stronger nodulation phenotypes compared with the other subgroups (GmG α 1 and 4) [74]. Furthermore, cross-complementation of arabidopsis and yeast *gpa1* mutants with the four soybean G α proteins showed that GmG α 2 and 3 were able to restore the arabidopsis *gpa1* mutant phenotype [75], whereas GmG α 1 and 4 were able to restore the yeast *gpa1* mutant phenotypes [76]. This suggests that, although recent, such duplications can provide selectivity to the protein function. The ability of soybean GmG α 1 and 4 to complement the yeast *gpa1* mutant also implied that they could be activated by a canonical GPCR system, which was not considered a possibility based on complementation studies with arabidopsis GPA1 [76].

Another unique aspect of plant G-proteins is the loss of specific core components in different lineages. Initial studies in arabidopsis identified all proteins of the heterotrimer, RGS1, and one GPCR-like protein (GCR1), which implied a one-to-one relationship with the metazoan proteins, albeit in a significantly reduced quantity [44]. *P. patens* was the first species identified that did not have a G α and RGS homolog, but a functional G β protein [57], suggesting that the constituents and signaling mechanisms do not necessarily follow the signaling models proposed based on studies in arabidopsis.

A detailed evolutionary analysis of G-proteins throughout the plant lineage has confirmed this hypothesis (Figure 3). It is now established that many green algae, especially Chlorophyta, have lost all G-protein components and the presence of G-proteins in algal lineages is sporadic [77]. This was unexpected because, due to their presence in all opisthokonts, this signaling complex

Figure 3. Evolutionary history of plant G-protein components. The gene tree of each G-protein component is represented with different colored lines and labels. The splits in the horizontal and vertical lines represent ancient and lineage-specific gene duplications, respectively. The duplicated gene clades are also labeled. Broken lines mark the absence of a component in many but not all species. The presence of a component is marked by a circle at the tip of the line. The ambiguity in gene duplication timeline is labeled by a question mark. The cladogram is drawn based on [77]. The divergence of XLG3 and a new clade, named XLG4, is depicted as per [52]. However, the timeline of this event occurring before the origin of gymnosperms is poorly supported. Similarly, Gy divergence before the origin of land plants remains ambiguous. Common names used to represent different plant lineages are marked at the top. Figure created using BioRender (biorender.com). Abbreviation: RGS, regulator of G-protein signaling.

was thought to be ubiquitous in eukaryotes [67]. Another surprising observation was that not only *P. patens*, but also many other species, including the entire group of Bryopsida mosses, have lost their G α protein [77]. Intriguingly, the XLG α proteins, which appear for the first time in Charophyte algae (pre-dating land plants), are present in all plant lineages [78,79]. The G β proteins remain constant in both number and structure (no variants identified, to date) but G γ diverged at some point between the emergence of land plants and vascular plants and underwent changes in protein domains, which led to three distinct subtypes [77]. XLG α and G γ also exhibit many lineage-specific gene duplications. This distribution of G-proteins supports an alternative model in which XLG α , G β , and G γ form the minimal core of the heterotrimer in all land plants [77]. Intriguingly, RGS appears to be under relaxed selection and is lost frequently in many plant groups [36,77].

Essential versus nonessential roles of G-proteins in plants

Another striking revelation of studying plant G-proteins beyond arabidopsis is the identification of their essential role in regulating plant life. In arabidopsis, G-proteins are involved in several developmental signaling pathways and regulate cell division and expansion, ion channel activities, responses to several endogenous signals, and the external environment [23,29,32,80]. However, G-proteins are nonessential for arabidopsis. The loss of all G α , G β , or G γ proteins, individually or in different combinations, causes several phenotypic changes, but the plants survive and complete their life cycles [27,51,68]. This had led to the hypothesis that 'plant' G-proteins mainly modulate different pathways to achieve optimal growth [81].

Research with several plant species has now confirmed that the roles of these proteins are not only modulatory, but essential for completion of the life cycle in several plant lineages. As mentioned earlier, *P. patens* lacking a functional XLG α or one of the two G β genes never develop a sporophyte, the only diploid tissue of the moss [57]. Furthermore, rice and maize plants (and probably other monocots) lacking all XLG α genes or the G β gene are seedling lethal [32,82,83]. Seedling lethality was also reported recently for tomato G β mutants [84], suggesting that the phenotypes of G-protein mutants in arabidopsis and other closely related species, for example, *Camelina sativa* [85] are an exception to the norm. The underlying mechanisms of essential versus non-essential roles of G-proteins in distinct lineages are not yet fully explored but have been proposed to be dependent on altered regulation of plant immune responses by G-proteins [82,84]. The G-protein subunits themselves are highly similar, structurally and functionally, within the plant lineage. An arabidopsis XLG α or G β can restore the phenotypes of *P. patens* XLG α and G β mutants, respectively [57]. Similarly, a G α gene from rice or *Brachypodium distachyon* (brachypodium) can fully complement all arabidopsis G α (gpa1) mutant phenotypes [86]. These observations suggest that the distinct effects are not due to the intrinsic differences in the proteins per se, but that their developmental signaling networks differ among different lineages.

Conserved and nonconserved features of the metazoan model of G-protein signaling in plants

The plant G-protein model (Figure 2) explains G-protein signaling, to some extent in arabidopsis, and continues to be discussed as the universal G-protein regulatory mechanism in plants [28,43]. However, the lack of an RGS protein in many plants already questions its general applicability. Interestingly, the G-protein cycle itself does not differ between plants with or without an RGS protein [87]. A comparative analysis of two monocot models, brachypodium (no RGS gene in the genome) and *Setaria viridis* (setaria) (with an RGS gene in the genome), demonstrated that the loss of G α function resulted in shorter plants with broader cells, leaves, and seeds in both species. RGS present in setaria is functional, as demonstrated by its overexpression in setaria

(native) or brachypodium, which resulted in plant phenotypes similar to suppression of their respective $G\alpha$ genes [87]. Furthermore, the brachypodium $G\alpha$ gene fully complements the phenotypes of arabidopsis $gpa1$ mutants [86].

The role of RGS in plants remains enigmatic. It is present in all eudicots but is frequently lost in other plant lineages [77], without any known effect on plant fitness. However, when present, it is functional and involved in regulating important plant traits [87–91]. It is also notable that the presence of the RGS-coding gene in plant genomes is linked with the presence of $G\alpha$ -coding genes. There are no instances where an RGS-coding gene is present in the genome in the absence of a $G\alpha$ -coding gene [77], although the reverse is not true. The role of RGS proteins in the context of $XLG\alpha$ proteins is also perplexing. $XLG\alpha$ proteins, which constitute the core of the plant G-protein trimer, exhibit substantially reduced GTP binding and almost no GTPase activity, and their interaction with the RGS protein is debatable [28,32,92–94].

Canonical GPCR-like proteins present a somewhat similar situation. Several proteins that 'appear' similar to canonical metazoan GPCRs are present in plants [95]. Of these, GCR1 remains the most well-characterized protein in the context of G-protein signaling. GCR1 and its homologs in a few other plant species have been shown to have critical roles in the regulation of G-protein-coupled pathways, based on genetic [39,96–101] and transcriptomics analyses [102–104], and a recent report showed its binding with ABA and gibberellin [105]. However, its role as a canonical GPCR with GEF activity, similar to that of metazoan GPCRs, remains to be established. Additionally, the absence of some of the well-established effectors of mammalian G-proteins, such as adenyl cyclases, β arrestins, or GPCR kinases, necessitates the exploration of alternative signaling mechanisms, not necessarily regulated by the classic GPCR/RGS module.

Plant-specific, noncanonical signaling mechanisms

Two major recent developments corroborate the idea that plant G-protein signaling is regulated by mechanisms other than those universally established: (i) several studies have demonstrated that plant G-proteins are regulated by receptor-like kinase (RLK)-mediated phosphorylation/dephosphorylation-based signaling mechanisms; and (ii) nucleotide exchange may not be the central regulatory mode of G-proteins in plants, with nucleotide exchange-independent activation also having a role.

Phosphorylation-dependent regulation of G-protein signaling

G-proteins are physically and genetically coupled with RLKs and receptor-like proteins (RLPs) prevalent in plants [25]. Plant G-protein and RGS have been identified as phosphoproteins in several nontargeted studies. Furthermore, multiple RLKs phosphorylate specific G-protein components under *in vitro* conditions, suggesting a key role of these modifications [89,106].

In recent years, several studies have shown regulation of the G-protein cycle by RLKs by phosphorylation/dephosphorylation-based mechanisms. During regulation of the immune response in arabidopsis, the well-established receptor complex FLS2/BAK1/BIK2 has been proposed to regulate G-protein signaling, in a guanine nucleotide-dependent manner but in the context of the unusual biochemistry of plant G-proteins [32,92,93]. In this model, during the resting stage, the G-protein trimer (either $G\alpha$ or $XLG\alpha$ with $G\beta\gamma$) is associated with the receptor complex and maintained as such by the GAP activity of RGS1. Signal perception by the receptor (FLS2) causes a change in its interaction with BAK1 and activates BIK1, which phosphorylates RGS1, causing its dissociation from the receptor complex [92,93,107]. In an alternate model, BAK1 directly phosphorylates RGS1, which is then released from the receptor complex and endocytosed [89,106,108]. The removal of RGS1 from the complex releases $G\alpha$, which, due to

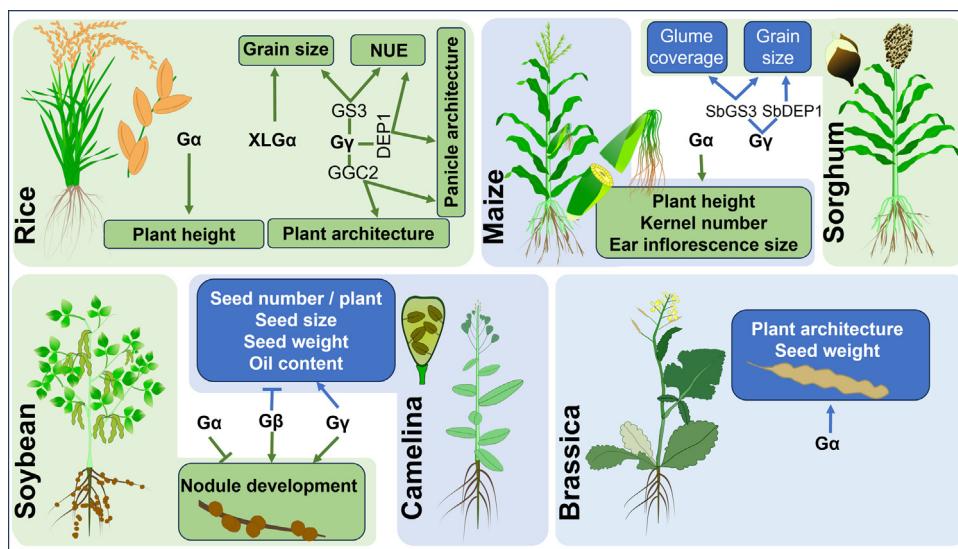
its spontaneous GTP binding, dissociates from G β γ . Both freed entities can interact with downstream effectors to transduce the signal. This mechanism, in general, still depends on the canonical ‘on/off’ status of the G-protein heterotrimer, but, in contrast to activation by a classical GPCR, is regulated by the removal of the deactivator protein (RGS1) from the complex [32]. The relevance of this mechanism to plant species that do not have an RGS homolog is unclear. A recent report in rice suggests that phosphorylation of XLG proteins by plasma membrane RLKs promotes their nuclear localization and further regulation of defense responses by nuclear protein kinases [109].

Another example of phosphorylation-based regulation is demonstrated during nodule development in soybean. G α proteins are negative and G β γ proteins are positive regulators of nodulation [74]. During nodule development, a two-pronged approach of deactivating G α and making G β γ available for signaling has been demonstrated. On the one hand, the nod factor receptor, NFR1, phosphorylates and activates the RGS proteins, which deactivate G α (i.e., inactivation of the negative regulator) [110]. On the other hand, an additional RLK of the nod factor receptor complex, SymRK, directly phosphorylates G α proteins. Phosphorylated G α cannot bind to the G β γ dimer, thus setting the dimer free to interact with downstream effectors (i.e., the availability of positive regulators) [111]. Given that the role of XLG α during nodule development is not yet known, it is possible that either the freed G β γ becomes exclusively available to XLG α or that XLG α is also phosphorylated, and the free G β γ primarily regulates downstream events.

Additional examples of the involvement of RLKs in G-protein signaling include the interaction of maize G α (Ct2) with the Clavata receptor signaling module for shoot apical meristem development [112–114], arabidopsis G-proteins with Feronia for stomatal aperture control and salinity responses [115,116], interaction of BRI/BAK1 in the sugar response [117], and of zygotic arrest 1 (ZAR1) and AGB1 during asymmetric cell division in zygotes [118]. However, the mechanistic details of these physiological observations or genetic interactions have not yet been fully established.

Nucleotide exchange-independent mechanism

Nucleotide binding-, exchange-, and hydrolysis-dependent activation/deactivation are the defining characteristics of G-proteins. Nonetheless, the idea of nucleotide exchange-independent activation has been discussed in mammalian models for some time [119]. Activation of the G-protein cycle by inducing conformational changes in G α or in G β γ by proteins other than classic GPCRs has been demonstrated [120,121]. However, such mechanisms are not the norm and may exist only under specific conditions. For the most part, until recently, the classic mammalian model was also expected to be the mechanism for plant G-protein signaling. In fact, most arabidopsis G-protein signaling models are based on the exceptionally fast nucleotide binding and exchange activity of the G α protein combined with its slow rate of GTP hydrolysis [40,42,122], although the limitations of such a model, beyond arabidopsis, are also already clear. There are additional inconsistencies, even when considering arabidopsis G α . For example, a constitutively active G α (GPA1^{Q222L} or GPA1^{CA}), which can bind to GTP but not hydrolyze it, can still bind to the G β γ dimer [123,124]. Furthermore, in humans, an analogous mutation results in the expected overactivation of the G-protein cycle, resulting in higher cAMP levels and uncontrolled cell growth. The phenotypes of arabidopsis that express constitutively active G α or lack an RGS protein are subtle, and do not align well with the proposed central roles of these proteins [125]. The role of constitutively active G α proteins in rice and maize is confounding, compared with arabidopsis. In rice, the expression of constitutively active G α produced longer grains compared with WT plants, supporting continuous signaling, but, when expressed in rice G α mutants, restored the phenotype to WT levels, and did not overcompensate for it [126,127]. In maize, a


constitutively active $G\alpha$ only partially complemented the mutant phenotypes, implying that it is a weak allele of $G\alpha$ [128]. Contrary to *arabidopsis*, the maize constitutively active protein version does not interact with $G\beta\gamma$ proteins [128]. The $XLG\alpha$ proteins add additional complication to this scenario because their nucleotide binding, exchange, and hydrolysis is poorly characterized, even *in vitro*.

Recent work in *arabidopsis* using a point mutant version of $GPA1$, $GPA1^{S52C}$, a protein variant that is unable to bind or hydrolyze GTP due to a substitution in its GTP-binding site, provides credence to the existence of an alternative mechanism. Genetic complementation of a *gpa1* mutant with the $GPA1^{S52C}$ variant restored most plant phenotypes to the WT level, suggesting no role of GTP-binding or hydrolysis in these responses [49,124]. A structure–function study with *arabidopsis* $XLG2$ suggests that the protein is not in a nucleotide-bound state ‘*in planta*’ and functions only by sequestering the $G\beta\gamma$ from other $G\alpha$ proteins [49].

More compelling data for the guanine nucleotide-independent role of G-proteins are from soybean, during regulation of nodulation signaling [111]. Two of the sites phosphorylated by SymRK are vital for GTP-binding by $G\alpha$ proteins. Thus, phosphorylation of $G\alpha$ makes it unable to bind (or hydrolyze) GTP. However, in this case, contrary to that reported for *arabidopsis* $GPA1$, the phosphorylated protein cannot bind $G\beta\gamma$ and, therefore, frees it for signal propagation [111].

Roles of G-proteins in regulating important signaling and developmental processes for their use in future agricultural modifications

The study of G-proteins in *arabidopsis* determined their roles in modulating several signaling and developmental pathways and set the foundation for future research. In eudicots, G-proteins have been studied for their agronomically important roles in rice, soybean, tomato, cotton [84,129–132], *Camellia*, pea [133,134], and *Brassica* [135–138] species (Figure 4). In soybeans, specific subunits of G-proteins and RGS proteins regulate nodule development and, consequently, their ability

Trends In Plant Science

Figure 4. Summary of agronomic traits affected by G-proteins in plants. The illustration shows G-protein-dependent agronomic traits in different crop plants. Positive or negative regulations are denoted by lines ending with an arrow head or bar, respectively. G-protein components with no known effects as yet are not shown. The number of plants and agronomic traits detailed are example only and do not represent the complete list. Abbreviation: NUE, nitrogen-use efficiency.

to fix nitrogen, which is important for sustainable agriculture. In *Camelina*, overexpression of arabidopsis *AGG3* led to higher seed yield, more oil, and improved stress tolerance. Interestingly, knocking down the *Camelina Gb* gene increased the oil content of the seeds [85]. In tomato, pea, and *Brassica*, specific subunits of G-proteins are involved in regulating responses to several biotic and abiotic stresses. The underlying mechanism for these responses remains mostly unknown, but, in tomato, a low light-dependent sensing of glucose by the RGS protein and consequent modulation of the G-protein cycle have been demonstrated to regulate response to bacterial pathogens [132]. Although these studies have highlighted the potential of modulating G-protein signaling to improve future agriculture, their true impact is illustrated only when evaluating them in crop plants, especially rice. Several studies have highlighted the roles of rice G-protein subunits, especially the *Gα* subunit, *RGA1*, in regulating stress and developmental responses and nutrient-use efficiency [139, 140]. However, the identification of type III Gy proteins as some of the most critical grain size-related quantitative trait loci (QTL), has transformed the field for evaluating the agronomic potential of G-protein signaling in plants. In fact, type III Gy proteins were identified as the underlying QTL for grain size regulation (*grain size 3*, *GS3*) and panicle architecture (*Dense and Erect Panicle 1*, *DEP1*) before their discovery in arabidopsis and their functional assignment as plant-specific Gy proteins [63, 141–143]. Rice *GS3* and *DEP1* are some of the most extensively researched genes for their biotechnological applications. The favorable allele of *GS3* is highly enriched in a set of cultivated accessions (34%) compared with in a set of wild accessions (4%) [141]. A survey of rice literature revealed more than 100 publications, ranging from the discovery of these genes as major QTL for several agronomic traits, their application in breeding, an artificial positive selection of specific alleles in domesticated varieties, GWAS and haplotype analysis, RNAi- and CRISPR-based gene editing, and the expression of specific domains, to multiyear field trials [64, 71, 72, 143–168]. The overall conclusion is that *GS3* is a key regulator of grain size. Rice varieties carrying a wild-type *GS3* allele produce grains of normal length. Rice varieties carrying the complete loss-of-function allele eliminating the entire *GS3* protein produce long grains, whereas rice varieties, which express a truncated protein (i.e., an intact Gy domain but no C-terminal region) produce very short grains [72]. In addition to its role in controlling grain size, *GS3* has been implicated in improving nitrogen use efficiency (NUE) in the long grain *japonica* rice varieties, and in improving cold tolerance and seed quality [158, 162, 169]. A recent study identified the role of *GS3* in thermotolerance using QTL analysis and named it *thermo-tolerance 2* (*TT2*), expanding its functional repertoire [170]. The second type III Gy gene in rice, *DEP1*, was identified as a key determinant of panicle architecture [63, 171, 172]. Specific substitutions in *DEP1* led to erect panicles with more branches and seeds, or smaller panicles with fewer branches and fewer seeds. The phenotypes appear to depend on whether mutations remove the entire protein or only the C-terminal region, leaving the Gy domain intact [150, 173]. *DEP1* has also been identified as a major QTL for NUE in rice and implicated in several abiotic stress responses [63, 171, 172, 174–176]. Mutations in *GGC2*, the third type III Gy homolog in rice, also result in altered plant architecture, including changes in panicle and seed morphology [72, 145, 177]. *GGC2* has been proposed to have overlapping function with *DEP1*. Several groups have now generated mutants in different combinations of specific alleles of *GS3*, *DEP1*, and *GGC2* in rice, to uncover their redundant versus specific roles in grain size regulation [71, 72, 150, 178]. These studies suggest a complex interaction of these three Gy subunits with the sole Gβ subunit of rice [72].

The opposite phenotypes caused by distinct mutations in *GS3* or *DEP1* have been explained based on the modular nature of type III Gy proteins. The consensus in the rice G-protein field is that the C-terminal region of the protein acts as a negative regulator of the Gy domain function. Mutations that cause deletion of the C-terminal region abolish this negative regulation, allowing the Gy domain to function. By contrast, mutations that remove the entire protein result in the loss of the Gy domain function. Consequently, C-terminal versus full-length deletions result in

opposite phenotypes [71,72,179]. Attempts to identify signaling modules and downstream effectors of these proteins have led to disparate mechanisms, ranging from Ca^{2+} /CaM-dependent pathways, MAP kinases, lipid signaling, ubiquitin proteasome-mediated inhibition, interaction with several transcription factors, and more [71,159,161,164,170,174,180–183].

The sorghum homolog of *DEP1* (*SbDEP1*) has been identified as a possible locus responsible for grain size differences between different landraces of sorghum [184], whereas the GS3 homolog (*SbGS3*) has been identified as the gene underlying QTL *qTGW1a*, which is a negative regulator of seed size [185]. The same locus has been identified as the causal gene that controls the glume coverage in sorghum seeds and was named *Glume coverage 1* (GC1) [181]. Analysis of 915 diverse accessions of sorghum for glume coverage and its relationship to domestication identified GC1 as the main cause of, and stable locus for, this trait. Transgenic expression of truncated versions of GC1 (*SbGS3*) in sorghum resulted in seeds with reduced glume coverage. Surprisingly, this study did not identify any strong association between these variations and grain size. A recent study has identified the GS3 homolog of sorghum as the locus responsible for tolerance to alkaline soil (Alkaline Tolerance 1, AT1). The genotypes with truncated alleles of AT1 (*at1* allele, C-terminal truncation) caused increased sensitivity, whereas the complete gene knockout conferred tolerance to alkaline soil, respectively, in several crop species. The protein is proposed to function via affecting aquaporin phosphorylation, thereby controlling oxidative stress [186].

A few studies in wheat, barley, and maize assessed the roles of the homologs of type III G α proteins with varying degrees of success. A 12-year field study in barley showed that the loss of function of *HvDEP1* resulted in consistent effects on stem elongation and grain size but conferred either a significant increase or decrease in harvestable yield depending on the environment [187]. In retrospect, such results appear obvious given that these proteins regulate responses to both environmental and endogenous developmental cues. In wheat, a survey of *DEP1* sequences in species with normal, compactoid, and compact spikes did not identify any specific changes that correlated with the phenotype [188]. Some association has been seen in kernel size and GS3 variation in maize, but unlike rice, the gene does not appear to be under any positive selection [189,190].

Knockout mutants of canonical G α in grasses, such as rice, brachypodium, setaria, and maize, are semi-dwarf, which in itself is a desirable agronomic trait [125]. However, these mutants also have associated nonpreferred phenotypes, especially low yield, which has restricted their use in agricultural practices. Nevertheless, by introducing a constitutively active biochemical variant of canonical G α in maize [114], which can bind to, but not hydrolyze GTP, several beneficial traits were observed. *CT2^{CA}* acted as a weak allele of *CT2* and led to a higher spikelet density and kernel row number, larger ear inflorescence meristems (IMs), and more upright leaves, causing an improved yield [128].

Concluding remarks and future perspectives

The study of G-proteins from multiple plant species in recent years has established the diversity of signaling components, mechanisms, and regulatory pathways. At the level of G-protein components, it is clear that these are lost in several algal lineages, necessitating a redefinition of their proposed ubiquitous presence in all eukaryotes. Furthermore, XLG α proteins appear to be the key component of the heterotrimer with the G $\beta\gamma$ proteins in plants. RGS proteins maintain their basic biochemistry, that is, deactivating the canonical G α , and are active and relevant when present, but their loss is frequent and tolerated without any major consequences. This observation is even more pertinent in the context of the unusual activation/deactivation mechanisms of plant G-proteins and the possibility of a nucleotide exchange-independent protein function. Overall, it

Outstanding questions

How are plant G α proteins activated?

What is the relevance of GTP binding and hydrolysis if these activities are not involved in response regulation?

Why are some canonical G-proteins lost in specific plant groups?

Why do plants without an RGS protein not have any fitness penalties?

How is specificity achieved in plant G-protein signaling?

What are the downstream effectors of plant G-proteins?

Why are G-proteins essential for many (e.g., rice) but not all plants (e.g., arabidopsis)?

What is the significance of the long and varied cysteine-rich region of type III G α proteins?

How do G-proteins integrate developmental and stress-mediated responses?

appears that the G-protein core has been modified and rewired to suit specific needs in the green plant lineage. While the core biochemical properties of individual G-protein components are maintained, these might not be utilized in accordance with the established mammalian model.

It is also evident that G-proteins are essential for many but not all plant groups and are involved in regulating key agronomic traits. Moreover, small differences in their biochemistry or the presence/absence of specific domains have tremendous effects on plant phenotypes, but the magnitude of these effects differs even among a few species studied to date. These observations suggest that not only their study in additional plant species, but also a better understanding of their signaling mechanisms is needed to realize their full potential (see also [Outstanding questions](#)).

Acknowledgments

The authors thank María Daniela Torres Rodriguez, Parinita Majumdar, and Elizabeth (Toby) Kellogg for helpful discussion and critical comments on the manuscript. The authors also thank the anonymous reviewers for their insightful comments. The research in the Pandey laboratory is supported by National Science Foundation (NSF) grants (MCB-1714693, MCB- 2207012, and UroL-1921724).

Declaration of interests

The authors have no conflict of interest to declare.

References

1. Neuhaus, G. *et al.* (1993) Calcium/calmodulin-dependent and -independent phytochrome signal transduction pathways. *Cell* 73, 937–952
2. Ma, L. *et al.* (1999) The presence of a heterotrimeric G protein and its role in signal transduction of extracellular calmodulin in pollen germination and tube growth. *Plant Cell* 11, 1351–1364
3. Beffa, R. *et al.* (1995) Cholera toxin elevates pathogen resistance and induces pathogenesis-related gene expression in tobacco. *EMBO J.* 14, 5753–5761
4. Muschietti, J.P. *et al.* (1993) G-protein from *Medicago sativa*: functional association to photoreceptors. *Biochem. J.* 291, 383–388
5. Li, W. and Assmann, S.M. (1993) Characterization of a G-protein-regulated outward K⁺ current in mesophyll cells of *Vicia faba* L. *Proc. Natl. Acad. Sci. U. S. A.* 90, 262–266
6. Legendre, L. *et al.* (1992) Evidence for participation of GTP-binding proteins in elicitation of the rapid oxidative burst in cultured soybean cells. *J. Biol. Chem.* 267, 20140–20147
7. Warpeha, K.M. *et al.* (1991) A blue-light-activated GTP-binding protein in the plasma membranes of etiolated peas. *Proc. Natl. Acad. Sci. U. S. A.* 88, 8925–8929
8. Romero, L.C. *et al.* (1991) G-proteins in etiolated *Avena* seedlings. Possible phytochrome regulation. *FEBS Lett.* 282, 341–346
9. Fairley-Grenot, K. and Assmann, S.M. (1991) Evidence for G-protein regulation of inward K⁺ channel current in guard cells of fava bean. *Plant Cell* 3, 1037–1044
10. Millner, P.A. and Robinson, P.S. (1989) ADP-ribosylation of thylakoid membrane polypeptides by cholera toxin is correlated with inhibition of thylakoid GTPase activity and protein phosphorylation. *Cell. Signal.* 1, 421–433
11. Graziano, M.P. *et al.* (1987) Expression of cDNAs for G proteins in *Escherichia coli*: Two forms of Gs alpha stimulate adenylate cyclase. *J. Biol. Chem.* 262, 11375–11381
12. Ma, H. *et al.* (1990) Molecular cloning and characterization of GPA1, a G protein alpha subunit gene from *Arabidopsis thaliana*. *Proc. Natl. Acad. Sci. U. S. A.* 87, 3821–3825
13. Weiss, C.A. *et al.* (1994) Isolation of cDNAs encoding guanine nucleotide-binding protein beta-subunit homologues from maize (ZGB1) and *Arabidopsis* (AGB1). *Proc. Natl. Acad. Sci. U. S. A.* 91, 9554–9558
14. Hong, M. *et al.* (1991) Isolation and sequence analysis of TGA1 cDNAs encoding a tomato G protein α subunit. *Gene* 107, 189–195
15. Ishikawa, A. *et al.* (1995) Molecular cloning and characterization of a cDNA for the alpha subunit of a G protein from rice. *Plant Cell Physiol.* 36, 353–359
16. Seo, H.S. *et al.* (1995) Molecular cloning and characterization of RGA1 encoding a G protein alpha subunit from rice (*Oryza sativa* L. IR-36). *Plant Mol. Biol.* 27, 1119–1131
17. Ishikawa, A. *et al.* (1996) Molecular cloning and characterization of a cDNA for the beta subunit of a G protein from rice. *Plant Cell Physiol.* 37, 223–228
18. Ashikari, M. *et al.* (1999) Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α -subunit of GTP-binding protein. *Proc. Natl. Acad. Sci. U. S. A.* 96, 10284–10289
19. Ueguchi-Tanaka, M. *et al.* (2000) Rice dwarf mutant d1, which is defective in the α subunit of the heterotrimeric G protein, affects gibberellin signal transduction. *Proc. Natl. Acad. Sci. U. S. A.* 97, 11638–11643
20. Iwasaki, Y. *et al.* (1997) Characterization of the putative alpha subunit of a heterotrimeric G protein in rice. *Plant Mol. Biol.* 34, 563–572
21. Pandey, S. (2016) Phospholipases as GTPase activity accelerating proteins (GAPs) in plants. *Plant Signal. Behav.* 11, e1176821
22. Roy Choudhury, S. and Pandey, S. (2016) Interaction of heterotrimeric G-protein components with receptor-like kinases in plants: an alternative to the established signaling paradigm? *Mol. Plant* 9, 1093–1095
23. Pandey, S. (2017) Heterotrimeric G-protein regulatory circuits in plants: conserved and novel mechanisms. *Plant Signal. Behav.* 12, e1325983
24. Pandey, S. (2019) Heterotrimeric G-protein signaling in plants: conserved and novel mechanisms. *Annu. Rev. Plant Biol.* 70, 213–238
25. Pandey, S. (2020) Plant receptor-like kinase signaling through heterotrimeric G-proteins. *J. Exp. Bot.* 71, 1742–1751
26. Pandey, S. and Vijayakumar, A. (2018) Emerging themes in heterotrimeric G-protein signaling in plants. *Plant Sci.* 270, 292–300
27. Urano, D. *et al.* (2016) Saltational evolution of the heterotrimeric G protein signaling mechanisms in the plant kingdom. *Sci. Signal.* 9, ra93
28. Maruta, N. *et al.* (2021) Heterotrimeric G proteins in plants: canonical and atypical G α subunits. *Int. J. Mol. Sci.* 22, 11841
29. Stateczny, D. *et al.* (2016) G protein signaling in plants: minus times minus equals plus. *Curr. Opin. Plant Biol.* 34, 127–135

30. Chakravorty, D. and Assmann, S.M. (2018) G protein subunit phosphorylation as a regulatory mechanism in heterotrimeric G protein signaling in mammals, yeast, and plants. *Biochem. J.* 475, 3331–3357

31. Zhong, C.L. *et al.* (2019) Heterotrimeric G protein signaling in plant immunity. *J. Exp. Bot.* 70, 1109–1118

32. Zhou, Z. *et al.* (2019) Early signaling mechanisms underlying receptor kinase-mediated immunity in plants. *Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci.* 374, 20180310

33. Jose, J. and Roy Choudhury, S. (2020) Heterotrimeric G-proteins mediated hormonal responses in plants. *Cell. Signal.* 76, 109799

34. Ofoe, R. (2021) Signal transduction by plant heterotrimeric G-protein. *Plant Biol. (Stuttg.)* 23, 3–10

35. Majumdar, P. *et al.* (2023) Role of heterotrimeric G-proteins in improving abiotic stress tolerance of crop plants. *J. Plant Growth Regul.* 11, 876

36. Hackenberg, D. *et al.* (2017) Gα and regulator of G-protein signaling (RGS) protein pairs maintain functional compatibility and conserved interaction interfaces throughout evolution despite frequent loss of RGS proteins in plants. *New Phytol.* 216, 562–575

37. Jones, J.C. *et al.* (2011) The crystal structure of a self-activating G protein alpha subunit reveals its distinct mechanism of signal initiation. *Sci. Signal.* 4, ra8

38. Pandey, S. *et al.* (2010) Boolean modeling of transcriptome data reveals novel modes of heterotrimeric G-protein action. *Mol. Syst. Biol.* 6, 372

39. Pandey, S. and Assmann, S.M. (2004) The *Arabidopsis* putative G protein-coupled receptor GCR1 interacts with the G protein alpha subunit GPA1 and regulates abscisic acid signaling. *Plant Cell* 16, 1616–1632

40. Bradford, W. *et al.* (2013) Eukaryotic G protein signaling evolved to require G protein-coupled receptors for activation. *Sci. Signal.* 6, ra37

41. Urano, D. *et al.* (2012) G protein activation without a GEF in the plant kingdom. *PLoS Genet.* 8, e1002756

42. Johnston, C.A. *et al.* (2007) GTPase acceleration as the rate-limiting step in *Arabidopsis* G protein-coupled sugar signaling. *Proc. Natl. Acad. Sci. U. S. A.* 104, 17317–17322

43. Lou, F. *et al.* (2020) An atypical heterotrimeric Gα protein has substantially reduced nucleotide binding but retains nucleotide-independent interactions with its cognate RGS protein and Gβγ dimer. *J. Biomol. Struct. Dyn.* 38, 5204–5218

44. Perfus-Barbeoch, L. *et al.* (2004) Plant heterotrimeric G protein function: insights from *Arabidopsis* and rice mutants. *Curr. Opin. Plant Biol.* 7, 719–731

45. Jones, A.M. (2002) G-protein-coupled signaling in *Arabidopsis*. *Curr. Opin. Plant Biol.* 5, 402–407

46. Pasolli, H.A. *et al.* (2000) Characterization of the extra-large G protein alpha-subunit XLalphas. I. Tissue distribution and sub-cellular localization. *J. Biol. Chem.* 275, 33622–33632

47. Plagge, A. *et al.* (2008) Physiological functions of the imprinted Gnas locus and its protein variants Galphas(s) and XLalpha(s) in human and mouse. *J. Endocrinol.* 196, 193–214

48. Ding, L. *et al.* (2008) *Arabidopsis* extra-large G proteins (XLGs) regulate root morphogenesis. *Plant J.* 53, 248–263

49. Maruta, N. *et al.* (2021) GTP binding by *Arabidopsis* extra-large G protein 2 is not essential for its functions. *Plant Physiol.* 186, 1240–1253

50. Zhao, Y. *et al.* (2022) Rice extra-large G proteins play pivotal roles in controlling disease resistance and yield-related traits. *New Phytol.* 234, 607–617

51. Chakravorty, D. *et al.* (2015) Extra-large G proteins expand the repertoire of subunits in *Arabidopsis* heterotrimeric G protein signaling. *Plant Physiol.* 169, 512–529

52. Cantos, C.F. *et al.* (2023) Extra-large G proteins have extra-large effects on agronomic traits and stress tolerance in maize and rice. *Trends Plant Sci.* Published online May 6, 2023. <https://doi.org/10.1016/j.tplants.2023.04.005>

53. Assmann, S.M. (2002) Heterotrimeric and unconventional GTP binding proteins in plant cell signaling. *Plant Cell* 14, S355–S373

54. Lee, Y.R. and Assmann, S.M. (1999) *Arabidopsis thaliana* 'extra-large GTP-binding protein' (AtXLG1): a new class of G-protein. *Plant Mol. Biol.* 40, 55–64

55. Temple, B.R. and Jones, A.M. (2007) The plant heterotrimeric G-protein complex. *Annu. Rev. Plant Biol.* 58, 249–266

56. Pandey, S. *et al.* (2008) Regulation of root-wave response by extra large and conventional G proteins in *Arabidopsis thaliana*. *Plant J.* 55, 311–322

57. Hackenberg, D. *et al.* (2016) Sporophyte formation and life cycle completion in moss requires heterotrimeric G-proteins. *Plant Physiol.* 172, 1154–1166

58. Roy Choudhury, S. *et al.* (2011) Conventional and novel Gγ protein families constitute the heterotrimeric G-protein signaling network in soybean. *PLoS One* 6, e23361

59. Choudhury, S.R. *et al.* (2011) Conventional and novel Gγ protein families constitute the heterotrimeric G-protein signaling network in soybean. *PLoS One* 6, e23361

60. Chakravorty, D. *et al.* (2011) An atypical heterotrimeric G-protein γ subunit is involved in guard cell K⁺-channel regulation and morphological development in *Arabidopsis thaliana*. *Plant J.* 67, 840–851

61. Wolfenstetter, S. *et al.* (2015) Evidence for an unusual transmembrane configuration of AGG3, a class C Gγ subunit of *Arabidopsis*. *Plant J.* 81, 388–398

62. Roy Choudhury, S. *et al.* (2014) Constitutive or seed-specific overexpression of *Arabidopsis* G-protein γ subunit 3 (AGG3) results in increased seed and oil production and improved stress tolerance in *Camelina sativa*. *Plant Biotechnol. J.* 12, 49–59

63. Huang, X. *et al.* (2009) Natural variation at the DEP1 locus enhances grain yield in rice. *Nat. Genet.* 41, 494–497

64. Lu, L. *et al.* (2013) Natural variation and artificial selection in four genes determine grain shape in rice. *New Phytol.* 200, 1269–1280

65. Bish, N.C. *et al.* (2011) An elaborate heterotrimeric G-protein family from soybean expands the diversity of plant G-protein networks. *New Phytol.* 190, 35–48

66. Wettschureck, N. and Offermanns, S. (2005) Mammalian G proteins and their cell type specific functions. *Physiol. Rev.* 85, 1159–1204

67. Offermanns, S. (2003) G-proteins as transducers in transmembrane signalling. *Prog. Biophys. Mol. Biol.* 83, 101–130

68. Roy Choudhury, S. *et al.* (2020) Flexible functional interactions between G-protein subunits contribute to the specificity of plant responses. *Plant J.* 102, 207–221

69. Trusov, Y. *et al.* (2008) Gγ1 + Gγ2 not equal to Gβα: heterotrimeric G protein Gγ-deficient mutants do not recapitulate all phenotypes of Gβα-deficient mutants. *Plant Physiol.* 147, 636–649

70. Liu, J. *et al.* (2013) Heterotrimeric G proteins serve as a converging point in plant defense signaling activated by multiple receptor-like kinases. *Plant Physiol.* 161, 2146–2158

71. Liu, Q. *et al.* (2018) G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. *Nat. Commun.* 9, 852

72. Sun, S. *et al.* (2018) A G-protein pathway determines grain size in rice. *Nat. Commun.* 9, 851

73. Roy Choudhury, S. *et al.* (2012) Two chimeric regulators of G-protein signaling (RGS) proteins differentially modulate soybean heterotrimeric G-protein cycle. *J. Biol. Chem.* 287, 17870–17881

74. Roy Choudhury, S. and Pandey, S. (2013) Specific subunits of heterotrimeric G proteins play important roles during nodulation in soybean. *Plant Physiol.* 162, 522–533

75. Roy Choudhury, S. and Pandey, S. (2017) Recently duplicated plant heterotrimeric Galphα proteins with subtle biochemical differences influence specific outcomes of signal-response coupling. *J. Biol. Chem.* 292, 16188–16198

76. Roy Choudhury, S. *et al.* (2014) Soya bean Galphα proteins with distinct biochemical properties exhibit differential ability to complement *Saccharomyces cerevisiae* gpa1 mutant. *Biochem. J.* 461, 75–85

77. Boominathan Mohanasundaram, B. *et al.* (2022) Distribution and the evolutionary history of G-protein components in plant and algal lineages. *Plant Physiol.* 189, 1519–1535

78. Hackenberg, D. and Pandey, S. (2014) Heterotrimeric G-proteins in green algae. An early innovation in the evolution of the plant lineage. *Plant Signal. Behav.* 9, e28457

79. Hackenberg, D. *et al.* (2013) Characterization of the heterotrimeric G-protein complex and its regulator from the

green alga *Chara braunii* expands the evolutionary breadth of plant G-protein signaling. *Plant Physiol.* 163, 1510–1517

80. Urano, D. and Jones, A.M. (2014) Heterotrimeric G protein-coupled signaling in plants. *Annu. Rev. Plant Biol.* 65, 365–384

81. Assmann, S.M. (2004) Plant G proteins, phytohormones, and plasticity: three questions and a speculation. *Sci. STKE* 2004, re20

82. Wu, Q. *et al.* (2020) The maize heterotrimeric G protein beta subunit controls shoot meristem development and immune responses. *Proc. Natl. Acad. Sci. U. S. A.* 117, 1799–1805

83. Utsunomiya, Y. *et al.* (2011) Suppression of the rice heterotrimeric G protein b-subunit gene, *RGB1*, causes dwarfism and browning of internodes and lamina joint regions. *Plant J.* 67, 907–916

84. Ninh, T.T. *et al.* (2021) Tomato and cotton G protein beta subunit mutants display constitutive autoimmune responses. *Plant Direct* 5, e359

85. Roy Choudhury, S. *et al.* (2019) The role of G β protein in controlling cell expansion via potential interaction with lipid metabolic pathways. *Plant Physiol.* 179, 1159–1175

86. Pandey, S. *et al.* (2022) Evolutionarily conserved and non-conserved roles of heterotrimeric G α proteins of plants. *Plant Cell Physiol.* 63, 817–828

87. Bhatnagar, N. and Pandey, S. (2020) Heterotrimeric G-protein interactions are conserved despite regulatory element loss in some plants. *Plant Physiol.* 184, 1941–1954

88. Watkins, J.M. *et al.* (2021) Differential regulation of G protein signaling in *Arabidopsis* through two distinct pathways that internalize AtRGS1. *Sci. Signal.* 14, eabe4090

89. Tunc-Ozdemir, M. *et al.* (2017) Predicted functional implications of phosphorylation of regulator of G protein signaling protein in plants. *Front. Plant Sci.* 8, 1456

90. Liao, K.L. *et al.* (2017) A shadow detector for photosynthesis efficiency. *J. Theor. Biol.* 414, 231–244

91. Choudhury, S.R. and Pandey, S. (2015) Phosphorylation-dependent regulation of G-protein cycle during nodule formation in soybean. *Plant Cell* 27, 3260–3276

92. Wang, J. *et al.* (2018) A regulatory module controlling homeostasis of a plant immune kinase. *Mol. Cell* 69, 493–504

93. Liang, X. *et al.* (2018) Ligand-triggered de-repression of *Arabidopsis* heterotrimeric G proteins coupled to immune receptor kinases. *Cell Res.* 28, 529–543

94. Urano, D. and Jones, A.M. (2013) "Round up the usual suspects": a comment on nonexistent plant G protein-coupled receptors. *Plant Physiol.* 161, 1097–1102

95. Gookin, T.E. and Bendtsen, J.D. (2013) Topology assessment, G protein-coupled receptor (GPCR) prediction, and *in vivo* interaction assays to identify plant candidate GPCRs. *Methods Mol. Biol.* 1043, 1–12

96. Warpeha, K.M. *et al.* (2006) G-protein-coupled receptor 1, G-protein Galphalpha-subunit 1, and prephenate dehydratase 1 are required for blue light-induced production of phenylalanine in etiolated *Arabidopsis*. *Plant Physiol.* 140, 844–855

97. Warpeha, K.M. *et al.* (2007) The GCR1, GPA1, PRN1, NF-Y signal chain mediates both blue light and abscisic acid responses in *Arabidopsis*. *Plant Physiol.* 143, 1590–1600

98. Liu, F. *et al.* (2012) The GCR1 and GPA1 participate in promotion of *Arabidopsis* primary root elongation induced by N-acyl-homoserine lactones, the bacterial quorum-sensing signals. *Mol. Plant-Microbe Interact.* 25, 677–683

99. Rogato, A. *et al.* (2016) Down-regulated *Lotus japonicus* GCR1 plants exhibit nodulation signalling pathways alteration. *Plant Sci.* 247, 71–82

100. Li, X. *et al.* (2022) GCR1 positively regulates UV-B- and ethylene-induced stomatal closure via activating GPA1-dependent ROS and NO production. *Int. J. Mol. Sci.* 23, 5512

101. Ramasamy, M. *et al.* (2021) A sugarcane G-protein-coupled receptor, ShGPCR1, confers tolerance to multiple abiotic stresses. *Front. Plant Sci.* 12, 745891

102. Chakraborty, N. *et al.* (2015) Transcriptome analysis of *Arabidopsis* GCR1 mutant reveals its roles in stress, hormones, secondary metabolism and phosphate starvation. *PLoS One* 10, e0117819

103. Chakraborty, N. *et al.* (2015) G-protein signaling components GCR1 and GPA1 mediate responses to multiple abiotic stresses in *Arabidopsis*. *Front. Plant Sci.* 6, 1000

104. Chakraborty, N. *et al.* (2019) GCR1 and GPA1 coupling regulates nitrate, cell wall, immunity and light responses in *Arabidopsis*. *Sci. Rep.* 9, 5838

105. Hernández, P.M. *et al.* (2023) Predicted three-dimensional structure of the GCR1 putative GPCR in *Arabidopsis thaliana* and its binding to abscisic acid and gibberellin A1. *J. Agric. Food Chem.* 71, 5770–5782

106. Tunc-Ozdemir, M. *et al.* (2016) Direct modulation of heterotrimeric G protein-coupled signaling by a receptor kinase complex. *J. Biol. Chem.* 291, 13918–13925

107. Liang, X. *et al.* (2016) *Arabidopsis* heterotrimeric G proteins regulate immunity by directly coupling to the FLS2 receptor. *Elife* 5, e13568

108. Tunc-Ozdemir, M. and Jones, A.M. (2017) Ligand-induced dynamics of heterotrimeric G protein-coupled receptor-like kinase complexes. *PLoS One* 12, e0171854

109. Ma, M. *et al.* (2022) A surface-receptor-coupled G protein regulates plant immunity through nuclear protein kinases. *Cell Host Microbe* 30, 1602–1614.e5

110. Roy Choudhury, S. and Pandey, S. (2015) Phosphorylation-dependent regulation of G-protein cycle during nodule formation in soybean. *Plant Cell* 27, 3260–3276

111. Roy Choudhury, S. and Pandey, S. (2022) SymRK-dependent phosphorylation of G α protein and its role in signaling during soybean (*Glycine max*) nodulation. *Plant J.* 110, 277–291

112. Je, B.I. *et al.* (2018) The CLAVATA receptor FASCIATED EAR2 responds to distinct CLE peptides by signaling through two downstream effectors. *Elife* 7, e35673

113. Somssich, M. *et al.* (2016) CLAVATA-WUSCHEL signaling in the shoot meristem. *Development* 143, 3238–3248

114. Bommert, P. *et al.* (2013) The maize Galphalpha gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size. *Nature* 502, 555–558

115. Yu, Y. *et al.* (2018) The G protein beta subunit, AGB1, interacts with FERONIA in RALF1-regulated stomatal movement. *Plant Physiol.* 176, 2426–2440

116. Yu, Y. and Assmann, S.M. (2018) Inter-relationships between the heterotrimeric Gbeta subunit AGB1, the receptor-like kinase FERONIA, and RALF1 in salinity response. *Plant Cell Environ.* 41, 2475–2489

117. Peng, Y. *et al.* (2018) BRI1 and BAK1 interact with G proteins and regulate sugar-responsive growth and development in *Arabidopsis*. *Nat. Commun.* 9, 1522

118. Yu, T.Y. *et al.* (2016) The *Arabidopsis* receptor kinase ZAR1 is required for zygote asymmetric division and its daughter cell fate. *PLoS Genet.* 12, e1005933

119. Ghosh, M. *et al.* (2003) Receptor- and nucleotide exchange-independent mechanisms for promoting G protein subunit dissociation. *J. Biol. Chem.* 278, 34747–34750

120. Kalogiropoulos, N.A. *et al.* (2019) Structural basis for GPCR-independent activation of heterotrimeric G α proteins. *Proc. Natl. Acad. Sci. U. S. A.* 116, 16394–16403

121. Kalogiropoulos, N.A. *et al.* (2020) Receptor tyrosine kinases activate heterotrimeric G proteins via phosphorylation within the interdomain cleft of Galphai. *Proc. Natl. Acad. Sci. U. S. A.* 117, 28763–28774

122. Jaiswal, D.K. *et al.* (2016) Time-dependent, glucose-regulated *Arabidopsis* regulator of G-protein signaling 1 network. *Curr. Plant Biol.* 5, 25–35

123. Adjobo-Hermans, M.J. *et al.* (2006) Plant G protein heterotrimers require dual lipidation motifs of Galphal and Ggamma and do not dissociate upon activation. *J. Cell Sci.* 119, 5087–5097

124. Maruta, N. *et al.* (2019) Nucleotide exchange-dependent and nucleotide exchange-independent functions of plant heterotrimeric GTP-binding proteins. *Sci. Signal.* 12, eaav9526

125. Urano, D. *et al.* (2016) Plant morphology of heterotrimeric G protein mutants. *Plant Cell Physiol.* 57, 437–445

126. Oki, K. *et al.* (2009) Function of the alpha subunit of rice heterotrimeric G protein in brassinosteroid signaling. *Plant Cell Physiol.* 50, 161–172

127. Oki, K. *et al.* (2005) Study of the constitutively active form of the alpha subunit of rice heterotrimeric G proteins. *Plant Cell Physiol.* 46, 381–386

128. Wu, Q. *et al.* (2018) Role of heterotrimeric G α proteins in maize development and enhancement of agronomic traits. *PLoS Genet.* 14, e1007374

129. Escudero, V. *et al.* (2017) Alteration of cell wall xylan acetylation triggers defense responses that counterbalance the immune deficiencies of plants impaired in the β -subunit of the heterotrimeric G-protein. *Plant J.* 92, 386–399

130. Guo, X. *et al.* (2020) Heterotrimeric G-protein α subunit (LeGPA1) confers cold stress tolerance to processing tomato plants (*Lycopersicon esculentum* Mill.). *BMC Plant Biol.* 20, 394

131. Subramaniam, G. *et al.* (2016) Type B heterotrimeric G protein γ -subunit regulates auxin and ABA signaling in tomato. *Plant Physiol.* 170, 1117–1134

132. Wang, J. *et al.* (2022) Glucose sensing by regulator of G protein signaling 1 (RGS1) plays a crucial role in coordinating defense in response to environmental variation in tomato. *New Phytol.* 236, 561–575

133. Bhardwaj, D. *et al.* (2020) Pea G β subunit of G proteins has a role in nitric oxide-induced stomatal closure in response to heat and drought stress. *Protoplasma* 257, 1639–1654

134. Misra, S. *et al.* (2007) Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (*Pisum sativum*): role in salinity and heat stress and cross-talk with phospholipase C. *Plant J.* 51, 656–669

135. Arya, G.C. *et al.* (2021) A complex interplay of G β and G γ proteins regulates plant growth and defence traits in the allotetraploid *Brassica juncea*. *Plant Mol. Biol.* 106, 505–520

136. Kumar, R. and Bisht, N.C. (2020) Heterotrimeric G α subunit regulates plant architecture, organ size and seed weight in the oilseed *Brassica juncea*. *Plant Mol. Biol.* 104, 549–560

137. Tiwari, R. *et al.* (2021) Extra-large G-proteins influence plant response to *Sclerotinia sclerotiorum* by regulating glucosinolate metabolism in *Brassica juncea*. *Mol. Plant Pathol.* 22, 1180–1194

138. Xie, Y. *et al.* (2022) Molecular identification of the G-protein genes and their expression profiles in response to nitrogen deprivation in *Brassica napus*. *Int. J. Mol. Sci.* 23, 8151

139. Pathak, R.R. *et al.* (2021) Heterotrimeric G-protein α subunit (RGA1) regulates tiller development, yield, cell wall, nitrogen response and biotic stress in rice. *Sci. Rep.* 11, 2323

140. Jangam, A.P. *et al.* (2016) Microarray analysis of rice d1 (RGA1) mutant reveals the potential role of G-protein alpha subunit in regulating multiple abiotic stresses such as drought, salinity, heat, and cold. *Front. Plant Sci.* 7, 11

141. Takano-Kai, N. *et al.* (2009) Evolutionary history of GS3, a gene conferring grain length in rice. *Genetics* 182, 1323–1334

142. Fan, C. *et al.* (2009) A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. *Theor. Appl. Genet.* 118, 465–472

143. Fan, C. *et al.* (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. *Theor. Appl. Genet.* 112, 1164–1171

144. Angira, B. *et al.* (2022) Discovery and validation of grain shape loci in U.S. rice germplasm through haplotype characterization. *Front. Genet.* 13, 923078

145. Chaya, G. *et al.* (2022) OsGGC2, G γ subunit of heterotrimeric G protein, regulates plant height by functionally overlapping with DEP1 in rice. *Plants (Basel)* 11, 422

146. Cui, Y. *et al.* (2020) Heterotrimeric G protein are involved in the regulation of multiple agronomic traits and stress tolerance in rice. *BMC Plant Biol.* 20, 90

147. Feng, L. *et al.* (2021) Mapping causal genes and genetic interactions for agronomic traits using a large F2 population in rice. *G3 (Bethesda)* 11, jkab318

148. Gao, X. *et al.* (2015) The additive effects of GS3 and qGL3 on rice grain length regulation revealed by genetic and transcriptome comparisons. *BMC Plant Biol.* 15, 156

149. Lee, C.M. *et al.* (2015) Influence of multi-gene allele combinations on grain size of rice and development of a regression equation model to predict grain parameters. *Rice (N Y)* 8, 33

150. Li, M. *et al.* (2016) Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. *Front. Plant Sci.* 7, 377

151. Liu, L. *et al.* (2022) Fine-tuning of the grain size by alternative splicing of GS3 in rice. *Rice (N Y)* 15, 4

152. Ma, X. *et al.* (2016) Genomic structure analysis of a set of *Oryza nivara* introgression lines and identification of yield-associated QTLs using whole-genome resequencing. *Sci. Rep.* 6, 27425

153. Nan, J. *et al.* (2018) Improving rice grain length through updating the GS3 locus of an elite variety Kongyu 131. *Rice (N Y)* 11, 21

154. Rasheed, H. *et al.* (2022) Characterization of functional genes GS3 and GW2 and their effect on the grain size of various landraces of rice (*Oryza sativa*). *Mol. Biol. Rep.* 49, 5397–5403

155. Sah, R.P. *et al.* (2022) Unravelling genetic architecture and development of core set from elite rice lines using yield-related candidate gene markers. *Physiol. Mol. Biol. Plants* 28, 1217–1232

156. Takano-Kai, N. *et al.* (2013) Multiple and independent origins of short seeded alleles of GS3 in rice. *Breed. Sci.* 63, 77–85

157. Wang, S. *et al.* (2018) Dissecting the genetic basis of heavy panicle hybrid rice uncovered Gn1a and GS3 as key genes. *Theor. Appl. Genet.* 131, 1391–1403

158. Wu, L. *et al.* (2022) Simultaneous improvement of grain yield and quality through manipulating two type C G protein gamma subunits in rice. *Int. J. Mol. Sci.* 23, 1463

159. Xia, D. *et al.* (2018) GL3.3, a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts with GS3 to produce extra-long grains in rice. *Mol. Plant* 11, 754–756

160. Yan, S. *et al.* (2001) Seed size is determined by the combinations of the genes controlling different seed characteristics in rice. *Theor. Appl. Genet.* 123, 1173–1181

161. Yang, W. *et al.* (2021) The RING E3 ligase CLG1 targets GS3 for degradation via the endosome pathway to determine grain size in rice. *Mol. Plant* 14, 1699–1713

162. Yoon, D.K. *et al.* (2022) The gs3 allele from a large-grain rice cultivar, Akita 63, increases yield and improves nitrogen-use efficiency. *Plant Direct* 6, e417

163. Zaw, H. *et al.* (2019) Exploring genetic architecture of grain yield and quality traits in a 16-way indica by japonica rice MAGIC global population. *Sci. Rep.* 9, 19605

164. Zhang, D. *et al.* (2019) The rice G protein γ subunit DEP1/qPE9-1 positively regulates grain-filling process by increasing auxin and cytokinin content in rice grains. *Rice (N Y)* 12, 91

165. Zhang, H.Y. *et al.* (2016) Effects of genome doubling on expression of genes regulating grain size in rice. *Yi Chuan* 38, 1102–1111

166. Zhang, L. *et al.* (2020) Grain size selection using novel functional markers targeting 14 genes in rice. *Rice (N Y)* 13, 63

167. Zhao, X. *et al.* (2015) The usefulness of known genes/QTLS for grain quality traits in an Indica population of diverse breeding lines tested using association analysis. *Rice (N Y)* 8, 29

168. Zhong, H. *et al.* (2020) Effect of multi-allele combination on rice grain size based on prediction of regression equation model. *Mol. Gen. Genomics* 295, 465–474

169. Wang, D. *et al.* (2022) Verifying the breeding value of a rare haplotype of Chalk7, GS3, and Chalk5 to improve grain appearance quality in rice. *Plants (Basel)* 11, 1470

170. Kan, Y. *et al.* (2022) TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis. *Nat. Plants* 8, 53–67

171. Zhao, M. *et al.* (2016) Variations in DENSE AND ERECT PANICLE 1 (DEP1) contribute to the diversity of the panicle trait in high-yielding japonica rice varieties in northern China. *Breed. Sci.* 66, 599–605

172. Xu, H. *et al.* (2016) The DENSE AND ERECT PANICLE 1 (DEP1) gene offering the potential in the breeding of high-yielding rice. *Breed. Sci.* 66, 659–667

173. Wang, Y. *et al.* (2017) Deletion of a target gene in Indica rice via CRISPR/Cas9. *Plant Cell Rep.* 36, 1333–1343

174. Zhao, M. *et al.* (2019) DEP1 is involved in regulating the carbon-nitrogen metabolic balance to affect grain yield and quality in rice (*Oryza sativa* L.). *PLoS One* 14, e0213504

175. Sun, H. *et al.* (2014) Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. *Nat. Genet.* 46, 652–656

176. Li, X. *et al.* (2019) Evaluation of differential qPE9-1/DEP1 protein domains in rice grain length and weight variation. *Rice (N Y)* 12, 5

177. Nishiyama, A. *et al.* (2018) Identification of heterotrimeric G protein γ subunit in rice plasma membrane. *Int. J. Mol. Sci.* 19, 3591

178. Mao, T. *et al.* (2021) Effects of grain shape genes editing on appearance quality of erect-panicle Geng/Japonica rice. *Rice (N Y)* 14, 74

179. Botella, J.R. (2012) Can heterotrimeric G proteins help to feed the world? *Trends Plant Sci.* 17, 563–568

180. Zhang, Y.M. *et al.* (2021) A rice QTL GS3.1 regulates grain size through metabolic-flux distribution between flavonoid and lignin metabolons without affecting stress tolerance. *Commun. Biol.* 4, 1171
181. Xie, P. *et al.* (2022) Natural variation in Glume Coverage 1 causes naked grains in sorghum. *Nat. Commun.* 13, 1068
182. Usman, B. *et al.* (2021) CRISPR/Cas9 guided mutagenesis of grain size 3 confers increased rice (*Oryza sativa* L.) grain length by regulating cysteine proteinase inhibitor and ubiquitin-related proteins. *Int. J. Mol. Sci.* 22
183. Pan, Y. *et al.* (2021) Natural variation in OsMKK3 contributes to grain size and chalkiness in rice. *Front. Plant Sci.* 12, 784037
184. Tao, Y. *et al.* (2020) Large-scale GWAS in sorghum reveals common genetic control of grain size among cereals. *Plant Biotechnol. J.* 18, 1093–1105
185. Zou, G. *et al.* (2020) Sorghum qTGW1a encodes a G-protein subunit and acts as a negative regulator of grain size. *J. Exp. Bot.* 71, 5389–5401
186. Zhang, H. *et al.* (2023) A Gy protein regulates alkaline sensitivity in crops. *Science* 379, eade8416
187. Wendt, T. *et al.* (2016) HvDep1 is a positive regulator of culm elongation and grain size in barley and impacts yield in an environment-dependent manner. *PLoS One* 11, e0168924
188. Vavilova, V. *et al.* (2017) DEP1 gene in wheat species with normal, compactoid and compact spikes. *BMC Genet.* 18, 106
189. Baye, W. *et al.* (2022) Genetic architecture of grain yield-related traits in sorghum and maize. *Int. J. Mol. Sci.* 23, 2405
190. Li, Q. *et al.* (2010) Cloning and characterization of a putative GS3 ortholog involved in maize kernel development. *Theor. Appl. Genet.* 120, 753–763