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We present a novel formulation of the vortex particle method (VPM) as a large eddy

simulation (LES) in a meshless scheme that is numerically stable. A new set of VPM governing

equations are derived from the LES-filtered Navier-Stokes equations. The new equations

reinforce conservation of angular momentum by resizing the vortex elements subject to vortex

stretching. In addition to the VPM reformulation, a new anisotropic dynamic model of subfilter-

scale (SFS) vortex stretching is developed. This SFS model is well suited for turbulent flows with

coherent vortical structures where the predominant cascade mechanism is vortex stretching.

Mean and fluctuating components of turbulent flow and Reynolds stresses are validated through

simulation of a turbulent round jet. The computational efficiency of the scheme is showcased in

the simulation of an aircraft rotor in hover, showing our meshless LES to be 100x faster than

a mesh-based LES with similar fidelity. The implementation of our meshless LES scheme is

released as an open-source software, called FLOWVPM.

Nomenclature
Physical Variables and Properties

8 Vorticity field, 8(x, C) 1/s

u Velocity field, u(x, C) m/s

x Position m

a Kinematic viscosity m2
/s

d Density kg/m3

b Local or global enstrophy 1/s2

⇠) Thrust coefficient, ⇠) = )/d=234

3 Diameter m

= Revolutions per second 1/s

' Radius m

A Radial position m

C Time s

+– Volume m3

Mathematical Variables and Functions

�? Vortex strength of ?-th particle, �? (C) m3
/s

X Dirac delta

Eadv SFS vorticity advection, (Eadv)8 ⌘ m) 0

8 9/mG 9 1/s2

Estr SFS vortex stretching, (Estr)8 ⌘ �m)8 9/mG 9 1/s2

x? Position of ?-th particle, x? (C) m

f Filter width (smoothing radius or core size) m

f? Filter width at ?-th particle, f? (C) ⌘ f(x? , C) m

Z Radial basis function
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Zf Filter kernel, Zf (x) ⌘ Z (kxk/f)/f3 1/m3

⇠3 SFS model coefficient, ⇠3 (x, C)

6f Regularizing function, 6f (x)⌘4c
kxk/fØ

0
Z (C )C2 dC

)8 9 SFS vorticity stress tensor, )8 9⌘D8l 9�D8 l 9 m/s2

Symbols and Operators

hi Lagrangian average operator

() Filter operator

I. Introduction
Large eddy simulation (LES) is a class of computational fluid dynamics (CFD) that filters the Navier-Stokes

equations to decompose small-scale fluctuations of the flow from large ones. The large scales are then resolved directly,

while the effects of the smaller scales are modeled. The most common LES methods use a mesh or grid to discretize the

space and calculate fluxes and derivatives, classified as finite volume/element/difference methods. Significant user

effort is spent in the generation and manipulation of the mesh, with studies showing that about 67% of engineering time

in mesh-based CFD is spent in these efforts.[1]

Vortex methods [2–4] are a class of meshless CFD solving the Navier-Stokes equations in their velocity-vorticity

form. This form is solved in a Lagrangian scheme, which conserves vortical structures over long distances with minimal

numerical dissipation.

We focus on the vortex particle method [5] (VPM), a particular vortex method, that uses particles to discretize the

Navier-Stokes equations, with the particles representing radial basis functions that construct a continuous vorticity

field [6]. While a meshless VPM is not the best approach for all problems, it can be well suited for wake-dominant

flows with unbounded domains. Some advantageous characteristics of the VPM include (1) it does not suffer from the

Courant–Friedrichs–Lewy (CFL) condition, (2) it has minimal numerical dissipation, (3) its velocity field derivatives

are calculated analytically rather than approximated through a stencil, and (4) when used with a fast multipole method it

is computationally efficient. Furthermore, the VPM is spatially second-order accurate [7], it is highly efficient since

elements are placed only where vorticity exists, the spatial discretization can be automatically adapted [8–10] in the

fashion of an adaptive mesh refinement, and simulations are highly-parallelizable in heterogeneous CPU and GPU

architectures [11, 12]. Its major disadvantageous are numerical instability (the subject of this paper) and imposing solid

boundary conditions without significant computational penalty.

VPM has gained popularity in recent years due to a growing need to predict complex aerodynamic interactions in

modern electric aircraft [13–16] at a computational cost fit for preliminary design [17, 18]. For example, VPM has been

used for high-fidelity simulation of rotorcraft forward flight [19] and multirotor interactions [20, 21], and as a mid and

low-fidelity tool for ground effect [22, 23], electrical vertical takeoff and landing (eVTOL) [24], distributed electric

propulsion [25, 26], aeromechanics of unconventional rotorcraft [27–29], rotor-rotor interactions [30, 31], and wind

energy [32–34]. Furthermore, a couple of open-source VPM codes have been recently released [35–37]. Fig. 1 shows
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Fig. 1 Meshless LES of eVTOL aircraft using reformulated VPM: (left) computational elements (vortex particles
and strength), and (right) volume rendering of vorticity field.

the simulation of an eVTOL aircraft using VPM.

In spite of its growing popularity, VPM is known to be numerically unstable when vortical structures break down

close to the turbulent regime. This has limited its range of applications in the aforementioned studies to mostly benign

cases with well-behaved numerics (e.g., coarse simulations of rotors with axial inflow). The instability is triggered when

vortex stretching gives raise to a rapid increase of local vorticity, which the low numerical dissipation of the method fails

to damp out. Such numerical instability is believed to be caused by a combination of Lagrangian distortion, a vorticity

field that is not divergence-free, and the absence of subfilter-scale (SFS) turbulent diffusion, among other reasons.

Multiple meshless schemes have been developed over the years to address Lagrangian distortion [9, 38, 39],

divergence of the vorticity field [40, 41], and SFS effects [42, 43]. While some of these schemes are effective in

two-dimensional cases, they have not succeeded at making the three-dimensional VPM numerically stable when vortex

stretching arises. Cottet [2] suggested that the divergence of the vorticity arises from unphysical small scales produced

by the computation, which could be properly addressed with subfilter-scale diffusion. This challenge motivated further

development of the vortex-in-cell (VIC) method [44–46], also known as vortex particle-mesh method. In such method,

the particles are projected onto a background mesh at every time step, and vortex stretching, viscous diffusion, and the

Biot-Savart law are computed in a mesh-based scheme coupled with a diffusive SFS model. This approach has shown to

be numerically stable, recently enabling the study of wake dynamics with unprecedented fidelity [47–53]. However, the

introduction of this mesh also forfeits a few of the aforementioned benefits of a purely Lagrangian (meshless) scheme.

In this study, we propose a formulation of the VPM that is both numerically stable and meshless. Numerical stability

is achieved formulating the VPM as an LES and capturing SFS effects. A new set of VPM governing equations are

derived from the LES-filtered Navier-Stokes equations in Section II. In Section III, the classic VPM is shown to be
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only one out of multiple possible formulations of these governing equations.� In Section IV, we propose an alternative

formulation, which uses the particle size to reinforce local conservation of angular momentum. This formulation,

referred to as the reformulated VPM, is implemented and released as the open-source software FLOWVPM.†

In addition to the reformulated VPM, a novel anisotropic structural model of subfilter-scale (SFS) vortex stretching

is developed in Section V. The means for backscatter control are also provided, along with a dynamic procedure for the

automatic computation of the model coefficient. This SFS model is apt for both meshless and mesh-based CFD, and is

well suited for turbulent flows with coherent vortical structures where the predominant cascade mechanism is vortex

stretching.

The scheme comprised of the reformulated VPM and SFS model is tested in Section VI, validating the scheme

as an LES method. Large-scale turbulent dynamics are validated through simulation of a turbulent round jet, where

predicted fluctuations and Reynolds stress are compared to experimental measurements. The numerical stability and

computational efficiency of our meshless LES is showcased through the simulation of a rotor in hover. Finally, our

method’s ability to resolve arbitrarily small scales is tested resolving the wake of an aircraft propeller.

II. Fundamentals of the Vortex Particle Method
A new set of VPM governing equations are derived from the LES-filtered Navier-Stokes equations in their vorticity

form. Along the way, the derivation here presented introduces all the fundamental concepts necessary to bring the

reader up to speed with LES and vortex methods.

A. Vorticity Form of the Navier-Stokes Equations

The vorticity equation for an incompressible fluid is obtained by taking the curl of the Navier-Stokes linear-momentum

equation:

D
DC

8 = (8 · r)u + ar
28, (1)

where ⇡ is the total or material derivative, u(x, C) is the velocity field, a is the kinematic viscosity, and8(x, C) = r⇥u(x, C)

is the vorticity field.

This equation depends on 8 alone since u can be calculated from 8 through the Biot-Savart law. Equation (1) can

be interpreted as a form of conservation of angular momentum [54], which is further discussed in Section IV.A. From

the right-hand side, we see that the evolution of the vorticity field is governed by vortex stretching (first term) and

viscous diffusion (second term).
�The particular formulation corresponding to the classic VPM is shown to locally violate conservation of mass and angular momentum under

vortex stretching in the supplementary document, explaining why the classic VPM tends to be numerically unstable.
†The code is available at https://github.com/byuflowlab/FLOWVPM.jl

4

https://github.com/byuflowlab/FLOWVPM.jl
https://github.com/byuflowlab/FLOWVPM.jl


B. Large Eddy Simulation Equation

We now derive the filtered vorticity Navier-Stokes equation—here referred to as large-eddy simulation (LES)

equation—and define the stress tensor that transfers energy between resolved scales and subfilter scales.

Let q be a field and Zf a filter kernel, the filtered field is denoted by a bar and defined as

q (x) ⌘
1π

�1

q(y)Zf (x � y) dy, (2)

where the filter Zf is associated to a certain cutoff length scale f. In this study, Zf is defined as Zf (x) ⌘ 1
f3 Z (

kxk
f )

where Z is a radial basis function, and is required to have a volume integral of unity,
1Ø

�1

Zf (y) dy = 1.

In order to derive the LES version of the vorticity equation, Eq. (1) is written in tensor notation and filtered as

ml8

mC

+ D 9
ml8

mG 9
= l 9

mD8

mG 9
+ ar2

l8 . (3)

In this equation, D 9
ml8

mG 9

and l 9
mD8
mG 9

are non-linear terms that cannot be calculated from resolved quantities, but are rather

approximated through a tensor )8 9 that encapsulates the error between D8l 9 and D8 l 9 as

D8l 9 = D8 l 9 + )8 9 . (4)

The gradient of )8 9 and its transpose result in

m)
0

8 9

mG 9
= D 9

ml8

mG 9
� D 9

ml8

mG 9
and

m)8 9

mG 9
= l 9

mD8

mG 9
� l 9

mD8

mG 9
(5)

Replacing this into Eq. (3) and using the derivative-filter commutation property, we obtain the LES vorticity equation:

ml8

mC

+ D 9
ml8

mG 9
= l 9

mD8

mG 9
+ ar

2
l8 �

m)
0

8 9

mG 9
+
m)8 9

mG 9
. (6)

The term
m) 0

8 9

mG 9

represents the subfilter-scale (SFS) contributions arising from the advective term (vorticity advection),

while m)8 9
mG 9

represents the contributions arising from vortex stretching. )8 9 is associated to the SFS vorticity stress that

encapsulates the interactions between large scale dynamics and SFS dynamics and has to be modeled in terms of resolved

quantities. The accuracy of LES hinges on the modeling of this tensor. Its divergence represents the rate at which

enstrophy—a measure of rotational kinetic energy—is transferred from resolved scales to subfilter scales (diffusion)

and from subfilter scales to resolved scales (backscatter). In Section V we will develop a model that approximates the

vortex-stretching component of this tensor, and provide the means for backscatter control.
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For convenience, we write Eq. (6) in vector notation as

d
dC
8 = (8 · r) u + ar

28 � Eadv � Estr, (7)

where (Eadv)8 ⌘
m) 0

8 9

mG 9

is the SFS vorticity advection, (Estr)8 ⌘ �
m)8 9
mG 9

is the SFS vortex stretching, and the d
dC operator is

a linearized version of the filtered material derivative, d
dC () ⌘

m
mC () + (u · r) ().

C. Viscous Diffusion

One common practice for solving non-linear partial differential equations (PDE), like Eq. (7), is that of splitting the

PDE operator into a linear sum of its non-linear pieces. This permits discretizing and solving each non-linear piece in a

separate numerical scheme. In this study we will split the PDE in Eq. (7) into inviscid and viscous pieces as

d
dC
8 =

✓
d
dC
8

◆
inviscid

+

✓
d
dC
8

◆
viscous

, (8)

where

✓
d
dC
8

◆
inviscid

= (8 · r) u � Eadv � Estr

✓
d
dC
8

◆
viscous

= ar
28. (9)

Over the years, multiple Lagrangian schemes have been developed that accurately resolve the viscous component,

like the vortex redistribution method [55, 56], particle strength exchange [57], and core spreading [58], to name a few.

In this study, viscous diffusion will be solved through the core spreading method coupled with the radial basis function

(RBF) interpolation approach for spatial adaptation developed by Barba [6, 38, 59]. This viscous scheme diffuses the

vorticity by thickening each particle’s core size f over time, while using an RBF interpolation to reset core sizes when

they have overgrown. As shown by Rossi [58], the core spreading method has second-order spatial convergence, while

showing linear convergence when coupled with spatial adaptation.

In the following sections we focus on the inviscid part of the PDE, developing a scheme for its numerical solution.

D. Lagrangian Discretization: The Vortex Particle

The material derivative in Eq. (1) and the material-conservative nature of the vorticity makes the 8 field especially

well fit for a Lagrangian description. We now discretize the vorticity equation with Lagrangian elements, termed vortex

particles. Each particle represents a volume of fluid that is convected by the velocity field carrying an integral quantity

of vorticity.

The unfiltered 8 field is discretized with singular vortex particles of positions x? and coefficients �? , approximating
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8 as

8(x, C) ⇡
’
?

�? (C)X(x � x? (C)), (10)

where X is the Dirac delta. Each particle travels with the local velocity as

d
dC

x? = u(x?), (11)

where x? is the position of the ?-th particle. Thus, each coefficient �? (termed vortex strength) represents the average

vorticity that is carried in the volume of each particle.

Using the singular particle approximation in the filtered vorticity 8,

8 (x) =
1π

�1

8 (y) Zf (x � y) dy ⇡

1π
�1

 ’
?

�?X(y � x?)

!
Zf (x � y) dy, (12)

we obtain an approximation of the filtered vorticity field,

8 (x) ⇡
’
?

�?Zf (x � x?). (13)

As seen in Eq. (13), the filter operator has the effect of spreading the vortex strength �? in space, regularizing

the singularity originally introduced by the Dirac delta in Eq. (10). Thus, the filter kernel takes the role of a basis

function that is used to discretize and approximate the filtered vorticity field through particles. We let the filter width f

change in time and space according to the evolution of each individual particle. Here on, the filter width is referred to as

smoothing radius or core size, denoted f? , and defined as f? (C) ⌘ f(x? , C). We approximate the filtered vorticity as

8 ⇡ 8f , with

8f (x, C) ⌘
’
?

�? (C)Zf?
(x � x? (C)) (14)

and

Zf?
(x � x? (C)) =

1
f

3
? (C)

Z

✓
kx � x? (C)k

f? (C)

◆
. (15)

Replacing the original filter Zf with the variable-width filter Zf?
deviates from the derivation of the classic VPM.

The numerical properties of the classic VPM were proved through formal analysis over the first years of development of

the method [60–63]. At this point, it is not well understood how those properties hold for the formulation developed in
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Fig. 2 Vortex particle with unit size and strength: (left) core size f and vortex strength �, (middle) vorticity
field, and (right) contours of velocity field and streamlines (represented as curved arrows).

this study, however, the results presented in Section VI suggest similar convergence and improved stability. Formal

analysis will be needed in future work to better understand the numerical properties of the reformulated VPM. In

particular, the variable-width filter introduces an error from commuting filter and differentiation operators in the LES

equations that will be derived in the next section. However, the work by Ghosal and Moin [64] suggests that this error is

second order in the filter width, hence it is assumed to be negligible or part of the discretization error of the VPM. Also,

Eq. (13) introduces numerical issues by approximating 8 through a field that is in general not divergence-free. Cottet

[2] suggested that the divergence of 8 arises from unphysical small scales produced by the computation, which could

be properly addressed with subfilter-scale diffusion. The divergence of 8 will be treated in part with the relaxation

proposed by Pedrizzetti [40], which, as shown in Section VI, will be sufficient to attain both numerical stability and

physical accuracy with the LES formulation and subfilter-scale model developed in this study.

The rotational part of the velocity field is calculated from the particles using the Helmholtz decomposition u = r ⇥ 7

where 7 is some vector potential. This is done by analytically solving the Poisson equation r
27 = �8, which solution

is a regularized Biot-Savart law. Fig. 2 shows a vortex particle with unit size and strength, the spreading of the vortex

strength by the filter kernel, and the resulting velocity field.

E. General VPM Governing Equations

We will now use vortex particles to discretize the LES vorticity equation, Eq. (7), and derive the equations governing

the evolution of the Lagrangian elements. For ease of notation, here on we denote the filtered velocity field u simply u

and use D
DC and d

dC interchangeably. Also, time dependence is no longer explicitly indicated, but x?, �?, and f? are

time-dependent variables.
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Starting from the inviscid part of the LES-filtered vorticity equation,

d
dC
8 = (8 · r) u � Eadv � Estr, (16)

we write the filter operator explicitly,

d
dC

©≠
´

1π
�1

8 (y) Zf (x � y) dy™Æ
¨
=

266664
©≠
´

1π
�1

8 (y) Zf (x � y) dy™Æ
¨
· r

377775
u (x) � Eadv (x) � Estr (x) . (17)

Using the singular particle approximation, 8(y) ⇡
Õ
@
�@X(y � x@), both integrals collapse resulting in

d
dC

 ’
@

�@Zf@
(x � x@)

!
=

" ’
@

�@Zf@
(x � x@)

!
· r

#
u(x) � Eadv (x) � Estr (x). (18)

The derivative on the left-hand side is expanded in the supplementary document as:

d
dC

 ’
@

�@Zf@
(x � x@)

!
=

’
@

d�@

dC
Zf@

(x � x@) + �@
d
dC

⇣
Zf@

(x � x@)
⌘�

(19)

=
’
@

⇢d�@

dC
Zf@

(x � x@) + �@

mZf@

mC

(x � x@) + �@
⇥ �

u(x) � u(x@)
�
· r

⇤
Zf@

(x � x@)
�

(20)

while vortex stretching is rearranged as

" ’
@

�@Zf@
(x � x@)

!
· r

#
u(x) =

’
@

Zf@
(x � x@)

�
�@ · r

�
u(x). (21)

Evaluating at the position of the ?-th particle, x = x? , and pulling the ?-th term out of each sum,

d
dC

 ’
@

�@Zf@
(x? � x@)

!
=

d�?

dC
Zf?

(0) + �?

mZf?

mC

(0) (22)

+

’
@<?

⇢d�@

dC
Zf@

(x? � x@) + �@

mZf@

mC

(x? � x@) + �@
⇥ �

u(x?) � u(x@)
�
· r

⇤
Zf@

(x? � x@)
�

(23)

and

" ’
@

�@Zf@
(x? � x@)

!
· r

#
u(x?) = Zf?

(0)
�
�? · r

�
u(x?) +

’
@<?

Zf@
(x? � x@)

�
�@ · r

�
u(x?). (24)
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Thus, Eq. (18) evaluated at x = x? becomes

d�?

dC
Zf?

(0) + �?

mZf?

mC

(0) + M0
? = Zf?

(0)
�
�? · r

�
u(x?) + (M1

? + M2
?) �

�
Eadv (x?) + Estr (x?)

�
, (25)

where

M0
? ⌘

’
@<?

✓d�@

dC
Zf@

(x? � x@) + �@

mZf@

mC

(x? � x@)
◆

(26)

M1
? ⌘ �

’
@<?

�@
�
u(x?) � u(x@)

�
· rZf@

(x? � x@) (27)

M2
? ⌘

’
@<?

Zf@
(x? � x@)

�
�@ · r

�
u(x?) (28)

These M-terms pose an interdependence between the ?-th particle and neighboring particles, which arises from filtering

the vorticity equation. In this study we will neglect this interdependence as explained in Section III. However, we will

see in Section V that M1
? and M2

? are closely related to advection and vortex stretching at the subfilter scale.

Recalling that Zf is defined as Zf (x) = 1
f3 Z (

kxk
f ), its time derivative is calculated as

mZf

mC

(x) = �3
1
f

4
mf

mC

Z

✓
kxk
f

◆
+

1
f

3
m

mC

✓
Z

✓
kxk
f

◆◆
(29)

= �3
1
f

mf

mC

Zf (x) �
1
f

3
mZ

mA

✓
kxk
f

◆
kxk
f

2
mf

mC

. (30)

Assuming that Z (A) reaches a maximum at A = 0 (i.e., mZ
mA (0) = 0) and evaluating at x = 0, we get

mZf

mC

(0) = �3
1
f

mf

mC

Zf (0). (31)

Since viscous effects have been set aside through operator splitting, mf
mC in this derivation only accounts for inviscid

effects. For clarity, this means that core spreading due to viscous diffusion must not be included in Eq. (31).

Finally, substituting Eq. (31) into Eq. (25) and assuming Zf?
(0) < 0, we arrive to the equation governing the

evolution of vortex strength,

d�?

dC
=

�
�? · r

�
u(x?) + 3�?

1
f?

mf?

mC

+
1

Zf?
(0)

(�M0
? + M1

? + M2
?) �

1
Zf?

(0)
�
Eadv (x?) + Estr (x?)

�
. (32)

Thus, particle convection as in

d
dC

x? = u(x?), (33)
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strength evolution as in Eq. (32), some expression for mf?

mC , and the viscous diffusion equation make up the general

governing equations of the vortex particle method that solve the LES-filtered Navier-Stokes vorticity equation.

We see in Eq. (32) that the evolution of the vortex strength is dictated by vortex stretching (first term), inviscid

expansion/contraction of the particle size f? (second term), a dependence on other particles through the M terms, and

SFS contributions through the E terms. One obtains different formulations of the VPM depending on how mf
mC , the M

terms, and the SFS E terms are handled. In particular, we will see in Section III that the classic VPM is equivalent to

assuming‡ mf
mC = 0 while neglecting all M terms. In Section IV we propose a new formulation that uses mf

mC < 0 to

reinforce conservations laws in spherical elements. In Section V we discuss existing SFS models for meshless schemes

and develop a new anisotropic dynamic model of SFS vortex stretching, Estr.

F. Numerical Schemes

In FLOWVPM—the solver used for this study—vortex stretching is solved in the transposed scheme [5, 65] and

the divergence of the vorticity field is treated through the relaxation scheme developed by Pedrizzeti [40]. The time

integration of the governing equations is done through a low-storage third-order Runge-Kutta scheme [66]. A Gaussian

kernel is used as the LES filter Zf (or VPM radial basis function). The fast multipole method [67, 68] (FMM) is used

for the computation of the regularized Biot-Savart law, approximating the velocity field and vortex stretching through

spherical harmonics with computational complexity O(#), where # is the number of particles. The FMM computation

of vortex stretching is performed through an efficient complex-step derivative approximation [20], implemented in a

modified version of the open-source, parallelized code ExaFMM [69, 70]. FLOWVPM is implemented in the Julia

language [71], which is a modern, high-level, dynamic programming language for high-performance computing.

An in-depth description of these numerical schemes is provided in the doctoral dissertation accompanying the

development of FLOWVPM [72, Chapter 4].

III. Classic Vortex Particle Method
Before further exploring the general equation governing vortex stretching, Eq. (32), we pause to analyze the equation

that has been used extensively in the literature throughout the years:

d�?

dC
=

�
�? · r

�
u(x?). (34)

We denote this equation as the Classic VPM.

Multiple variations of Eq. (34) have been used over the years. For instance, Gharakhani [41] introduced a new term

accounting for the divergence of the approximated vorticity field, Winckelmans and Leonard [5] replaced the differential
‡The only instance that the classic VPM uses mf

mC
< 0 is in solving the viscous diffusion equation through the core spreading scheme, but even in

this case the effects of mf

mC
on vortex strength are neglected.
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operator in vortex stretching with its transpose, and Mansfield et al. [73, 74] and Cottet [75] reintroduced the SFS

contributions. However, all these variations and the classic equation have in common that they all neglect mf?

mC and are

free of the interdependence posed by the M-terms in Eq. (32).

We now delineate the assumption underlying the classic VPM that will justify neglecting the M-terms, termed

localized-vorticity assumption, as follows.

Given a vorticity field 8 that is compact in a small volume +– , the average vorticity h8i is calculated as

h8i =

Ø
+–

8(y) dy

+–
. (35)

The field can be approximated through a radially-symmetric field 8̃ defined as

8̃(x) ⌘ h8i+– Zf (x � x0), (36)

where Zf is a radial basis function of spread f and center x0 approximating the vorticity distribution of the original

field 8. If Zf is normalized such as to have a volume integral of unity, 8̃ approximates 8 in an average sense since

1π
�1

8̃(y) dy =
π
+–

8(y) dy. (37)

Defining � = h8i+– , the localized-vorticity field 8 can be approximated with a single particle as

8 (x) ⇡ �Zf (x � x0). (38)

Replacing this in the inviscid part of the vorticity equation,

d
dC
8 = (8 · r)u, (39)

evaluating at x = x0, and following similar steps as in Section II.E, we get

d�
dC

= (� · r) u(x0) + 3�
1
f

mf

mC

. (40)

This is the evolution equation of the vortex strength approximating the field of localized vorticity, discretized with only

one particle. In contrast, in Section II.E we showed that a more general vorticity field that is discretized using multiple
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particles leads to a governing equation that is slightly different:

d�?

dC
=

�
�? · r

�
u(x?) + 3�?

1
f?

mf?

mC

+
1

Zf?
(0)

(�M0
? + M1

? + M2
?), (41)

after ignoring the SFS contributions. Here, the M-terms, as defined in Eqs. (26) to (28), pose a dependence on

neighboring particles that arises from having filtered the vorticity equation.

Discarding these M-terms is equivalent to assuming that the vorticity field can be approximated by the superposition

of blobs of fluid with compact vorticity that evolve somewhat independently from each other.§ This assumption, which

we call localized-vorticity assumption, reduces Eq. (41) into Eq. (40) and is valid as long as there is no significant particle

overlap.¶ In both derivations of the classic VPM by Winckelmans and Leonard [5] and Cottet and Koumutsakos [76],

these M-terms are not present due to the construction of the method: In the classic derivation, the unfiltered vorticity

equation (Eq. (1)) is discretized with singular particles and only the velocity field is filtered to obtain a regularized field,

while in our derivation we discretized the LES-filtered vorticity equation (Eq. (7)) which leads to Eq. (41). In order to

bring both approaches into agreement, in Section IV we will use the localized-vorticity assumption in the derivation of

our reformulated VPM to neglect these M-terms.

Interestingly, discarding the M-terms resembles the LES decomposition approach of truncated basis functions

[77]. In such an approach, the flow field is expanded using orthonormal basis functions. The summation of bases is

then truncated to define the large-scale field, and the discarded modes represent the range of subfilter scales. In the

localized-vorticity assumption, the sum over all the particles is truncated after the leading term, ?, while neglecting the

contributions of neighboring particles. Hence, the localized-vorticity assumption can be regarded as a secondary LES

filter with the neglected M-terms becoming part of the subfilter-scale contributions.

While it is justifiable to neglect the M-terms through the localized-vorticity assumption, it is unclear to us what the

basis is for the classic VPM to assume mf?

mC = 0. In fact, we hypothesize that this last assumption is the cause of the

numerical instabilities that pervade the classic VPM.

The classic VPM simply regards f as a numerical parameter with no physical significance. However, Leonard [78]

suggested that f should change according to conservation of mass, and Nakanishi, Ojima, and Maremoto [79, 80]

suggested that f should change according to Kelvin’s theorem, which was more recently implemented by Kornev et al.

[81] Even though these authors let f evolve in time, they did not include these effects back in the equation that governs

�, effectively assuming mf?

mC = 0 in the evolution of �. In the following chapter we propose a formulation that uses
mf?

mC < 0 in the governing equation of �, while letting f change as to reinforce conservation of angular momentum,

§The interactions neglected here are only the ones pertaining to the evolution of vortex strength, while other interactions are still accounted for in
the convection and viscous diffusion of the particles.

¶For various reasons, most vortex particles methods in the literature have had a scheme in place to ensure that there is no significant overlap:
particle splitting or remeshing to address Lagrangian distortion, or core resetting with RBF interpolation to address core spreading. In this study we
use core resetting as described in Section II.C.
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which will be shown to lead to remarkable numerical stability.

IV. Reformulated Vortex Particle Method
The general governing equations derived in Section II.E call for an expression for mf?

mC . While the classic VPM

simply assumes mf?

mC = 0, we will now go back to first principles to find some plausible expressions for this term.

In Section IV.A we consider the physical implications of angular momentum conservation on our particle model,

which guides our search for a candidate formulation of mf?

mC in Section IV.B. While other options are considered in

the supplementary document, this new formulation, termed reformulated VPM is summarized in Section IV.C, which

reinforces conservation of angular momentum for spherical elements subject to vortex stretching.

A. Conservation of Angular Momentum

In Section II.A we showed that the linear-momentum Navier-Stokes equation can be transformed into an expression

that only depends on vorticity, namely Eq. (1). We now point our attention to conservation of angular momentum

implied by Eq. (1). The discussion that follows is inspired by the writing of P. A. Davidson [82, 83].

Consider a spherical differential fluid element carrying a mean vorticity 8 with moment of inertia �. Due to 8, the

element is then rotating at an angular velocity of 8/2 and its angular momentum L is calculated as [84, p. 82]

L =
�8

2
. (42)

Given that the element is spherical (and before strain distorts the element), the pressure field exerts no torque on

the element and the only torque-producing forces are due to viscous effects, namely 3viscous. The change of angular

momentum is then calculated as

d
dC

L = 3viscous. (43)

Replacing Eq. (42) in Eq. (43), we arrive to the following expression of the total derivative of vorticity ,

d
dC
8 = �

8

�

d
dC
� + 3⇤viscous, (44)

where 3⇤viscous = 23viscous/�. When viscous effects are ignored, Eq. (44) implies that, in order to conserve angular

momentum, the angular velocity (or vorticity) must decrease whenever the moment of inertia increases, and vice versa.

Eqs. (1) and (44) suggest that the vorticity Navier-Stokes equation is simply an expression of the conservation

of angular momentum in a spherical fluid element [54]. Furthermore, the first term in the right hand side of Eq. (1)

More generally, this equation should be expressed with an inertia tensor, but for a spherical body this tensor reduces to a scalar due to the
symmetry of the body.

14



accounts for the change of moment of inertia as

(8 · r)u = �
8

�

d
dC
�, (45)

which leads to an increase/decrease of vorticity to conserve momentum as the moment of inertia decreases/increases.

Hence, (8 · r)u is referred to as vortex stretching as it accounts for the deformation exerted by the velocity field on the

fluid element, intensifying the vorticity in the direction that the element is stretched, as illustrated in Fig. 3.

Fig. 3 Stretching of a spherical fluid element and
increase in vorticity (or angular velocity).

Equation (45) establishes that vortex stretching must lead

to a change in the size of a spherical fluid element. Otherwise,

if the vorticity (angular velocity) has changed due to vortex

stretching while the size of the element (moment of inertia)

is kept constant, the conservation of angular momentum has

been locally violated.

We believe that the classic VPM violates conservation

of angular momentum when it assumes d
dCf = 0. We also

hypothesize that this is the reason for its poor numerical

stability. In the following sections we will consider some possible formulations that use d
dCf as a degree of freedom to

locally reinforce this conservation law.

B. Candidate Formulations

Starting from the general equation governing vortex strength (Eq. (32)), neglecting SFS terms, and using the

localized-vorticity assumption, we obtain

d
dC
�? =

�
�? · r

�
u(x?) + 3�?

1
f?

mf?

mC

. (46)

1. Sphere with Conservation of Momentum

Given that the moment of inertia of a solid sphere is � = 2
5<A

2, where < = 4
3 dcA

3 is the mass of the sphere and A its

radius, the inertial term in Eq. (45) becomes

1
�

d
dC
� =

1
A

5
d
dC

⇣
A

5
⌘
=

5
A

d
dC
A . (47)
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Replacing this into Eq. (45) and taking the dot product with 8,

� (8 · 8)
5
A

d
dC
A = [(8 · r)u] · 8, (48)

results in

1
A

d
dC
A = �

1
5

1
k8k2 [(8 · r)u] · 8 (49)

= �
1
5
[(8̂ · r)u] · 8̂. (50)

When 8 is filtered and discretized with vortex particles, and the localized-vorticity assumption is applied, the

spherical element becomes the vortex particle itself. Vortex strengths are roughly aligned with the vorticity field��,

meaning �̂? ⇡ 8̂
�
x?

�
, and the size of the particle can be expressed as f? = UA with U some scaling factor, obtaining

1
f?

d
dC
f? = �

1
5

⇥
(�̂? · r)u

�
x?

� ⇤
· �̂? , (51)

or, equivalently

d
dC
f? = �

1
5

f?

k�? k

⇥
(�? · r)u

�
x?

� ⇤
· �̂? . (52)

Noticing that, in a Lagrangian scheme, f? is only a function of time (i.e., d
dCf? = mf?

mC ), we replace Eq. (52)

into Eq. (46) to obtain the equation governing �?:

d
dC
�? =

�
�? · r

�
u(x?) �

3
5
�⇥
(�? · r)u

�
x?

� ⇤
· �̂?

 
�̂? . (53)

Thus, Eqs. (52) and (53) are the governing equations required for the particles to preserve angular momentum.

2. Other Formulations

Other possible formulations could be devised by considering the elements as cylindrical tubes rather than spheres. In

this case, if we apply conservation of mass to the tubes we end up with the same governing equations as shown above.††

More generally, we could consider all six combinations of sphere/tube elements, momentum/mass conservation, and the

assumption that mass conservation has or has not been already ensured by the convection of the elements. These latter

options are derived and briefly discussed in the supplementary document. We find that some are physically implausible,

and that the classic VPM lies at the threshold of overstretching, which explains its tendency to be numerically unstable.
��This is especially true when using Pedrizzetti’s relaxation scheme [40].
††With the caveat that they are no longer the same when the SFS term is reintroduced.
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C. Reformulated Governing Equations

From hereon, this formulation that preserves angular momentum in spherical chunks of the flow is referred to as

the reformulated vortex particle method, or rVPM. In summary the rVPM equations consist of Eq. (33) resolving

vorticity advection by convecting the particles, Eq. (52) governing the evolution of particle size, Eq. (53) governing the

evolution of vortex strength, and the viscous part of Eq. (9) is resolved by one of the schemes mentioned in Section II.C.

For simplicity, Eqs. (52) and (53) omit the SFS contributions, but they are readily re-incorporated as shown in the

supplementary document.

Note that the rVPM equations do not require more computation than the classic VPM since df?

dC and d�?

dC are

calculated directly and solely from vortex stretching,
�
�? · r

�
u(x?).

V. Anisotropic Dynamic SFS Model
In the previous section we have formulated a numerical scheme for solving the large scales of the LES-filtered

vorticity equation,

d
dC
8 = (8 · r) u + ar

28 � Eadv � Estr. (7)

We will now focus on the subfilter-scale (SFS) stresses associated with advection and vortex stretching, Eadv and Estr,

respectively. In Section V.A we briefly discuss existing SFS models relevant to meshless vortex methods. In Section V.B

we introduce a novel anisotropic structural model of SFS vortex stretching that is suitable for turbulent flows where the

predominant cascade mechanism is vortex stretching. In Sections V.C and V.D we develop a dynamic procedure for

computing the model coefficient while also providing the means for backscatter control. Finally, in Section V.E we show

how our model can be implemented in conventional mesh-based CFD with a pressure-velocity solver.

A. Existing Models

Over the years, only a few models have been proposed that are suitable for meshless vortex methods. The most

popular one is a variant of the Smagorinsky eddy-viscosity model formulated for the vorticity stress [73, 74, 85, 86],

E = �r ⇥ (aSFSr ⇥ 8) , (54)

where E ⌘ Eadv + Estr, aSFS = ⇠
2
3f

2p2(<=(<=, (<= is the strain-rate tensor, f is the filter width, and ⇠3 is a model

coefficient which is either prescribed or computed dynamically. This functional model and others alike were developed

on the basis of homogeneous isotropic turbulence, which makes them overly diffusive in simulations with coherent

vortical structures. In the latest developments of the vortex particle-mesh scheme [87, 88], this drawback has been

avoided with the variational multiscale method [89–92], however its applicability to a meshless scheme is not clear.

17



In a different approach, Cottet [75, 93, 94] developed an anisotropic structural model of the advective SFS term Eadv

as

Eadv (x?) = ⇠3

’
@

+– @
�
8? � 8@

� ⇥ �
u(x?) � u(x@)

�
· rZf@

(x? � x@)
⇤
, (55)

where the model coefficient ⇠3 is usually prescribed with ad hoc calibration [95]. This model is reportedly [19, 96] less

dissipative than Smagorinsky-type models, however, it was developed on the basis of 2D flow which is absent of vortex

stretching. Thus, this model neglects Estr even though vortex stretching is known to be one of the main mechanisms for

enstrophy production in the energy cascade in three dimensions.

To address the need for a low-dissipation SFS model that captures vortex stretching as the physical mechanism for

turbulence, in the following sections we develop an anisotropic structural model of SFS vortex stretching with a dynamic

model coefficient. To isolate the effects of SFS vortex stretching, in this study we neglect the SFS advection term Eadv

and attempt to only capture the effects of the SFS stretching Estr. In Section VI we will show that Estr alone is sufficient

to obtain stable and accurate simulations in cases that are dominated by vortex stretching and with coherent vortical

stuctures, but it is recommended that Eadv is added in other cases where advection is the physical mechanism for the

development of turbulence.

B. SFS Vortex Stretching Model

Starting from the definition of SFS vortex stretching,

⇢
str
8 = �

m)8 9

mG 9
⌘ �

 
l 9

mD8

mG 9
� l 9

mD8

mG 9

!
, (56)

we group the filter operator as

⇢
str
8 (x) = �

π
l 9 (y)

✓
mD8

mG 9
(y) � mD8

mG 9
(x)

◆
Zf (x � y) dy. (57)

Using the singular particle approximation, 8(x) ⇡
Õ
@
�@X(x � x@), the integral collapses to

⇢
str
8 (x) ⇡ �

’
@

�@
9

✓
mD8

mG 9

�
x@

�
�

mD8

mG 9
(x)

◆
Zf (x � x@). (58)

Assuming mD8
mG 9

⇡
mD8
mG 9

and writing in vector notation, the model then becomes

Estr (x) ⇡
’
@

Zf (x � x@)
�
�@ · r

� �
u (x) � u

�
x@

� �
. (59)
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Interestingly, both Cottet’s model and our model are strikingly similar to the non-localized vorticity terms M1
?

and M2
?, respectively (defined in Eqs. (27) and (28)), which are neglected (or filtered out) by the localized-vorticity

assumption. Thus, these models can be thought of as soft deconvolutions of the localized-vorticity assumption.

Furthermore, introducing a model coefficient, ⇠3 , they can approximate full deconvolutions encompassing the entire

spectrum of subfilter scales. This model coefficient is computed dynamically as follows.

C. Dynamic Procedure

1. Derivative Balance

Since SFS vortex stretching needs to be modeled from resolved quantities, the initial equality given in Eq. (56),

written here in vector notation

Estr = �

h
(8 · r)u � (8 · r)u

i
, (60)

becomes only an approximation once the Estr model is introduced,

Estr ⇡ �

h
(8 · r)u � (8 · r)u

i
. (61)

To recover the equality (or at least improve the approximation), we introduce a dynamic model coefficient ⇠3 (x, C)

satisfying

⇠3Estr = �

h
(8 · r)u � (8 · r)u

i
. (62)

However, this equation is not useful per se since, in order to determine ⇠3 , Eq. (62) requires knowing the SFS quantity

(8 · r)u � (8 · r)u, which is exactly what we are trying to model with Estr. However, assuming scale similarity

(meaning that ⇠3 is independent of the filter width), we differentiate this equation with respect to the filter width f to

obtain a more useful relation:

⇠3
mEstr
mf

= �
m

mf

h
(8 · r)u � (8 · r)u

i
. (63)

Using the singular particle approximation, the right-hand side of Eq. (63) before differentiation becomes

h
(8 · r)u � (8 · r)u

i ���
x
⇡

’
@

Zf (x � x@)
�
�@ · r

� �
u
�
x@

�
� u (x)

�
, (64)
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and after differentiation,

m

mf

h
(8 · r)u � (8 · r)u

i ���
x
⇡

’
@

mZf

mf

(x � x@)
�
�@ · r

� �
u
�
x@

�
� u (x)

�
�

’
@

Zf (x � x@)
�
�@ · r

� mu
mf

(x) . (65)

Recalling that Zf is defined as Zf (x) = 1
f3 Z

⇣
kxk
f

⌘
, its width-derivative is

mZf

mf

(x) = �
3
f

Zf (x) � kxk
f

5
mZ

mA

✓
kxk
f

◆
, (66)

and assuming that Zf (x) reaches a maximum at x = 0 (meaning, mZ
mA (0) = 0),

mZf

mf

(0) = �
3
f

Zf (0) . (67)

Then, evaluating at x = x?, assuming Zf (0) < 0, and using the localized-vorticity assumption to neglect all terms

@ < ?, Eq. (63) becomes

⇠3 (x?)
1

Zf (0)
mEstr
mf

(x?) =
3
f

�
�? · r

� �
u(x?) � u(x?)

�
+

�
�? · r

� mu
mf

(x?), (68)

or

⇠3m = L, (69)

with

m ⌘
f

3

Z (0)
mEstr
mf

(x?) (70)

L ⌘
3
f

�
�? · r

� �
u(x?) � u(x?)

�
+

�
�? · r

� mu
mf

(x?). (71)

The relation in Eq. (69) will be the basis for our dynamic procedure. This procedure differs from the classic dynamic

procedure developed by Germano et al. [97, 98] in that the former is motivated by the balance of derivatives between

true and modeled SFS contributions given in Eq. (63), while the latter is based on the Germano identity.

2. Enstrophy-Production Balance

The procedure aims at calculating ⇠3 such as to impose the relation given in Eq. (69), however, this is an

overdetermined system as there are three equations (one for each spatial dimension) and only one unknown, ⇠3 . Thus,

the relation is now contracted by also imposing a balance of enstrophy production between true and modeled SFS
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contributions as follows.

Enstrophy, a measure of the rotational kinetic energy of the flow, is defined locally as b ⌘
1
28 · 8. The rate of local

enstrophy production is then calculated as

d
dC
b = 8 ·

✓
d
dC
8

◆
, (72)

which can be decomposed between resolved and unresolved domains as

d
dC
b = 8 ·

✓
d
dC
8

◆
+ 8 ·


d
dC

(8 � 8)

�
, (73)

The local enstrophy production in the resolved domain is then defined as

d
dC
bA ⌘ 8 ·

✓
d
dC
8

◆
, (74)

and the global enstrophy production in the resolved domain is then calculated by integration,

1π
�1

d
dC
bA dy =

1π
�1

8 ·

✓
d
dC
8

◆
dy. (75)

The SFS contribution to the rate of enstrophy production is isolated through operator splitting as

©≠
´

1π
�1

d
dC
bA dy™Æ

¨SFS

⌘

1π
�1

8 ·

✓
d
dC
8

◆
SFS

dy. (76)

Now, we constrain the SFS model to match the enstrophy production of the true SFS contribution,

1π
�1

8 ·

✓
d
dC
8

◆
SFS model

dy =

1π
�1

8 ·

✓
d
dC
8

◆
true SFS

dy. (77)

Using the singular particle approximation, 8(x) ⇡
Õ
?
�?X(x � x?), the integrals collapse into

’
?

�? ·

✓
d
dC
8

◆SFS model

(x? )

=
’
?

�? ·

✓
d
dC
8

◆ true SFS

(x? )

. (78)

One instance that this equality is satisfied is when each term in the sum satisfies

�? ·

✓
d
dC
8

◆SFS model

(x? )

= �? ·

✓
d
dC
8

◆ true SFS

(x? )

. (79)
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Differentiating with respect to the filter width, we arrive to

�? ·
m

mf

✓
d
dC
8

◆SFS model

(x? )

= �? ·
m

mf

✓
d
dC
8

◆ true SFS

(x? )

. (80)

When SFS advection is neglected, the SFS model and the true SFS become

✓
d
dC
8

◆SFS model
= �⇠3Estr (81)

✓
d
dC
8

◆ true SFS
= (8 · r)u � (8 · r)u, (82)

thus Eq. (80) is simply the dot-product of Eq. (63) with �? ,

⇠3� ·
mEstr
mf

= �� ·
m

mf

h
(8 · r)u � (8 · r)u

i
. (83)

Finally, following the same steps that led from Eq. (63) to Eq. (69), the enstrophy balance in Eq. (80) becomes

⇠3�? · m = �? · L, (84)

and ⇠3 is then calculated dynamically as

⇠3 =
�? · L
�? · m

. (85)

Thus, this ⇠3 calculated at the position of every particle is the coefficient that approximates the derivative balance while

satisfying a local balance of enstrophy production between the model and the true SFS contribution.

3. Lagrangian Average

Similar to the classic procedure based on the Germano identity [97], Eq. (85) poses numerical issues when the

denominator is close to zero, leading to large fluctuations. In the classic procedure, Meneveau et al. [99] addressed this

issue by integrating both numerator and denominator along Lagrangian trajectories (pathlines), effectively building

ensemble averages. Applying this technique, our dynamic procedure becomes

⇠3 =

⌦
�? · L

↵
⌦
�? · m

↵ , (86)

22



where h·i denotes the Lagrangian integration. As suggested by Meneveau et al., the integration is performed as a

relaxation process at every time step of the form

hqinew = (1 � U) hqiold + Uq, (87)

where U is calculated as U = �C/)  1, �C is the time step of the simulation, and ) is the time length of the ensemble

average. Meneveau et al. recommends judiciously choosing the value of ) (or equivalently U) such that the instantaneous

fluctuations of ⇠3 are smoothed out. In this study we have chosen U = 0.005 (roughly equivalent to an averaging

window of 200 time steps), which successfully smooths out the large fluctuations of ⇠3 in the simulations presented

in Section VI.

D. Backscatter Control

For stability reasons, it is common in LES to control the amount of energy being backscattered from the unresolved

scales into the resolved scales. The SFS term is purely-dissipative if its contributions to the enstrophy budget decrease

the total enstrophy. This is,

©≠
´

1π
�1

d
dC
bA dy™Æ

¨SFS

 0. (88)

Following the derivation in Section V.C.2, this condition is satisfied if

�? ·

✓
d
dC
8

◆SFS model

(x? )

 0 (89)

for each particle, or equivalently,

⇠3�? · Estr (x?) � 0 (90)

Therefore, enstrophy backscatter can be filtered out at each particle by clipping the model coefficient as ⇠3 = 0 whenever

the condition shown above is not satisfied.

E. Usage in Conventional Mesh-Based CFD

Even though our SFS model is tailored for vortex methods as it only uses the primitive variables of the VPM, the

model can also be readily applied to conventional mesh-based CFD as follows. The vortex strength is expressed from

mesh quantities as �@ = h8i@ +– @ , where h8i@ and +– @ are the average vorticity and volume associated to each element

in the grid (i.e., cells in a finite volume method or nodes in a finite difference method). The model in the vorticity
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transport equation then becomes

m)8 9

mG 9
(x) = ⇠3��3

’
@

hli
@
9 +

– @

✓
mD8

mG 9

�
x@

�
�

mD8

mG 9
(x)

◆
Z

✓
kx � x@ k

�

◆
, (91)

where the index @ iterates over each element in the grid, � is the width of the grid filter, and Z is the filter kernel.

Furthermore, the model can be used in the pressure-velocity form of the momentum equation noticing that the SFS

terms in the vorticity transport equation are simply the curl of the SFS term in the pressure-velocity equation, mg8 9
mG 9

, as

n8 9:
m

mG 9

mg:;

mG;
=

m)
0

8 9

mG 9
�
m)8 9

mG 9
, (92)

where n8 9: is the Levi-Civita tensor. Hence, the SFS models of the vorticity transport equation can be used to model
mg8 9
mG 9

by “un-curling” the equation above.

VI. Results
In the preceding sections we have developed a scheme for numerically solving the LES-filtered Navier-Stokes

equations in their vorticity form. The proposed scheme uses a reformulation of the VPM and a novel model of SFS

vortex stretching to achieve a meshless large eddy simulation.

We now proceed to test and validate both the VPM reformulation and the vortex-stretching SFS model that comprise

our meshless LES. Simulations are compared to results reported in the literature from experimental work, large and

detached eddy simulation, and unsteady Reynolds-average Navier-Stokes (URANS) simulation. These validation cases

also serve as examples on how to impose initial and boundary conditions in our meshless scheme.

In Section VI.A, a turbulent round jet is simulated to test the accuracy and numerical stability of the LES scheme.

The evolution of the jet and predicted Reynolds stress are compared to experimental measurements, validating the

scheme as an LES method accurately resolving large-scale features of turbulent flow. In Section VI.B, a rotor in hover is

simulated with our meshless LES and benchmarked against conventional mesh-based CFD. The computational time is

compared to mesh-based CFD to highlight the lightweight cost of our meshless approach. In Section VI.C, the wake of

an aircraft propeller is resolved with various levels of refinement to test the ability to resolve arbitrarily small scales.

The supplementary document contains additional verification cases for an isolated vortex ring to test convergence, and a

leapfrogging vortex ring case to test vortex stretching.

A. Turbulent Round Jet

A jet discharging into a quiescent environment poses a canonical case for the study of turbulence, encompassing a

laminar region near the nozzle that breaks down into turbulence away from the nozzle. Experimental measurements
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on a round jet were used to test that the reformulated VPM is able to resolve the mean and fluctuating components of

turbulent flow, while resolving Reynolds stress directly. The simulation replicated the experiment by Quinn and Militzer

[100] which used a contoured nozzle with an exit diameter 3 of 45.4 mm, discharging air into stagnant ambient air with

a centerline velocity *2 of 60 m/s. This corresponds to a Mach number of 0.18 and a diameter-based Reynolds number

Re = *23/a of 2 ⇥ 105.

The simulation assumed a top-hat velocity profile with smooth edges at the nozzle exit given by

D4 (A) = *2 tanh

 
3
2 � A

\

!
, (93)

where \ is the momentum thickness of the shear layer, assumed to be \ = 0.0253. As depicted in Fig. 4, this velocity

profile was imposed as a boundary condition at I = 0 by defining a volumetric cylinder of length ⌘ with particles

spanning from I = �⌘/2 to I = ⌘/2 and performing an RBF fit to the vorticity profile l\ = dD4
dA . This computes the

vortex strengths that induce the velocity profile D4 inside the cylinder. The +I half of the cylinder was then removed, the

�I half was kept in the computational domain as static particles throughout the simulation, while the set of particles

computed at I = 0 were injected at each time step as free particles. The resulting boundary condition showed sensitivity

to the cylinder length ⌘, leading to a straight jet when ⌘ � 23, a contracting jet when ⌘ < 23, and an actuator disk when

⌘ ! 0. Since Quinn and Militzer reported a jet that was slightly contracting, the length of the boundary-condition

cylinder was tailored to match the streamwise and radial velocity that they measured at the nozzle exit plane shown

in Fig. 5, finding sufficient agreement when ⌘ = 1.73.

The simulation was first attempted with the classic VPM, but it quickly ended in numerical blow up at the initial

stage of the jet. This is shown in Fig. 6 through an abrupt jump in global enstrophy, where enstrophy is computed as

described by Winckelmans [85]. The reformulated VPM proved to be numerically stable in the initial and transition

Fig. 4 Boundary condition of round jet simulation defined with particles.

25



Fig. 5 Streamwise (top) and radial (bottom) veloc-
ity close to nozzle exit in experiment by Quinn and
Militzer [100] (markers), compared to boundary con-
dition of simulation (solid line) probed at I/3 = 0.1.

Fig. 6 Global enstrophy of turbulent round jet with
classic VPM (cVPM) and reformulated VPM (rVPM),
with and without SFS model.

Fig. 7 Vortex particles (top), vortex strength (middle), and SFS model coefficient (bottom) close to jet nozzle at
C = 48 ms.

stages of the jet, however, the simulation becomes unstable in the fully-developed turbulent regime as enstrophy builds

up in the absence of SFS turbulent diffusion. Introducing the SFS model, the enstrophy production of the inlet balances

out with the forward-scatter of the fully-developed region and the rVPM simulation becomes indefinitely stable, as

shown in Fig. 6. Interestingly, the SFS model did not stabilize the classic VPM simulation, which indicates that both the

reformulated VPM and the SFS model are needed to achieve numerical stability.

Once proven stable, the simulation was run for 50 ms with time step �C = 0.02 ms until achieving a fully-developed
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region that was statistically stationary. This was run on a single node with 128 CPU cores (dual 64-core AMD EPYC

7702, 2.0 GHz) resulting on a wall-clock time of two and a half days using up to 3 ⇥ 106 particles. Fig. 7 shows the

particle field, vortex strengths, and the SFS model coefficient ⇠3 close to the nozzle at C = 48 ms, while Fig. 8 shows the

vorticity of the entire field. As seen in Fig. 8, coherent vortical structures form in the initial region (I < 13), which

leapfrog and mix transitioning to fully-developed turbulent flow by I > 33. Notice in Fig. 7 that the model coefficient is

negligibly small in the initial region and increases to 0.1 < ⇠3 < 1 in the fully-developed regime. This shows that the

dynamic procedure succeeds at automatically calibrating ⇠3 , hindering SFS turbulent diffusion in the laminar regime

while facilitating it in turbulent regions.

The formation and time evolution of the jet is available as a video in the supplemental content. Initially, a vortex

ring forms at the head of the jet. As the ring travels downstream, a vortex sheet is deployed forming the shear layer.

The vortex sheet is stretched as the flow develops, eventually rolling up and forming filaments. The filaments pair up,

leapfrog, merge, and breakdown, eventually forming the fully-developed turbulent region. Fig. 9 shows the history of ⇠3

throughout this process, calculated at each time step as the average |⇠3 | over all the particles where ⇠3 < 0. Here we

see that the average ⇠3 is negligibly small in the initial development of the jet, but it ramps up and converges to a value

of 0.43 as the flow becomes fully developed, again confirming the ability of the dynamic procedure to automatically

calibrate the SFS model at each flow regime.

To validate the dynamics predicted by the simulation, the velocity was probed at five stations along the jet and

statistical properties were compared to the experimental measurements reported by Quinn and Militzer [100]. The data

was also supplemented with other experiments of similar round jets compiled by Ball et al. [101] Statistical properties

were calculated through temporal and spatial ensemble averages after the flow became statistically stationary in the

region 0  I  53. Averaging was performed over the time interval 40 ms  C < 50 ms.

Fig. 8 Volume rendering of vorticity field in turbulent jet at C = 48 ms showing distinct flow features: Coherent
structures form in the initial region (I < 13) that mix and break down by I > 33.
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Fig. 9 Average SFS model coefficient in turbulent jet simulation as computed through the dynamic procedure.

(a) Mean streamwise velocity.

(b) Fluctuating component of the streamwise velocity.

(c) Reynolds stress between streamwise and radial fluctuating components.

Fig. 10 Profiles along turbulent round jet. Simulation: - rVPM. Experimental: † Quinn and
Militzer [100]; � Fellouah and Pollard [102]; õ Mi et al., contraction nozzle [103]; ⇤ Iqbal and Thomas
[104]; ⇧ Romano [105]; � Xu and Antonia, contraction nozzle [106] .
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Fig. 10a shows the mean component of the streamwise velocity profile, DI , normalized by the centerline velocity at

each station. The mean component shows excellent agreement with the experiments in the initial and transition regions

(0  I  33) and reasonable agreement in the fully-developed turbulent region (I � 43) though slightly overexpanded.

Fig. 10b shows the fluctuating component of the streamwise velocity, D0I , or standard deviation, while Fig. 10c shows the

Reynolds stress between streamwise and radial velocity, defined as the square root of the covariance,
p
D
0
ID

0
A . At I = 0,

the simulation shows only a small fluctuation and Reynolds stress as the flow is dominated by the boundary condition.

Away from the nozzle exit plane (I > 0), fluctuations and Reynolds stress concentrate at the shear layer (A/' = 1) in the

laminar region (I ⇡ 13), and gradually spread as the jet breaks down in the turbulent regime (I � 43). Fluctuations are

overpredicted (and, as a consequence, also the Reynolds stress), however this is in within reasonable agreement with the

experiments. These predictions can be further improved in future work with the addition of an SFS model of vorticity

advection increasing the turbulent diffusion (and damping out fluctuations), or implementing a spatial adaptation strategy

to better resolve small scales. However, the current agreement with the experiments suffices to confirm that our scheme

is an LES able to resolve mean and fluctuating large-scale features of the flow. Also, its ability to directly resolve

Reynolds stress potentially makes the reformulated VPM a higher fidelity approach than Reynolds-average approaches

like RANS and URANS (where Reynolds stresses are rather modeled), while being completely meshless.

B. Rotor in Hover

The rotation of blades in static air drives a strong axial flow that is caused by the shedding of tip vortices. This is

challenging to simulate since, in the absence of a freestream, the wake quickly becomes fully turbulent and breaks down

as tip vortices leapfrog and mix close to the rotor. Thus, a rotor in hover is a good engineering application to showcase

the accuracy, numerical stability, and computational efficiency of the reformulated VPM.

In this test case, we simulated the experiment by Zawodny et al. [107] consisting of a DJI 9443 rotor in hover at

5400 RPM. This two-bladed rotor is 9.4 inches in diameter, resulting in a tip Mach number of 0.20 and chord and

diameter-based Reynolds numbers at 70% of the blade span of 6 ⇥ 104 and 7 ⇥ 105, respectively. Our simulations

were also compared to unsteady Reynolds-average Navier-Stokes (URANS) results reported by Schenk, [108] obtained

with the commercial software STAR-CCM+. The URANS is an unsteady compressible solver with an SST :–l

turbulence model, resolving the blades with an all-H+ wall treatment on a rotating mesh surrounding the rotor. It used

an unstructured mesh with 14 million cells, mesh refinement down to a H
+ of 30 using a wall model, and time steps

equivalent to 3� of rotation on a first-order time integration scheme, which is a rather coarse simulation, but requiring

very low computational resources.

The rotating blades are computed in our VPM through an actuator line model (ALM), which is a common practice

in LES [109]. Our ALM discretizes the geometry into blade elements, using a two-dimensional viscous panel method to

compute forces and circulation along each blade cross section as the blades move, as described in previous work [20].
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The vorticity of each blade is introduced in the fluid domain by embedding static particles along the surface that capture

the blade’s circulation distribution, while shedding free particles at the trailing edge associated with unsteady loading

and trailing circulation, as shown in Fig. 11. The frequency of particle shedding per revolution determines the initial

spacing �G in between particles, which, along with the core size f, determines the spatial resolution at which the wake

is being resolved. The initial particle size f was set as to provide a particle overlap _ = f
�G of 2.125 at the blade tip.

The VPM simulations used a time step equivalent to a rotation of 1� while shedding particles every 0.5� with 50 blade

elements.

First, the simulation was attempted on the classic VPM without the SFS model, which quickly ended in numerical

blow up after one revolution, shown in Fig. 12. Introducing the SFS model made the classic VPM noticeably more

stable, however, the simulation still blew up before the wake became fully developed. Introducing the reformulated

VPM made the simulation completely stable, using up to 1 ⇥ 106 particles after 16 revolutions. As shown in Fig. 12, the

rate of enstrophy produced by the rotor eventually balances out with the forward scatter of the SFS model. This further

asserts the numerical stability gained with the reformulated VPM and SFS model.

Next, the thrust coefficient ⇠) predicted with rVPM was compared to the experimental coefficient reported by

Zawodny et al. [107] We define ⇠) in the propeller convention as ⇠) = )
d=234 , where ) is the dimensional thrust, d is air

density, and = is rotations per seconds. The experiment reported a mean ⇠) of 0.072 (Zawodny et al. reported the thrust

coefficient defined as ⇠) = )
dc'2 (⌦')2 which is typical in the rotorcraft community, while here we have converted their

measurement to ⇠) as defined in the propeller convention). In our simulation, the thrust is calculated integrating the

force computed by the ALM at each blade element that is immersed in the fluid domain. As shown in Fig. 13, the VPM

simulation shows excellent agreement with the experiment, predicting a mean value within 2% of the experimental

mean value. This illustrates the capacity of our method to provide accurate predictions in a real engineering application.

Fig. 11 Actuator line model in rotor simulation. Particles colored by their source of vorticity; arrows indicate
direction of vortex strength.
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Fig. 12 Global enstrophy in rotor simulation with classic VPM (cVPM) and reformulated VPM (rVPM).

Fig. 13 Thrust history in rotor simulations com-
pared to experimental mean ⇠) . Shaded region
encompasses the 95%-confidence interval of the ex-
periment.

Fig. 14 Time-average blade loading distribution in
rotor simulations.

In order to illustrate the low computational cost of our meshless LES, we now compare our simulation to the

URANS simulation by Schenk. As previously pointed out, for the sake of minimizing computational effort, the URANS

simulation is both spatially and temporally coarse (using only 14 million cells down to a H
+ of only 30, with time steps

of 3�), while using a first-order time integration. Thus, this URANS simulation represents the minimum computational

effort that is plausible for a simulation of this kind while still being accurate (the ⇠) predicted by URANS is still within

2% of the experimental mean value, as shown in Fig. 13). Fig. 14 compares the time-average loading distribution along

the blade as predicted with rVPM and URANS, showing that both methods can resolve the blade loading with similar

accuracy. However, the rVPM has the advantage of being able to accurately preserve the vortical structure of the wake,

shown in Fig. 15, with minimal computational effort. The URANS simulation reportedly took about 10 wall-clock hours

to resolve 10 revolutions, using 192 CPU cores across 12 nodes on the BYU Fulton supercomputer. This is equivalent to

about 1800 core-hours. On the other hand, the rVPM simulation took about 4 wall-clock hours to resolve 10 revolutions

on a single node of the BYU Fulton supercomputer with 32 CPU cores, equivalent to about 140 core-hours. Hence,

rVPM is 13 times faster (or one order of magnitude faster) than this coarse URANS simulation, while providing LES

accuracy.
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Table 1 Description of CFD solvers in rotor benchmark.

Simulation Software Blade Scheme Turbulence Model Computational Elements

rVPM
(meshless LES) FLOWVPM Actuator line model Anisotropic dynamic SFS 1M vortex elements

URANS STAR-CCM+ Blade resolved
(H+ = 30, all-H+ wall treament) SST :–l 14M grid cells

LES-ALM MIRACLES Actuator line model None
(numerical dissipation) 50M grid points

LES-IBM MIRACLES Immersed boundary method None
(numerical dissipation) 216M grid points

DES OVERFLOW2 Blade resolved Spalart-Allmaras DES 260M grid points

While Schenk’s URANS simulation represents the low-fidelity end of mesh-based CFD, Zawodny et al. [107]

reported a high-fidelity mesh-based simulation using OVERFLOW2. OVERFLOW2 is a dettached-eddy simulation

(DES) code using a URANS solver with the Spalart-Allmaras turbulence model near solid surfaces, while switching to a

subgrid scale formulation in regions fine enough for large eddy simulation. Their simulation of the DJI 9443 rotor used

260 million grid cells with time steps corresponding to 0.25� on a second-order time integration scheme, reportedly

predicting a mean ⇠) within 2.5% of the experimental value. One rotor revolution reportedly took approximately 30

wall-clock hours using 1008 CPU cores on the NAS Pleiades supercomputer. Extrapolating this to 10 revolutions, the

DES takes 300 wall-clock hours and 300k core-hours. Thus, recalling that rVPM took only 140 core-hours, the rVPM is

2200x faster (or three orders of magnitude faster) than this DES simulation.

While Schenk’s URANS and Zawodny’s DES represent the low and high end of fidelity in mesh-based CFD,

respectively, Delorme et al. [110] reported two LES that lay somewhere in between both ends. One LES used an actuator

line model (ALM) similar to our meshless LES, while the other used an immersed boundary method (IBM). All solvers

previously mentioned are summarized in Table 1 and their computational costs are compared to our meshless LES

in Table 2. To be clear, the LES-IBM and DES comparisons are not directly comparable. These latter methods are

Fig. 15 Meshless LES of rotor in hover after 15 revolutions using rVPM: (left) computational elements (vortex
particles and strength), and (right) volume rendering of vorticity field. Video available in supplemental content.
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Table 2 Rotor benchmark resolving 10 rotor revolutions. The faded times are blade-resolved simulations that
are not directly comparable.

Simulation CPU Cores Wall-Clock Core-Hours rVPM Speedup
rVPM 32 4.3 hours 140 –

URANS 192 9.6 hours 1.8k ˜10x faster
LES-ALM 845 24 hours 20k ˜100x faster
LES-IBM 1000 96 hours 96k ˜500x faster

DES 1008 300 hours 300k ˜1000x faster

blade-resolved simulations and so capture higher-fidelity blade surface loading, important for unsteady aerodynamics

and acoustics. Their timings are only included for completeness, with the caution that a direct comparison is not

meaningful. The LES by Delorme et al., shown in Fig. 16, is an implicit LES that relies on numerical dissipation to

approximate subgrid-scale turbulent diffusion, reportedly predicting a mean ⇠) within 2% of the experimental value.

Out of the aforementioned mesh-based simulations, their LES-ALM simulation is the most akin to our meshless LES

since both use an ALM while resolving vortical structures with comparable fidelity, shown in Fig. 15 (right) and Fig. 16

(right). Fig. 17 compares the wake velocity predicted by both simulations and the experiment by Ning [111], showing

good agreement (except towards the hub where ALM relies heavily on a hub loss correction to account for the effects of

the hub on blade loading). This confirms that both methods lead to comparable accuracy. The main computational

advantage of our meshless LES lays in that computational elements are only placed where vorticity is originated and are

automatically convected by the flow field, as shown in Fig. 15 (left), while mesh-based LES requires meshing the entire

space, as shown in Fig. 16 (left). Their LES-ALM simulation reportedly took a wall-clock time of 24 hours per every 10

Fig. 16 Mesh-based LES of rotor in hover reported by Delorme et al.: (left) computational elements, and (right)
iso-surface of Q-criterion colored by velocity magnitude. Reprinted from Aerospace Science and Technology,
Vol 108, Delorme et al, Application of Actuator Line Model for Large Eddy Simulation of Rotor Noise Control,
Copyright 2020 Elsevier Masson SAS, with permission from Elsevier.
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Fig. 17 Time-average velocity in wake of rotor in hover as predicted by our meshless LES (rVPM) and compared
to mesh-based LES-ALM by Delorme et al. [110] and experiment by Ning [111]. Our simulation does not include
the hub so we expect more significant discrepancies in that region.

rotor revolutions using 845 CPUs, equivalent to 20k core-hours. Compared to the 140 core-hours of the rVPM, our

meshless LES is 145x faster (or two orders of magnitude faster) than this mesh-based LES.

In summary, as shown in Table 2, our meshless LES appears to be two orders of magnitude faster than a mesh-based

LES with similar fidelity, while being one order of magnitude faster than a low-fidelity URANS simulation. It is difficult

to justify an exact comparison between the computational cost of each simulation since each solver used different

order-of-convergence schemes, spatial and temporal resolution, and computing hardware. However, the comparison is

still qualitatively insightful: our meshless LES can be 10x to 100x faster than conventional mesh-based CFD approaches

for unbounded, wake dominant problems.

0.6M particles

2.3M particles

9.5M particles

Fig. 18 Computational elements (vortex particles) in propeller case as spatial resolution is increased.
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C. Aircraft Propeller

In order to test the ability of our LES to resolve arbitrarily small scales, the wake of an aircraft propeller was

simulated with increasingly finer discretization. In this test, we simulated the experimental work by Sinnige et al. [112]

and Stokkermans et al. [113], which used the Beaver propeller at an advance ratio of 0.8 and freestream velocity of 40

m/s. This four-bladed propeller is 0.237 m in diameter, resulting in a diameter-based Reynolds numbers of 1.8 ⇥ 106.

The spatial discretization was refined from 0.6M to 9.5M particles by simultaneously increasing the number of

blade elements and the frequency that particles are shed off the blades, shown in Fig. 18. In all cases, thrust and torque

coefficients predicted by the simulations were within 2% of the measurements reported by Sinnige et al. [112]. The flow

field in the finest simulation (9.5M particles) is shown in Fig. 19, with (top) a volume rendering of the instantaneous

vorticity and (bottom) a slice of the ensemble-average in-plane vorticity taken as blades intersect the plane. The flow

field shows the simulation capturing the fine vortical structure of the wake and its turbulent breakdown as the wake

evolves. In between the plane of rotation and G/' = 3, the ensemble average shows the inner vortex sheet stretching

and folding around tip vortices. At G/' > 3, the inner sheet approaches the preceding tip vortex, causing the vortex to

deform and break down.

The vortical structure of the second, third, and fourth tip vortices are shown in Fig. 20 as the spatial resolution is

increased from 0.6M to 9.5M particles. The simulations are also compared to the experimental observations by Sinnige

et al. [112] measured through particle image velocimetry (PIV). In the coarse simulation, the positions of the tip vortices

are accurately predicted, however, the vortices and inner sheet are overly diffused. Refining the simulation to 2.3M

particles, the size of tip vortices reaches qualitative agreement with the experiment. This is confirmed in Fig. 21 where

Fig. 19 Flow field in propeller simulation: (top) instantaneous volume rendering of vorticity field and (bottom)
slice of ensemble-average in-plane vorticity. Vorticity nondimensionalized as 8⇤

⌘ 83/+disk, where +disk is the
equivalent actuator-disk velocity 2+disk = +1 +

p
+

2
1 + 8)/dc32.
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the velocity induced by the second tip vortex is shown to converge to the experimental measurement within reasonable

agreement. Further refining to 9.5M particles, the simulation accurately resolves the inner sheet stretching and folding

around the tip vortices as observed experimentally. This confirms the ability of our LES to resolve increasingly smaller

scales as its spatial resolution is increased.

0.6M particles

2.3M particles

9.5M particles

Experimental

Fig. 20 Ensemble-average flow field as spatial discretization is refined, compared to experimental PIV. Color
contour levels show the second, third, and fourth tip vortices and the inner vortex sheet. Black and white contour
levels show the induced velocity. Experimental (bottom) reprinted from Sinnige et al. [112] with permission from
copyright holder.
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Fig. 21 Ensemble-average axial velocity probed across the second tip vortex as spatial refinement is increased.
Experimental measurement reported by Stokkermans et al. [113].

VII. Conclusions
In this study we have developed a meshless scheme for large eddy simulation that is accurate, stable, and

computationally efficient. We started off by deriving a general set of VPM governing equations that solve the

LES-filtered Navier-Stokes equations. The classic VPM turns out to be one of the formulations arising from these

general equations, obtained by assuming mf?

mC = 0. We then derived a new VPM formulation that uses the particle shape

to reinforce local conservation of angular momentum.

In addition to the reformulated VPM, we developed a low-dissipation anisotropic SFS model that uses vortex

stretching as the physical mechanism for turbulence. We proposed a novel dynamic procedure for calculating the

model coefficient and a strategy for backscatter control. The dynamic procedure is based on a simultaneous balance of

enstrophy-production and derivatives between true and modeled SFS contributions. This SFS model is apt for both

meshless and conventional mesh-based CFD, and is well suited for flows with coherent vortical structures where the

predominant cascade mechanism is vortex stretching.

Validation was presented, asserting the scheme comprised of the reformulated VPM and SFS model as a meshless

LES accurately resolving large-scale turbulent dynamics. In the simulation of a turbulent round jet, a favorable

agreement with experiments showed that our scheme is able to resolve the mean and fluctuating components of turbulent

flow, while also resolving Reynolds stress directly.

Numerical stability and computational efficiency were demonstrated through the simulation of an aircraft rotor in

hover. Our meshless LES showed to be two orders of magnitude faster than a mesh-based LES with similar fidelity,

while being one order of magnitude faster than a low-fidelity URANS simulation. Finally, the ability of our LES to

resolve arbitrarily small scales was verified resolving the wake of an aircraft propeller as the spatial resolution was

increased.

While the ideas of this paper show promise in addressing stability issues, multiple areas of future work remain. The

approach used here was motivated by simple arguments of angular momentum conservation. While the methodology
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has been effective in improving stability, it is unclear what the impacts are on convergence error both spatially and

temporally. More rigorous convergence error analyses are needed to quantify these potential errors and improve the

methodology. Detailed studies on the relative role of viscosity and the subfilter-scale terms are also needed. For example,

to quantify the relative contributions to turbulent transition.

Another major limitation of particle methods is handling solid boundary conditions. Future work should explore a

wider variety of boundary conditions aimed at introducing solid boundaries without a mesh. This is important not just

for non-lifting bodies and objects like fuselages and the ground, but also to be able to resolve wings, blades, etc., as an

alternative to actuator line and actuator surface methods.

VPMs naturally fit with the structure of the incompressible Navier-Stokes equations. However, efforts have extended

the VPM to some limited compressible flows [114, 115]. It is yet unclear how the methodology discussed in this paper

might apply in these efforts.

Finally, this study limited its computation to a conventional CPU paradigm, but previous work [11, 12] shows a

strong potential for massive parallelization and speed up in heterogeneous GPU architectures.
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