Methods of density estimation for pedestrians
moving without a spatial boundary

Pratik Mullick![0000—0003—-0133-0354] " C4cile
Appert-Rolland? [0000—0002—0985—6230]7 William H. Warrens3[0000—0003—4843—2315]
and Julien Pettré![0000—0003—1812—1436]

)

! Univ Rennes, INRIA, CNRS, IRISA, Rennes, France
2 Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
3 Department of Cognitive, Linguistic and Psychological Sciences, Brown University,
Providence, Rhode Island, USA

Abstract. For a crowd without any spatial boundaries, the methods
of density estimation is a wide area of research. In the existing litera-
ture, Voronoi-cell based density estimation is widely used. We focus on
the typical situation of crossing flows of pedestrians for which we use
an experimental data set. We explore several other methods of density
estimation for crossing flows in an open space. The density estimation
methods consisted of both Lagrangian and Eulerian approaches, as well
as the Voronoi-cell based method. To find the correct set of parameters
to define density by a method, we compare the estimations with that
obtained by Voronoi-cell based method. We do this by minimizing e;,

where,
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N denotes the number of pedestrians, pyc is the density estimated by
Voronoi method and p; is the density obtained by the method for which
we intend to find the correct set of parameters. We also use detrended
fluctuation analysis (DFA) to identify the method that provides the mea-
surement with least fluctuations.

Keywords: Crowd motion - Density estimation - Detrended fluctuation
analysis.

1 Introduction

In the context of self-organizing behaviour of human crowd motion, methods of
density estimation are an important topic of research. Existing literature consists
of a number of methods, however depending on the crowd situation a debate for
the ‘best’” method has not yet been resolved. Most of the research have been
focused on situations where the moving crowd is constrained within a physical
boundary. For such cases, density estimation using Voronoi tesselation [3,8,6,9,2]
and a grid-based measure called XT method [4,3] have been reported to work
well. However, there lacks a well defined method of density estimation for crowd
scenarios in an unbounded space.
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From the point of view of crowd management, understanding the fundamen-
tal relation between crowd density and speed, i.e. fundamental diagram (FD),
is extremely useful. Also for simulation based findings, FD acts as an essential
tool to evaluate the capacity of simulations to predict realistic pedestrian flow.
Thus, to construct a realistic FD, an effective method of density estimation is
required.

For our research, we consider crossing flows of pedestrians without any spatial
constraints, where two groups of people follow only visual instructions to cross
each other at specified values of the crossing angle . In the context of crossing
flows, most of the previous investigations have been concentrated on a = 90°
& 180°. We performed experimental trials for a wide range of values of o with
the goal to study crossing angle dependent properties. Currently, we want to
investigate how the density-speed relationship for crossing flows is affected by the
value of crossing angle. Along with the previously existing methods to evaluate
pedestrian density, we also introduce a new method in this contribution and
present a comparative analysis across various methods.

Experimental details: The data for crossing flows of pedestrians used for
this research were obtained by experiments [1,5] using live participants on cam-
pus of University of Rennes, France. Two different sets of volunteered partici-
pants (36 on Day 1, 38 on Day 2) were roughly divided into two groups (18 or
19 per group) and were instructed to walk through each other at seven different
crossing angles (0° to 180°, at 30° intervals). During each trial we recorded the
head trajectory of each pedestrian as a time series at a frequency of 120 Hz using
an infrared camera system. In Fig. 1 we show the traces of all the pedestrians
for a typical trial using filtered trajectories.
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Fig. 1. Figure shows traces of all the pedestrians involved in a typical trial whose
crossing angle is expected to be 60°. The dots represent the pedestrians and the tails
behind each dot are the distances travelled by the pedestrian in previous 1.25 sec.
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2 Methods for estimating pedestrian density p

2.1 Grid-based classical method

The classical method to estimate the density of pedestrians follows an Eulerian
approach. We divide the entire tracking region into square-shaped grids. For
dg to be the length of these grids, the classical density p, is given by p, =
n/ d927 where n is the number of pedestrians that are located inside the grid.
The density estimated for each grid is associated to all the pedestrians that are
within it. In Fig. 2(a) we show the time-sequence of classical density p, for a
typical pedestrian for several values of the grid size d4. For smaller grid sizes,
the density values keep switching between only a few levels - which signifies the
discrete nature of p,.
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Fig. 2. Variation of several definitions of density for a typical pedestrian as a function
of time. (a) Time sequences of p, for various values of grid size dgy. (b) Time sequences
of pxt for various values of cell size d, and time period T'. (c) Time sequences of px for
various values of bandwidth h.

2.2 XT method

The XT method was originally proposed by Edie [4]. Later, this method was
modified [3], which we have used to compute the pedestrian density. A square-
shaped cell ¢ of length d,, is considered at whose center a pedestrian p is located
at time t. There could be other pedestrians as well within this cell at time ¢. The
density pxi(c,t) estimated for cell ¢ at time ¢ is associated to the pedestrian p
and is given by

Z(Tend - Tbegin) (1)

d,2xT ’

where the summation is performed over all the pedestrians placed inside the cell
c at time ¢. Thegin denotes the maximum of the time when the pedestrian enters
the cell ¢ and the lower time boundary ¢ — 0.57', and Tenq denotes the minimum
of the time when the pedestrian exits the cell ¢ and the upper time boundary

Pxt (Cv t) =
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t+0.57. The time period T restricts the time window of the pedestrians during
which they are accounted for the computation. Previous investigations lack any
rigorous argument for the choice of d, and T that would produce a physically
realistic estimate of density experience by each pedestrian. Fig. 2(b) shows the
time sequence of the density py¢ for a typical pedestrian for several values of
d, and T'. The estimate of the density is seen to decrease with the increase of
both d, and T, as indicated by Eq. (1). The overall nature of py; shows less
smoothness which reflects the discrete nature of its definition.

2.3 Kernel method

For density estimation of pedestrians on a 2D surface we introduce a non-
parametric Lagrangian approach by using the kernel density estimator (KDE).
In the context of crowd density estimation, this method has never been used
to the best of our knowledge. KDE basically evaluates the probability density
function using kernels at each pedestrian position, from which we calculate the
physical density field of the entire tracking region by using appropriate normali-
sation. For X1, X5, X3...X v to be the collection of 2D coordinates for N agents,
the density function py estimated by the kernel density method at the spatial
position X is given by,

N
pr(X) = ZKh(X - Xy), (2)

where h is the bandwidth dictating the smoothness of the density estimation.
Among the several choices of the kernel function K, we use the bi-variate Gaus-
sian distribution function Kj, = i|h|’%e’%xT}‘flx. h is supposed to be a 2x2
matrix in 2D that would contain a vector of bandwidths for the two dimensions
to control the amount and orientation of smoothness. However we use a scalar
value as the bandwidth h that was taken to apply in both directions. From
the estimated function px(X), we finally estimate the density at each of the
pedestrian positions and associate the density to the corresponding pedestrian.
Fig. 2(c) shows the time sequences of the density py for a typical pedestrian for
several values of the bandwidth h.

2.4 Voronoi method

Density estimation of human crowd using Voronoi cells has been a very popular
method [3,8,6,2,9]. We construct the Voronoi diagram of the pedestrians at every
instant of the trial. To deal with the agents located near the edges of the groups
we used the modified convex hull of their positions as the bounding contour - a
method previously used in [6]. The modification on the actual convex hull takes
care of the angular adjustments for the agents located ‘on’ the convex hull and
the agents whose Voronoi cell extend beyond the convex hull. In Figure 3, we
show the Voronoi cells of the pedestrians bounded by their modified convex hull.
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For an agent with A,. as the area its Voronoi cell within the modified convex
hull, the density py. is given by

1
Pve = A (3)

Figure 3 also shows the density fields for each of the pedestrians estimated using
Eq. (3). In Figure 4 the variation of py. as a function of time has been plotted
for a typical pedestrian.
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Fig. 3. Voronoi cells of the pedestrians bounded by their modified convex hull (dashed
black line), for a typical trial of o = 90°. The solid black line denotes the actual convex
hull. The dots and triangles indicate the pedestrians from two groups, which move along
the z-axis and y-axis respectively. The color bar indicates the density experienced by
each pedestrian.

3 Optimising parameters: comparison with Voronoi
method

Density estimations using the classical method, XT method and kernel method
depends on the parameters which were key to their definitions. So the density
values depend on the choice of these defining parameters. However the density
estimation using Voronoi method does not require any such parameter except
for the geometrical shape to clip the construction. For the estimations pg, pxt
and py to be comparable with py, i.e., to produce a realistic estimate, we define
a numerical strategy to choose d, for pg, (dy,T') for py and h for px. For N
pedestrians in a trial, we compute the quantity ¢,

1
g = \/N %: (pve — pi)2, where i = g, xt or k, (4)
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Fig. 4. Time sequences of density obtained by various methods for the pedestrian that
was considered in Fig. 2. The parameters used to estimate pg, pxt and px were optimised
using Eq. 4.

as a time sequence with an interval of 1 sec and then compute the time-average.
Finally, we choose the value of dg, (d,,T) or h which minimises the average value
of € over 7 randomly chosen trials (one per each crossing angle). Our findings
from the optimization procedure are summarized in Table 1.

Table 1. Optimized parameters obtained by using Eq. 4.

Method |Quantity minimised| Obtained parameters
Classical g dy = 1.88m

XT Ext dy = 1.6m, T'= 1.6 sec
Kernel £k h = 2.56m

The variation of the quantities £ for each method as a function of their
defining parameters are shown in Figs. 5(a), 5(b) and 5(c). The corresponding
density fields obtained using the optimised parameters for all the pedestrians
from a typical trial (as in Fig. 3) are shown in Figs. 5(d), 5(e) and 5(f). In Fig.
4 we also show the time sequence of the densities estimated using the optimised
parameters for the typical pedestrian considered in Fig. 2.

4 Discussion and Conclusion

In this contribution we analyse four methods to estimate the density p of pedes-
trians moving without any spatial constraints. The classical method and the
XT method provide a discrete nature of density - a consequence of using square
shaped cells in both the cases. On the other hand, the densities obtained by the
Voronoi method and the kernel method appears to be relatively smooth (Fig.
4).
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Fig. 5. Optimisation of the parameters defining various methods of density estimation
and the density fields corresponding to the optimised parameters. (a) Variation of &g
with grid size d, for grid-based classical method. The minima occurs at d;, = 1.88m
and the corresponding density field is shown in (d). (b) Variation of ex¢ with cell size
d, and time period T for XT method. The minima occurs at d, = 1.6m, T' = 1.6 sec
and the corresponding density field is shown in (e). (c¢) Variation of e with bandwidth
h for kernel method. The minima occurs at A = 2.56 and the corresponding density
field is shown in (f). The trial for which the density fields are shown has a = 90° and
is the same one shown in Fig. 3.
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Fig. 6. Plot of log[F'(tn)] as a function of log(t,) to perform detrended fluctuation
analysis. The kernel method, staying lowest in the plot, indicates the method with
least fluctuations.

We performed detrended fluctuation analysis (DFA) [7] to numerically con-
clude which method provides the ‘smoothest’ estimate, i.e., with least fluctua-
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tions. DFA provides a categorical method to evaluate the degree of fluctuation
at each time scale in a time-series. For each density method, we calculate the
log of fluctuations log[F'(t,)] as a function of the log of time window log[t,,] for
all the agents and compute the mean. We compute the mean DFA curve by tak-
ing average over 7 randomly chosen trials (one per each crossing angle) and are
shown in Fig. 6. The results are as anticipated. The higher curves in the plot,
i.e., the ones for classical method and XT method, indicate the methods with
more fluctuations. Voronoi method and kernel method, staying low in the DFA
plot, signifies the methods with lower fluctuations.

Furthermore, we use one-way ANOVA to statistically compare the y-positions
of the mean curve for each method and found the results to be statistically
significant, F'(3,396), p < 1075, 2 = 0.164. Therefore, we can conclude that
the kernel method provides an estimate with the least fluctuations, as is also
evident from Fig. 6. In our following research, we are going to use these density
estimations to construct crossing angle dependent fundamental diagrams for
crossing flows of crowds.
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