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The theoretical description of the interplay between coherent evolution and chemical exchange, 
originally developed for magnetic resonance and later applied to other spectroscopic regimes, was 
derived under incorrect statistical assumptions. Correcting these assumptions provides access to the 
exact form of the chemical exchange interaction, which we derive within the Lindblad master equation 
formalism for generality. The exact form of the interaction is only different from the traditional 
equation by a scalar correction factor derived from higher-order interactions and regularly improves 
the radius of convergence of the solution (hence increasing the allowable step size in calculations) by 
up to an order of magnitude for no additional computational cost. 

 

I. Introduction 

Chemical exchange encompasses a broad scope of molecular 
dynamics that results in a change of the system Hamiltonian 
and may be interrogated spectroscopically. Techniques such 
as nuclear magnetic resonance (NMR), two-dimensional 
infrared spectroscopy (2DIR), and chirped pulse Fourier 
Transform microwave spectroscopy (CP-FTMS), are sensitive 
to exchange processes on vastly different timescales[1-10]. For 
example, these techniques have been used to study the in-situ 
structure and functionality of biomolecules, hydrogen 
bonding dynamics in liquids, and dynamic rotational 
isomerization. The theoretical treatment presented here is also 
applicable to discrete multisite exchange problems, such as 
atoms migrating in an optical trap array. Interpreting the 
experimental data from any of these techniques often requires 
the use of a physical model that unifies the coherent and 
chemical dynamics. 

The density matrix formalism is a convenient method 
to include statistical averaging in systems that evolve 
coherently and is ubiquitous in spectroscopy. Kaplan[11, 12] 
(1958) and Alexander[13, 14] (1962) were the first to describe 
the chemical exchange interaction within the density matrix 
formalism, motivating the form of the interaction from first 
principles to describe the NMR lineshape under exchange. In 
essence, they described exchange by the transformation 

𝜌ො → 𝑅෠𝜌ො𝑅෠ିଵ െ 𝜌ො, ሺ1ሻ

where 𝑅෠𝜌ො𝑅෠ିଵ was a similarity transform relating the density 
matrix before and after an exchange event. For this reason, 
exchange is often discussed as passing population between 

different “sites”, where each site has a unique molecular 
geometry and associated lifetime. Binsch[15] (1969) later 
unified Kaplan and Alexander’s theory of chemical exchange 
with Redfield’s relaxation theory[16] (1957) to fully describe 
the NMR lineshape. By the advent of coherent optical 
spectroscopies, the traditional form of the chemical exchange 
interaction had been supported by decades of experimental 
evidence from the magnetic resonance community and was 
thus adopted by the ultrafast spectroscopy community.  

Recently, the theoretical underpinnings of Binsch’s 
unification of quantum dynamics and chemical exchange were 
found to be flawed, because it motivated that the chemical 
exchange interaction was simply an extension of the Redfield’s 

Figure 1 | Manifestations of exchange. A. Chemical exchange 
often results in the rearrangement of molecules, which may be
both  intramolecular  (shown here) or  intermolecular.  1H nuclei 
are  colored  to  distinguish  configurations.  B.  Molecular 
rearrangement  is  not  necessarily  required  if  coherent
interactions  are  site  dependent  and  the  species  interchanges
between sites 1 and 2. 
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relaxation[17]. Thermalization in liquid state magnetic 
resonance is generated by modulation of orientationally-
dependent interactions during molecular dynamics on the fs-
ps timescale. Fourier components of this modulation on the 
order of NMR transitions then induces transitions that drive 
the system towards equilibrium. However, the molecular 
processes that are described by Redfield’s theory and chemical 
exchange dynamics are different. While molecular tumbling is 
continuous, chemical exchange is a fundamentally 
discontinuous process, as the time required for molecular 
rearrangement is often orders of magnitude faster than the 
lifetime in any particular site. These two cases require different 
statistical assumptions that directly impact the formulation of 
the chemical exchange interaction. 

Recently, we introduced an exact dissipative master 
equation[17] (DMEx) for chemical exchange that was 
rigorously derived as a closed form solution of the Dyson 
expansion. This work agreed with Binsch’s treatment, under 
more justified assumptions, but only to lowest order in 
perturbation theory. It was derived using projection or 
pseudorotation superoperators, which are both common in 
magnetic resonance. The resulting differential equation was 
proportional to a traditional exchange term by a scalar factor, 
which was obtained by contraction of the higher order terms 
of the Dyson series. Including this correction improves the 
convergence radius of the series by up to an order of 
magnitude for no additional computational cost. However, 
the formulation using projection and pseudorotation 
superoperators restricts the generality of the formalism. 

Here, we introduce a generalization of the exact 
Dissipative Master equation formalism and extend the 
derivation to encompass both the cases of an arbitrary 
exchange pathway as well as the case where the exchange 
pathway has permutation group symmetry. For compatibility, 
we shall treat exchange as a Lindblad[18-20] equation (also 
referred to as the Gorini-Kossakowski-Sudarshan-Lindblad 
equation), as it is the most general Markovian master equation. 
We will show that an exact Lindblad master equation (LMEx) 
can be derived by continuing the traditional derivation to 
infinite-order in the Dyson series. Within this formalism, we 
will show that the chemical exchange interaction in its most 
general form can be written as: 

ℒመ𝜌ො ൌ
1
𝜏

൬𝐴መ𝜌ො𝐴መற െ
1
2

൛𝐴መ𝐴መற, 𝜌ොൟ൰ exp ൬
െ𝑇

𝜏
൰ 

This is similar to eq. 1, where 𝐴መ is a Hermitian operator 
analogous to 𝑅෠ and imposes exchange on the system at a rate 
1/𝜏. The significant difference from this equation and the 
previous formalism for chemical exchange is the exponential 

factor expሺെ𝑇/𝜏ሻ where 𝑇 is the time over which the master 
equation is averaged (usually, the time step in a calculation). 
This factor is derived as the closed form solution of the Dyson 
series and has the practical implication of increasing the radius 
of convergence up to an order of magnitude over the 
traditional master equation at no additional computational 
cost. 

 

II. Derivation of a generalized Lindblad master 
equation for chemical exchange 

We will show that the exact form of the chemical exchange 
interaction may be derived ab initio using a minimal number of 
foundational assumptions. To begin, we will establish the 
assumptions to be used throughout the derivation: 

(1) Exchange is a Hermitian, multiparticle coupling, and 
therefore has a corresponding Hamiltonian ℋ෡ଵሺ𝑡ሻ. 

(2) The system is Markovian, permitting us to make the 
substitution 𝜌ොሺ𝑡௡ሻ → 𝜌ොሺ𝑡ሻ, where 𝑡 ൐ 𝑡௡ by time-
ordering. 

(3) To satisfy the Hermiticity requirement, the system is at a 
steady state. As such, the dynamics at the level of the 
ensemble are assumed to be stationary. 

(4) The time required for molecular rearrangement is much 
faster than any other interaction in the system and may 
thus be assumed to be instantaneous. 

(5) We assume that any exchange process is not correlated to 
any other process. To satisfy this requirement, the basis 
set of exchange processes are transformed such that they 
are orthogonal, thus automatically satisfying this 
requirement. 

It is important to note that these assumptions are 
identical to those established for the DMEx. The substantial 
difference between this treatment and the DMEx is that the 
form of the exchange Lindbladian is determined a priori, as 
opposed to the exchange superoperator, which is less 
stringently defined. We will show that the exchange 
Lindbladian spans a well-defined composite Hilbert-Fock 
space and only acts on the Fock state, whereas the exchange 
superoperator acts directly on the Hilbert state of the system. 
As such, the DMEx and Lindblad treatments of exchange are 
complimentary, and are suited for different purposes. Direct 
action on the Hilbert-space is ideal for cases when molecules 
dissociate and the dimensionality of the Hilbert-space 
changes. The action of the Lindbladian on the Fock-space 
makes this formulation significantly more general. 

At this juncture, we may begin deriving the Lindblad 
master equation for chemical exchange, which treats the entire 
system quantum mechanically before reducing the density 
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matrix. Under assumption (1), that exchange is Hermitian and 
has a Hamiltonian, we may define the system Hamiltonian as: 

ℋ෡ ሺ𝑡ሻ ൌ ℋ෡଴ ൅ ℋ෡ଵሺ𝑡ሻ ሺ2ሻ

We have partitioned this into a static component, ℋ෡଴ that 
contains the coherent interactions, and a stochastically 
modulated component ℋ෡ଵሺ𝑡ሻ describing the exchange 
contribution to the Hamiltonian. Using this within the 
Liouville-von Neumann equation gives (ℏ ൌ 1): 

𝜕
𝜕𝑡

𝜌ොሺ𝑡ሻ ൌ െ𝑖ൣℋ෡଴ ൅ ℋ෡ଵሺ𝑡ሻ, 𝜌ොሺ𝑡ሻ൧ ሺ3ሻ

This may be simplified by transforming into the interaction 
representation (dropping hats to denote frame) as: 

𝜕
𝜕𝑡

𝜌ሺ𝑡ሻ ൌ െ𝑖ሾℋଵሺ𝑡ሻ, 𝜌ሺ𝑡ሻሿ ሺ4ሻ

Formally integrating this result gives: 

𝜌ሺ𝑡ሻ ൌ 𝜌଴ െ 𝑖 න 𝑑𝑡ᇱ
௧

଴
ሾℋଵሺ𝑡ᇱሻ, 𝜌ሺ𝑡ᇱሻሿ ሺ5ሻ

Equation 5 may be iteratively substituted into eq. 4 to give 
the terms of the Dyson series, where the first two terms are: 

𝜕
𝜕𝑡

𝜌ሺଵሻ ൌ െ𝑖ሾℋଵሺ𝑡ሻ, 𝜌ሺ𝑡ሻሿ  ሺ6ሻ 

𝜕
𝜕𝑡

𝜌ሺଶሻ ൌ െ𝒯ሬ⃗ න 𝑑𝑡ଵ  ቂℋଵሺ𝑡ሻ, ൣℋଵ
றሺ𝑡ଵሻ, 𝜌ሺ𝑡ଵሻ൧ቃ

௧

଴
  ሺ7ሻ 

𝒯ሬ⃗  is the Dyson time-ordering operator that enforces 𝑡 ൐ 𝑡ଵ. 
Note that we have indicated the term of the Dyson series by 

𝜌ሺ௡ሻ and have dropped the formal time dependence on the 
left-hand side for brevity. Before continuing, we introduce an 
operator expansion of ℋଵሺ𝑡ሻ for chemical exchange (Fig. 2) 
as the tensor product between an operator 𝐴௞ that acts on the 
Fock space of the system to generate exchange and the 
stochastically modulated operator 𝐹௞ that describes the 
molecular dynamics: 

ℋଵሺ𝑡ሻ ൌ ෍ 𝐴௞ሺ𝑡ሻ ⊗ 𝐹௞ሺ𝑡ሻ
௞

 ሺ8ሻ

Ensemble averaging only affects the 𝐹௞ operators, as they 
carry the stochastic modulation. In accordance with the 
assumption that the ensemble dynamics are stationary, we 

define the operator 𝐴መ௞ in terms of Fock-space creation (𝑎ො௞
ற) 

and annihilation (𝑎ො௞) operators that generate transitions 
between two sites connected by an exchange process as: 

𝐴መ௞ ൌ 𝑎ො௞ ൅ 𝑎ො௞
ற ሺ9ሻ

The creation and annihilation operators are subjected to 
𝑎ො௞𝑎ො௞ ൌ 0 such that double occupation in a site never occurs, 
and as such have SU(2) features. For instance, 𝐴መ௞ is similar to 
the Pauli matrix 𝜎ො௫ . As 𝐹෠௞ሺ𝑡ሻ is stochastic and varies for each 
member of the ensemble, we will only be able to define 
statistical metrics of this operator over the entire ensemble. 

The Markovian assumption (2) permits the 
substitution 𝜌ሺ𝑡ଵሻ ൎ 𝜌ሺ𝑡ሻ in each term of the Dyson series. 
Furthermore, the stationary assumption (3) has the 
ramification that ⟨𝐹௞ሺ𝑡ሻ⟩ ൌ 0, as this term would generate 
drift in the stochastic motion. As such, the leading observable 
term is the second order term from the expansion. The only 
time-parameter of importance is the difference between 𝑡 and 
𝑡ଵ, and can use the change of variables 𝑡 െ 𝑡ଵ ൌ 𝜏 to give: 

𝜕
𝜕𝑡

𝜌ሺଶሻ ൌ 𝒯ሬ⃗ ෍ න 𝑑𝜏 ቈ
𝐴௝ሺ𝜏ሻ ⊗ 𝐹௝ሺ𝜏ሻ,

ൣ𝐴መ௞
ற ⊗ 𝐹෠௞

ற, 𝜌൧
቉

଴

௧௝௞

 ሺ10ሻ

Note that the limits of integration are swapped with this 
transformation and that the differential transforms as 𝑑𝑡ଵ →
െ𝑑𝜏. In doing this, the operators 𝐴መ௞ and 𝐹෠௞ lose time-
dependence and thus can be written in the Schrödinger 
representation (with hats). At this juncture, it is pertinent to 
isolate the degrees of freedom in 𝜌 corresponding to the 
stochastic operators, which is delineated as 𝜌஻. Inverting the 
limits of integration, expanding the double commutator, and 

averaging over the stochastic components gives (𝒯ሬ⃗  is 
assumed): 
 
 

Figure 2 | Formulation of  the exchange Hamiltonian. For  the 
ensemble  to  be  stationary,  two  systems  (A  and  B)  must
simultaneously  exchange  between  sites  1  and  2.  As  such,  we

impose the pairwise action of the 𝑎ො and 𝑎ොற, which leads to the 

definition  of  𝐴መ.  The  operator  𝐹෠ሺ𝑡ሻ  describes  the  molecular 
trajectories of each dynamic process. 
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𝜕
𝜕𝑡

𝜌ሺଶሻ ൌ ෍ න 𝑑𝜏 ቆ
𝐴௝ሺ𝜏ሻ𝜌𝐴መ௞

ற

െ𝐴௝ሺ𝜏ሻ𝐴መ௞
ற𝜌

ቇ ൻ𝐹௝ሺ𝜏ሻ𝐹෠௞
ற𝜌஻ൿ

௧

଴௝௞

 

൅ න 𝑑𝜏 ቆ
𝐴መ௞

ற𝜌𝐴௝ሺ𝜏ሻ

െ𝜌𝐴መ௞
ற𝐴௝ሺ𝜏ሻ

ቇ ൻ𝐹෠௞
ற𝐹௝ሺ𝜏ሻ𝜌஻ൿ

௧

଴
 

ሺ11ሻ

Here, the angle brackets indicate the partial trace over the 
stochastic degrees of freedom. We shall assume that at the 
level of the ensemble, the stochastically distributed exchange 
events are independent of one another and uniformly 
distributed, which permits us to assume that exchange is a 
Gaussian process. Doing so permits us to rearrange the 
correlation function under Isserlis’ theorem as: 

ൻ𝐹௝ሺ𝜏ሻ𝐹෠௞
ற𝜌஻ൿ ൌ ൻ𝐹௝ሺ𝜏ሻ𝐹෠௞

றൿ⟨𝜌஻⟩ 

൅ൻ𝐹௝ሺ𝜏ሻ𝜌஻ൿൻ𝐹෠௞
றൿ ൅ ൻ𝐹෠௞

ற𝜌஻ൿൻ𝐹௝ሺ𝜏ሻൿ 
ሺ12ሻ

Due to the stationary assumption, only the first term survives 
averaging. Furthermore, ⟨𝜌஻⟩ ൌ 𝐸෠ (the identity matrix) by 
definition. It is now pertinent to introduce the form of the 
correlation functions. For chemical exchange, the correlation 

function ൻ𝐹௝ሺ𝜏ሻ𝐹෠௞
றൿ dictates both the rate of exchange as well 

as the jump time between sites, which under assumption (4) is 
instantaneous, or 𝛿-correlated in time. Finally, our stipulation 
that exchange processes are only self-correlated imposes 
quadratic action of any term in the exchange Hamiltonian, 
which is required to exchange population between sites. As 
such, we may write the correlation functions as: 

ൻ𝐹௝ሺ𝜏ሻ𝐹෠௞
றൿ ൌ

𝛿ሺ𝜏ሻ

𝜏௞
𝛿௝௞ ሺ13ሻ

𝜏௞ is the characteristic lifetime in the two configurations 
connected by the process 𝐹෠௞. Equations 12 and 13 permit us 
to extend the integration limits and rewrite eq. 9 as: 

𝜕
𝜕𝑡

𝜌ሺଶሻ ൌ ෍
1
2

න 𝑑𝜏 ቆ
𝐴௞ሺ𝜏ሻ𝜌𝐴መ௞

ற

െ𝐴௞ሺ𝜏ሻ𝐴መ௞
ற𝜌

ቇ
𝛿ሺ𝜏ሻ

𝜏௞

ஶ

ିஶ௞

 

൅
1
2

න 𝑑𝜏 ቆ
𝐴መ௞

ற𝜌𝐴௞ሺ𝜏ሻ

െ𝜌𝐴መ௞
ற𝐴௞ሺ𝜏ሻ

ቇ
𝛿ሺ𝜏ሻ

𝜏௞

ஶ

ିஶ
 

ሺ14ሻ

Note that we have acquired a factor of 1/2 by also taking the 
lower integration limit to െ∞ such that the 𝛿ሺ𝜏ሻ function is 
real-valued. Performing integration greatly simplifies the 
expression to: 

𝜕
𝜕𝑡

𝜌ሺଶሻ ൌ ෍
1

2𝜏௞
ቆ

𝐴መ௞𝜌𝐴መ௞
ற ൅ 𝐴መ௞

ற𝜌𝐴መ௞

െ𝐴መ௞𝐴መ௞
ற𝜌 ൅ 𝜌𝐴መ௞

ற𝐴መ௞
ቇ

௞

 ሺ15ሻ

Remembering that 𝐴መ௞ are Hermitian, we may cast this into the 
conventional Lindblad form, using ൛𝐴መ, 𝐵෠ൟ ൌ 𝐴መ𝐵෠ ൅ 𝐵෠𝐴መ as the 
notation for the anticommutator: 

𝜕
𝜕𝑡

𝜌ሺଶሻ ൌ ෍
1
𝜏௞

൬𝐴መ௞𝜌𝐴መ௞
ற െ

1
2

൛𝐴መ௞𝐴መ௞
ற, 𝜌ൟ൰

௞

 ሺ16ሻ

This is the traditional master equation for chemical exchange 

written in Lindblad form. The term 𝐴መ௞𝜌𝐴መ௞
ற  generates the 

similarity transform relating the two sites and the term 
proportional to the anticommutator simply reduces to 𝜌ො when 
the 𝐴መ௞ operators interchange populations between two of the 
Fock states. The entire equation is similar to the form of the 
chemical exchange interaction originally motivated by Kaplan 
and Alexander. This equation can be recovered if one begins 
from the traditional form of the chemical exchange 
interaction[21], however the benefit of deriving the result ab 
initio is that the framework is established to calculate higher-
order interactions. It will be advantageous write eq. 16 as 

𝜕
𝜕𝑡

𝜌ሺଶሻ ൌ ෍
ℒመ௞𝜌
𝜏௞௞

, ሺ17ሻ

where ℒመ௞ is the Lindbladian dissipator corresponding to the 
term in parentheses. For brevity, we will call this the second-
order Lindblad master equation (LME2), which is the 
exchange analog of the conventional Lindblad master 
equation derived for open quantum systems. 

Traditionally, the chemical exchange interaction is 
assumed to be small relative to all other interactions, which 
allows the Dyson series to be truncated to its leading term. 
While higher order chemical exchange interactions become 
irrelevant if eq. 14 can be analytically integrated, it is rarely 
possible to accomplish this in realistic systems. Instead, it is 
beneficial to think of this result in terms of a numerical 
simulation method. The LME2 will no longer be 
representative of the physical system as soon as the integration 
grid approaches a spacing where two or more exchange events 
become possible. As such, convergence of the simulation 
requires integration grids that are finely spaced so to prevent 
multiple exchange events. 

We may continue the derivation of higher order 
chemical exchange interactions by substituting eq. 8 into the 
fourth-order term of the Dyson series, noting that the 
stationary assumption only permits even-order terms to be 
non-zero: 
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𝜕
𝜕𝑡

𝜌ሺସሻ

ൌ 𝒯ሬ⃗ ෍ ම 𝑑𝑡௡

௧

଴

ൻ𝐹௝ሺ𝑡ሻ𝐹௞
றሺ𝑡ଵሻ𝐹௟ሺ𝑡ଶሻ𝐹௠

றሺ𝑡ଷሻ𝜌஻ൿ
௝௞௟௠

 

ൈ ቈ𝐴௝ሺ𝑡ሻ, ൤𝐴௞
றሺ𝑡ଵሻ, ቂ𝐴௟ሺ𝑡ଶሻ, ൣ𝐴௠

ற ሺ𝑡ଷሻ, 𝜌൧ቃ൨቉ 

ሺ18ሻ

The restriction that exchange processes are only self-
correlated processes permits arbitrary re-indexing of the 
operators, allowing the four-point correlator to be factored 
out of the commutators and averaged. We have used: 

𝒯ሬ⃗ ම 𝑑𝑡௡

௧

଴

⋯ ൌ 𝒯ሬ⃗ න 𝑑𝑡ଵ

௧

଴
න 𝑑𝑡ଶ

௧భ

଴
න 𝑑𝑡ଷ

௧మ

଴
⋯ ሺ19ሻ

to represent the time-ordered integral. Using Isserlis’ theorem, 
we may also note that the only terms that will be non-zero will 
be those where 𝜌஻ is averaged separately from the stochastic 
operators, similar to eq. 12. This allows us to write the four-
point correlation function as: 

ൻ𝐹௝ሺ𝑡ሻ𝐹௞
றሺ𝑡ଵሻ𝐹௟ሺ𝑡ଶሻ𝐹௠

றሺ𝑡ଷሻ𝜌஻ൿ 

ൌ ൻ𝐹௝ሺ𝑡ሻ𝐹௞
றሺ𝑡ଵሻൿൻ𝐹௟ሺ𝑡ଶሻ𝐹௠

றሺ𝑡ଷሻൿ 

൅ൻ𝐹௝ሺ𝑡ሻ𝐹௟ሺ𝑡ଶሻൿൻ𝐹௞
றሺ𝑡ଵሻ𝐹௠

றሺ𝑡ଷሻൿ 

൅ൻ𝐹௝ሺ𝑡ሻ𝐹௠
றሺ𝑡ଷሻൿൻ𝐹௞

றሺ𝑡ଵሻ𝐹௟ሺ𝑡ଶሻൿ 

ሺ20ሻ

Equation 13 allows us to define these quantities as: 

ൻ𝐹௝ሺ𝑡ሻ𝐹௞
றሺ𝑡ଵሻ𝐹௟ሺ𝑡ଶሻ𝐹௠

றሺ𝑡ଷሻ𝜌஻ൿ 

ൌ
1
𝜏௞

ଶ ቌ
𝛿ሺ𝑡 െ 𝑡ଵሻ𝛿ሺ𝑡ଶ െ 𝑡ଷሻ ൅
𝛿ሺ𝑡 െ 𝑡ଶሻ𝛿ሺ𝑡ଵ െ 𝑡ଷሻ ൅
𝛿ሺ𝑡 െ 𝑡ଷሻ𝛿ሺ𝑡ଵ െ 𝑡ଶሻ ൅

ቍ 𝛿௝௞௟௠ 

ൌ
3
𝜏௞

ଶ 𝛿ሺ𝑡 െ 𝑡ଵሻ𝛿ሺ𝑡ଶ െ 𝑡ଷሻ𝛿௝௞௟௠ 

ሺ21ሻ

The second equality is permitted as the only time at which eq. 
21 is non-zero is when all time variables are identical, allowing 
us to freely re-index the time-variables. We have employed the 
self-correlated assumption (5) to introduce 𝛿௝௞௟௠. 

The time-ordered integral will become cumbersome 
for successively higher-order terms, but can be simplified by 
uncoupling the integrals. This is accomplished by dividing the 
resulting equation where the integrals are uncoupled by the 
number of degenerate time orderings. Generally, for the 𝑛th-
order term of the Dyson series, the time-ordering degeneracy 
will be ሺ𝑛 െ 1ሻ! upon integration. We will again use the 
stationary assumption to make the change of variables 𝜏ଵ ൌ
𝑡 െ 𝑡ଵ and 𝜏ଶ ൌ 𝑡ଶ െ 𝑡ଷ. This, along with eq. 21, let us rewrite 
eq. 18 as: 

 

 

 

𝜕
𝜕𝑡

𝜌ሺସሻ ൌ ෍
1
𝜏௞

ଶ

3
3!

ቆන 𝑑𝜏ଵ

଴

௧
൥𝐴௞ሺ𝜏ଵሻ, ቈ𝐴መ௞

ற, න 𝑑𝜏ଶ

଴

௧
ቂ𝐴௞ሺ𝜏ଶሻ, ൣ𝐴መ௞

ற, 𝜌൧ቃ 𝛿ሺ𝜏ଶሻ቉൩ 𝛿ሺ𝜏ଵሻቇ
௞

න 𝑑𝜏ଶ

௧

଴
 ሺ22ሻ 

The limits of integration may be reversed for two of the integrals within the parentheses without obtaining a sign-change, and 
we will choose to extend the limits of integration for these two integrals to േ∞, each time acquiring a factor of ½. The final 
integral arises from the 𝑑𝑡ଶ integral after the change of variables, and can be effectively factored out of the commutators. For 
clarity, we will simply change the upper limit of integration from 𝑡 → 𝑇, as this limit effectively denotes the time over which the 
equation of motion is averaged. This gives: 

𝜕
𝜕𝑡

𝜌ሺସሻ ൌ
1
4

෍
1
𝜏௞

ଶ

3
3!

ቆන 𝑑𝜏ଵ

ஶ

ିஶ
൥𝐴௞ሺ𝜏ଵሻ, ቈ𝐴መ௞

ற, න 𝑑𝜏ଶ

ஶ

ିஶ
ቂ𝐴௞ሺ𝜏ଶሻ, ൣ𝐴መ௞

ற, 𝜌൧ቃ 𝛿ሺ𝜏ଶሻ቉൩ 𝛿ሺ𝜏ଵሻቇ
௞

න 𝑑𝜏ଶ

்

଴
 ሺ23ሻ 

Performing integration and simplifying yields: 

𝜕
𝜕𝑡

𝜌ሺସሻ ൌ ෍
1
4

ቈ𝐴መ௞, ൤𝐴መ௞
ற, ቂ𝐴መ௞, ൣ𝐴መ௞

ற, 𝜌൧ቃ൨቉
𝑇

2𝜏௞
ଶ

௞

 ሺ24ሻ

We must now make a distinction on the type of 
system being studied (Fig. 3), in particular to identify if the 
exchange processes are distinguishable or indistinguishable. 
We will restrict ourselves to delineate these cases based on the 
time-scale over which the interaction is expected to be 
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modeled. For instance, it is routine to measure magnetic 
resonance signals over several seconds, so only interactions 
that evolve over this time period can lead to an inequivalence 
between sites and be classified as a distinguishable process. 
For distinguishable exchange processes where 𝐹෠௝ ് 𝐹෠௞, the 
𝛿௝௞௟௠ function holds and eq. 24 may be written as: 

𝜕
𝜕𝑡

𝜌ሺସሻ ൌ ෍ ቆ
ℒመ௞

𝜏௞
ቇ

ଶ

𝜌
𝑇
2

௞

 ሺ25ሻ

However, when the exchange processes are indistinguishable, 
such that 𝐹෠௝ ൌ 𝐹෠௞ after re-indexing, the 𝛿௝௞௟௠ function must 
be bifurcated into 𝛿௝௞𝛿௟௠, which permits different exchange 

processes 𝐴መ௝ and 𝐴መ௞ to be coupled. Additionally, 𝜏௝ ൌ 𝜏௞ 

when 𝐹෠௝ ൌ 𝐹෠௞, which will simply be called 𝜏 for simplicity. As 
such, fourth-order term for the case of indistinguishable 
molecular processes becomes: 

𝜕
𝜕𝑡

𝜌ሺସሻ ൌ ෍
1
4

ቈ𝐴መ௝, ൤𝐴መ௝
ற, ቂ𝐴መ௞, ൣ𝐴መ௞

ற, 𝜌൧ቃ൨቉
𝑇

2𝜏ଶ
௝௞

 

𝜕
𝜕𝑡

𝜌ሺସሻ ൌ ൭෍
ℒመ௞

𝜏௞௞

൱

ଶ

𝜌
𝑇
2

 

ሺ26ሻ

Note that the 𝑗-index can be removed by raising the 
summation to a power. 

Notice that in both eq. 25 and 26, the dissipator is 
proportional to the square of the Lindbladian, indicating that 
the fourth-order term encapsulates the probability of two 
exchange events. Furthermore, this term will naturally 
disappear as the step size 𝑇 → 𝑑𝑡, because only one exchange 
event will be probable in the differential limit.  

Following the same procedure as in deriving the 
fourth-order interactions, we may recast the entire Dyson 
expansion in terms of the exchange Lindbladian, which in the 
case of distinguishable exchange processes is 

𝜕
𝜕𝑡

𝜌 ൌ ൝෍ ෍ ቆ
ℒመ௞

𝜏௞
ቇ

௡ାଵ

௞

1
𝑛!

൬
𝑇
2

൰
௡ஶ

௡ୀ଴

ൡ 𝜌, ሺ27ሻ

and similarly for the case of distinguishable ensembles:  

𝜕
𝜕𝑡

𝜌 ൌ ቐ෍ ൭෍
ℒመ௞

𝜏௞௞

൱

௡ାଵ
1
𝑛!

൬
𝑇
2

൰
௡ஶ

௡ୀ଴

ቑ 𝜌 ሺ28ሻ

In either of these cases, the most challenging aspect of 
evaluating these equations is calculating the infinite powers of 
the Lindbladian, and is typically why perturbation theory is 
only extended to the few lowest-order terms. However, we 
previously noted when deriving the DMEx that these 
equations may be dramatically simplified if the dissipator, in 
this case the Lindbladian, obeys the property 

ℒመ௡ାଵ𝜌 ൌ ℒመ௡ℒመ𝜌 ൌ 𝛾௡ℒመ𝜌, ሺ29ሻ

which states that ℒመ𝜌 is an eigenfunction of ℒመ௡ with an 
eigenvalue 𝛾௡, which is a scalar quantity. For indistinguishable 
exchange processes, ℒመ is the 𝑘-sum of individual Lindbladians 
and for distinguishable exchange processes, ℒመ ൌ ℒመ௞ . In that 
case, all higher order Lindbladians may be written as being 
proportional to the lowest order term. If eq. 29 is obeyed, 
then the infinite Lindblad series for exchange is given by: 

𝜕
𝜕𝑡

𝜌 ൌ ൝෍
ℒመ௞

𝜏௞௞

෍
𝛾௡

𝑛!
൬

𝑇
2𝜏௞

൰
௡ஶ

௡ୀ଴

ൡ 𝜌, ሺ30ሻ

This result is identical for both indistinguishable and 
distinguishable exchange processes. Now, the infinite sum is 

Figure  3  |  Distinguishable  and  indistinguishable  exchange 
processes on methylamine  isotopologues. The ∗  indicates the
position  of  exchanged  atoms.  A.  In  CH2DNH2,  exchange 
processes  1  and  2  are  distinguishable  from  process  3  as  the
bottom position of the methyl group is distinct from the upper
positions,  whereas  the  upper  positions  are  equivalent.  B.  In 
CH3NH2,  all  of  the  exchange  processes  result  in  the  same
molecular conformation and are indistinguishable.  
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proportional only to scalar quantities, and all higher order 
Lindbladian dissipators are simply proportional to ℒመ௞ . We 
define the infinite sum as the exchange generating function 

෍
𝛾௡

𝑛!
൬

𝑇
2𝜏௞

൰
௡ஶ

௡ୀ଴

ൌ Γ ൬
𝑇

2𝜏௞
൰, ሺ31ሻ

which relates all higher order chemical exchange interactions 
to the lowest-order interaction. Using this definition, we may 
write the exact Lindblad master equation for chemical 
exchange as: 

𝜕
𝜕𝑡

𝜌 ൌ ෍
ℒመ௞𝜌
𝜏௞௞

Γ ൬
𝑇

2𝜏௞
൰ ሺ32ሻ

The only difference between the LMEx and the LME2 (c.f. 
eq. 17) is the exchange generating function, which is a scalar 
correction factor. In following, we will examine the systems 
that satisfy eq. 29. 

 

III. Generating exact Lindbladians 

To construct an exact Lindblad master equation, one must 
determine the form of the scalar exchange generating function 
Γሺ𝑇/2𝜏௞ሻ. To do this, the condition set by eq. 29 must be 
met and the series of 𝛾௡ eigenvalues must be known. In the 
case of exchange between distinguishable exchange processes, 
one can evaluate eq. 29 directly on an arbitrary Fock space 
(c.f. eq. 37) and find that the series 𝛾௡ takes the form 

𝛾௡ ൌ ሺെ2ሻ௡, ሺ33ሻ

which when used in eq. 31 gives: 

Γ ൬
𝑇

2𝜏௞
൰ ൌ ෍

ሺെ2ሻ௡

𝑛!
൬

𝑇
2𝜏௞

൰
௡ஶ

௡ୀ଴

ൌ exp ൬
െ𝑇
𝜏௞

൰ ሺ34ሻ

Using this result in eq. 30 gives the LMEx for distinguishable 
exchange processes: 

𝜕
𝜕𝑡

𝜌 ൌ ෍
ℒመ௞𝜌
𝜏௞௞

exp ൬
െ𝑇
𝜏௞

൰ ሺ35ሻ

Note that the exchange generating function is an elementary, 
scalar function that is included at no additional computational 
cost. Casting the system in a basis where the set of exchange 
processes are uncorrelated effectively casts the entire system 
as a sum of two-site exchange processes (Fig. 4). In this case, 
one could readily motivate the form of the exchange 
generating function by accounting for the probability for any 
𝑛-exchange event and using that to scale the likelihood of the 
system appearing to evolve as ℒመ𝜌. 

The case of indistinguishable exchange processes is 
slightly more complicated to derive the exchange generating 
function, as all transitions are coupled together. The different 
molecular conformations of these systems are often 
permutational isomers, and thus the operators defining 
transitions between the conformations may be described by 
permutation groups. The order of the group corresponds to 
the number of configurations in the system. In this case, 
system geometries that satisfy eq. 29 for the combinations of 
transitions that form different permutation groups of order 𝑓, 
which can be done rapidly as it only requires the Fock-space. 
To validate eq. 29, one need only check to see if ℒଶ𝜌 ∝ ℒ𝜌, 
which immediately satisfy eq. 29 for all powers of the 
Lindbladian. For example, the set of operators ൛𝐴መ௞ൟ that 
permit exchange between three configurations are: 

൝൭
0 1 0
1 0 0
0 0 1

൱ , ൭
1 0 0
0 0 1
0 1 0

൱ , ൭
0 0 1
0 1 0
1 0 0

൱ൡ ሺ36ሻ

These operators correspond to the Fock-space, which is only 
ever populated on the diagonal elements of the space. Using 
an initial arbitrary Fock density matrix of 

𝜌ො ൌ ൭
𝑎 0 0
0 𝑏 0
0 0 𝑐

൱, ሺ37ሻ

one can evaluate the expression 

෍ ℒመ௜ ቌ෍ ℒመ௝𝜌ො
௝∈௞

ቍ
௜∈௞

ൌ 𝛾ଵ ቌ෍ ℒመ௝𝜌ො
௝∈௞

ቍ ሺ38ሻ

for when 𝛾ଵ is a constant, which relates the linear (ℒመ) and 
quadratic (ℒመଶ) Lindbladians. The indices 𝑖 ∈ 𝑘 and 𝑗 ∈ 𝑘 span 
permutations of the exchange operators that connect each 

Figure  4 |  The  exchange  generating  function  accounts  for 
higher‐moments of chemical exchange. Over  the period 𝑑𝑡, a 
molecule only has the opportunity to undergo a single exchange
event. However, multiple exchange events are probable over a
finite period of time 𝑇, which are accounted for by the exchange 
generating  function. As 𝑇  increases,  the probability  of  higher‐
order  exchange  terms  appearing  increases.  Hence,  as 𝑇 → ∞, 
the probability of the system appearing to undergo an exchange

event  of  the  form ℒመ𝜌,  the  leading  order  term,  asymptotically 
approaches zero. 
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configuration and, importantly, 𝑖 and 𝑗 must span the same 
permutational set of operators (ሼ𝑖ሽ ൌ ሼ𝑗ሽ). The groups that 
satisfy eq. 29 are ones where every configuration has a 
transition to every other configuration. In general, these 
groups can be recast into a pseudorotation group defined by 
a forward (𝑅෠) and backward (𝑅෠ିଵ) rotation of the Hilbert 
space, and are Abelian groups. In this case, the series 𝛾௡ for a 
permutation group of order ℎ with 𝑁 ൌ ሺℎଶ െ ℎሻ/2 
transitions is 

𝛾௡ ൌ ൬
െℎ
𝑁

൰
௡

, ሺ39ሻ 

which makes the LMEx for these groups: 

𝜕
𝜕𝑡

𝜌 ൌ
1
𝑁

෍
ℒመ௞𝜌

𝜏
exp ൬

െℎ𝑇
2𝑁𝜏

൰

ே

௞

 ሺ40ሻ

As the rates for indistinguishable processes will be identical, 
we replace 𝜏௞ → 𝜏. Each of the distinguishable pathways of 
the previous case can simply be thought of a pseudorotation 
group of order 2, for which eq. 39 predicts eq. 33. 

Many systems cannot be represented by a 
pseudorotation group. The simplest of these systems is a 
linear (acyclic) 3-state system, which can be thought of as a 
cyclic 3-state system that belong to a permutation group of 
order three (𝒢ଷ), but missing two transitions, which belong to 
a permutation group of order two (𝒢ଶ). As such, this can be 
thought of as a system belonging to a 𝒢ଷ െ 𝒢ଶ permutation 
group, which are strictly non-Abelian permutation groups and 
cannot be cast as a pseudorotation. In general, we can write 
equation of motion for the case of a 𝒢௛ െ 𝒢௙ system, where 
ℎ ൐ 𝑓 and there are 𝑁 and 𝑀 transitions in 𝒢௛ and 𝒢௙ , 
respectively: 

𝜕
𝜕𝑡

𝜌 ൌ
1
𝑁

෍
ℒመ௞𝜌

𝜏
exp ൬

െℎ𝑇
2𝑁𝜏

൰

ே

௞

 

െ
1
𝑁

෍
ℒመ௝𝜌

𝜏
Γᇱ ൬

𝑇
2𝜏

൰

ெ

௝∈௞

 

ሺ41ሻ 

For the 𝒢ଷ െ 𝒢ଶ example, ℎ ൌ 3, 𝑁 ൌ 3, 𝑓 ൌ 2, 𝑀 ൌ 1. We 
will refer to the 𝒢௛ as the head group, which provides all 
potential transitions and determines the number of 
conformations in the system, and 𝒢௙ as the non-Abelian 
forming group, which removes the appropriate transitions to 
generate the non-Abelian LMEx. Note that the terms 
corresponding to 𝒢௙ in eq. 41 are scaled to the number of 
transitions in the head group, which takes advantage of the 

linearity of the Lindblad equation. While 𝒢௙ must be a 
pseudorotation group to satisfy eq. 29, the form of the 
generating function for 𝒢௙ , Γᇱሺ𝑇/2𝜏ሻ, will not simply be 
given by eq. 39 and must satisfy a modified condition to 
generate an LMEx given by: 

൭෍ ℒመ௞𝜌
௞

൱

௡

െ ቌ෍ ℒመ௝𝜌
௝∈௞

ቍ

௡

 

ൌ 𝛾௡ ቌ෍ ℒመ௞𝜌
௞

െ ෍ ℒመ௝𝜌
௝∈௞

ቍ 

ሺ42ሻ 

We find that the set ሼ𝑗 ∈ 𝑘ሽ transitions that satisfy eq. 42 form 
another pseudorotation group. As such, this formulation of 
non-Abelian permutation groups must always be generated by 
the difference between two pseudorotation groups. Solving 
eq. 42 for the series 𝛾௡ for a generic 𝒢௛ െ 𝒢௙ system gives 

𝛾௡ ൌ ൬
െℎ
𝑁

൰
௡

െ
ℎ െ 𝑓

𝑓
ቆ൬െ

ℎ െ 𝑓
𝑁

൰
௡

െ ൬
െℎ
𝑁

൰
௡

ቇ, ሺ43ሻ 

which leads to generating functions for the forming group 𝒢௙ , 
given by: 

Γᇱ ൬
𝑇
2𝜏

൰ ൌ exp ൬
െℎ𝑇
2𝑁𝜏

൰ 

െ
ℎ െ 𝑓

𝑓
൬1 െ exp ൬

െ𝑓𝑇
2𝑁𝜏

൰൰ exp ቆ
െሺℎ െ 𝑓ሻ𝑇

2𝑁𝜏
ቇ 

ሺ44ሻ 

Even though this is more complicated than its counterpart in 
eq. 40, the generating function is still a relatively simple, scalar 
equation. Importantly, there can be multiple non-Abelian 
forming groups which each contribute a term as in eq. 41 with 
the only restriction that they must span entirely separate 

transitions (ൣ𝒢௙, 𝒢௙ᇲ
൧ ൌ 0). The behavior of this generating 

function is also interesting, as it is bipolar (Fig. 5). This 
indicates that the flow of polarization will actually reverse 
𝑇/2𝜏 to account for the number of exchange events through 
the pathways that are in the head group but should be absent. 
Furthermore, we generally find that this generating function, 
along with the generating function for pseudorotation groups 
(c.f. eq 40) decay more slowly as the order of the head group 
increases. This can be interpreted as the system requiring more 
transitions, and thus more time, to reach the point where it 
cannot be described by the leading term ℒመ𝜌, and rather 
described by a system that is randomly configured with respect 
to where it started. Finally, it should be mentioned that this 
example is not necessarily the only formulation that would 
permit unique non-Abelian permutation groups where the 
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exchange processes are indistinguishable. However, it is an 
example for how one can develop scalar exchange generating 
functions. 

 

IV. Performance of exact Lindblad master equations 

To highlight the importance of utilizing exact Lindblad master 
equations for chemical exchange, we will explore the 
convergence radius of the solution of the master equations 
presented here in comparison to the traditional master 
equation for chemical exchange in Lindblad form, eq. 17. 
Importantly, we will use a first order integration technique to 
emphasize the improvement in the solution convergence 
offered by the exchange generating function. Specifically, we 
will calculate the solution at a time 𝑡 ൅ 𝑇 to be:  

𝜌ොሺ𝑡 ൅ 𝑇ሻ ൌ 𝑈෡𝜌ොሺ𝑡ሻ𝑈෡ற ൅
𝑇
𝜏

ℒመ𝜌ሺ𝑡ሻΓ ൬
𝑇
2𝜏

൰ ሺ45ሻ 

In this case, 𝑈෡ ൌ exp൫െ𝑖ℋ෡ 𝑇൯ where ℋ෡  is the system 
Hamiltonian that is changed to test the robustness to changes 
in the coherent system parameters. For all of the following 
cases, we will compare the solutions to an LMEx simulation 
calculated with 𝑇 ≪ 𝜏, which we will denote as the ground 
truth simulation. Unless noted otherwise, 𝑇/𝜏 ൌ 1% for the 
ground truth simulation, which limits the probability of even 
two exchange events (the fourth-order Dyson term) to be 
0.01% during this period. For systems that multiple exchange 
rates, this condition was set based on the fastest rate. 

 We will first examine the case of distinguishable 
molecular processes, for which we can use eq. 35. To 
emphasize the broad generality of this technique, we will 
simulate a technique at the forefront of magnetic resonance, 

Signal Amplification By Reversible Exchange[22-28], or 
SABRE (Fig. 6A). In this method, nuclear spin polarization is 
transferred from the singlet order of parahydrogen (p-H2) to 
artificially induce large magnetic resonance signals that are 
orders of magnitude larger than in conventional magnetic 
resonance. This system exists in a regime where the dominant 
couplings and resonance frequency differences are often on 
the order of the exchange rates of the system. Furthermore, 
nonlinear effects dominate this system and are dictated by the 
chemical exchange, making this system a sensitive reporter of 
the performance of the simulation. Full details of the physical 
model for SABRE have been reported elsewhere.  

For the case of distinguishable exchange processes, 
we find the convergence radius of the LMEx equation can be 
up to an order of magnitude larger than that of the traditional, 
second-order exchange term in Lindblad form (Fig. 6B). 
While the traditional formulation exceeds a 1% error when 
𝑇/𝜏 ൎ 2.5%, the LMEx formulation does not exceed this 
error until 𝑇/𝜏 ൎ 38.5%, which represents an approximately 
15-fold increase in the convergence radius of this system for 
no additional computational cost. 

Figure 6 | Modeling distinguishable exchange processes within 
the  LMEx  formalism.  A.  Signal  Amplification  By  Reversible 
Exchange  (SABRE)  is  a  hyperpolarization  technique  at  the
forefront  of  magnetic  resonance.  Nuclear  spin  polarization  is
distilled  from  the  singlet  order  of  parahydrogen  (p‐H2)  during 
reversible exchange interactions with an organometallic catalyst
(green). B. The root‐mean‐squared deviation (RMSD, 𝜎) between 
the traditional (blue) and LMEx (red) solutions. We find superior
convergence of the solution at no additional computational cost. 
The 𝜎 ൌ 1%  line  is demarcated to guide the eye, representing 
99% solution convergence. 

Figure  5  |  Generating  functions  for  permutation  groups  of
order  4.  𝛤ᇱሺ𝑇/2𝜏ሻ  is  shown  for  the  case  of  𝒢ସ െ 2𝒢ଶ  (solid) 
compared  to  the  generating  function  of  the  𝒢ସ  head  group 
(dashed). The bipolar nature of the generating function for the
non‐Abelian  forming  group  indicates  that  the  population  flux
through the omitted transitions must change directions. 
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There are many coupled exchange mechanisms in the 
SABRE system, namely the exchange of parahydrogen and the 
target ligand with the catalyst. This would appear to violate the 
restriction that was imposed that exchange processes were 
only self-correlated. However, we circumvent this by  
formulating the exchange pathways in a way where the 
pathways are uncoupled. The parahydrogen exchange (𝐹෠௞) 
and target ligand exchange (𝐹෠௝) pathways are transformed to 
give the joint probability of either ligand exchange with 
parahydrogen exchange (𝐹෠௝ ൅ 𝐹෠௞) or ligand exchange without 

parahydrogen exchange (𝐹෠௝ െ 𝐹෠௞). Then, the two new 
pathways are effectively orthogonal and satisfy self-correlation 
requirement. In total, there are 13 different exchange 
processes that are all accounted for within the scope of this 
LMEx master equation, highlighting the flexibility of this 
framework for improving the performance of chemical 
exchange simulations. 

In addition to the case of distinguishable exchange 
processes, there are a vast scope of systems that have 
indistinguishable exchange processes. Broadly, these are 
systems with permutation symmetry, for which an extensive 
amount of work has been devoted to calculating the dynamic 
NMR spectra for such systems. Here, we examine the case of 
a four spin-1/2 system that has permutation group symmetry 
belonging to a 𝒢ଷ pseudorotation group, a 𝒢ଷ െ 𝒢ଶ 
permutation group, as well as a 𝒢ସ െ 𝒢ଷ permutation group, 
using the notation that we described previously. While the first 
of these may be cast as an Abelian pseudorotation group, the 
latter two cases cannot and are incompatible with our previous 
superoperator-based methods for chemical exchange. In 
addition to examining the convergence of the solutions for 
these systems, we are able to iterate over the parameters that 
define the coherent interactions (resonance frequencies and 

Figure 7 | Exploring performance of LMEx models for systems with indistinguishable exchange processes. The convergence of the 
solutions (left) were all calculated using the same coherent  interaction parameter set, for consistency. Furthermore, the system 
parameters were iterated 3,200 times at 𝑇/𝜏 ൌ 20% to examine the robustness of this performance. The histograms of the ratio
between the LMEx and traditional errors are shown to the right. A. The 𝒢ଷ system can be cast as a pseudorotation and has a relatively 
simple exchange generating  function, given by a single exponential  factor 𝛤ሺ𝑇/𝜏ሻ ൌ 𝑒𝑥𝑝ሺെ𝑇/𝜏ሻ. For  this case, we see  that  the
solution is has a convergence radius that is approximately a factor of 10 larger than the traditional solution and that this is robust as 
the system parameters are varied. However, the B. 𝒢ଷ െ 𝒢ଶ and C. 𝓖ସ െ 𝒢ଷ systems have more complicated generating functions 
that have to be constructed according to eq. 41 and 44. Despite this, they exhibit solution convergences that are on the order of or 
even exceed the 𝒢ଷ system and have similar robustness to changes in the coherent interactions.  
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couplings) to assess the robustness of the improvement that 
the LMEx provides over the traditional implementation. 

We find that an appropriately formulated exchange 
generating function can yield a vast improvement in the 
convergence radius of the solution for no additional 
computational cost, even for the non-Abelian permutation 
groups that were tested here (Fig. 7). In every case, the LMEx 
exhibits a robust improvement in the solution convergence 
that is approximately an order of magnitude. Furthermore, we 
find that the improvement that is obtained from the LMEx 
formulation is robust to variations in the system parameters. 
Using the case 𝑇/𝜏 ൌ 20%, we find that ⟨𝜎௅ொ௫/
𝜎௅௜௡ௗ௕௟௔ௗ⟩ ൌ ሺ21 േ 12ሻ% for the 𝒢ଷ system, at ⟨𝜎௅ொ௫/
𝜎௅௜௡ௗ௕௟௔ௗ⟩ ൌ ሺ22 േ 13ሻ% for the 𝒢ଷ െ 𝒢ଶ system, and at 
⟨𝜎௅ொ௫/𝜎௅௜௡ௗ௕௟௔ௗ⟩ ൌ ሺ11.4 േ 5.3ሻ% for the 𝒢ସ െ 𝒢ଷ 
system. Out of the 9,600 different system parameterizations 
that were tested over these three cases, there was only a single 
instance where the LMEx did not yield a superior convergence 
over the traditional master equation for chemical exchange.  

Both the cases for distinguishable and 
indistinguishable exchange processes show that accounting 

for all higher moments of the chemical exchange interaction 
in the equation of motion yields a vastly improved 
convergence radius of the solution. We regularly found 
instances where the convergence radius had increased by an 
order of magnitude and that this was robust to changes in the 
system parameters. However, there are limits to which 
systems will have scalar exchange generating functions. One 
such example is rotation of five-fold symmetric systems as is 
observed in permethylferrocene[29] (Fig. 8). This system has 
two distinguishable sets of processes that are comprised of 
single jump (2𝜋/5) or double jump (4𝜋/5) rotations about 
the C5 axis of this system. While these exchange processes are 
distinguishable from one another, there are five individual 
indistinguishable processes that are required to fully describe 
this system. The particular five-fold cyclic geometry that is 
discussed in this case yields no scalar exchange generating 
function, at least to the point that has developed in this work. 
However, in rare cases such as this, the Fock-space 
representation of this problem offers a convenient solution to 
calculate the powers of the Lindbladian, and the rest of the 
Dyson series is already summarized in its most general form 
for chemical exchange in eq. 28. This is most efficient to 
compute symbolically, such that various symbolic variables 
may be replaced with the appropriate density matrix during 
the calculation. Thus, it is possible to simply calculate the first 
few terms of the series as a last resort for special cases. 

Here, we demonstrate the improved convergence 
radius of an LME6 simulation, which utilizes the first three 
terms of eq. 28 (to sixth order in the Dyson series), yields an 
approximately 5.4-fold improvement in the convergence 
radius compared to the traditional master equation and only 
requires approximately 60% more computational time to  
evaluate, which ultimately yields superior performance of the 

solution. The 𝑚th order Lindbladian for the single (ℒመଵ
ሺ௠ሻ) and 

double (ℒመଶ
ሺ௠ሻ) jump exchange pathways applied to the site 𝑛 

for this case are given by:  
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Figure 8 | Improving performances of systems that do not yield
scalar  generating  functions.  A.  The  fivefold  rotation  of
permethylferrocene  undergoes  single  jump  (𝑘ଵ)  and  double
jump  (𝑘ଶ)  rotations  about  the  symmetry  axis  of  this  system.
These pathways are distinguishable from one another, but each
have  five  indistinguishable  exchange  processes  that  form  the
group of exchange operators. B. We find that calculating the first
three  non‐zero  terms  of  the  Dyson  series  (LME6)  offers  a
relatively inexpensive route to improving the convergence radius
of  the  solution.  Here  we  show  a  5.4ൈ  improvement  in  the
convergence  radius  at  a  cost  of  an  additional  60%
computational time, on average.  
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Additionally, there is no significant difference in the 
performance of the LME6 solution in comparison to a 
solution that utilizes the first 40 terms of the Dyson 
expansion. While it is not ideal to have to result to brute-force 
evaluation of eq. 28, here we demonstrate that in the rare 
cases that are not already described here that the first few 
terms of the Dyson series can significantly improve 
computational performance at modest cost.  

In this section, we have examined the performance of 
various exact Lindblad master equations for chemical 
exchange. To summarize the various dissipators that should 
be used for the type of exchange processes, the various cases 
are in Table 1 below along with references to the equations in 
which they were derived. All distinguishable exchange 
processes may be treated within this formalism, and we have 
introduced various methods to handle indistinguishable 
exchange processes in an exact fashion. Finally, we have 
shown that the Dyson series may be brute-force evaluated up 
to order 𝐾 and can still generate significant computational 
improvements. 

Process Type  Dissipator  Eq. 

Distinguishable 

(all types) 
෍

ℒመ௞𝜌
𝜏௞௞

exp ൬
െ𝑇
𝜏௞

൰  ሺ35ሻ 

Indistinguishable 
pseudorotation 

1
𝑁

෍
ℒመ௞𝜌

𝜏
exp ൬

െℎ𝑇
2𝑁𝜏

൰

ே

௞

  ሺ40ሻ 

Indistinguishable 
non‐Abelian* 

permutation 

1
𝑁

෍
ℒመ௞𝜌

𝜏
exp ൬

െℎ𝑇
2𝑁𝜏

൰

ே

௞

 

െ
1
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෍
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ெ

௝∈௞

 

ሺ41ሻ

& 

ሺ44ሻ 

Other 
indistinguishable 
processes; order 

𝐾 correction 

෍ ൭෍
ℒመ௞

𝜏௞௞

൱

௡ାଵ
1
𝑛!

൬
𝑇
2

൰
௡௄

௡ୀ଴

  ሺ28ሻ 

Table 1| Exact Lindblad equations derived in this work, where ℎ 
corresponds to the number of sites and 𝑁 ൌ ሺℎଶ െ ℎሻ/2 . 

 

V. Conclusions 

Here, we have generalized and extended the exact master 
equation treatment of chemical exchange phenomena within 
the Lindblad formalism. We have developed methods for 
identifying exact master equations for a variety of systems and 
have presented solutions for any system with distinguishable 
exchange processes and a vast scope of systems with 
indistinguishable exchange processes. We have found that the 

exact Lindblad master equation approach generates an 
approximately order of magnitude larger convergence radius 
for the variety of systems that we studied at no additional 
computational cost. Furthermore, this improvement is robust 
to changes in the system-specific parameters. This result is 
trivial to implement into any existing chemical exchange 
simulation and has shown to vastly improve the convergence 
of the solution. 
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