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The theoretical description of the interplay between coherent evolution and chemical exchange,

originally developed for magnetic resonance and later applied to other spectroscopic regimes, was

derived under incorrect statistical assumptions. Correcting these assumptions provides access to the

exact form of the chemical exchange interaction, which we derive within the Lindblad master equation

formalism for generality. The exact form of the interaction is only different from the traditional

equation by a scalar correction factor derived from higher-order interactions and regularly improves

the radius of convergence of the solution (hence increasing the allowable step size in calculations) by

up to an order of magnitude for no additional computational cost.

I. Introduction

Chemical exchange encompasses a broad scope of molecular
dynamics that results in a change of the system Hamiltonian
and may be interrogated spectroscopically. Techniques such
as nuclear magnetic resonance (NMR), two-dimensional
infrared spectroscopy (2DIR), and chirped pulse Fourier
Transform microwave spectroscopy (CP-FTMS), are sensitive
to exchange processes on vastly different timescales|[1-10]. For
example, these techniques have been used to study the zn-situ
structure and functionality of biomolecules, hydrogen
bonding dynamics in liquids, and dynamic rotational
isomerization. The theoretical treatment presented here is also
applicable to discrete multisite exchange problems, such as
atoms migrating in an optical trap array. Interpreting the
experimental data from any of these techniques often requires
the use of a physical model that unifies the coherent and
chemical dynamics.

The density matrix formalism is a convenient method
to include statistical averaging in systems that evolve
coherently and is ubiquitous in spectroscopy. Kaplan|[11, 12]
(1958) and Alexander[13, 14] (1962) were the first to desctibe
the chemical exchange interaction within the density matrix
formalism, motivating the form of the interaction from first
principles to describe the NMR lineshape under exchange. In
essence, they described exchange by the transformation

p - RpR™ - p, €
where RPR™! was a similarity transform relating the density

matrix before and after an exchange event. For this reason,
exchange is often discussed as passing population between
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Figure 1 | Manifestations of exchange. A. Chemical exchange
often results in the rearrangement of molecules, which may be
both intramolecular (shown here) or intermolecular. *H nuclei
are colored to distinguish configurations. B. Molecular
rearrangement is not necessarily required if coherent
interactions are site dependent and the species interchanges
between sites 1 and 2.

different “sites”, where each site has a unique molecular
geometry and associated lifetime. Binsch[15] (1969) later
unified Kaplan and Alexander’s theory of chemical exchange
with Redfield’s relaxation theory[16] (1957) to fully describe
the NMR lineshape. By the advent of coherent optical
spectroscopies, the traditional form of the chemical exchange
interaction had been supported by decades of experimental
evidence from the magnetic resonance community and was
thus adopted by the ultrafast spectroscopy community.

Recently, the theoretical underpinnings of Binsch’s
unification of quantum dynamics and chemical exchange were
found to be flawed, because it motivated that the chemical
exchange interaction was simply an extension of the Redfield’s



relaxation[17]. Thermalization in liquid state magnetic
resonance is generated by modulation of orientationally-
dependent interactions during molecular dynamics on the fs-
ps timescale. Fourier components of this modulation on the
order of NMR transitions then induces transitions that drive
the system towards equilibrium. However, the molecular
processes that are described by Redfield’s theory and chemical
exchange dynamics are different. While molecular tumbling is
continuous, chemical exchange is a fundamentally
discontinuous process, as the time required for molecular
rearrangement is often orders of magnitude faster than the
lifetime in any particular site. These two cases require different
statistical assumptions that directly impact the formulation of

the chemical exchange interaction.

Recently, we introduced an exact dissipative master
equation[17] (DMEx) for chemical exchange that was
rigorously detived as a closed form solution of the Dyson
expansion. This work agreed with Binsch’s treatment, under
more justified assumptions, but only to lowest order in
perturbation theory. It was derived using projection or
pseudorotation superoperators, which are both common in
magnetic resonance. The resulting differential equation was
proportional to a traditional exchange term by a scalar factor,
which was obtained by contraction of the higher order terms
of the Dyson series. Including this correction improves the
convergence radius of the series by up to an order of
magnitude for no additional computational cost. However,
the formulation using projection and pseudorotation

superoperators restricts the generality of the formalism.

Here, we introduce a generalization of the exact
Dissipative Master equation formalism and extend the
derivation to encompass both the cases of an arbitrary
exchange pathway as well as the case where the exchange
pathway has permutation group symmetry. For compatibility,
we shall treat exchange as a Lindblad[18-20] equation (also
referred to as the Gorini-Kossakowski-Sudarshan-Lindblad
equation), as it is the most general Markovian master equation.
We will show that an exact Lindblad master equation (LMEXx)
can be derived by continuing the traditional derivation to
infinite-order in the Dyson series. Within this formalism, we
will show that the chemical exchange interaction in its most
general form can be written as:

fp=2 (Apat - Leaat, )) exp (—T)
T 2 T
This is similar to eq. 1, where A is a Hermitian operator
analogous to R and imposes exchange on the system at a rate
1/t. The significant difference from this equation and the
previous formalism for chemical exchange is the exponential

factor exp(—T/7) whete T is the time over which the master
equation is averaged (usually, the time step in a calculation).
This factor is derived as the closed form solution of the Dyson
series and has the practical implication of increasing the radius
of convergence up to an order of magnitude over the
traditional master equation at no additional computational
cost.

II. Derivation of a generalized Lindblad master
equation for chemical exchange

We will show that the exact form of the chemical exchange
interaction may be detived ab initio using a minimal number of
foundational assumptions. To begin, we will establish the
assumptions to be used throughout the derivation:

(1) Exchange is a Hermitian, multiparticle coupling, and
therefore has a corresponding Hamiltonian Hy (t).

(2) The system is Markovian, permitting us to make the
substitution p(t,) = p(t), where t>t, by time-
ordering.

(3) To satisfy the Hermiticity requirement, the system is at a
steady state. As such, the dynamics at the level of the
ensemble are assumed to be stationary.

(4) The time required for molecular rearrangement is much
faster than any other interaction in the system and may
thus be assumed to be instantaneous.

(5) We assume that any exchange process is not correlated to
any other process. To satisty this requirement, the basis
set of exchange processes are transformed such that they
are orthogonal, thus

automatically satisfying this

requirement.

It is important to note that these assumptions are
identical to those established for the DMEx. The substantial
difference between this treatment and the DMEx is that the
form of the exchange Lindbladian is determined a priori, as
opposed to the exchange superoperator, which is less
stringently defined. We will show that the exchange
Lindbladian spans a well-defined composite Hilbert-Fock
space and only acts on the Fock state, whereas the exchange
superoperator acts directly on the Hilbert state of the system.
As such, the DMEx and Lindblad treatments of exchange are
complimentary, and are suited for different purposes. Direct
action on the Hilbert-space is ideal for cases when molecules
dissociate and the dimensionality of the Hilbert-space
changes. The action of the Lindbladian on the Fock-space
makes this formulation significantly more general.

At this juncture, we may begin deriving the Lindblad
master equation for chemical exchange, which treats the entire
system quantum mechanically before reducing the density



matrix. Under assumption (1), that exchange is Hermitian and
has a Hamiltonian, we may define the system Hamiltonian as:

H(t) = Ho + Hy (1) (2)

We have partitioned this into a static component, FHy that
contains the coherent interactions, and a stochastically
modulated component F;(t) describing the exchange
contribution to the Hamiltonian. Using this within the

Liouville-von Neumann equation gives (A = 1):
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This may be simplified by transforming into the interaction
representation (dropping hats to denote frame) as:

d
ap(t) = —i[H,(t), p(D)] (4)

Formally integrating this result gives:

t
p(®) = po — i f dt’ 17, ¢, p(t)] ®)
0

Equation 5 may be iteratively substituted into eq. 4 to give
the terms of the Dyson series, where the first two terms are:

5% @ = —i[#, (1), p(0)] (6)

0

at @) = —Tf dty [‘7{1@) [7] (), p(tl)]] ™

T is the Dyson time-ordering operator that enforces t > ty.
Note that we have indicated the term of the Dyson series by
p™ and have dropped the formal time dependence on the
left-hand side for brevity. Before continuing, we introduce an
operator expansion of H;(t) for chemical exchange (Fig. 2)
as the tensor product between an operator Ay that acts on the
Fock space of the system to generate exchange and the
stochastically modulated operator Fj that describes the
molecular dynamics:

7,() = Z Ap(O) ® Fy(t) 8)
k

Ensemble averaging only affects the Fy operators, as they
carry the stochastic modulation. In accordance with the
assumption that the ensemble dynamics are stationary, we

define the operator Ay in terms of Fock-space creation (ﬁ,t)

and annihilaton (@) operators that generate transitions
between two sites connected by an exchange process as:

Ay =a, +al 9
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Figure 2 | Formulation of the exchange Hamiltonian. For the
ensemble to be stationary, two systems (A and B) must
simultaneously exchange between sites 1 and 2. As such, we
impose the pairwise action of the @ and @%, which leads to the
definition of A. The operator F(t) describes the molecular
trajectories of each dynamic process.

The creation and annihilation operators are subjected to
Ay ay = 0 such that double occupation in a site never occurs,
and as such have SU(2) features. For instance, Ay, is similar to
the Pauli matrix G,.. As Fj,(t) is stochastic and varies for each
member of the ensemble, we will only be able to define
statistical metrics of this operator over the entire ensemble.
The Markovian assumption
substitution p(t;) = p(t) in each term of the Dyson series.
Furthermore, the

(2) permits the

stationary assumption (3) has the
ramification that (F,(t)) = 0, as this term would generate
drift in the stochastic motion. As such, the leading observable
term is the second order term from the expansion. The only
time-parameter of importance is the difference between t and

t1, and can use the change of variables t — t; = T to give:

Aj(r) ® F;(1),
@) =
p 2f [[A£®Fk*,p

Note that the limits of integration are swapped with this

(10)

transformation and that the differential transforms as dt; —
—dt. In doing this, the operators Ay and Fy lose time-
dependence and thus can be written in the Schrédinger
representation (with hats). At this juncture, it is pertinent to
isolate the degrees of freedom in p corresponding to the
stochastic operators, which is delineated as pg. Inverting the
limits of integration, expanding the double commutator, and
averaging over the stochastic components gives (17_") is
assumed):
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Here, the angle brackets indicate the partial trace over the
stochastic degrees of freedom. We shall assume that at the

P t A:(v)pAl R
5 @ =ZJ; dr < JRED >(Fj(T)F1:rPB)
Ik (11)

level of the ensemble, the stochastically distributed exchange
events are independent of one another and uniformly
distributed, which permits us to assume that exchange is a
Gaussian process. Doing so permits us to rearrange the
correlation function under Isserlis’ theorem as:

(F(Fpg) = (F@F)ps)
+F;(pp)EY) + (Bl pp)(F, (D)

Due to the stationary assumption, only the first term survives

(12)

averaging. Furthermore, (pg) = E (the identity matrix) by
definition. It is now pertinent to introduce the form of the
correlation functions. For chemical exchange, the correlation
function (P} (T)F',j ) dictates both the rate of exchange as well
as the jump time between sites, which under assumption (4) is
instantaneous, or §-correlated in time. Finally, our stipulation
that exchange processes are only self-correlated imposes
quadratic action of any term in the exchange Hamiltonian,
which is required to exchange population between sites. As
such, we may write the correlation functions as:

5@,

(FE]) = K (13)

Ty 1s the characteristic lifetime in the two configurations

connected by the process Fy. Equations 12 and 13 permit us
to extend the integration limits and rewrite eq. 9 as:

ip(z) _ Zlfoo dr ( Ak(T)P‘?AIt. )@
at ~2) o \-4,@A4lp) T

L7 ApA@ )@
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Note that we have acquited a factor of 1/2 by also taking the

(14)

lower integration limit to —oo such that the §(7) function is
real-valued. Performing integration greatly simplifies the
expression to:

0 1 [ AepAl + AT pA
—p@ = Z_( prATk klir K > (15)
ot — 2T \~A Al p + pALAL

Remembering that A are Hermitian, we may cast this into the
conventional Lindblad form, using {A, B } = AB + BA as the
notation for the anticommutator:
d 1/. . 1,.. .
PP = Z—(AkpAl - E{AkAT:p}) (16)
k

Tk

This is the traditional master equation for chemical exchange

written in Lindblad form. The term Akpfiz generates the
similarity transform relating the two sites and the term
proportional to the anticommutator simply reduces to P when
the A, operators interchange populations between two of the
Fock states. The entire equation is similar to the form of the
chemical exchange interaction originally motivated by Kaplan
and Alexander. This equation can be recovered if one begins
from the traditional form of the chemical exchange
interaction|21], however the benefit of deriving the result ab
initio is that the framework is established to calculate higher-
order interactions. It will be advantageous write eq. 16 as

ip(Z) _ ZLLP
at = Tk ’

where Ly is the Lindbladian dissipator corresponding to the

(17)

term in parentheses. For brevity, we will call this the second-
order Lindblad master equation (LME2), which is the
exchange analog of the conventional Lindblad master
equation derived for open quantum systems.

Traditionally, the chemical exchange interaction is
assumed to be small relative to all other interactions, which
allows the Dyson series to be truncated to its leading term.
While higher order chemical exchange interactions become
irrelevant if eq. 14 can be analytically integrated, it is rarely
possible to accomplish this in realistic systems. Instead, it is
beneficial to think of this result in terms of a numerical
simulation method. The LME2 will no
representative of the physical system as soon as the integration

longer be

grid approaches a spacing where two or more exchange events
become possible. As such, convergence of the simulation
requires integration grids that are finely spaced so to prevent
multiple exchange events.

We may continue the derivation of higher order
chemical exchange interactions by substituting eq. 8 into the
fourth-order term of the Dyson series, noting that the
stationary assumption only permits even-order terms to be
non-zero:
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The restriction that exchange processes are only self-
correlated processes permits arbitrary re-indexing of the
operators, allowing the four-point correlator to be factored
out of the commutators and averaged. We have used:

N t o t ty t,
Tff dtn"' =Tf dtlf dtz dt3"'
0 0 0 0

to represent the time-ordered integral. Using Isserlis’ theorem,

(19)

we may also note that the only terms that will be non-zero will
be those where pp is averaged separately from the stochastic
operators, similar to eq. 12. This allows us to write the four-
point correlation function as:

(F:(OF! (t)F,(t)E) (t3)ps)
= (F(OF{ t))F (&) F (t5))
HE O F E)NF ) F ()
HE OEL () )F (t)F ()

(20)

i} 1
atp(4) Z 23'<f dt,

Ay (19), [ k'f dt, Ak(Tz) [Ak,p] 5('[2)]] 8(t1) dez

Equation 13 allows us to define these quantities as:

(Fj(O)F (t1)Fy(£2) Fyt (£3)p5)
O0(t —t)6(ty; —t3) +
=—| 6@t —t2)8(ts — t3) + | Sjxim

T\ 6(t — t2)8(tr — t3) 1)

3
=—6(t — t1)8(t; — t3)6jkim
Tk

The second equality is permitted as the only time at which eq.
21is non-zero is when all time variables are identical, allowing
us to freely re-index the time-variables. We have employed the

self-correlated assumption (5) to introduce &jgm.

The time-ordered integral will become cumbersome
for successively higher-order terms, but can be simplified by
uncoupling the integrals. This is accomplished by dividing the
resulting equation where the integrals are uncoupled by the
number of degenerate time orderings. Generally, for the nt-
order term of the Dyson series, the time-ordering degeneracy
will be (n—1)! upon integration. We will again use the
stationary assumption to make the change of variables 7; =
t — t; and T, = t, — t3. This, along with eq. 21, let us rewrite
eq. 18 as:

(22)

The limits of integration may be reversed for two of the integrals within the parentheses without obtaining a sign-change, and
we will choose to extend the limits of integration for these two integrals to +00, each time acquiring a factor of Y2. The final
integral arises from the dt, integral after the change of variables, and can be effectively factored out of the commutators. For
clarity, we will simply change the upper limit of integration from t — T, as this limit effectively denotes the time over which the
equation of motion is averaged. This gives:

0 1 13 @

—p@® = E S

at? 4 T,€3!<f_oodtl
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(23)

(o) T
Ay (1), [x‘iz,f dt, [Ak(TZ); [Az, P]] 5(’[2)” 5('[1))] dt,
—o 0

Performing integration and simplifying yields:

:tp(‘” = z i [Ak, [A |4, [A*,p]]]]

We must now make a distinction on the type of

system being studied (Fig. 3), in particular to identify if the

(24) exchange processes are distinguishable or indistinguishable.
We will restrict outselves to delineate these cases based on the

time-scale over which the interaction is expected to be



Figure 3 | Distinguishable and indistinguishable exchange
processes on methylamine isotopologues. The * indicates the
position of exchanged atoms. A. In CH,DNH,, exchange
processes 1 and 2 are distinguishable from process 3 as the
bottom position of the methyl group is distinct from the upper
positions, whereas the upper positions are equivalent. B. In
CH3NH,, all of the exchange processes result in the same
molecular conformation and are indistinguishable.

modeled. For instance, it is routine to measure magnetic
resonance signals over several seconds, so only interactions
that evolve over this time period can lead to an inequivalence
between sites and be classified as a distinguishable process.
13} # Fy, the
8jkim function holds and eq. 24 may be written as:

For distinguishable exchange processes where

9

A2
L T
@ = ~k —

However, when the exchange processes are indistinguishable,

(25)

such that 13} = Fy, after re-indexing, the §jy;, function must
be bifurcated into §jy 8y, which permits different exchange
processes Aj and Ay to be coupled. Additionally, T =Ty
when Fj = Fj,, which will simply be called 7 for simplicity. As

such, fourth-order term for the case of indistinguishable
molecular processes becomes:

(26)

Note that the j-index can be removed by raising the
summation to a powetr.

Notice that in both eq. 25 and 26, the dissipator is
proportional to the square of the Lindbladian, indicating that
the fourth-order term encapsulates the probability of two
exchange events. Furthermore, this term will naturally
disappeart as the step size T — dt, because only one exchange

event will be probable in the differential limit.

Following the same procedure as in deriving the
fourth-order interactions, we may recast the entire Dyson
expansion in terms of the exchange Lindbladian, which in the
case of distinguishable exchange processes is

ST )

and similarly for the case of distinguishable ensembles:

(27)

o)

~ n+1
a Z sz 1<T)n
Frid L7 )  ni\2 p

n=0

(28)

In ecither of these cases, the most challenging aspect of
evaluating these equations is calculating the infinite powers of
the Lindbladian, and is typically why perturbation theory is
only extended to the few lowest-order terms. However, we
previously noted when deriving the DMEx that these
equations may be dramatically simplified if the dissipator, in
this case the Lindbladian, obeys the property

Ly =["Pp =y, Lp, (29)

which states that ﬁp is an eigenfunction of L™ with an
eigenvalue ¥, which is a scalar quantity. For indistinguishable
exchange processes, L is the k-sum of individual Lindbladians

and for distinguishable exchange processes, L = L. In that
case, all higher order Lindbladians may be written as being
proportional to the lowest order term. If eq. 29 is obeyed,
then the infinite Lindblad series for exchange is given by:

EESRLENE

This result is identical for both indistinguishable and

(30)

distinguishable exchange processes. Now, the infinite sum is



proportional only to scalar quantities, and all higher order

Lindbladian dissipators are simply proportional to L. We
define the infinite sum as the exchange generating function

TS A

n=0

(31)

which relates all higher order chemical exchange interactions
to the lowest-order interaction. Using this definition, we may
write the exact Lindblad master equation for chemical

p Zﬁkp (ZTk)

The only difference between the LMEx and the LME2 (c.f.
eq. 17) is the exchange generating function, which is a scalar

exchange as:

(32)

correction factor. In following, we will examine the systems
that satisfy eq. 29.

ITI. Generating exact Lindbladians

To construct an exact Lindblad master equation, one must
determine the form of the scalar exchange generating function
['(T/27y). To do this, the condition set by eq. 29 must be
met and the series of Y, eigenvalues must be known. In the
case of exchange between distinguishable exchange processes,
one can evaluate eq. 29 directly on an arbitrary Fock space
(c.f. eq. 37) and find that the series ,, takes the form

n = (_2)77-'
which when used in eq. 31 gives:
T o (=2)" /T \"
()-S5 -
21y, n! \21;

(33)

(34)

(%)

Using this result in eq. 30 gives the LMEx for distinguishable
exchange processes:

23 it ()

Note that the exchange generating function is an elementary,

(35)

scalar function that is included at no additional computational
cost. Casting the system in a basis where the set of exchange
processes are uncorrelated effectively casts the entire system
as a sum of two-site exchange processes (Fig. 4). In this case,
one could readily motivate the form of the exchange
generating function by accounting for the probability for any
n-exchange event and using that to scale the likelihood of the

system appearing to evolve as Lp.

o t
(2] t

dt T 2T

Figure 4 | The exchange generating function accounts for
higher-moments of chemical exchange. Over the period dt, a
molecule only has the opportunity to undergo a single exchange
event. However, multiple exchange events are probable over a
finite period of time T, which are accounted for by the exchange
generating function. As T increases, the probability of higher-
order exchange terms appearing increases. Hence, as T — oo,
the probability of the system appearing to undergo an exchange
event of the form Lp, the leading order term, asymptotically
approaches zero.

The case of indistinguishable exchange processes is
slightly more complicated to derive the exchange generating
function, as all transitions are coupled together. The different
these
and thus the operators defining

molecular conformations of systems are often
permutational isomers,
transitions between the conformations may be described by
permutation groups. The order of the group corresponds to
the number of configurations in the system. In this case,
system geometries that satisfy eq. 29 for the combinations of
transitions that form different permutation groups of order f,
which can be done rapidly as it only requires the Fock-space.
To validate eq. 29, one need only check to see if LZ2p o« Lp,
which immediately satisfy eq. 29 for all powers of the
Lindbladian. For example, the set of operators {Ak} that

permit exchange between three configurations are:

0 1 0 1 0 0 0 0 1
<1 0 0) ) (0 0 1) ) (0 1 0) (36)
0 0 1 0 1 0 1 0 0

These operators correspond to the Fock-space, which is only
ever populated on the diagonal elements of the space. Using
an initial arbitrary Fock density matrix of

a 0 0
p=(0 b 0], (37)
0 0 ¢
one can evaluate the expression
LD 5p ) =n| > 4p (38)

JjEk JEk

for when ¥, is a constant, which relates the linear (£) and

quadratic (£2) Lindbladians. The indices i € k and j € k span
permutations of the exchange operators that connect each



configuration and, importantly, i and j must span the same
permutational set of operators ({i} = {j}). The groups that
satisfy eq. 29 are ones where every configuration has a
transition to every other configuration. In general, these
groups can be recast into a pseudorotation group defined by
a forward (R) and backward (R™!) rotation of the Hilbert
space, and are Abelian groups. In this case, the series ¥, for a
permutation group of order h with N = (h* —h)/2

transitions is

—mn\"
m=(F) 39
which makes the LMEx for these groups:
R RY hT
kP -
—p=— ) == —_— 40
at” NZ T eXp(zm) (40)

As the rates for indistinguishable processes will be identical,
we replace Ty — 7. Each of the distinguishable pathways of
the previous case can simply be thought of a pseudorotation
group of order 2, for which eq. 39 predicts eq. 33.

Many systems cannot be represented by a
pseudorotation group. The simplest of these systems is a
linear (acyclic) 3-state system, which can be thought of as a
cyclic 3-state system that belong to a permutation group of
order three (G3), but missing two transitions, which belong to
a permutation group of order two (G2). As such, this can be
thought of as a system belonging to a G3 — G? permutation
group, which are strictly non-Abelian permutation groups and
cannot be cast as a pseudorotation. In general, we can write
equation of motion for the case of a G — G/ system, where
h > f and there are N and M transitions in G" and G,

respectively:

d _1i[2kp (—hT)
P TN oy P\ 2Nt
M

R ST (1)
N T 2T
JEK

For the G2 — G2 example, h=3,N=3,f =2,M =1. We
will refer to the G" as the head group, which provides all

(41)

potential transitions and determines the number of
conformations in the system, and G/ as the non-Abelian
forming group, which removes the appropriate transitions to
generate the non-Abelian LMEx. Note that the terms
corresponding to G/ in eq. 41 are scaled to the number of

transitions in the head group, which takes advantage of the

linearity of the Lindblad equation. While G/ must be a
pseudorotation group to satisfy eq. 29, the form of the
generating function for G/, I'(T/2t), will not simply be
given by eq. 39 and must satisfy a modified condition to
generate an LMEx given by:

(520 (0]

jek
= Yn Zflkp —Zﬁjp
k jek

We find that the set {j € k} transitions that satisfy eq. 42 form
another pseudorotation group. As such, this formulation of
non-Abelian permutation groups must always be generated by
the difference between two pseudorotation groups. Solving
eq. 42 for the series ¥, for a generic G — G f system gives

) (A ()

which leads to generating functions for the forming group § r,

glven by-
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Even though this is more complicated than its counterpart in

eq. 40, the generating function is still a relatively simple, scalar
equation. Importantly, there can be multiple non-Abelian
forming groups which each contribute a term as in eq. 41 with
the only restriction that they must span entirely separate

transitions ([gf .G/ I] = 0). The behavior of this generating
function is also interesting, as it is bipolar (Fig. 5). This
indicates that the flow of polarization will actually reverse
T /27 to account for the number of exchange events through
the pathways that are in the head group but should be absent.
Furthermore, we generally find that this generating function,
along with the generating function for pseudorotation groups
(c.f. eq 40) decay more slowly as the order of the head group
increases. This can be interpreted as the system requiring more
transitions, and thus more time, to reach the point where it
cannot be described by the leading term Lp, and rather
described by a system that is randomly configured with respect
to where it started. Finally, it should be mentioned that this
example is not necessarily the only formulation that would
permit unique non-Abelian permutation groups where the
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Figure 5 | Generating functions for permutation groups of
order 4. I''(T/271) is shown for the case of G* — 2G? (solid)
compared to the generating function of the G* head group
(dashed). The bipolar nature of the generating function for the
non-Abelian forming group indicates that the population flux
through the omitted transitions must change directions.
exchange processes are indistinguishable. However, it is an
example for how one can develop scalar exchange generating
functions.

IV. Performance of exact Lindblad master equations

To highlight the importance of utilizing exact Lindblad master
equations for chemical exchange, we will explore the
convergence radius of the solution of the master equations
presented here in comparison to the traditional master
equation for chemical exchange in Lindblad form, eq. 17.
Importantly, we will use a first order integration technique to
emphasize the improvement in the solution convergence
offered by the exchange generating function. Specifically, we
will calculate the solution at a time t + T to be:
~ T T
plt+T) = 0p@T* +—Lp(®)T (Z) (45)
In this case, U = exp(—ifﬁ T) where H is the system
Hamiltonian that is changed to test the robustness to changes
in the coherent system parameters. For all of the following
cases, we will compare the solutions to an LMEx simulation
calculated with T < 7, which we will denote as the ground
truth simulation. Unless noted otherwise, T /T = 1% for the
ground truth simulation, which limits the probability of even
two exchange events (the fourth-order Dyson term) to be
0.01% during this period. For systems that multiple exchange
rates, this condition was set based on the fastest rate.

We will first examine the case of distinguishable
molecular processes, for which we can use eq. 35. To
emphasize the broad generality of this technique, we will
simulate a technique at the forefront of magnetic resonance,
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Figure 6 | Modeling distinguishable exchange processes within
the LMEx formalism. A. Signal Amplification By Reversible
Exchange (SABRE) is a hyperpolarization technique at the
forefront of magnetic resonance. Nuclear spin polarization is
distilled from the singlet order of parahydrogen (p-H,) during
reversible exchange interactions with an organometallic catalyst
(green). B. The root-mean-squared deviation (RMSD, o) between
the traditional (blue) and LMEx (red) solutions. We find superior
convergence of the solution at no additional computational cost.
The 0 = 1% line is demarcated to guide the eye, representing
99% solution convergence.

Signal Amplification By Reversible Exchange[22-28], or
SABRE (Fig. 6A). In this method, nuclear spin polarization is
transferred from the singlet order of parahydrogen (p-Hz) to
artificially induce large magnetic resonance signals that are
orders of magnitude larger than in conventional magnetic
resonance. This system exists in a regime where the dominant
couplings and resonance frequency differences are often on
the order of the exchange rates of the system. Furthermore,
nonlinear effects dominate this system and are dictated by the
chemical exchange, making this system a sensitive reporter of
the performance of the simulation. Full details of the physical
model for SABRE have been reported elsewhere.

For the case of distinguishable exchange processes,
we find the convergence radius of the LMEx equation can be
up to an order of magnitude larger than that of the traditional,
second-order exchange term in Lindblad form (Fig. 6B).
While the traditional formulation exceeds a 1% error when
T/t = 2.5%, the LMEx formulation does not exceed this
error until T/t = 38.5%, which represents an approximately
15-fold increase in the convergence radius of this system for
no additional computational cost.
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Figure 7 | Exploring performance of LMEx models for systems with indistinguishable exchange processes. The convergence of the
solutions (left) were all calculated using the same coherent interaction parameter set, for consistency. Furthermore, the system
parameters were iterated 3,200 times at T/t = 20% to examine the robustness of this performance. The histograms of the ratio
between the LMEx and traditional errors are shown to the right. A. The G2 system can be cast as a pseudorotation and has a relatively
simple exchange generating function, given by a single exponential factor I'(T /1) = exp(—T /). For this case, we see that the
solution is has a convergence radius that is approximately a factor of 10 larger than the traditional solution and that this is robust as
the system parameters are varied. However, the B. G3 — G2 and C. G* — G2 systems have more complicated generating functions
that have to be constructed according to eq. 41 and 44. Despite this, they exhibit solution convergences that are on the order of or
even exceed the G2 system and have similar robustness to changes in the coherent interactions.

There are many coupled exchange mechanisms in the
SABRE system, namely the exchange of parahydrogen and the
target ligand with the catalyst. This would appear to violate the
restriction that was imposed that exchange processes were
only self-correlated. However, we circumvent this by
formulating the exchange pathways in a way where the
pathways are uncoupled. The parahydrogen exchange o
and target ligand exchange (F']) pathways are transformed to
give the joint probability of either ligand exchange with
parahydrogen exchange (13} + Fy) or ligand exchange without

parahydrogen exchange (F} — Fy). Then, the two new
pathways are effectively orthogonal and satisfy self-correlation
requirement. In total, there are 13 different exchange
processes that are all accounted for within the scope of this
LMEx master equation, highlighting the flexibility of this
framework for improving the performance of chemical
exchange simulations.
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In addition to the case of distinguishable exchange
processes, there are a vast scope of systems that have
indistinguishable exchange processes. Broadly, these are
systems with permutation symmetry, for which an extensive
amount of work has been devoted to calculating the dynamic
NMR spectra for such systems. Here, we examine the case of
a four spin-1/2 system that has permutation group symmetry
belonging to a G2 pseudorotation group, a G3 — G2
permutation group, as well as a G* — G2 permutation group,
using the notation that we described previously. While the first
of these may be cast as an Abelian pseudorotation group, the
latter two cases cannot and are incompatible with our previous
superoperator-based methods for chemical exchange. In
addition to examining the convergence of the solutions for
these systems, we are able to iterate over the parameters that
define the coherent interactions (resonance frequencies and



couplings) to assess the robustness of the improvement that
the LMEx provides over the traditional implementation.

We find that an appropriately formulated exchange
generating function can yield a vast improvement in the
convergence radius of the solution for no additional
computational cost, even for the non-Abelian permutation
groups that were tested here (Fig. 7). In every case, the LMEx
exhibits a robust improvement in the solution convergence
that is approximately an order of magnitude. Furthermore, we
tind that the improvement that is obtained from the LMEx
formulation is robust to variations in the system patametets.
Using the case T/t =20%, we find that (OpmEx/
Opindblad) = (21 £12)% for the G* system, at (Opypy/
OLinapiad) = (22 £ 13)% for the G2 — G2 system, and at
(OLmEx/OLinablaa) = (114 £53)% for the G*—G*
system. Out of the 9,600 different system parameterizations
that were tested over these three cases, there was only a single
instance where the LMEx did not yield a superior convergence
over the traditional master equation for chemical exchange.

Both  the
indistinguishable exchange processes show that accounting

A *
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Figure 8 | Improving performances of systems that do not yield
scalar generating functions. A. The fivefold rotation of
permethylferrocene undergoes single jump (k;) and double
jump (k) rotations about the symmetry axis of this system.
These pathways are distinguishable from one another, but each
have five indistinguishable exchange processes that form the
group of exchange operators. B. We find that calculating the first
three non-zero terms of the Dyson series (LME6) offers a
relatively inexpensive route to improving the convergence radius
of the solution. Here we show a 5.4X improvement in the
convergence radius at a cost of an additional 60%
computational time, on average.
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for all higher moments of the chemical exchange interaction
in the equation of motion yields a wvastly improved
convergence radius of the solution. We regulatly found
instances where the convergence radius had increased by an
order of magnitude and that this was robust to changes in the
system parameters. However, there are limits to which
systems will have scalar exchange generating functions. One
such example is rotation of five-fold symmetric systems as is
observed in permethylferrocene[29] (Fig. 8). This system has
two distinguishable sets of processes that are comprised of
single jump (21/5) or double jump (41 /5) rotations about
the C5 axis of this system. While these exchange processes are
distinguishable from one another, there are five individual
indistinguishable processes that are required to fully describe
this system. The particular five-fold cyclic geometry that is
discussed in this case yields no scalar exchange generating
function, at least to the point that has developed in this work.
However, in rare cases such as this, the Fock-space
representation of this problem offers a convenient solution to
calculate the powers of the Lindbladian, and the rest of the
Dyson series is already summarized in its most general form
for chemical exchange in eq. 28. This is most efficient to
compute symbolically, such that various symbolic variables
may be replaced with the appropriate density matrix during
the calculation. Thus, it is possible to simply calculate the first
few terms of the series as a last resort for special cases.

Here, we demonstrate the improved convergence
radius of an LMEG simulation, which utilizes the first three
terms of eq. 28 (to sixth order in the Dyson series), yields an
approximately 5.4-fold improvement in the convergence
radius compared to the traditional master equation and only
requires approximately 60% more computational time to
evaluate, which ultimately yields superior performance of the

solution. The mt order Lindbladian for the single (ﬁgm)) and

double (flgm)) jump exchange pathways applied to the site n
for this case are given by:

ORI P ~ A

Li7p| =< Pn-1+ Prs1 — 2Pn)
- in

A(2) A 1 ~ ~ ~ ~
_L1 P n = ﬁ(ﬁon - 4(pn—1 + pn+1) + Pn—2 + pn+2)
[ 2(3) A] 1 A A A~ A A
L17p) = g(3(pn_1 + Prs1) — Pn-z — Pni+z — 4Pn)
ON P R R
,ﬁgl)p_n =< (Pn—z + Pn+z = 2Pn)

A(2) A 1 ~ ~ N .
L27P| =55 (6Pn = 4(Pn-2 + Pns2) + Pp-1 + Pr+a)

US|
L27P| =55 BPn-2 + Pnsz) = Pn-1 = Prs1 = 4Pn)



Additionally, there is no significant difference in the
performance of the LMEG solution in comparison to a
solution that utilizes the first 40 terms of the Dyson
expansion. While it is not ideal to have to result to brute-force
evaluation of eq. 28, here we demonstrate that in the rare
cases that are not already described here that the first few
terms of the Dyson series can significantly improve
computational performance at modest cost.

In this section, we have examined the performance of
various exact Lindblad master equations for chemical
exchange. To summarize the various dissipators that should
be used for the type of exchange processes, the various cases
are in Table 1 below along with references to the equations in
which they were derived. All distinguishable exchange
processes may be treated within this formalism, and we have
introduced various methods to handle indistinguishable
exchange processes in an exact fashion. Finally, we have
shown that the Dyson series may be brute-force evaluated up
to order K and can still generate significant computational

improvements.
Process Type Dissipator Eq.
Distinguishable Lyp =T
& ZLexp (—) (35)
(all types) —~ Tk Tk
Indistinguishabl 1oL hT
ndistinguishable k -
pseudorotation Nz T exp (2N‘r) (40)
k
N .
1 Ly.p —hT
Indistinguishable NZ. 1 p<2NT> 41)
non-Abelian* &
permutation _ANLe '<1) (44)
N 7T 2t
j€
Other K o nat .
indistinguishable Ly 1 /T (28)
processes; order Z Z Ty n! <2)
K correction n=0 % k

Table 1| Exact Lindblad equations derived in this work, where h
corresponds to the number of sitesand N = (h? — h) /2 .

V. Conclusions

Here, we have generalized and extended the exact master
equation treatment of chemical exchange phenomena within
the Lindblad formalism. We have developed methods for
identifying exact master equations for a variety of systems and
have presented solutions for any system with distinguishable
exchange processes and a vast scope of systems with
indistinguishable exchange processes. We have found that the
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exact Lindblad master equation approach generates an
approximately order of magnitude larger convergence radius
for the variety of systems that we studied at no additional
computational cost. Furthermore, this improvement is robust
to changes in the system-specific parameters. This result is
trivial to implement into any existing chemical exchange
simulation and has shown to vastly improve the convergence
of the solution.
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