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ENERGY STABLE AND STRUCTURE-PRESERVING SCHEMES FOR THE
STOCHASTIC GALERKIN SHALLOW WATER EQUATIONS

Dihan Dai1 , Yekaterina Epshteyn2 and Akil Narayan1,*

Abstract. The shallow water flow model is widely used to describe water flows in rivers, lakes, and
coastal areas. Accounting for uncertainty in the corresponding transport-dominated nonlinear PDE
models presents theoretical and numerical challenges that motivate the central advances of this pa-
per. Starting with a spatially one-dimensional hyperbolicity-preserving, positivity-preserving stochastic
Galerkin formulation of the parametric/uncertain shallow water equations, we derive an entropy-entropy
flux pair for the system. We exploit this entropy-entropy flux pair to construct structure-preserving
second-order energy conservative, and first- and second-order energy stable finite volume schemes for
the stochastic Galerkin shallow water system. The performance of the methods is illustrated on several
numerical experiments.
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1. Introduction

The one-dimensional Saint-Venant system of shallow water equations (SWE) is a popular model of water
flows where vertical length scales are much smaller than horizontal ones [1]. This system in conservative form
is given by,

𝑈𝑡 + 𝐹 (𝑈)𝑥 = 𝑆(𝑈), 𝑈 = (ℎ, 𝑞)⊤ ∈ R2, (1.1)

where 𝑈 = 𝑈(𝑥, 𝑡) is the vector of conservative variables; ℎ(𝑥, 𝑡) is the water height (a mass-like variable) and
𝑞(𝑥, 𝑡) is the water discharge (a momentum-like variable). The flux 𝐹 and source term 𝑆 are given by,

𝐹 (𝑈) =

(︃
𝑞

(𝑞)2

ℎ + 𝑔ℎ2

2

)︃
, 𝑆(𝑈) =

(︂
0

−𝑔ℎ𝐵′

)︂
(1.2)
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where 𝐵(𝑥) is the (assumed known) bottom topography function and 𝑔 > 0 is the gravitational constant. The
system (1.1) is supplemented with initial and boundary data that we omit for the time being.

The one-dimensional SWE model (1.1) is a hyperbolic system of partial differential equations (PDE) if ℎ > 0,
and hence with the non-zero source 𝑆, then (1.1) is a nonlinear hyperbolic balance law. Because of this, it
inherits the standard challenges in developing numerical methods for such models: solutions generically develop
discontinuities in finite time even with smooth initial data, non-uniqueness of weak solutions should be rectified
by an implicit or explicit numerical imposition of entropy conditions, and implicit time-integration solvers are
challenging to implement due to the nonlinearity [10, 27, 28]. In addition to all this, the SWE has challenges
that are somewhat specific to its particular form: positivity of the water height ℎ should be maintained, and
numerical schemes should accurately capture near-equilibrium dynamics, which is typically achieved by imposing
the well-balanced property [3], i.e., that the PDE equilibrium states are exactly captured at the discrete level.

A more nebulous and hence more frustrating challenge is that of uncertainty in the model. For example,
one may have incomplete, partial information about the initial data or the bottom topography function 𝐵.
In such cases, one frequently models this data as a random variable or process, and hence the solution 𝑈
to (1.1) is random. We consider the somewhat more simple situation when the input uncertainty is encoded
with a finite-dimensional random variable, in which case (1.1) becomes a parametric model (with the input
random variables serving as the parameters). Even with this simplification, the parametric or stochastic nature
of the solution exacerbates many of the previously described numerical challenges. A particularly successful
approach for handling such problems that we will employ is the polynomial Chaos (PC) method, wherein 𝑈 is
approximated as a polynomial function of the input parameters [34,35,44].

The class of non-intrusive PC strategies construct the polynomial by collecting an ensemble of solutions to
(1.1) at a collection of fixed values of the parameters. This approach is attractive since it can exploit existing and
trusted legacy solvers for (1.1), for which there are several effective choices [4, 9, 14, 23–25, 29, 32, 39–43, 45, 47].
However, this approach suffers from the disadvantage that making concrete statements about the quality or
properties of the resulting polynomial approximation can be challenging. For example, one cannot guarantee
that entropy conditions are satisfied if the polynomial approximation is evaluated away from the parameter
ensemble used to construct the approximation.

This paper is concerned with an alternative intrusive approach, the stochastic Galerkin (SG) method for PC
approximation, which addresses the parametric dependence in a Galerkin fashion, e.g., by enforcing that certain
probabilistic moments of (1.1) vanish. This approach has the potential to provide pathways to mathematical
rigor of numerical methods through weak enforcement of the parametric dependence. SG methods transform a
parametric model (1.1) into a new non-parametric model of larger system size. Since the new SG formulation
is non-parametric, one can apply typical deterministic numerical methods for systems of PDEs to solve the SG
problem. Such approaches have shown particular success for modeling parametric dependence in elliptic prob-
lems; see, e.g., [8]. However, the notable drawback of SG methods when applied to (nonlinear) hyperbolic PDEs
is that the new non-parametric SG system need not be a hyperbolic PDE itself, which changes the essential
character of the SG system relative to the original system. Despite this challenge, recent work has investigated
numerical methods for stochastic Galerkin methods for various types of hyperbolic conservation laws. Some
advances include SG-type analysis and algorithms for scalar conservation laws [46] including well-balanced
methods [22], Haar wavelet-based SG approaches [20], hyperbolicity preservation through a non-equivalent Roe
variables formulation [19], filtering strategies for SG systems [26], limiter-type methods to maintain hyperbol-
icity [33], hyperbolicity formulations for linear problems [31] or using linearization techniques [38], splitting
type approaches for SWE models [7], non-conservative formulations of SG SWE systems [5] and approximate
representations through entropic variables [30].

Our focus starts from recent work that has developed an SG formulation for the SWE in conservative
form that involves a special SG treatment for the nonlinear, non-polynomial terms [11]. This is a particu-
lar distinction of our approach: We require no non-conservative formulation, transformation, numerical filter-
ing/limiting, or linearization. Such an approach can be used to develop a well-balanced, hyperbolicity-preserving,
and positivity-preserving finite volume method to solve the SG SWE system. The approach forming our starting
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Table 1. Notation and terminology used throughout this article.

𝐾 Number of terms in a PC expansion

̂︀𝑈 = (̂︀ℎ⊤, ̂︀𝑞⊤)⊤ ∈ R𝐾 ×R𝐾 PC state vector and its components for SG SWE

𝑈 = (ℎ⊤, 𝑞⊤)⊤ ∈ R𝐾 ×R𝐾 Quantities related to cell averages/reconstructed values, etc. of the PC
state vector and its components for SG SWE

(𝐸, 𝐻) Entropy pair for SG SWE

̂︀𝑢 PC vector for velocity

𝑢 Quantity related to cell averages/reconstructed values, etc. of the PC
vector for velocity

̂︀𝑉 ,𝑉 The PC vector for the entropic variable and quantities related to cell
averages/reconstructed values, etc. of the entropic variable

𝒫(·) The operator that maps a PC vector to a PC triple-product matrix

ℎ𝑖+ 1
2

Arithmetic average of ℎ𝑖 and ℎ𝑖+1. Similar notation is applied to other
bold letters, e.g., 𝑈 𝑖+ 1

2

JℎK𝑖+ 1
2

First-order jump defined via cell averages

⟨⟨ℎ⟩⟩𝑖+ 1
2

(Notationally) Second-order jump defined via reconstructed values

̂︀𝐹 Flux

ℱ Numerical flux

𝑄EC,𝑄ES1,𝑄ES2 Energy-conservative flux, 1st-order energy-stable flux, and 2nd-order
energy stable flux, respectively

𝑤±, ̃︀𝑤± Scaled variables

point has also been extended to two-dimensional SWE systems [12], but we focus on the single spatial dimension
case.

1.1. Contributions of this article

We make the following contributions that build on [11]:

– We derive an entropy-entropy flux pair for the spatially one-dimensional hyperbolicity-preserving, positivity-
preserving SG SWE system derived in [11], see Theorem 3.1. Entropy-entropy flux pairs are the theoretical
starting point for proposing entropy admissibility criteria to resolve non-uniqueness of weak solutions.

– Using the entropy-entropy flux pair, we devise second-order energy conservative, and first- and second-order
energy stable finite volume schemes for the SG SWE, all of which are also well-balanced. See Theorems 4.1–
4.3, with the procedure in Algorithm 1. The designed energy conservative and energy stable schemes are
stochastic extensions of the schemes developed in [17,18].

– We provide numerical experiments that explore the simulation capabilities of the new schemes. To the best
of our knowledge, these are the first schemes for any SG SWE system that boast energy stability, the
well-balanced property, while also being positivity- and hyperbolicity-preserving.

An outline of this paper is as follows: Section 2 introduces our notation, along with background on PC methods
and the SG SWE system from [11]. Section 3 provides our entropy-entropy pair construction for the SG SWE
system. Section 4 provides the statement of the energy conservative and energy stable schemes that we develop,
along with proofs of their theoretical properties, as well as their algorithmic details. Section 5 compiles numerical
examples that demonstrate the performance of our scheme. Section 6 gives brief summary of the main results
and some future research directions. We summarize our notation in this article in Table 1.
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2. Preliminaries

2.1. Notation

We use ‖ · ‖ to denote the standard Euclidean (ℓ2) norm operating on vectors. If 𝑓 : R𝑚 → R𝑛 for 𝑚, 𝑛 ∈ N,
then we write 𝑓(𝑥) for 𝑥 = (𝑥1, . . . , 𝑥𝑚), and 𝑓(𝑥) = (𝑓1, . . . , 𝑓𝑛). We use the following notation for the gradient:

𝑓𝑥 :=
𝜕𝑓

𝜕𝑥
=

⎛⎜⎜⎜⎜⎜⎜⎝

𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

· · · 𝜕𝑓1
𝜕𝑥𝑚

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2

· · · 𝜕𝑓2
𝜕𝑥𝑚

...
...

...
𝜕𝑓𝑛

𝜕𝑥1

𝜕𝑓𝑛

𝜕𝑥2
· · · 𝜕𝑓𝑛

𝜕𝑥𝑚

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ R
𝑛×𝑚.

When 𝑛 = 1 (i.e., 𝑓 is scalar-valued) then 𝜕2𝑓
𝜕𝑥2 is the 𝑛× 𝑛 Hessian of 𝑓 . If 𝐴 is a square matrix, then we write

𝐴 > 0 and 𝐴 ≥ 0 when 𝐴 is positive definite and positive semi-definite, respectively.
In work on the SWE system (1.1) it is common to introduce the water velocity (equilibrium) variable

𝑢 :=
𝑞

ℎ
, (2.1)

and we also make use of this variable in what follows.

2.2. Polynomial chaos expansion

In this section, we briefly review the results and notation for polynomial chaos expansion. More comprehensive
results can be found in [13,35,44], etc.

Let 𝜉 ∈ R𝑑 be a random variable associated with Lebesgue density function 𝜌. Define the function space

𝐿2
𝜌(R𝑑) :=

{︃
𝑓 : R𝑑 → R

⃒⃒⃒⃒
⃒
(︂∫︁

R𝑑

𝑓2(𝑠)𝜌(𝑠) d𝑠

)︂ 1
2

< +∞

}︃
.

Assuming finite polynomial moments of all orders for 𝜌, there exists an orthonormal basis {𝜑𝑘}∞𝑘=1 of 𝐿2
𝜌, i.e.,

⟨𝜑𝑘, 𝜑ℓ⟩𝜌 :=
∫︁
R𝑑

𝜑𝑘(𝑠)𝜑ℓ(𝑠)𝜌(𝑠) d𝑠 = 𝛿𝑘,ℓ, 𝜑1(𝜉) ≡ 1, (2.2)

for all 𝑘, ℓ ∈ N, where 𝛿𝑘,ℓ is the Kronecker delta. PC seeks a representation of a random field 𝑧(·, ·, 𝜉) ∈ 𝐿2
𝜌 in

terms of a series of orthonormal polynomials for 𝜉,

𝑧(𝑥, 𝑡, 𝜉)
𝐿2

𝜌=
∞∑︁

𝑘=1

̂︀𝑧𝑖(𝑥, 𝑡)𝜑𝑖(𝜉), (2.3)

where 𝑥, 𝑡 are the deterministic spatial and temporal variables, and ̂︀𝑧𝑖(𝑥, 𝑡) are deterministic Fourier-like coef-
ficients. The equation (2.3) holds true for all 𝑧(𝑥, 𝑡; ·) ∈ 𝐿2

𝜌 under mild conditions [15]. In practice, a finite
truncation of (2.3) is usually considered. Let 𝑃 be a 𝐾-dimensional polynomial subspace of 𝐿2

𝜌,

𝑃 = span{𝜑𝑘, 𝑘 = 1, . . . ,𝐾}, (2.4)

i.e., we let 𝜑𝑘 be an orthonormal basis for 𝑃 . We make the common assumption that 1 ∈ 𝑃 , and for convenience
we assume that,

𝜑1(𝜉) ≡ 1.
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A popular choice for 𝑃 is the total degree space, but several other options are possible.
One choice of 𝐾-term PC approximation of a random field 𝑧 in 𝑃 is the projection of (2.3) onto 𝑃 :

Π𝑃 [𝑧](𝑥, 𝑡, 𝜉) :=
𝐾∑︁

𝑘=1

̂︀𝑧𝑘(𝑥, 𝑡)𝜑𝑘(𝜉). (2.5)

Using the orthogonality of the basis function, the statistics of Π𝑃 [𝑧] can be expressed in terms of the expansion
coefficients. For example, the mean and the variance of Π𝑃 [𝑧] are given by:

E[Π𝑃 [𝑧](𝑥, 𝑡, 𝜉)] = ̂︀𝑧1(𝑥, 𝑡), Var[Π𝑃 [𝑧](𝑥, 𝑡, 𝜉)] =
𝐾∑︁

𝑘=2

̂︀𝑧2
𝑘(𝑥, 𝑡). (2.6)

Let ̂︀𝑧 = (̂︀𝑧1, · · · , ̂︀𝑧𝑘) ∈ R𝐾 be the vector of the expansion coefficients in (2.6). Define the linear operator
𝒫 : R𝐾 → R𝐾×𝐾 as

𝒫(̂︀𝑧) :=
𝐾∑︁

𝑘=1

̂︀𝑧𝑘ℳ𝑘, ℳ𝑘 ∈ R𝐾×𝐾 , (ℳ𝑘)ℓ,𝑚 = ⟨𝜑𝑘, 𝜑ℓ𝜑𝑚⟩𝜌. (2.7)

Fixing ̂︀𝑧 ∈ R𝐾 , then 𝒫(̂︀𝑧) is the (symmetric) quadratic form matrix representation of the bilinear operator
(̂︀𝑎,̂︀𝑏) ↦→ ⟨𝑎𝑃 𝑧𝑃 , 𝑏𝑃 ⟩𝜌, where 𝑧𝑃 :=

∑︀𝐾
𝑘=1 ̂︀𝑧𝑘𝜑𝑘(𝜉) and similarly for 𝑎𝑃 , 𝑏𝑃 with ̂︀𝑎,̂︀𝑏 ∈ R𝐾 . Using the fact that

(ℳ𝑘)ℓ,𝑚 is commutative in (𝑘, 𝑚) a direct computation shows:

𝒫(̂︀𝑎) =
(︀
ℳ1̂︀𝑎, ℳ2̂︀𝑎, . . . , ℳ𝐾̂︀𝑎)︀. (2.8)

A useful lemma is given as follows.

Lemma 2.1. For any two vectors ̂︀𝑎,̂︀𝑏 ∈ R𝐾 ,

𝒫(̂︀𝑎)̂︀𝑏 = 𝒫
(︁̂︀𝑏)︁̂︀𝑎, ̂︀𝑏⊤𝒫(̂︀𝑎) = ̂︀𝑎⊤𝒫(︁̂︀𝑏)︁. (2.9)

The proof is straightforward using (2.7) and (2.8) along with the symmetry of 𝒫(·). This result is a “com-
mutative” property of the operator 𝒫(·). For example: For any 𝑎, 𝑏, 𝑐 ∈ R𝐾 ,

𝜕

𝜕𝑐
𝑎⊤𝒫(𝑐)𝑏 = 𝑎⊤𝒫(𝑏). (2.10)

A stochastic Galerkin (SG) formulation of a 𝜉-parameterized PDE corresponds to making the ansatz that
the state variable lies in the space 𝑃 , and projecting the PDE residual onto the same space. Straightforward
applications of this procedure to (nonlinear) hyperbolic PDEs typically do not result in hyperbolic SG formu-
lations.

2.3. Hyperbolic-preserving stochastic Galerkin formulation for shallow water equation

In [11], we have derived a hyperbolicity-preserving stochastic Galerkin formulation for the shallow water
equations. We briefly recall the results in this section.

We make the ansatz that ℎ, 𝑞 lie in the polynomial space 𝑃 ,

ℎ ≃ ℎ𝑃 :=
𝐾∑︁

𝑘=1

̂︀ℎ𝑘(𝑥, 𝑡)𝜑𝑘(𝜉), (2.11a)

𝑞 ≃ 𝑞𝑃 :=
𝐾∑︁

𝑘=1

(̂︀𝑞)𝑘(𝑥, 𝑡)𝜑𝑘(𝜉), (2.11b)

and use these to formulate a 𝜉-variable Galerkin projection of the SWE. We make a special choice of how the
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Galerkin projection of the nonlinear, non-polynomial term (𝑞)2/ℎ is truncated, which results in a new (stochastic
Galerkin) system of balance laws whose state variables are the expansion coefficients in (2.11) [11]:

̂︀𝑈𝑡 +
(︁ ̂︀𝐹(︁̂︀𝑈)︁)︁

𝑥
= ̂︀𝑆(︁̂︀𝑈)︁

. (2.12)

Here, ̂︀𝑈 := (̂︀ℎ⊤, ̂︀𝑞⊤)⊤ ∈ R2𝐾 , where ̂︀ℎ, ̂︀𝑞 are each length-𝐾 vectors of the expansion coefficients in (2.11). The
flux and the source terms are,

̂︀𝐹(︁̂︀𝑈)︁
=

(︃ ̂︀𝑞
𝒫(̂︀𝑞)𝒫−1

(︁̂︀ℎ)︁̂︀𝑞 + 1
2𝑔𝒫

(︁̂︀ℎ)︁̂︀ℎ
)︃

, ̂︀𝑆(︁̂︀𝑈)︁
=

(︃ 0

−𝑔𝒫
(︁̂︀ℎ)︁̂︁𝐵𝑥

)︃
, (2.13)

cf. (1.2). The flux Jacobian, written in 𝐾 ×𝐾 blocks, is given by

𝜕 ̂︀𝐹
𝜕 ̂︀𝑈 =

(︃
𝑂 𝐼

𝑔𝒫
(︁̂︀ℎ)︁− 𝒫(̂︀𝑞)𝒫−1

(︁̂︀ℎ)︁𝒫(̂︀𝑢) 𝒫(̂︀𝑞)𝒫−1
(︁̂︀ℎ)︁ + 𝒫(̂︀𝑢)

)︃
. (2.14)

We have introduced the term

̂︀𝑢 = 𝒫−1
(︁̂︀ℎ)︁̂︀𝑞, (2.15)

which we view as the vector of the PC coefficients of the 𝑥-velocity 𝑢 introduced in (2.1), and is well-defined if
𝒫(̂︀ℎ) is invertible.

The deterministic SWE are hyperbolic if the water height ℎ > 0; there is a natural extension of this property
to the SG SWE.

Theorem 2.1 ([11], Thm. 3.1). If the matrix 𝒫(̂︀ℎ) is strictly positive definite for every point (𝑥, 𝑡) in the
computational spatial-temporal domain, then the SG formulation (2.12) is hyperbolic.

This is proven by identifying a stochastic extension of the known eigenvector matrix for the deterministic
SWE flux Jacobian 𝜕𝐹

𝜕𝑈 , and using this to show that 𝜕 ̂︀𝐹
𝜕 ̂︀𝑈

is similar to a symmetric matrix and hence (2.12) is
hyperbolic [11].

3. An entropy-entropy flux pair for SG SWE systems

The formulation (2.12) will be considered in what follows. Our goal will be to derive entropy-entropy flux pairs
for these formulations. The first step is for us to recall a known entropy-entropy flux pair for the deterministic
SWE system.

3.1. Entropy-entropy flux pairs for deterministic shallow water equations

It is well-known that solutions to systems of conservation/balance laws can develop shock discontinuities in
finite time for generic initial data. Therefore, weak solutions, i.e., solutions in the sense of distributions, are
usually considered. However, weak solutions are not necessarily unique, and to mitigate this issue an additional
entropy admissibility criteria is imposed [2, 10] to identify the physically meaningful solution.

For a general balance law in one space dimension

𝑈𝑡 + 𝐹 (𝑈)𝑥 = 𝑆(𝑈), (3.1)

its entropy-entropy flux pair (𝐸(𝑈), 𝐻(𝑈)) satisfies a companion balance law

𝐸(𝑈)𝑡 + 𝐻(𝑈)𝑥 = 0 (3.2)
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where the entropy 𝐸(𝑈) is a scalar function that is convex in 𝑈 , and 𝐻 is an entropy flux function. In order to
be consistent with the original balance law for smooth 𝑈 , the entropy-entropy flux pair (𝐸,𝐻) should satisfy
the following compatibility condition,

𝜕𝐸

𝜕𝑈
(𝐹𝑥 − 𝑆) = 𝐻𝑥, (3.3)

which is simply the condition ensuring that multiplying (3.1) by 𝜕𝐸
𝜕𝑈 recovers (3.2) when solutions are smooth.

In the case of 𝑆 ≡ 0 and (𝐸,𝐻) = (𝐸(𝑈), 𝐻(𝑈)), equation (3.3) is the usual entropy condition for conservation
laws. For a general system of balance laws in several spatial dimensions, an entropy-entropy flux pair need
not exist. However, for a hyperbolic system of balance laws emerging from continuum physics, the companion
balance law (3.2) is usually related to the Second Law of thermodynamics, and the total energy of the system
often serves as the entropy function. A variety of examples can be found in Section 3.3 from [10]. For the
deterministic SWE system in (1.1), the total energy [17] is

𝐸𝑑(𝑈) =
1
2
𝑞𝑢⏟ ⏞ 

kinetic energy

+
1
2
𝑔ℎ2 + 𝑔ℎ𝐵⏟  ⏞  

potential energy

(3.4)

where we recall that 𝑢 is the velocity defined in (2.1). For any smooth solution 𝑈 , a direct calculation yields,

𝐸𝑑(𝑈)𝑡 + 𝐻𝑑(𝑈)𝑥 = 0, (3.5)

where

𝐻𝑑(𝑈) =
1
2
𝑞𝑢2 + 𝑔𝑞ℎ + 𝑔𝑞𝐵. (3.6)

This, along with the fact that 𝐸𝑑 is convex in 𝑈 , establishes that (𝐸𝑑, 𝐻𝑑) is a valid entropy-entropy flux pair
for (1.1). For (weak) solutions with shocks, the entropy admissibility criteria is that energy should dissipate in
accordance with a vanishing viscosity principle,

𝐸𝑑(𝑈)𝑡 + 𝐻𝑑(𝑈)𝑥 ≤ 0. (3.7)

In what follows we will identify entropy-entropy flux pairs for the SG SWE model. This amounts to verifying
that (i) such a pair satisfies the companion balance law (an equality for smooth solutions) and (ii) that the
entropy function is convex in the state variable.

3.2. An entropy-entropy flux pair for the one-dimensional SG SWE

This section is dedicated to identifying an entropy-entropy flux pair for the SG system (2.12). In this section,
we will return to the notation ̂︀𝑈 (containing PC expansion coefficients) for the derivation of an entropy-entropy
flux pair for the SG system. Our main result in this section is the following entropy entropy-flux pair for the
one-dimensional SG SWE:

Theorem 3.1. Define the function,

𝐸
(︁̂︀𝑈)︁

=
1
2

(︂
(̂︀𝑞)⊤̂︀𝑢 + 𝑔

⃦⃦⃦̂︀ℎ⃦⃦⃦2
)︂

+ 𝑔̂︀ℎ⊤ ̂︀𝐵, (3.8a)

and also the flux function,

𝐻(̂︀𝑈) =
1
2
̂︀𝑢⊤𝒫(̂︀𝑞)̂︀𝑢 + 𝑔̂︀𝑞⊤̂︀ℎ + 𝑔̂︀𝑞⊤ ̂︀𝐵. (3.8b)

If 𝒫(̂︀ℎ) > 0, then (𝐸,𝐻) is an entropy-entropy flux pair for the one-dimensional SG SWE (2.12).
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Recall that ̂︀𝑢 above is defined in (2.15), and contains PC expansion coefficients for the velocity 𝑢 defined in
(2.1). In the absence of uncertainty, equation (3.8a) reduces to the deterministic total energy (3.4). The rest of
this section is devoted to proving Theorem 3.1, which amounts to showing that, if 𝒫(̂︀ℎ) > 0, then 𝐸 is convex
in ̂︀𝑈 and (𝐸,𝐻) satisfy the companion balance law,

𝐸
(︁̂︀𝑈)︁

𝑡
+ 𝐻

(︁̂︀𝑈)︁
𝑥

= 0, (3.9)

for smooth solutions ̂︀𝑈 . Note that for non-smooth solutions, equation (3.9) holds with = replaced by ≤. We
prove Theorem 3.1 with three intermediate results. Our first result is a technical condition that facilitates later
computations.

Lemma 3.1 (Gradient of ̂︀𝑢). Let ̂︀𝑞 ∈ R𝐾 be arbitrary, and let ̂︀ℎ ∈ R𝐾 be such that 𝒫(̂︀ℎ) is invertible. Defininĝ︀𝑢 as in (2.15), then

𝜕̂︀𝑢
𝜕 ̂︀𝑈 =

[︂
𝜕̂︀𝑢
𝜕̂︀ℎ,

𝜕̂︀𝑢
𝜕̂︀𝑞

]︂
=

[︁
−𝒫−1

(︁̂︀ℎ)︁𝒫(̂︀𝑢), 𝒫−1
(︁̂︀ℎ)︁]︁. (3.10)

Proof. If 𝐴(𝑡) is a 𝑡-parameterized matrix, then for any 𝑡 at which 𝐴 is invertible,

𝜕

𝜕𝑡
𝐴−1(𝑡) = −𝐴−1(𝑡)

𝜕𝐴(𝑡)
𝜕𝑡

𝐴−1(𝑡).

Applying this to 𝒫, we have,

𝜕𝒫−1
(︁̂︀ℎ)︁

𝜕̂︀ℎℓ

= −𝒫−1
(︁̂︀ℎ)︁𝜕𝒫

(︁̂︀ℎ)︁
𝜕̂︀ℎℓ

𝒫−1
(︁̂︀ℎ)︁ (2.8)

= −𝒫−1
(︁̂︀ℎ)︁ℳℓ𝒫−1

(︁̂︀ℎ)︁, (3.11)

and hence,

𝜕̂︀𝑢
𝜕̂︀ℎℓ

=
𝜕𝒫−1

(︁̂︀ℎ)︁
𝜕̂︀ℎℓ

̂︀𝑞 (3.11)
= −𝒫−1

(︁̂︀ℎ)︁ℳℓ𝒫−1
(︁̂︀ℎ)︁̂︀𝑞 (2.15)

= 𝒫−1
(︁̂︀ℎ)︁ℳℓ̂︀𝑢. (3.12)

Therefore,
𝜕̂︀𝑢
𝜕̂︀ℎ =

[︁
−𝒫−1

(︁̂︀ℎ)︁ℳ1̂︀𝑢, · · · − 𝒫−1
(︁̂︀ℎ)︁ℳ𝐾̂︀𝑢]︁ (2.8)

= −𝒫−1
(︁̂︀ℎ)︁𝒫(̂︀𝑢), (3.13)

proving the desired relation for 𝜕̂︀𝑢
𝜕̂︀ℎ

. The relation for 𝜕̂︀𝑢
𝜕̂︀𝑞 is immediate from the definition (2.15). �

Lemma 3.2 (Convexity of 𝐸(̂︀𝑈)). If 𝒫(̂︀ℎ) is positive definite, then the function 𝐸(̂︀𝑈) defined in (3.8a) is
convex in ̂︀𝑈 .

Proof. Using the definition (2.15) of ̂︀𝑢, note that,

𝐸
(︁̂︀𝑈)︁

=
1
2

(̂︀𝑞)⊤𝒫−1
(︁̂︀ℎ)︁̂︀𝑞⏟  ⏞  

𝑓1(̂︀𝑈)

+
𝑔

2
̂︀ℎ⊤̂︀ℎ + 𝑔̂︀ℎ⊤ ̂︀𝐵⏟  ⏞  

𝑓2(̂︀𝑈)

, (3.14)

and therefore in particular,

𝜕2𝐸

𝜕 ̂︀𝑈2
=

𝜕2𝑓1

𝜕 ̂︀𝑈2
+

𝜕2𝑓2

𝜕 ̂︀𝑈2
· (3.15)
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We will show that this Hessian is positive definite. Clearly we have,

𝜕𝑓2

𝜕 ̂︀𝑈 =
(︁
𝑔̂︀ℎ⊤ + 𝑔 ̂︀𝐵⊤, 0

)︁
∈ R1×2𝐾 ,

𝜕2𝑓2

𝜕 ̂︀𝑈2
=

(︂
𝑔𝐼 0
0 0

)︂
∈ R2𝐾×2𝐾 . (3.16)

Using the previous lemma, we can directly compute,

𝜕𝑓1

𝜕̂︀ℎ =
1
2

(̂︀𝑞)⊤
𝜕̂︀𝑢
𝜕̂︀ℎ (3.10),(2.15)

= −1
2
̂︀𝑢⊤𝒫(̂︀𝑢),

𝜕𝑓1

𝜕̂︀𝑞 = (̂︀𝑞)⊤𝒫−1
(︁̂︀ℎ)︁ = ̂︀𝑢⊤, (3.17)

which in turn implies,

𝜕2𝑓1

𝜕̂︀𝑞2
= 𝒫−1

(︁̂︀ℎ)︁,
𝜕2𝑓1

𝜕̂︀ℎ𝜕̂︀𝑞 (3.10)
=

(︁
−𝒫−1

(︁̂︀ℎ)︁𝒫(̂︀𝑢)
)︁⊤

= −𝒫(̂︀𝑢)𝒫−1
(︁̂︀ℎ)︁,

and finally,

𝜕2𝑓1

𝜕̂︀ℎ2
=

1
2

𝜕

𝜕̂︀ℎ(︀
−̂︀𝑢⊤𝒫(̂︀𝑢)

)︀ (3.10)
= 𝒫(̂︀𝑢)𝒫−1

(︁̂︀ℎ)︁𝒫(̂︀𝑢).

Hence, the Hessian of 𝑓1 is,

𝜕2𝑓1

𝜕 ̂︀𝑈2
=

⎛⎝𝒫(̂︀𝑢)𝒫−1
(︁̂︀ℎ)︁𝒫(̂︀𝑢) −𝒫(̂︀𝑢)𝒫−1

(︁̂︀ℎ)︁
−𝒫−1

(︁̂︀ℎ)︁𝒫(̂︀𝑢) 𝒫−1
(︁̂︀ℎ)︁

⎞⎠.

A direct computation of the quadratic form associated to this Hessian using an arbitrary vector (𝑤⊤1 , 𝑤⊤2 )⊤ ∈
𝑅2𝐾 yields,

(︀
𝑤⊤1 , 𝑤⊤2

)︀𝜕2𝑓1

𝜕 ̂︀𝑈2

(︂
𝑤1

𝑤2

)︂
= (𝒫(̂︀𝑢)𝑤1 − 𝑤2)⊤𝒫−1

(︁̂︀ℎ)︁(𝒫(̂︀𝑢)𝑤1 − 𝑤2) ≥ 0.

Finally, combining the above with (3.15) and (3.16) yields,

(︀
𝑤⊤1 , 𝑤⊤2

)︀𝜕2𝐸

𝜕 ̂︀𝑈2

(︂
𝑤1

𝑤2

)︂
= 𝑔‖𝑤1‖2 + (𝒫(̂︀𝑢)𝑤1 − 𝑤2)⊤𝒫−1

(︁̂︀ℎ)︁(𝒫(̂︀𝑢)𝑤1 − 𝑤2),

which is non-negative since 𝒫(̂︀ℎ) is positive-definite. Therefore, 𝐸 is convex, as desired. In addition, since the
above expression vanishes if and only if 𝑤1 = 𝑤2 = 0, then 𝐸 is also strictly convex. �

The final piece needed to prove Theorem 3.1 is to establish that the entropy function 𝐸 along with the flux
function 𝐻 defined in (3.8b) satisfy the companion balance law.

Lemma 3.3 ((𝐸,𝐻) satisfy the companion balance law). When ̂︀𝑈 is a smooth function, the pair (𝐸,𝐻) defined
in (3.8) satisfies

𝐸
(︁̂︀𝑈)︁

𝑡
+ 𝐻

(︁̂︀𝑈)︁
𝑥

= 0. (3.18)

Proof. The compatibility condition we seek to show, equivalent to (3.18), is,

𝜕𝐸

𝜕 ̂︀𝑈
(︃

𝜕 ̂︀𝐹
𝜕 ̂︀𝑈 𝜕 ̂︀𝑈

𝜕𝑥
− ̂︀𝑆)︃

=
𝜕𝐻

𝜕𝑥
, (3.19)
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cf. (3.3). To proceed we split both entropy functions into two pieces:

𝐸
(︁̂︀𝑈)︁

= 𝐸1

(︁̂︀𝑈)︁
+ 𝐸2

(︁̂︀𝑈)︁
, 𝐸1

(︁̂︀𝑈)︁
:=

1
2

(︂
(̂︀𝑞)⊤̂︀𝑢 + 𝑔

⃦⃦⃦̂︀ℎ⃦⃦⃦2
)︂

, 𝐸2

(︁̂︀𝑈)︁
:= 𝑔̂︀ℎ⊤ ̂︀𝐵, (3.20a)

𝐻
(︁̂︀𝑈)︁

= 𝐻1

(︁̂︀𝑈)︁
+ 𝐻2

(︁̂︀𝑈)︁
, 𝐻1

(︁̂︀𝑈)︁
:=

1
2
̂︀𝑢⊤𝒫(̂︀𝑞)̂︀𝑢 + 𝑔̂︀𝑞⊤̂︀ℎ, 𝐻2

(︁̂︀𝑈)︁
= 𝑔̂︀𝑞⊤ ̂︀𝐵. (3.20b)

From (3.14), (3.16), and (3.17), we have already computed the gradient of 𝐸:

𝜕𝐸1

𝜕 ̂︀𝑈 =
(︂
−1

2
̂︀𝑢⊤𝒫(̂︀𝑢) + 𝑔̂︀ℎ⊤, ̂︀𝑢⊤)︂,

𝜕𝐸2

𝜕 ̂︀𝑈 =
(︁
𝑔 ̂︀𝐵⊤, 0

)︁
. (3.21)

Combining these expressions with the flux Jacobian in (2.14) and the source term in (2.13) yields,

−𝜕𝐸1

𝜕 ̂︀𝑈 ̂︀𝑆 +
𝜕𝐸2

𝜕 ̂︀𝑈
(︃

𝜕 ̂︀𝐹
𝜕 ̂︀𝑈 𝜕 ̂︀𝑈

𝜕𝑥
− ̂︀𝑆)︃

= 𝑔 ̂︀𝐵⊤ 𝜕̂︀𝑞
𝜕𝑥

+ 𝑔̂︀𝑞⊤ ̂︀𝐵𝑥
(3.20b)

=
𝜕𝐻2

𝜕𝑥
· (3.22a)

Note then that if we are able to show,

𝜕𝐸1

𝜕 ̂︀𝑈 𝜕 ̂︀𝐹
𝜕 ̂︀𝑈 =

𝜕𝐻1

𝜕 ̂︀𝑈 , (3.22b)

then the expressions (3.22) are equivalent to (3.19). Therefore, we are left only to show (3.22b). A direct
computation with (3.21) and (2.14) yields,

𝜕𝐸1

𝜕 ̂︀𝑈 𝜕 ̂︀𝐹
𝜕 ̂︀𝑈 =

(︂
𝑔̂︀𝑞⊤ − ̂︀𝑢⊤𝒫(̂︀𝑞)𝒫−1

(︁̂︀ℎ)︁𝒫(̂︀𝑢), 𝑔̂︀ℎ⊤ +
1
2
̂︀𝑢⊤𝒫(̂︀𝑢) + ̂︀𝑢⊤𝒫(̂︀𝑞)𝒫−1

(︁̂︀ℎ)︁)︂.

On the other hand, we have the expressions,

𝜕

𝜕̂︀ℎ 1
2
̂︀𝑢⊤𝒫(̂︀𝑞)̂︀𝑢 = ̂︀𝑢⊤𝒫(̂︀𝑞)

𝜕̂︀𝑢
𝜕̂︀ℎ (3.10)

= −̂︀𝑢⊤𝒫(̂︀𝑞)𝒫−1
(︁̂︀ℎ)︁𝒫(̂︀𝑢),

𝜕

𝜕̂︀𝑞 1
2
̂︀𝑢⊤𝒫(̂︀𝑞)̂︀𝑢 = ̂︀𝑢⊤𝒫(̂︀𝑞)

𝜕̂︀𝑢
𝜕̂︀𝑞 +

1
2

(︂
𝜕

𝜕̂︀𝑞 𝑧⊤𝒫(̂︀𝑞)𝑧
)︂⃒⃒⃒

𝑧←̂︀𝑢

(2.10),(3.10)
= ̂︀𝑢⊤𝒫(̂︀𝑞)𝒫−1

(︁̂︀ℎ)︁ +
1
2
̂︀𝑢⊤𝒫(̂︀𝑢)

and using these to compute 𝜕𝐻1

𝜕 ̂︀𝑈
shows that (3.22b) is true, completing the proof. �

The proof of Theorem 3.1 is complete: Lemmas 3.2 and 3.3 imply that (𝐸,𝐻) as defined in (3.8) are an
entropy-entropy flux pair for (2.12).

Remark 3.1. The quantities,

̂︀𝑉 :=
(︂

𝜕𝐸

𝜕 ̂︀𝑈
)︂⊤

=
(︂
−1

2
̂︀𝑢⊤𝒫(̂︀𝑢) + 𝑔

(︁̂︀ℎ + ̂︀𝐵)︁⊤
, ̂︀𝑢⊤)︂⊤, Ψ := ̂︀𝑉 ̂︀𝐹 −𝐻

(2.15),(3.8b)
=

1
2
𝑔̂︀𝑢⊤𝒫(︁̂︀ℎ)︁̂︀ℎ, (3.23)

are called the entropy variable and stochastic energy potential, respectively. These variables serve important
roles in the construction of the energy conservative and the energy stable schemes that we develop later.
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4. Well-balanced energy conservative and energy stable schemes for the SG
SWE

In this section, we present several well-balanced energy conservative and energy stable numerical scheme
for the SG SWE. The schemes designed below are stochastic extensions of the schemes developed in [17]. Our
entropy-entropy flux pairs developed in Section 3 will be crucial ingredients for energy conservative and energy
stable schemes for the SG formulation (2.12)–(2.15).

We also need to specify the well-balanced property we are interested in: By “well-balanced”, we mean that
the scheme can preserve the stochastic “lake-at-rest” state exactly at the discrete level.

Definition 4.1 (Well-Balanced SG SWE Property, [11]). We say that a solution (ℎ𝑃 , 𝑞𝑃 ) to (2.12) is well-
balanced if it satisfies the stochastic “lake-at-rest” solution,

𝑞𝑃 (𝑥, 𝑡, 𝜉) ≡ 0, ℎ𝑃 (𝑥, 𝑡, 𝜉) + Π𝑃 [𝐵](𝑥, 𝑡, 𝜉) ≡ 𝐶(𝜉), (4.1)

where 𝐶(𝜉) is a random scalar depending only on 𝜉, Π𝑃 corresponds to a polynomial truncation, cf. (2.5), and
subscripts 𝑃 refer to the (stochastic) discrete solutions in the subspace 𝑃 . In terms of our previous notation for
𝑃 -expansion coefficients, equation (4.1) is equivalent to the following vector equation

̂︀𝑞(𝑥, 𝑡) = 0, ̂︀ℎ(𝑥, 𝑡) + ̂︀𝐵(𝑥, 𝑡) ≡ ̂︀𝐶, ∀(𝑥, 𝑡) ∈ 𝒟 × [0, 𝑇 ], (4.2)

where 𝒟 is the spatial domain and 𝑇 is the terminal time.

We emphasize that even without introducing the lake-at-rest definition (4.1), the vector equation (4.2) itself
is a steady state of the SG system (2.12).

4.1. Energy conservative schemes

We consider the semi-discrete form for FV schemes for (2.12) over a uniform mesh in the 𝑥 variable:

d
d𝑡

𝑈 𝑖 = −
ℱ𝑖+ 1

2
−ℱ𝑖− 1

2

∆𝑥
+ 𝑆𝑖. (4.3)

Here, 𝑈 𝑖 ≈ 1
Δ𝑥

∫︀
ℐ𝑖

̂︀𝑈(𝑥, 𝑡) d𝑥 is the approximation of the cell averages of ̂︀𝑈 over cells ℐ𝑖 := [𝑥𝑖−1/2, 𝑥𝑖+1/2]
at time 𝑡, and ∆𝑥 = |ℐ𝑖| = 𝑥𝑖+1/2 − 𝑥𝑖−1/2. The terms ℱ𝑖±1/2 are numerical fluxes at the boundaries of
the cells, which are functions of neighboring states, e.g., ℱ𝑖+1/2 is a function of 𝑈 𝑖 and 𝑈 𝑖+1. The term
𝑆𝑖 ≈ 1

Δ𝑥

∫︀
ℐ𝑖

̂︀𝑆(̂︀𝑈, ̂︀𝐵) d𝑥 is a discretization of the source term, which we will design below to be well-balanced.
To reiterate our notation: normal typeset capital letters (sometimes with “hat” notation) refers to degrees
of freedom associated to discretizing only the stochastic variable 𝜉, i.e., (̂︀𝑈,̂︀ℎ, ̂︀𝑞, ̂︀𝐵). Boldface notation with
subscripts 𝑖 refers to degrees of freedom associated to a subsequent discretization of the spatial variable 𝑥 over
cell ℐ𝑖, i.e., (𝑈 𝑖, ℎ𝑖, 𝑞𝑖, 𝐵𝑖). We define the discrete velocity variable 𝑢𝑖 in a manner analogous to (2.15):

𝑢𝑖 := 𝒫(ℎ𝑖)
−1

𝑞𝑖. (4.4)

Discrete entropic quantities are derived from the discrete conservative variables 𝑈 𝑖 and velocity variable 𝑢𝑖.
I.e., the following are direct generalizations of the definition of 𝐸(̂︀𝑈) in (3.8a), and of (̂︀𝑉 , Ψ) in (3.23):

𝐸𝑖 :=
1
2

(︁
𝑞⊤𝑖 𝑢𝑖 + 𝑔‖ℎ𝑖‖2

)︁
+ 𝑔ℎ⊤𝑖 𝐵𝑖, (4.5a)

𝑉 𝑖 :=
(︂

𝜕𝐸𝑖

𝜕𝑈 𝑖

)︂⊤
=

(︂
−1

2
𝑢⊤𝑖 𝒫(𝑢𝑖) + 𝑔(ℎ𝑖 + 𝐵𝑖)

⊤
, 𝑢⊤𝑖

)︂⊤
, (4.5b)

Ψ𝑖 := 𝑉 𝑖
̂︀𝐹 (𝑈 𝑖)−𝐻(𝑈 𝑖) =

1
2
𝑔𝑢⊤𝑖 𝒫(ℎ𝑖)ℎ𝑖. (4.5c)
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We now introduce some notation that is used in [17] for averages and jumps at cell interfaces:

𝑎𝑖+1/2 :=
1
2

(𝑎𝑖+1 + 𝑎𝑖), J𝑎K𝑖+1/2 := 𝑎𝑖+1 − 𝑎𝑖, (4.6)

where 𝑎𝑖 is the cell average over ℐ𝑖. The expressions above are equivalent to,

𝑎𝑖 = 𝑎𝑖+1/2 −
J𝑎K𝑖+1/2

2
= 𝑎𝑖−1/2 +

J𝑎K𝑖−1/2

2
, (4.7)

and all these expressions are valid regardless of the size of 𝑎 (e.g., both row and column vectors are allowed).
We will require some additional technical results for interfacial averages and jumps.

Lemma 4.1. Let 𝑎𝑖, 𝑏𝑖 be any spatially discrete quantities. Then:

𝒫
(︁
𝑎𝑖+ 𝑖

2

)︁
J𝑎K𝑖+ 𝑖

2
=

1
2
J𝒫(𝑎)𝑎K𝑖+ 𝑖

2
(4.8a)

J𝑎K⊤𝑖+ 𝑖
2
𝑏𝑖+ 𝑖

2
+ J𝑏K⊤𝑖+ 𝑖

2
𝑎𝑖+ 𝑖

2
=

q
𝑎⊤𝑏

y
𝑖+ 𝑖

2
. (4.8b)

Proof. Due to linearity of 𝒫, then,

𝒫
(︁
𝑎𝑖+ 1

2

)︁
J𝑎K𝑖+ 1

2

(2.7)
= 𝒫

(︂
1
2

(𝑎𝑖+1 + 𝑎𝑖)
)︂

(𝑎𝑖+1 − 𝑎𝑖)
(2.9)
=

1
2

(𝒫(𝑎𝑖+1)𝑎𝑖+1 − 𝒫(𝑎𝑖)𝑎𝑖) =
1
2
J𝒫(𝑎)𝑎K𝑖+ 1

2
,

which proves (4.8a). Similarly, equation (4.8b) can be proven directly:

J𝑎K⊤𝑖+ 1
2
𝑏𝑖+ 1

2
+ J𝑏K⊤𝑖+ 1

2
𝑎𝑖+ 1

2
=

1
2

(︁
(𝑎𝑖+1 − 𝑎𝑖)

⊤(𝑏𝑖+1 + 𝑏𝑖) + (𝑏𝑖+1 − 𝑏𝑖)
⊤(𝑎𝑖+1 + 𝑎𝑖)

)︁
= 𝑎⊤𝑖+1𝑏𝑖+1 − 𝑎⊤𝑖 𝑏𝑖 =

q
𝑎⊤𝑏

y
𝑖+ 1

2
.

�

We now make particular definitions for energy conservative and energy stable schemes for one-dimensional
systems of balance laws. To provide context, with no source terms (i.e., 𝑆𝑖 = 0) then spatial discretizations of
the form (4.3) are called conservative schemes since they imply,

d
d𝑡

∑︁
𝑖∈[𝑀 ]

∆𝑥𝑈 𝑖(𝑡) =
[︀
ℱ1/2 −ℱ𝑀+1/2

]︀
, (vanishing source, 𝑆𝑖 = 0), (4.9)

and in particular with periodic boundary conditions, then this implies that the cumulative amount of ̂︀𝑈 in the
system is constant in time1.

To translate this concept to the notion of an energy conservative scheme, note that an entropy-entropy flux
pair (𝐸,𝐻) introduced in Section 3 is explicitly a function of the state ̂︀𝑈 and inputs in the source term (here,̂︀𝐵). Hence, the semi-discrete form (4.3) can be transformed into a semi-discrete form for the companion balance
law (3.9). Then we call (4.3) energy conservative if it implies a conservative scheme for the companion balance
law that describes the evolution of the entropy (energy).

Definition 4.2 (Energy conservative and energy stable schemes). Suppose that the system of balance laws
(2.12) has an entropy-entropy flux pair (𝐸,𝐻) where 𝐸(̂︀𝑈) can be interpreted as energy for the system. Then

1For non-periodic boundary conditions, the energy would increase/decrease depending on the boundary conditions and their
corresponding impact on the boundary fluxes.
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the semi-discrete FV scheme (4.3) is an Energy Conservative (EC) scheme if it can be rewritten as the following
semi-discrete form for the evolution of the numerical cell averages 𝐸𝑖 of 𝐸:

d
d𝑡

𝐸𝑖(𝑡) = − 1
∆𝑥

(︀
ℋ𝑖+1/2 −ℋ𝑖−1/2

)︀
, 𝑖 ∈ [𝑀 ], (4.10)

where ℋ𝑖+1/2 is some numerical entropy flux at the interface location 𝑥 = 𝑥𝑖+1/2. The scheme (4.3) is called an
Energy Stable (ES) scheme if

d
d𝑡

𝐸𝑖(𝑡) ≤ −
1

∆𝑥

(︀
ℋ𝑖+1/2 −ℋ𝑖−1/2

)︀
, 𝑖 ∈ [𝑀 ]. (4.11)

Note that the definitions above are cell-wise conditions that are stronger than a global condition such as
(4.9).

4.2. An EC scheme for the SG SWE

In this section we present an EC scheme for the one-dimensional SG SWE system (2.12). We use the conser-
vative scheme (4.3), with the following choices of flux and source terms:

ℱ𝑖+1/2 = ℱEC
𝑖+1/2 :=

⎛⎜⎝ 𝒫
(︁
ℎ𝑖+ 1

2

)︁
𝑢𝑖+ 1

2

𝑔
2

(︁
𝒫(ℎ)ℎ

)︁
𝑖+ 1

2

+ 𝒫
(︁
𝑢𝑖+ 1

2

)︁
𝒫
(︁
ℎ𝑖+ 1

2

)︁
𝑢𝑖+ 1

2

⎞⎟⎠, (4.12a)

𝑆𝑖 =

⎛⎝ 0

− 𝑔
2Δ𝑥

(︁
𝒫
(︁
ℎ𝑖+ 1

2

)︁
J𝐵K𝑖+ 1

2
+ 𝒫

(︁
ℎ𝑖− 1

2

)︁
J𝐵K𝑖− 1

2

)︁⎞⎠. (4.12b)

Above, the interfacial averages 𝑢𝑖+1/2 are computed as defined in (4.6). Our main result for this scheme is as
follows.

Theorem 4.1 (EC Scheme). Suppose the bottom topography function 𝐵 is independent of time. Consider the
semi-discrete scheme (4.3) for the SG SWE system (2.12). Suppose that the flux and source terms are selected
as in (4.12). Then, this is a well-balanced EC scheme with local truncation error 𝒪(∆𝑥2).

The remainder of this section is devoted to the proof, which requires some intermediate steps. First, we show
that 𝑆𝑖 is a well-balanced choice for the source term discretization.

Lemma 4.2. Suppose 𝑆𝑖 is chosen as in (4.12b). If the bottom topography 𝐵 is independent of time, then (4.3)
is a well-balanced scheme in the sense of Definition 4.1.

Proof. Given initial data

𝑢𝑖 ≡ 0, ℎ𝑖 + 𝐵𝑖 = const vector, ∀𝑖, (4.13)

the well-balanced property with time-independent bottom topography (see Def. 4.1) requires that, for every 𝑖,

d
d𝑡

ℎ𝑖 ≡ 0,
d
d𝑡

𝑞𝑖 ≡ 0. (4.14)

We first notice that,(︁
𝒫(ℎ)ℎ

)︁
𝑖+ 1

2

−
(︁
𝒫(ℎ)ℎ

)︁
𝑖− 1

2

=
1
2

(︁
J𝒫(ℎ)ℎK𝑖+ 1

2
+ J𝒫(ℎ)ℎK𝑖− 1

2

)︁
(4.8a)

= 𝒫
(︁
ℎ𝑖+ 1

2

)︁
JℎK𝑖+ 1

2
+ 𝒫

(︁
ℎ𝑖− 1

2

)︁
JℎK𝑖− 1

2
.

(4.15)
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Note that with initialization (4.13), then 𝑢𝑖 = 0, and hence 𝑢𝑖+1/2 = 0. Therefore the semi-discrete scheme
(4.3) with the flux and source terms in (4.12) yields,

d
d𝑡

ℎ𝑖 = − 1
∆𝑥

(︁
𝒫(ℎ𝑖+ 1

2
)𝑢𝑖+ 1

2
− 𝒫(ℎ𝑖− 1

2
)𝑢𝑖− 1

2

)︁
= 0,

d
d𝑡

𝑞𝑖 = − 𝑔

2∆𝑥

(︂(︁
𝒫(ℎ)ℎ

)︁
𝑖+ 1

2

−
(︁
𝒫(ℎ)ℎ

)︁
𝑖− 1

2

)︂
− 𝑔

2∆𝑥

(︁
𝒫
(︁
ℎ𝑖+ 1

2

)︁
J𝐵K𝑖+ 1

2
+ 𝒫

(︁
ℎ𝑖− 1

2

)︁
J𝐵K𝑖− 1

2

)︁
(4.15)

= − 𝑔

2∆𝑥

(︁
𝒫
(︁
ℎ𝑖+ 1

2

)︁
Jℎ + 𝐵K𝑖+ 1

2
+ 𝒫

(︁
ℎ𝑖− 1

2

)︁
Jℎ + 𝐵K𝑖− 1

2

)︁
(4.13)

= 0, (4.16)

which establishes (4.14). �

Lemma 4.3. The flux and source terms in (4.12) commit a local truncation error of 𝒪(∆𝑥2).

The proof is direct, by assuming (𝑈 𝑖, 𝐵𝑖) are exact cell averages of spatially smooth functions ( ̂︀𝑈, ̂︀𝐵) and
then comparing ℱ𝑖+1/2 and 𝑆𝑖 to ̂︀𝐹 (̂︀𝑈)

⃒⃒
𝑥=𝑥𝑖+1/2

and ̂︀𝑆(̂︀𝑈)
⃒⃒
𝑥=𝑥𝑖

, respectively, where ̂︀𝐹 and ̂︀𝑆 are the exact flux
and source functions in (2.13). Therefore we omit most details, pointing out only the following quantitative
approximations in space (ignoring the time variable 𝑡):

𝑈 𝑖+1/2 = ̂︀𝑈(𝑥𝑖+1/2) +𝒪
(︀
∆𝑥2

)︀
, J𝑈K𝑖+1/2 = ∆𝑥 ̂︀𝑈𝑥

(︀
𝑥𝑖+1/2

)︀
+𝒪

(︀
∆𝑥2

)︀
𝒫
(︀
ℎ𝑖+1/2

)︀
= 𝒫

(︁̂︀ℎ(︀𝑥𝑖+1/2

)︀)︁
+𝒪

(︀
∆𝑥2

)︀
, 𝑢𝑖+1/2 = ̂︀𝑢(︀𝑥𝑖+1/2

)︀
+𝒪

(︀
∆𝑥2

)︀
.

Note that the implicit constants hidden in the asymptotic notation above depend on the maximum singular
value of 𝒫(̂︀ℎ𝑥𝑥(𝑥)) and the minimum singular value of 𝒫(̂︀ℎ(𝑥𝑖+1/2)).

The final result we need is a sufficient condition for a numerical flux to result in an EC scheme.

Lemma 4.4. Let 𝑆𝑖 be chosen as in (4.12b). Suppose that ℱ𝑖+1/2 satisfies

J𝑉 K⊤𝑖+ 1
2
ℱ𝑖+ 1

2
= JΨK𝑖+ 1

2
+ 𝑔J𝐵K⊤𝑖+ 1

2
𝒫
(︁
ℎ𝑖+ 1

2

)︁
𝑢𝑖+ 1

2
. (4.17)

Then the corresponding FV scheme (4.3) is an EC scheme, i.e., satisfies (4.10), where the numerical energy
flux is given by,

ℋ𝑖+ 1
2

:= 𝑉
⊤
𝑖+ 1

2
ℱ𝑖+ 1

2
−Ψ𝑖+ 1

2
− 𝑔

4
J𝐵K⊤𝑖+ 1

2
𝒫
(︁
ℎ𝑖+ 1

2

)︁
J𝑢K𝑖+ 1

2
. (4.18)

Proof. Multiplying (4.3) by 𝑉 ⊤𝑖 and using the definition of 𝑉 𝑖 in (4.5b), we obtain,

d
d𝑡

𝐸𝑖 = − 1
∆𝑥

⎛⎜⎜⎝𝑉 ⊤𝑖 ℱ𝑖+ 1
2⏟  ⏞  

(𝐴1)

−𝑉 ⊤𝑖 ℱ𝑖− 1
2⏟  ⏞  

(𝐴2)

−∆𝑥𝑉 ⊤𝑖 𝑆𝑖⏟  ⏞  
(𝐵)

⎞⎟⎟⎠. (4.19)

The first term, labeled (A1), can be expanded to,

(A1)
(4.7)
= 𝑉

⊤
𝑖+1/2ℱ𝑖+1/2 −

1
2
J𝑉 K⊤𝑖+1/2ℱ𝑖+1/2

(4.17)(4.18)
= ℋ𝑖+ 1

2
+ Ψ𝑖+ 1

2
+

𝑔

4
J𝐵K⊤𝑖+ 1

2
𝒫
(︁
ℎ𝑖+ 1

2

)︁
J𝑢K𝑖+ 1

2
− 1

2
JΨK𝑖+ 1

2
− 𝑔

2
J𝐵K⊤𝑖+ 1

2
𝒫
(︁
ℎ𝑖+ 1

2

)︁
𝑢𝑖+ 1

2

(4.7)
= ℋ𝑖+ 1

2
+ Ψ𝑖 −

𝑔

2
J𝐵K⊤𝑖+ 1

2
𝒫
(︁
ℎ𝑖+ 1

2

)︁
𝑢𝑖.
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In an analogous computation, the term labeled (A2) is given by,

(A2) = ℋ𝑖− 1
2

+ Ψ𝑖 +
𝑔

2
J𝐵K⊤𝑖− 1

2
𝒫
(︁
ℎ𝑖− 1

2

)︁
𝑢𝑖.

Finally, a direct computation shows that term (B) is,

(B)
(4.12b),(4.5b)

= −𝑔

2
𝑢⊤𝑖 𝒫

(︁
ℎ𝑖+ 1

2

)︁
J𝐵K𝑖+ 1

2
− 𝑔

2
𝑢⊤𝑖 𝒫

(︁
ℎ𝑖− 1

2

)︁
J𝐵K𝑖− 1

2
.

Using the expressions for terms (A1), (A2), and (B) derived above in (4.19) establishes that the scheme satisfies
(4.10), i.e., is an EC scheme. �

We now have all the ingredients necessary to prove Theorem 4.1.

Proof of Theorem 4.1. Lemmas 4.2 and 4.3 verify that the scheme is well-balanced and second-order. We there-
fore need only show that it is EC. To do this, we must verify the condition in Lemma 4.4. We accomplish this
with direct computation:

J𝑉 K⊤𝑖+ 1
2
ℱEC

𝑖+ 1
2

(4.5b),(4.12a)
=

(︂
𝑔
(︁
JℎK𝑖+ 1

2
+ J𝐵K𝑖+ 1

2

)︁
− 1

2
J𝒫(𝑢)𝑢K𝑖+ 1

2

)︂⊤
𝒫
(︁
ℎ𝑖+ 1

2

)︁
𝑢𝑖+ 1

2

+ J𝑢K⊤𝑖+ 1
2

(︂
𝑔

2

(︁
𝒫(ℎ)ℎ

)︁
𝑖+ 1

2

+ 𝒫
(︁
𝑢𝑖+ 1

2

)︁
𝒫
(︁
ℎ𝑖+ 1

2

)︁
𝑢𝑖+ 1

2

)︂
(4.8a)

= 𝑔
(︁
JℎK𝑖+ 1

2
+ J𝐵K𝑖+1/2

)︁⊤
𝒫
(︁
ℎ𝑖+ 1

2

)︁
𝑢𝑖+ 1

2
+

𝑔

2
J𝑢K⊤𝑖+ 1

2

(︁
𝒫(ℎ)ℎ

)︁
𝑖+ 1

2

(4.8a)
=

𝑔

2
J𝒫(ℎ)ℎK⊤𝑖+ 1

2
𝑢𝑖+ 1

2
+ 𝑔J𝐵K⊤𝑖+ 1

2
𝒫
(︁
ℎ𝑖+ 1

2

)︁
𝑢𝑖+ 1

2
+

𝑔

2
J𝑢K⊤𝑖+ 1

2

(︁
𝒫(ℎ)ℎ

)︁
𝑖+ 1

2

(4.8b)
=

𝑔

2
q
𝑢⊤𝒫(ℎ)ℎ

y
𝑖+ 1

2
+ 𝑔J𝐵K⊤𝑖+ 1

2
𝒫
(︁
ℎ𝑖+ 1

2

)︁
𝑢𝑖+ 1

2

= JΨK𝑖+ 1
2

+ 𝑔J𝐵K⊤𝑖+ 1
2
𝒫
(︁
ℎ𝑖+ 1

2

)︁
𝑢𝑖+ 1

2
,

which verifies (4.17), and hence Lemma 4.4 is applicable, showing that this is an EC scheme. �

4.3. A first-order ES scheme

The scheme determined by (4.12) numerically preserves the energy of the PDE system (1.1). However, it
may lead to spurious oscillations since the energy should dissipate in the presence of shocks. The issue can be
resolved by introducing appropriate numerical viscosity [16–18,36,37]. Our numerical diffusion operators are a
straightforward stochastic extension of the energy-stable diffusion operators proposed in [16,17].

For context of the approach, the introduction of a traditional Roe-type diffusion for a conservation law
involves augmenting an EC flux as follows:

ℱRD
𝑖+1/2 := ℱEC

𝑖+1/2 −
1
2
𝑄Roe

𝑖+1/2J𝑈K𝑖+1/2,

where 𝑄Roe is a positive semi-definite matrix defined through a diagonalization of the interfacial flux Jacobian
at a Roe-averaged state:

𝑄Roe
𝑖+ 1

2
:= 𝑇 Roe

⃒⃒⃒
ΛRoe

⃒⃒⃒(︁
𝑇 Roe

)︁−1

,
𝜕 ̂︀𝐹
𝜕 ̂︀𝑈 (︀

𝑈 𝑖+1/2

)︀
= 𝑇 RoeΛRoe

(︁
𝑇 Roe

)︁−1

. (4.20)
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Then the semi-discrete scheme (4.3) using the numerical flux ℱ𝑖+1/2 = ℱRD
𝑖+1/2 would behave like,

d
d𝑡

𝑈 𝑖(𝑡) = − 1
∆𝑥

(︁
ℱEC

𝑖+1/2 −ℱ
EC
𝑖−1/2

)︁
+

1
2∆𝑥

(︁
𝑄Roe

𝑖+1/2J𝑈K𝑖+1/2 −𝑄Roe
𝑖−1/2J𝑈K𝑖−1/2

)︁
+ 𝑆𝑖

≈ − 1
∆𝑥

(︁ ̂︀𝐹(︁̂︀𝑈)︁⃒⃒
𝑥=𝑥𝑖+1/2

− ̂︀𝐹(︁̂︀𝑈)︁⃒⃒
𝑥=𝑥𝑖−1/2

)︁
+ ∆𝑥 𝑄̂︀𝑈𝑥𝑥

⃒⃒
𝑥=𝑥𝑖

+ 𝑆
(︁̂︀𝑈)︁⃒⃒

𝑥=𝑥𝑖
,

where 𝑄 is a positive-definite matrix and ̂︀𝑈𝑥𝑥 is the second spatial derivative of the PDE state variables
introduced in equation (2.12), and hence this introduces diffusion into an EC scheme. While the above approach
works in terms of adding a diffusion-like term, a convenient way to ensure energy stability is to employ a
numerical diffusion term that operates on the entropic variables 𝑉 instead of the conservative variables 𝑈 :

ℱES
𝑖+ 1

2
:= ℱEC

𝑖+ 1
2
− 1

2
𝑄ES

𝑖+ 1
2
J𝑉 K𝑖+ 1

2
, (4.21)

where 𝑄ES
𝑖+ 1

2
is a positive definite matrix that will be identified in a Roe-type way from the two adjacent states 𝑈 𝑖

and 𝑈 𝑖+1 at the cell interface 𝑥 = 𝑥𝑖+ 1
2
. The term 𝑉 𝑖 is as given in (4.5b), and is a second-order approximation

to the cell-average of the entropy variable ̂︀𝑉 . We are interested in the Roe-type energy-stable operator defined
as,

𝒬𝑖+1/2(𝑈 𝑖, 𝑈 𝑖+1) := 𝑇 |Λ|𝑇⊤ ≥ 0, (4.22)

where the matrices 𝑇 and Λ are matrices from the eigendecomposition of the flux Jacobian (2.14) evaluated at
a Roe-type average state:

𝜕 ̂︀𝐹
𝜕 ̂︀𝑈

(︁ ̃︀𝑈 𝑖+1/2

)︁
= 𝑇 Λ𝑇−1, ̃︀𝑈 𝑖+1/2 :=

(︃
ℎ𝑖+1/2

𝒫
(︀
ℎ𝑖+1/2

)︀
𝑢𝑖+1/2

)︃
. (4.23)

Note in particular that 𝑞𝑖+1/2 ̸= 𝒫(ℎ𝑖+1/2)𝑢𝑖+1/2, so that ̃︀𝑈 𝑖+1/2 ̸= 𝑈 𝑖+1/2. The focal scheme of this section
uses the numerical flux (4.21), where 𝑄 is given by the Roe-type diffusion matrix introduced above,

𝑄ES1
𝑖+ 1

2
:= 𝒬𝑖+1/2(𝑈 𝑖, 𝑈 𝑖+1) = 𝑇 |Λ|𝑇⊤, (4.24)

where we refer to this scheme as “ES1” because we will show it is first-order accurate. Our main result for this
scheme is as follows.

Theorem 4.2 (ES1 scheme). Consider the finite volume scheme (4.3) with source term (4.12b) and diffusive
numerical flux (4.21), selecting the diffusion matrix as,

𝑄ES
𝑖+1/2 = 𝑄ES1

𝑖+1/2. (4.25)

The resulting scheme is a first-order, well-balanced ES scheme.

Proof. We omit some details that are similar to the proof of Theorem 4.1. We have already established in
Theorem 4.1 that ℱEC

𝑖+1/2 is second-order accurate. That this ES1 scheme is first-order is direct from the definition
of 𝑉 𝑖 in (4.5b), resulting in the approximation

J𝑉 K𝑖+1/2 ≈ ∆𝑥̂︀𝑉𝑥

(︀
𝑥𝑖+1/2

)︀
which implies that the diffusive augmentation in (4.21) commits a first-order local truncation error.

To establish that this scheme is well-balanced, we assume the stochastic lake-at-rest initial data (4.13),
and this coupled with the definition of 𝑉 𝑖 in (4.5b) implies J𝑉 K𝑖+1/2 = 0. Since the EC flux and source are
well-balanced (Lem. 4.2), then this implies that this ES1 scheme is also well-balanced.
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Finally, we seek to show the ES property. We define the ES1 energy flux,

ℋES1
𝑖+ 1

2
= ℋ𝑖+ 1

2
− 1

2
𝑉
⊤
𝑖+ 1

2
𝑄ES1

𝑖+ 1
2
J𝑉 K𝑖+ 1

2

with ℋ𝑖+1/2 as defined in (4.18). As in Lemma 4.4, we multiply (4.3) by 𝑉 ⊤𝑖 ; after manipulations that are
similar to those in the proof of Lemma 4.4, we have,

d
d𝑡

𝐸𝑖(𝑡) =− 1
∆𝑥

(︁
ℋES1

𝑖+ 1
2
−ℋES1

𝑖− 1
2

)︁
− 1

4∆𝑥

(︁
J𝑉 K⊤𝑖+ 1

2
𝑄ES1

𝑖+ 1
2
J𝑉 K𝑖+ 1

2
+ J𝑉 K⊤𝑖− 1

2
𝑄ES1

𝑖− 1
2
J𝑉 K𝑖− 1

2

)︁
.

Since 𝑄ES1
𝑖+1/2 is positive semi-definite, then this scheme satisfies (4.11), and hence is an ES scheme. �

4.4. ES1 diffusion vs. Roe diffusion

We provide in this section a result that motivates and justifies our particular form of the ES1 diffusion
modification defined in (4.24) and (4.25). This result states that if the bottom topography function vanishes
(i.e., we are in the specialized case of a conservation law), then our chosen Roe-type ES1 diffusion in (4.22)
and (4.23) coincides with a standard Roe-type diffusion term. Hence, in specialized scenarios our diffusive
augmentations using entropic variables are equivalent to more standard Roe-type diffusion.

Proposition 4.1. Define the Roe diffusion matrix as in (4.20), but using the flux Jacobian evaluated at ̃︀𝑈 𝑖+ 1
2
,

𝜕 ̂︀𝐹
𝜕 ̂︀𝑈

(︁ ̃︀𝑈 𝑖+ 1
2

)︁
= 𝑇 RoeΛRoe

(︁
𝑇 Roe

)︁−1

(4.26)

where we have evaluated the flux jacobian at ̃︀𝑈 𝑖+1/2 instead of at 𝑈 𝑖+1/2. Assume 𝐵𝑖 = 0 for all 𝑖 ∈ [𝑀 ]. Then,

𝑄Roe
𝑖+ 1

2
J𝑈K𝑖+ 1

2
= 𝑄ES1

𝑖+ 1
2
J𝑉 K𝑖+ 1

2
. (4.27)

Proving this result requires some setup: Under the assumptions of Proposition 4.1 we consider the SG SWE
(2.12) with flat bottom, i.e., ̂︀𝐵 = 0, together with entropy 𝐸flat(̂︀𝑈) = 1

2 (̂︀𝑞)⊤̂︀𝑢+ 𝑔
2‖̂︀ℎ‖2 and the entropy variables,

̂︀𝑉 flat = 𝜕̂︀𝑈𝐸 =

(︃
− 1

2𝒫(̂︀𝑢)̂︀𝑢 + 𝑔̂︀ℎ̂︀𝑢
)︃

. (4.28)

Our main tool will be some results of the proof of Theorem 3.1 in [11]; in particular, while we have provided
the flux Jacobian for this system in (2.14), we will need the explicit similarity transform that accomplishes its
symmetrization.

Lemma 4.5 ([11], Thm. 3.1). Assume 𝒫(̂︀ℎ) > 0. Define 𝐺 =
√︁

𝑔𝒫(̂︀ℎ) as the positive definite square root matrix

of 𝑔𝒫(̂︀ℎ). Then,

𝜕 ̂︀𝐹
𝜕 ̂︀𝑈

(︁̂︀𝑈)︁
= 𝑅𝐷𝑅−1,

where 𝐷 is the symmetric matrix,

𝐷
(︁̂︀𝑈)︁

=
1
2

(︃
2𝐺 + 𝒫(̂︀𝑢) + 𝑔𝐺−1𝒫(̂︀𝑞)𝐺−1 𝒫(̂︀𝑢)− 𝑔𝐺−1𝒫(̂︀𝑞)𝐺−1

𝒫(̂︀𝑢)− 𝑔𝐺−1𝒫(̂︀𝑞)𝐺−1 𝒫(̂︀𝑢) + 𝑔𝐺−1𝒫(̂︀𝑞)𝐺−1 − 2𝐺

)︃
, (4.29)

and

𝑅
(︁̂︀𝑈)︁

=
1√
2𝑔

⎛⎝ 𝐼 𝐼

𝒫(̂︀𝑢) +
√︂

𝑔𝒫
(︁̂︀ℎ)︁ 𝒫(̂︀𝑢)−

√︂
𝑔𝒫

(︁̂︀ℎ)︁
⎞⎠. (4.30)
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The second lemma reveals the relation between the cell interface jump of 𝑉 flat (the spatial approximation
corresponding to the cell-averaged entropy variable ̂︀𝑉 flat in (4.28)) and 𝑈 .

Lemma 4.6. Recall the definition of ̃︀𝑈 𝑖+ 1
2

in (4.23):

̃︀𝑈 𝑖+ 1
2

=

⎛⎝ ℎ𝑖+ 1
2

𝒫
(︁
ℎ𝑖+ 1

2

)︁
𝑢𝑖+ 1

2

⎞⎠
which is an intermediate state defined by the arithmetic average of ℎ and 𝑢 across the cell interface 𝑥 = 𝑥𝑖+ 1

2
.

Denote, 𝑉 flat to be the corresponding spatial approximation of the cell-averaged entropy variable defined in
(4.28). Then,

(1) The jump J𝑈K𝑖+ 1
2

is a rescaling of the jump
r
𝑉 flat

z

𝑖+ 1
2

, i.e.,

J𝑈K𝑖+ 1
2

=
(︁
𝑉 flat

𝑈

)︁
𝑖+ 1

2

r
𝑉 flat

z

𝑖+ 1
2

, (4.31)

where

(︁
𝑉 flat

𝑈

)︁
𝑖+ 1

2

:=
1
𝑔

⎛⎜⎝ 𝐼 𝒫
(︁
𝑢𝑖+ 1

2

)︁
𝒫
(︁
𝑢𝑖+ 1

2

)︁
𝒫2

(︁
𝑢𝑖+ 1

2

)︁
+ 𝑔𝒫

(︁
ℎ𝑖+ 1

2

)︁
⎞⎟⎠,

r
𝑉 flat

z

𝑖+1/2

(4.28)
=

(︃
− 1

2J𝒫(𝑢)𝑢K𝑖+ 1
2

+ 𝑔JℎK𝑖+ 1
2

J𝑢K𝑖+ 1
2

)︃
.

(2) Let 𝑅𝑖+ 1
2

denote the matrix that symmetrizes the flux Jacobian at the state ̃︀𝑈 𝑖+ 1
2
,

𝑅𝑖+ 1
2

:= 𝑅
(︁ ̃︀𝑈 𝑖+ 1

2

)︁
=

1√
2𝑔

⎛⎝ 𝐼 𝐼

𝒫
(︁
𝑢𝑖+ 1

2

)︁
+

√︂
𝑔𝒫

(︁
ℎ𝑖+ 1

2

)︁
𝒫
(︁
𝑢𝑖+ 1

2

)︁
−

√︂
𝑔𝒫

(︁
ℎ𝑖+ 1

2

)︁⎞⎠,

cf. (4.30). Then,

𝑅𝑖+ 1
2
𝑅⊤𝑖+ 1

2
=

(︁
𝑉 flat

𝑈

)︁
𝑖+ 1

2

. (4.32)

Proof. Part (2), i.e., (4.32), is a straightforward matrix algebra calculation that we omit. For part (1), we first
recall that (4.8a) implies,

1
2
J𝒫(𝑢)𝑢K𝑖+ 1

2
= 𝒫

(︁
𝑢𝑖+ 1

2

)︁
J𝑢K𝑖+ 1

2
. (4.33)

Second, we use the linearity of 𝒫(·), the property (4.6) for arithmetic averages, and the commutation property
(2.9), to conclude,

𝒫
(︁
𝑢𝑖+ 1

2

)︁
JℎK𝑖+ 1

2
+ 𝒫

(︁
ℎ𝑖+ 1

2

)︁
J𝑢K𝑖+ 1

2
= J𝒫(ℎ)𝑢K𝑖+ 1

2
= J𝑞K𝑖+ 1

2
. (4.34)

Therefore,

(︁
𝑉 flat
𝑈

)︁

𝑖+ 1
2

r
𝑉 flat

z

𝑖+ 1
2

=
1

𝑔

⎛

⎝
− 1

2
J𝒫(𝑢)𝑢K𝑖+ 1

2
+ 𝑔JℎK𝑖+ 1

2
+ 𝒫

(︁
𝑢𝑖+ 1

2

)︁
J𝑢K𝑖+ 1

2

− 1
2
𝒫
(︁
𝑢𝑖+ 1

2

)︁
J𝒫(𝑢)𝑢K𝑖+ 1

2
+ 𝑔𝒫

(︁
𝑢𝑖+ 1

2

)︁
JℎK𝑖+ 1

2
+
(︁
𝒫2
(︁
𝑢𝑖+ 1

2

)︁
+ 𝑔𝒫

(︁
ℎ𝑖+ 1

2

)︁)︁
J𝑢K𝑖+ 1

2

⎞

⎠

(4.33)(4.34)
===

(︃
JℎK𝑖+ 1

2
J𝑞K𝑖+ 1

2

)︃
= J𝑈K𝑖+ 1

2
.

�
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Now we are in position to show (4.27) in Proposition 4.1.

Proof of Proposition 4.1. Let 𝐷𝑖+ 1
2

be the symmetric matrix defined in (4.29) evaluated at 𝑈 𝑖+ 1
2
, and 𝐷𝑖+ 1

2
=

𝐿𝑖+ 1
2
Λ𝑖+ 1

2
𝐿⊤𝑖+ 1

2
be its eigenvalue decomposition. Then,

𝜕 ̂︀𝐹
𝜕 ̂︀𝑈

(︁ ̃︀𝑈 𝑖+ 1
2

)︁
= 𝑅𝑖+ 1

2

(︁
𝐿𝑖+ 1

2
Λ𝑖+ 1

2
𝐿⊤𝑖+ 1

2

)︁
𝑅−1

𝑖+ 1
2

(4.35a)

=: 𝑇 𝑖+ 1
2
Λ𝑖+ 1

2
𝑇−1

𝑖+ 1
2
, (4.35b)

is an eigendecomposition of the Jacobian matrix 𝜕 ̂︀𝐹
𝜕 ̂︀𝑈

( ̃︀𝑈 𝑖+ 1
2
), where we have used the fact that 𝐿−1

𝑖+ 1
2

= 𝐿⊤𝑖+ 1
2

due to the symmetry of 𝐷𝑖+ 1
2
. The Roe-diffusion operator evaluated at the location ̃︀𝑈 𝑖+ 1

2
as indicated in (4.26)

is then given by,

𝑄Roe
𝑖+ 1

2

(4.20)
= 𝑇 𝑖+ 1

2

⃒⃒⃒
Λ𝑖+ 1

2

⃒⃒⃒
𝑇−1

𝑖+ 1
2
.

Therefore,

𝑄Roe
𝑖+ 1

2
J𝑈K𝑖+ 1

2
= 𝑇 𝑖+ 1

2

⃒⃒⃒
Λ𝑖+ 1

2

⃒⃒⃒
𝑇−1

𝑖+ 1
2
J𝑈K𝑖+ 1

2
,

(4.35),(4.31)
=

(︁
𝑅𝑖+ 1

2
𝐿𝑖+ 1

2

)︁⃒⃒⃒
Λ𝑖+ 1

2

⃒⃒⃒(︁
𝑅𝑖+ 1

2
𝐿𝑖+ 1

2

)︁−1(︁
𝑉 flat

𝑈

)︁
𝑖+ 1

2

r
𝑉 flat

z

𝑖+ 1
2

,

(4.32)
=

(︁
𝑅𝑖+ 1

2
𝐿𝑖+ 1

2

)︁⃒⃒⃒
Λ𝑖+ 1

2

⃒⃒⃒(︁
𝑅𝑖+ 1

2
𝐿𝑖+ 1

2

)︁−1

𝑅𝑖+ 1
2
𝑅⊤𝑖+ 1

2

r
𝑉 flat

z

𝑖+ 1
2

,

= 𝑅𝑖+ 1
2

(︁
𝐿𝑖+ 1

2

⃒⃒⃒
Λ𝑖+ 1

2

⃒⃒⃒
𝐿⊤𝑖+ 1

2

)︁
𝑅⊤𝑖+ 1

2

r
𝑉 flat

z

𝑖+ 1
2

,

= 𝑇 𝑖+ 1
2

⃒⃒⃒
Λ𝑖+ 1

2

⃒⃒⃒
𝑇⊤𝑖+ 1

2

r
𝑉 flat

z

𝑖+ 1
2

(4.24)
= 𝑄ES1

𝑖+ 1
2

r
𝑉 flat

z

𝑖+ 1
2

. (4.36)

�

4.5. A second-order ES scheme

To develop a second-order accurate energy-stable scheme, we use jump operators with 𝑂(∆𝑥2) accuracy.
A natural choice is to use the jumps obtained by non-oscillatory second-order reconstructions of the entropy
variable. However, attaining a provable energy-stable scheme requires the more subtle reconstruction procedure
in [18] that we follow. The new idea for second-order diffusion is to use reconstructions in order to compute
jumps. To that end, we let 𝑉 +

𝑖 and 𝑉 −𝑖+1 be second-order reconstructions from the right and left, respectively, of
the entropy variable 𝑉 (𝑥) at location 𝑥 = 𝑥𝑖+1/2. We will describe later in this section how these reconstructions
are computed.

Assuming we have these reconstructions in hand, we can compute second-order accurate jumps of the entropy
variables:

⟨⟨𝑉 ⟩⟩𝑖+ 1
2

= 𝑉 −𝑖+1 − 𝑉 +
𝑖 . (4.37)

The overall scheme is similar as the previous section, but uses a second-order diffusive augmentation of a
conservative flux,

ℱES2
𝑖+ 1

2
:= ℱEC

𝑖+ 1
2
− 1

2
𝑄ES2

𝑖+ 1
2
⟨⟨𝑉 ⟩⟩𝑖+ 1

2
. (4.38)
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We choose the matrix 𝑄ES2 as for the ES1 scheme,

𝑄ES2
𝑖+1/2 = 𝑄ES1

𝑖+1/2 = 𝒬𝑖+1/2(𝑈 𝑖, 𝑈 𝑖+1) = 𝑇 𝑖+1/2|Λ𝑖+1/2|𝑇⊤𝑖+1/2, (4.39)

where we recall that the eigendecomposition matrices 𝑇 , Λ are computed from the Roe-type average of the flux
Jacobian, cf. (4.22), (4.23). One could alternatively select 𝑄ES2 by using second-order reconstructions of 𝑈 as
input to 𝒬, e.g.,

𝑄ES2
𝑖+1/2 = 𝒬𝑖+1/2

(︀
𝑈−𝑖 , 𝑈+

𝑖

)︀
,

for some second-order reconstructions 𝑈±𝑖 .
What remain is to describe how 𝑉 ±𝑖 are computed in a way that ensures the energy stable property. The

main idea is to design 𝑉 ±𝑖 through a second-order reconstruction of scaled (transformed) versions of the entropy
variables:

𝑤±𝑖 := 𝑇⊤𝑖±1/2𝑉 𝑖, (4.40)

where the matrices 𝑇 𝑖±1/2 are as in (4.39). Once these have been computed, we perform a second-order total
variation-diminishing (TVD) reconstruction on the 𝑤 variable at the interfaces:

̃︀𝑤±𝑖 := 𝑤±𝑖 ±
1
2
𝜑
(︀
𝜃±𝑖

)︀
∘ ⟨⟨𝑤⟩⟩𝑖±1/2, (4.41)

where ∘ is the Hadamard (elementwise) product on vectors, and 𝜃±𝑖 are difference quotients,

𝜃±𝑖 := ⟨⟨𝑤⟩⟩𝑖∓1/2 ⊘ ⟨⟨𝑤⟩⟩𝑖±1/2,

where ⊘ is the Hadamard (elementwise) division between vectors. We select the function 𝜑 to be the minmod
limiter,

𝜑(𝜃) =

⎧⎪⎨⎪⎩
0, if 𝜃 < 0,

𝜃. if 0 ≤ 𝜃 ≤ 1,

1, otherwise
(4.42)

which operates elementwise on vector inputs. Note that other slope limiter functions 𝜑 may be selected, but
minmod is the only valid limiter in this context that also satisfies the TVD property ([18], Sect. 3.4). Finally,
the desired reconstructions for 𝑉 ±𝑖 are defined by inverting the 𝑤-to-𝑉 map,

𝑇⊤𝑖±1/2𝑉
±
𝑖 := ̃︀𝑤±𝑖 . (4.43)

The full scheme has now been described, and satisfies the following properties.

Theorem 4.3 (ES2 scheme). The FV scheme (4.3) choosing the flux ℱ𝑖+1/2 = ℱES2
𝑖+1/2 defined in (4.38) is a

second-order, well-balanced, ES scheme.

We focus the remaining discussion in this section on sketching the proof of the above result. The second-order
property results from the fact that the jumps are computed using second-order accurate reconstructions; the
well-balanced property can be proven in exactly the same way as is done for the ES1 scheme in the proof of
Theorem 4.2. To show the ES property, we exercise one of the major results in [18] that we reproduce below.

Lemma 4.7 ([18], Lem. 3.2). For each 𝑖, if there exists a positive diagonal matrix Π𝑖+1/2 ≥ 0 such that the
second-order jump satisfies,

⟨⟨𝑉 ⟩⟩𝑖+ 1
2

=
(︁
𝑇⊤𝑖+ 1

2

)︁−1

Π𝑖+ 1
2
𝑇⊤𝑖+ 1

2
J𝑉 K𝑖+ 1

2
, (4.44)

then the scheme (4.3) with flux term ℱ𝑖+1/2 = ℱES2
𝑖+1/2 is an ES scheme.
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Hence, showing the ES property for our scheme only requires us to establish (4.44). To accomplish this, note
that the definition (4.41) implies,

⟨⟨̃︀𝑤⟩⟩ℓ𝑖+ 1
2

=
(︂

1− 1
2
𝜑
(︁(︀

𝜃−𝑖+1

)︀ℓ
)︁
− 1

2
𝜑
(︁(︀

𝜃+
𝑖

)︀ℓ
)︁)︂
⟨⟨𝑤⟩⟩ℓ𝑖+ 1

2
. (4.45)

I.e., we have,

⟨⟨̃︀𝑤⟩⟩𝑖+ 1
2

= Π𝑖+ 1
2
⟨⟨𝑤⟩⟩𝑖+ 1

2
,

(︀
Π𝑖+1/2

)︀
ℓ,ℓ

:=
(︂

1− 1
2
𝜑
(︀(︀

𝜃−𝑖+1

)︀
ℓ

)︀
− 1

2
𝜑
(︀(︀

𝜃+
𝑖

)︀
ℓ

)︀)︂
(4.46)

and in particular Π𝑖+1/2 is a diagonal matrix and positive semi-definite since 0 ≤ 𝜑(𝜃) ≤ 1. Since the jump
operators ⟨⟨·⟩⟩ and J·K are linear in their arguments, then combining (4.45) with the relations (4.40) and (4.43)
that connect 𝑤𝑖 and ̃︀𝑤𝑖 to 𝑉 𝑖 and 𝑉 ±𝑖 yields the relation (4.44) with a positive-definite diagonal matrix Π𝑖+1/2.
Hence, this is an ES scheme, and completes the proof of Theorem 4.3.

Finally, we remark that the implementation of the diffusion term in the ES2 flux (4.38) does not require
explicit construction of 𝑉 ±𝑖 . I.e., we have,

1
2
𝑄ES2

𝑖+ 1
2
⟨⟨𝑉 ⟩⟩𝑖+ 1

2

(4.22),(4.44)
=

1
2
𝑇 𝑖+ 1

2

⃒⃒⃒
Λ𝑖+ 1

2

⃒⃒⃒
𝑇⊤𝑖+ 1

2

(︁
𝑇⊤𝑖+ 1

2

)︁−1

Π𝑖+ 1
2
𝑇⊤𝑖+ 1

2
J𝑉 K𝑖+ 1

2

=
1
2
𝑇 𝑖+ 1

2

⃒⃒⃒
Λ𝑖+ 1

2

⃒⃒⃒
Π𝑖+ 1

2
𝑇⊤𝑖+ 1

2
J𝑉 K𝑖+ 1

2

(4.40)
=

1
2
𝑇 𝑖+ 1

2

⃒⃒⃒
Λ𝑖+ 1

2

⃒⃒⃒
Π𝑖+ 1

2
⟨⟨𝑤⟩⟩𝑖+ 1

2
,

(4.46)
=

1
2
𝑇 𝑖+ 1

2

⃒⃒⃒
Λ𝑖+ 1

2

⃒⃒⃒
⟨⟨̃︀𝑤⟩⟩𝑖+ 1

2
,

and hence one need only compute ̃︀𝑤±𝑖 in order to directly evaluate the diffusion part of the ES2 flux.

4.6. Algorithmic details

Our overall scheme is the semi-discrete form (4.3), which we pair with a numerical time-stepping scheme.
We provide pseudocode in this section that describes a fully discrete SG SWE time-stepping algorithm. This
full pseudocode introduces some additional details for the scheme that were devised in [11], many of which are
based on standard procedures used in schemes for deterministic SWE models [23]. We very briefly describe
these additional details in the coming sections; more comprehensive discussion can be found in [11]. The full
algorithmic pseudocode is given in Algorithm 1.

4.6.1. Velocity desingularization

Computing 𝑢𝑖 requires inversion of the matrix 𝒫(ℎ𝑖), which is assumed (and enforced in the scheme) to be
symmetric and positive-definite. However, this matrix may be ill-conditioned. To ameliorate numerical artifacts
associated with this ill-conditioned operation, we employ a desingularization procedure, introduced for the
deterministic SWE in [25]. We describe here the stochastic variant of the desingularization procedure, proposed
in [11]. If 𝒫(ℎ𝑖) has the eigenvalue decomposition,

𝒫(ℎ𝑖) = 𝑄Π𝑄⊤, Π = diag(𝜋1, . . . , 𝜋𝐾),

where 𝜋𝑘 > 0 are the eigenvalues of 𝒫(ℎ𝑖), then the desingularization process approximates 𝒫(ℎ𝑖)−1𝑞𝑖 by
regularizing the matrix inverse procedure:

𝑢𝑖 = 𝑄 ̃︀Π−1
𝑄𝑇 𝑞𝑖,

̃︀Π = diag(̃︀𝜋1, . . . , ̃︀𝜋𝐾), ̃︀𝜋𝑘 =

√︀
𝜋4

𝑘 + max{𝜋4
𝑘, 𝜖4}√

2𝜋𝑘

, (4.47)
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where 𝜖 > 0 is a small constant; we choose it to be 𝜖 = ∆𝑥. Note that if 𝜋𝑘 ≥ 𝜖1/4, then ̃︀𝜋𝑘 = 𝜋𝑘, and hence
regularization is performed only in the presence of small eigenvalues. Compared to (4.4). This procedure to
compute 𝑢𝑖 is a stabilized way to compute velocities.

For scheme consistency, if the desingularization above is activated, then we recompute the discharge variable:

𝑞𝑖 ← 𝒫(ℎ𝑖)𝑢𝑖.

This update for 𝑞𝑖 may affect global conservation of 𝑞 through a 𝒪(𝜖2/𝜋𝑘) ∼ 𝒪(∆𝑥2/𝜋𝑘) augmentation; however,
this desingularization process is constructed to minimize the numerical effects of such desingularization while
simultaneously restoring well-behaved and stable computation. Without such a desingularization procedure, the
scheme can quickly become numerically unstable for small water heights.

4.6.2. Hyperbolicity preservation

The SG SWE PDE (2.12) is hyperbolic and has an entropy pair if 𝒫(̂︀ℎ) > 0, i.e., Theorems 2.1 and 3.1,
respectively. To ensure this holds at the discrete level, we require the condition 𝒫(ℎ𝑖) > 0 for every cell 𝑖. To
enforce this, we employ ([11], Thm. 3.4, Cor. 3.5), which state that a sufficient condition for 𝒫(ℎ𝑖) > 0 is that
for every 𝑚 = 1, . . . ,𝑀 ,

̂︀ℎ𝑖(𝜉𝑚) > 0, ̂︀ℎ𝑖(𝜉) :=
𝐾∑︁

𝑘=1

ℎ𝑖,𝑘𝜑𝑘(𝜉𝑚), ℎ𝑖 = (ℎ𝑖,1, . . . , ℎ𝑖,𝐾)⊤, (4.48)

where {𝜉𝑚}𝑀𝑚=1 is a nodal set in R𝑑 for a positive-weight quadrature rule having sufficient accuracy relative
to the 𝜉-polynomial space 𝑃 defined in (2.4). The functions 𝜑𝑘 are the basis of 𝑃 in (2.4) for which ℎ𝑖 are
coordinates. The function ̂︀ℎ𝑖(𝜉) is the SG SWE approximation to the ℐ𝑖-cell average of ̂︀ℎ(𝑥, 𝑡, 𝜉) at the current
time. Hence, the computational vehicle we use to enforce hyperbolicity of the underlying PDE in our scheme is
to enforce the above positivity-type condition on the ℎ𝑖 variable.

4.6.3. Positivity-preservation

We enforce the positivity condition (4.48) by restricting the timestep size. We assume that the current time
value of ℎ𝑖 satisfies (4.48). If forward Euler with a stepsize ∆𝑡 is used to discretize (4.3), then (4.48) is true at
the next time step if,

∆𝑡 < 𝜆 := min
𝑖

min
𝑚=1,...,𝑀

⃒⃒⃒⃒
⃒ ∆𝑥 ̂︀ℎ𝑖(𝜉𝑚)̂︀ℱℎ

𝑖+1/2(𝜉𝑚)− ̂︀ℱℎ
𝑖−1/2(𝜉𝑚)

⃒⃒⃒⃒
⃒, (4.49)

where ̂︀ℱℎ
𝑖+1/2(·) is the SG approximation of the ̂︀ℎ-variable flux:

̂︀ℱℎ
𝑖+1/2(𝜉) :=

𝐾∑︁
𝑘=1

ℱℎ
𝑖+1/2,𝑘𝜑𝑘(𝜉), ℱ𝑖+1/2 =

(︂(︁
ℱℎ

𝑖+1/2

)︁⊤
,
(︁
ℱ𝑞

𝑖+1/2

)︁⊤)︂⊤
∈ R2𝐾 .

Hence, we enforce positivity preservation by ensuring a small enough timestep so that the positivity condition
(4.48) is respected globally over all spatial cells. We must also restrict ∆𝑡 to satisfy the wave speed CFL
condition; see equation (4.16) of [11].

4.6.4. Adaptive time-stepping

The time step restriction (4.49) works for forward Euler time-stepping. To extend this to a higher-order
temporal scheme, we employ a third-order strong stability-preserving scheme, which is a convex combination
of forward Euler steps [21]. However, the intermediate stages of a(ny) time-stepping scheme need not obey the
positivity-preserving property, even if ∆𝑡 is chosen to obey the condition (4.49) determined at the initial step.
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To address this issue, we employ the adaptive time-stepping strategy proposed in Remark 3.6 of [6]. We refer
the reader to that reference for details, and present here only a high-level description of the procedure: 𝜆 is
initialized as the initial stage value of 𝜆, as shown in (4.49). At intermediate stages, new intermediate values of
𝜆 are computed. If an intermediate-stage value of 𝜆 is smaller than the current value of 𝜆, then we restart the
entire time-step using the new, smaller-𝜆 restriction on ∆𝑡.

Algorithm 1. The fully discrete SG SWE schemes proposed in this paper; we ignore specifying the handling
of boundary conditions.

Input scheme type: scheme = EC, ES1, or ES2
Input: Bottom topography 𝐵, initial data 𝑈(𝑡 = 0), polynomial index set Λ
Input: Terminal time 𝑇
Initialize: 𝑈 𝑖, 𝑡 = 0
repeat

Compute 𝐵𝑖 from 𝐵 for all 𝑖
Compute 𝑢𝑖 in (4.47) for all 𝑖
Compute ℱEC

𝑖+1/2 for all 𝑖, given by (4.12)
if scheme is EC then for all 𝑖:

Set ℱ𝑖+1/2 ← ℱEC
𝑖+1/2.

else for all 𝑖:
Compute entropy variable 𝑉 𝑖 using (4.5b).
Compute 𝑇 𝑖+1/2, Λ𝑖+1/2 through (4.23).
if scheme is ES1 then:

Compute 𝑄ES1
𝑖+1/2 using (4.23),(4.24) with 𝑇 𝑖+1/2, Λ𝑖+1/2.

Compute ℱ𝑖+1/2 ← ℱES
𝑖+1/2 in (4.21) using ℱEC

𝑖+1/2, 𝑉 𝑖, and 𝑄ES
𝑖+1/2 ← 𝑄ES1

𝑖+1/2.
else if scheme is ES2 then:

Construct 𝑄ES2
𝑖+1/2 as in (4.39) with 𝑇 𝑖+1/2, Λ𝑖+1/2.

Construct 𝑉 ±
𝑖 through (4.40), (4.41), and (4.43).

Compute ℱ𝑖+1/2 ← ℱES2
𝑖+1/2 in (4.38) and (4.37) using 𝑄ES2

𝑖+1/2, 𝑉
±
𝑖 , and ℱEC

𝑖+1/2.
end if

end if
Initialize 𝜆 and Δ𝑡 as shown in (4.49).
Adaptively determine Δ𝑡 using the procedure discussed in Section 4.6.4.
Use a third-order SSP method to take a time step of size Δ𝑡, updating ℎ𝑖 and 𝑞𝑖.
Set 𝑡← 𝑡 + Δ𝑡.

until 𝑡 ≥ 𝑇

5. Numerical experiments

Below we present several numerical examples to illustrate properties of the developed schemes. We refer to
the second order energy-conservative scheme, the first order energy-stable scheme, and the second order energy-
stable scheme as the EC, ES1, and ES2 schemes, respectively. We introduce the relative change in energy
quantity,

relative energy =
𝐸(𝑡)− 𝐸(0)

𝐸(𝑡)
, (5.1)

where 𝐸(𝑡) is computed as
∑︀

𝑖 ∆𝑥𝐸𝑖(𝑡). This provides a way to visualize the relative change in the discrete
energy for different numerical schemes, namely for the EC, ES1 and ES2. In the examples of Section 5.1 through
Section 5.4, we take the random variable 𝜉 as a scalar parameter, uniformly distributed on [−1, 1]. We generally
use 𝐾 = 9 PC terms (except in some accuracy tests) with the polynomial space 𝑃 spanned by orthonormal
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Figure 1. Results for Section 5.1. Left: water surface and middle: discharge. Right: relative
energy change in EC over time. Mesh size 𝑛𝑥 = 3200 and PC basis functions 𝐾 = 4.

Legendre polynomials. Our final example in Section 5.5 employs a two-dimensional vector 𝜉, and the details of
that experiment are provided in that section.

Instead of visualizing the conservative variable ℎ corresponding to water height, we will plot the water surface
𝑤, defined as 𝑤 = ℎ + 𝐵, with the bottom topography 𝐵 superimposed on the same graph; plots of (𝑤, 𝐵) are
more physically interpretable than directly plotting the water height ℎ.

5.1. Accuracy test for the EC scheme on smooth initial data

We start by examining the accuracy of the proposed EC scheme (4.3), (4.12a), (4.12b) for the SG system
(2.12) on a test with a smooth initial data and a smooth solution (we select a final time to ensure that the
solution is smooth). On a smooth solution, the system satisfies the energy equality (3.5) and the EC scheme is
constructed to satisfy the discrete version of the energy equality. We consider a smooth stochastic water surface,

ℎ(𝑥, 0, 𝜉) + 𝐵(𝑥, 0, 𝜉) = 𝑤(𝑥, 0, 𝜉) = 1.1 + 0.1𝑒−2𝜉 + 0.001𝑒−10 sin(cos(2𝜋𝑥)), 𝑢(𝑥, 0, 𝜉) = 0.1, (5.2)

with a flat bottom 𝐵(𝑥, 𝑡, 𝜉) ≡ 0. For all tests in this section we compute the solution to a final time 𝑡 = 0.0025
over the physical domain 𝑥 ∈ 𝒟 = [−1, 1]. The profile of the water surface and discharge computed by the EC
scheme at a final time on a mesh of 𝑛𝑥 = 3200 elements with 𝐾 = 4 is shown in Figure 1 (water surface (left)
and discharge (middle)). The right plot in Figure 1 illustrates that the EC scheme numerically preserves energy
on this test – a very small numerical error of 𝑂(10−12) in the energy is due to time discretization.

We next test spatial accuracy of the EC scheme against a reference solution computed by the EC scheme on
mesh of size 𝑛𝑥 = 3200 with 𝐾 = 4, Figure 1. We illustrate convergence of the scheme using the water height ℎ
by computing the error between the reference solution and the numerical solution using an 𝐿1 norm in physical
space and an 𝐿2 norm in parameter space,

Error(ℎ𝑛𝑥
) = ‖ℎ𝑛𝑥

(𝑥, 𝑡, 𝜉)− ℎref(𝑥, 𝑡, 𝜉)‖𝐿1(𝒟;𝐿2
𝜌(R𝑑)), (5.3a)

‖ℎ(𝑥, 𝑡, 𝜉)‖𝐿1(𝒟;𝐿2
𝜌(R𝑑)) :=

∫︁
𝒟
‖ℎ(𝑥, 𝑡, 𝜉)‖𝐿2

𝜌
d𝑥 (5.3b)

where we recall that 𝒟 is the physical domain and R𝑑 is the stochastic domain, ℎ𝑛𝑥
is the numerical water

height PC solution to the SG SWE equation on a mesh of size 𝑛𝑥, and ℎref is the 𝐾-term (fixed 𝐾 = 4) PC
reference solution. The results for this spatial convergence test are presented in Table 2a and show second order
convergence for the smooth solution, as expected.

Our next test investigates convergence with respect to the number of PC terms 𝐾 for one-dimensional
parameter space, 𝑑 = 1. For infinitely smooth solutions, we expect spectral (often exponential) convergence. For
this test, the reference solution corresponds to 𝑛𝑥 = 6400 with 𝐾 = 25, and again illustrate convergence of the
scheme using water height ℎ by computing the error between the reference solution and the numerical solution
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Table 2. Results for Section 5.1: EC order of convergence in physical space (A) for the prob-
lem (5.2) with smooth initial data. Error is computed using (5.3a). Order of convergence in
stochastic space is presented in (B). Error is computed using (5.4).

(a) Spatial convergence (b) Stochastic convergence
Mesh
(𝑛𝑥)

Error (EC) Order 𝐾
(Even)

Error (EC) Order 𝐾
(Odd)

Error (EC) Order

100 5.1347e−04 − 2 1.7406e−01 − 3 5.1643e−02 −
200 1.3184e−04 1.9615 4 1.2391e−02 3.8122 5 2.4103e−03 5.9993
400 3.3784e−05 1.9644 6 3.9375e−04 8.5063 7 5.5405e−05 11.2129
800 8.1163e−06 2.0574 8 6.8442e−06 14.0861 9 7.5328e−07 17.1020

10 7.4743e−08 20.2430 11 6.7508e−09 23.4951

using,
Error(ℎ𝐾) = ‖ℎ𝐾(𝑥, 𝑡, 𝜉)− ℎref(𝑥, 𝑡, 𝜉)‖𝐿1(𝒟;𝐿2

𝜌(R𝑑)), (5.4)

where ℎ𝐾 is the water height corresponding to a solution using 𝐾 PC terms. We observe spectral convergence of
EC scheme in Table 2b, faster than any fixed polynomial order, suggesting this solution has very high regularity,
and confirming the expected numerical convergence rate in 𝐾.

5.2. Flat-bottom dam break

In the next experiment, we consider a stochastic water surface,

ℎ(𝑥, 0, 𝜉) + 𝐵(𝑥, 0, 𝜉) = 𝑤(𝑥, 0, 𝜉) =
{︂

2.0 + 0.1𝜉 𝑥 < 0
1.5 + 0.1𝜉 𝑥 > 0

, 𝑞(𝑥, 0, 𝜉) = 0,

with a flat bottom 𝐵(𝑥, 𝑡, 𝜉) ≡ 0. This is a stochastic modification of the deterministic “dam break test” problem
from [17]. In Figure 2, we use a uniform grid size 𝑛𝑥 = 400 over the physical domain 𝑥 ∈ [−1, 1], and compute
up to time 𝑡 = 0.4. We test the example using the numerical methods EC, ES1, and ES2 developed in Section 4.

From Figure 2, similar to the results presented in Figures 1 and 4 of [17], we observe that the water surface
with uncertainty develops a leftward-going rarefaction wave and a rightward-going shock. Similar to [17], EC
computes such solutions accurately, but at the expense of large post-shock oscillations as observed on Figure 2
(right plot). These oscillations are expected since the EC scheme preserves energy on such solutions, and hence
energy is not dissipated across the shock as it should. We also demonstrate in Figure 3 (middle and right plots)
numerical energy conservation for the EC scheme. We note that the energy conservation errors due to time
discretization are reduced significantly by decreasing the time step/CFL constant (right figure), similar to the
results reported in Figure 1 in [17]. The presented results in Figures 2 and 3 (left figure) also illustrate that
ES2 produces less smearing than ES1 at both the rarefaction and the shock waves. The schemes ES1 and ES2
are both designed to dissipate energy which is also confirmed by the numerical results in Figure 3 (middle
plot), with the energy dissipation in ES2 being lower than with the ES1 scheme. In addition, the numerical
results seem to indicate that the ES2 scheme is better able to capture large variance spikes compared to the
ES1 scheme. Finally, the employment of the the numerical diffusion operators in ES1 and ES2 schemes removes
oscillations present in the numerical solution using the EC scheme. The observed results are also in agreement
with deterministic model numerical results reported in [17].

5.3. Stochastic bottom topography

Next, we consider the shallow water system with deterministic initial conditions,

𝑤(𝑥, 0) =
{︂

1 𝑥 < 0
0.5 𝑥 > 0

, 𝑞(𝑥, 0) = 0,
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Figure 2. Results for Section 5.2. Top: water surface, bottom: discharge: left: ES1. Middle:
ES2. Right: EC. Mesh 𝑛𝑥 = 400 and PC basis functions 𝐾 = 9.

Figure 3. Results for Section 5.2. Comparison: Left: water surface mean ES1 vs. ES2. Middle:
relative energy change in EC, ES1, ES2. Right: relative energy change in EC under different
time step/CFL constant. Mesh 𝑛𝑥 = 400 and PC basis functions 𝐾 = 9.

and with a stochastic bottom topography,

𝐵(𝑥, 𝜉) =
{︂

0.125(cos(5𝜋𝑥) + 2) + 0.125𝜉, |𝑥| < 0.2
0.125 + 0.125𝜉, otherwise.

(5.5)

This test example was presented previously in [11]. Initially, the highest possible bottom barely touches the
initial water surface at 𝑥 = 0, see Figures 4–6. We use a uniform grid size 𝑛𝑥 = 400, 800, 1600 over the
physical domain 𝑥 ∈ [−1, 1], and compute up to time 𝑡 = 0.0995. (Immediately after this time, the EC scheme
fails for 𝑛𝑥 = 400 due to spurious oscillations near sharp gradients of the solution.) In Figures 5 and 6 we
compare only performance of ES1 and ES2 at 𝑡 = 0.0995 since EC fails on those meshes even earlier. Again, the
numerical results indicate that the ES2 scheme can more easily resolve large, spatially-concentrated variance
values compared to the ES1 scheme, but under mesh refinement both schemes converge to similar numerical
solutions. In Figure 7, we show the numerical solution obtained using ES1 and ES2 at the final time 𝑡 = 0.8
and on a mesh of size 𝑛𝑥 = 800. For both schemes, the 99% confidence region of the water surface stays above
the 99% confidence region of the bottom function in Figure 7, and both methods produce similar numerical
solutions. The presented results are comparable to the results in Section 5.1 of [11]. In Figure 8, we again observe
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Figure 4. Comparison of the results for Section 5.3 using different schemes. Top: water surface.
Bottom: discharge. Left: ES1, middle: ES2, right: EC. Mesh 𝑛𝑥 = 400 with 𝐾 = 9 at earlier
time 𝑇 = 0.0995.

Figure 5. Comparison of the results for Section 5.3 using different schemes. Top: water surface.
Bottom: discharge. Left: ES1, right: ES2. Mesh 𝑛𝑥 = 800 with 𝐾 = 9 at earlier time 𝑇 = 0.0995.
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Figure 6. Comparison of the results for Section 5.3 using different schemes. Top: water surface.
Bottom: discharge. Left: ES1, right: ES2. Mesh 𝑛𝑥 = 1600 with 𝐾 = 9 at earlier time 𝑇 = 0.0995.

as expected that the EC scheme numerically conserves energy, while ES1 and ES2 dissipate energy with larger
dissipation produced by ES1 method.

5.4. Perturbation to lake at rest

For the next example, we consider the shallow water system with stochastic water surface,

𝑤(𝑥, 0, 𝜉) =
{︂

1 + 0.001(𝜉 + 1) |𝑥| ≤ 0.05
1 otherwise

, 𝑞(𝑥, 0, 𝜉) = 0, (5.6)

and with a deterministic bottom topography

𝐵(𝑥) =

⎧⎪⎨⎪⎩
0.25(cos(5𝜋(𝑥 + 0.35)) + 1), −0.55 < 𝑥 < −0.15
0.125(cos(10𝜋(𝑥− 0.35)) + 1), 0.25 < 𝑥 < 0.45
0, otherwise.

(5.7)

The test is from [7] and is similar to the deterministic tests of the perturbation of lake at rest solution, for
example to the one presented in [17].

We start by illustrating the accuracy of the ES1 and ES2 schemes on this problem with discontinuous initial
data and nonsmooth solution, in which case we expect the system to dissipate energy. We compute the numerical
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Figure 7. Comparison of the results for Section 5.3 using different schemes. Top: water surface.
Bottom: discharge. Left: ES1, and right: ES2. Mesh 𝑛𝑥 = 800 with 𝐾 = 9 at the final time
𝑇 = 0.8.

Figure 8. Comparison of the results for Section 5.3 using different schemes. Relative energy
change: Left: EC vs. ES1 vs. ES2 on mesh 𝑛𝑥 = 400 on time interval [0, 0.0995]. Right: ES1 vs.
ES2 on mesh 𝑛𝑥 = 800 on time interval [0, 0.8].
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Table 3. Results for Section 5.4: ES1 and ES2 order of the convergence in space for nonsmooth
solution (5.6) and (5.7). Error is computed using (5.3a).

Mesh (𝑛𝑥) Error (ES1) Order Error (ES2) Order

100 1.6891e−03 − 1.6872e−03 −
200 4.9033e−04 1.7844 4.6473e−04 1.8602
400 1.6874e−04 1.5390 1.3640e−04 1.7685
800 6.6192e−05 1.3501 4.5776e−05 1.5752

Figure 9. Results for Section 5.4. Top: water surface mean, bottom: discharge mean: Left: ES1
vs. ES2 on mesh 𝑛𝑥 = 400. Middle: ES1 vs. ES2 on mesh 𝑛𝑥 = 800. Right: ES1 vs. ES2 on mesh
𝑛𝑥 = 1600. PC basis functions 𝐾 = 9.

solution to a final time 𝑡 = 0.8. We test the spatial accuracy of ES1 and ES2 schemes against reference solutions
computed by ES1 and ES2 schemes, respectively, computed on a mesh of size 𝑛𝑥 = 3200 with 𝐾 = 2. As before,
we illustrate convergence of the scheme using the water height ℎ by computing the error between the reference
solutions and the numerical solutions using (5.3a).

From Table 3 we observe that both ES1 and ES2 schemes perform well on problems with nonsmooth solutions
(the order of convergence is limited by the regularity of the solution rather than the formal order of the scheme).
ES1 produces somewhat higher than the guaranteed first order of convergence, while ES2 produces slightly lower
than second order of the convergence, which is expected on such nonsmooth problems. The ES2 scheme delivers
overall better resolution and accuracy than the ES1 scheme, as can be seen from the table and the plots of the
solutions at different times in Figures 9 and 11.

From the results in Figures 9–11, we make conclusions similar to previous sections: both ES1 and ES2 capture
small stochastic perturbations of the lake at rest solution quite well (with both leftward- and rightward- going
waves present in the numerical solutions). The first order ES1 scheme exhibits much more dissipation in the
left- and the right-going waves than the ES2 scheme, which produces a more accurate solution, as shown in
Figures 9, 10 (left and middle figures), and 11. The results of the EC scheme is also shown in Figure 10 (right
figure). The EC scheme resolves the left- and the right-going water waves with heights higher than in both ES1
and ES2 methods, but again there are oscillations present near both waves in the EC numerical solution since
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Figure 10. Comparison of the results for Section 5.4 using different schemes. Top: water
surface. Bottom: discharge. Left: ES1, middle: ES2, right: EC. Mesh 𝑛𝑥 = 400 with 𝐾 = 9 at
time 𝑇 = 0.8.

Figure 11. Comparison of the results for Section 5.4 using different schemes. Top: water
surface. Bottom: discharge. Left: ES1, right: ES2. Mesh 𝑛𝑥 = 1600 with 𝐾 = 9 at time 𝑇 = 0.8.
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Figure 12. Comparison of the results for Section 5.4 using different schemes. Relative energy
change: Left: EC vs. ES1 vs. ES2 on mesh 𝑛𝑥 = 400. Right: ES1 vs. ES2 on mesh 𝑛𝑥 = 1600.

Figure 13. Results for Section 5.5. Left: bottom mean (5.9). Right: relative energy change:
ES1 vs. ES2 on mesh 𝑛𝑥 = 400.

EC does not dissipates energy across shocks. The relative energy change for this example produced by EC, ES1
and ES2 methods is illustrated in Figure 12. The presented results are also comparable to the results reported
in [17] and in [7].

5.5. Perturbation to lake at rest with two-dimensional random variable

As a final example, we demonstrate perfomance of ES1 and ES2 methods on a model with two random
parameters that inject uncertainty in to the model. We consider the shallow water system with stochastic water
surface,

𝑤(𝑥, 0, 𝜉) =
{︂

1 + 0.001(𝜉1 + 1) |𝑥| ≤ 0.05
1 otherwise

, 𝑞(𝑥, 0, 𝜉) = 0, (5.8)

and with a stochastic bottom topography

𝐵(𝑥, 𝜉) =

⎧⎪⎨⎪⎩
0.25(cos(5𝜋(𝑥 + 0.35)) + 1) + 0.12𝑒𝜉2 , −0.55 < 𝑥 < −0.15
0.125(cos(10𝜋(𝑥− 0.35)) + 1) + 0.1(1 + 𝜉1), 0.25 < 𝑥 < 0.45
0, otherwise.

(5.9)
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Figure 14. Results for Section 5.5. Top: water surface, bottom: discharge: Left: ES1. Right:
ES2. Mesh 𝑛𝑥 = 400. PC basis functions (𝐾1 = 3, 𝐾2 = 5) for (𝜉1, 𝜉2).

In this system we consider the two-dimensional random variable 𝜉 = (𝜉1, 𝜉2), where 𝜉1 and 𝜉2 are modeled as
independent and identically distributed random variables over [−1, 1] having a Beta distribution with parameters
(𝛼, 𝛽) = (1, 3). The plot of the bottom mean and quantiles as defined by 𝐵 in (5.9) is presented in Figure 13
(left). To simulate the SG SWE system, we use 𝐾1 = 3 and 𝐾2 = 5 polynomial terms for parameters 𝜉1 and 𝜉2,
respectively, corresponding to a tensor-product space of polynomials having dimension 𝐾 = dim 𝑃 = 𝐾1𝐾2 =
15. We simulate up to time 𝑇 = 0.8 with 𝑛𝑥 = 400 elements for 𝑥 ∈ [−1, 1].

The numerical results are plotted in Figure 14, showing the water surface and the discharge develop more
complex structures than in the previous example (5.6) and (5.7) in Section 5.4, and the relative energy change
shown in Figure 13 (right) is of a comparable order of magnitude. In addition, we draw conclusions similar to
previous sections: both ES1 and ES2 capture small stochastic perturbations of the lake at rest solution quite
well (with both leftward- and rightward- going waves present in the numerical solutions). The first order ES1
scheme exhibits more dissipation in the left- and the right-going waves than the ES2 scheme, which produces a
more accurate solution, as shown in Figure 14.

6. Conclusion

In this work we derived an entropy-entropy flux pair for the spatially one-dimensional hyperbolicity-
preserving, positivity-preserving SG SWE system developed in [11]. Such entropy-entropy flux pairs are the
theoretical starting point for proposing entropy admissibility criteria to resolve non-uniqueness of weak solu-
tions. Using the proposed entropy-entropy flux pair, we designed second-order energy conservative, and first- and



756 D. DAI ET AL.

second-order energy stable finite volume schemes for the SG SWE. The proposed schemes are also well-balanced.
We provided several numerical experiments to illustrate performance of the methods. As part of future research,
we plan to extend such methods to models in two spatial dimensions, to explore alternative constructions of
diffusion operators, and to investigate other reconstruction approaches for the entropy variables.
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[30] G. Poëtte, B. Després, and D. Lucor, Uncertainty quantification for systems of conservation laws. J. Comput. Phys. 228 (2009)
2443–2467.

[31] R. Pulch and D. Xiu, Generalised polynomial chaos for a class of linear conservation laws. J. Sci. Comput. 51 (2012) 293–312.

[32] B.D. Rogers, A.G.L. Borthwick and P.H. Taylor, Mathematical balancing of flux gradient and source terms prior to using
Roe’s approximate Riemann solver. J. Comput. Phys. 192 (2003) 422–451.

[33] L. Schlachter and F. Schneider, A hyperbolicity-preserving stochastic Galerkin approximation for uncertain hyperbolic systems
of equations. J. Comput. Phys. 375 (2018) 80–98.

[34] R.C. Smith, Uncertainty Quantification: Theory, Implementation, and Applications. SIAM-Society for Industrial and Applied
Mathematics, Philadelphia (2013).

[35] T.J. Sullivan. Introduction to Uncertainty Quantification. Vol. 63. Springer (2015).

[36] E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput. 49 (1987)
91–103.

[37] E. Tadmor, Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent
problems. Acta Numer. 12 (2003) 451–512.

[38] K. Wu, H. Tang and D. Xiu, A stochastic Galerkin method for first-order quasilinear hyperbolic systems with uncertainty.
J. Comput. Phys. 345 (2017) 224–244.

[39] Y. Xing, High order finite volume WENO schemes for the shallow water flows through channels with irregular geometry.
J. Comput. Appl. Math. 299 (2016) 229–244.

[40] Y. Xing, Chapter 13 – numerical methods for the nonlinear shallow water equations, in Handbook of Numerical Analysis.
Vol. 18 of Handbook of Numerical Methods for Hyperbolic Problems, edited by R. Abgrall and C.-W. Shu. (2017) 361–384.

[41] Y. Xing and C.-W. Shu, High order finite difference WENO schemes with the exact conservation property for the shallow
water equations. J. Comput. Phys. 208 (2005) 206–227.

[42] Y. Xing and C.-W. Shu, High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a
class of hyperbolic systems with source terms. J. Comput. Phys. 214 (2006) 567–598.

[43] Y. Xing and C.-W. Shu, A new approach of high order well-balanced finite volume WENO schemes and discontinuous Galerkin
methods for a class of hyperbolic systems with source terms. Commun. Comput. Phys. 1 (2006) 100–134.

[44] D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press (2010).

[45] X. Zhong and C.-W. Shu, Entropy stable Galerkin methods with suitable quadrature rules for hyperbolic systems with random
inputs. J. Sci. Comput. 92 (2022) 14.

[46] T. Zhou and T. Tang, Galerkin methods for stochastic hyperbolic problems using bi-orthogonal polynomials. J. Sci. Comput.
51 (2012) 274–292.

[47] J.G. Zhou, D.M. Causon, C.G. Mingham and D.M. Ingram, The surface gradient method for the treatment of source terms in
the shallow-water equations. J. Comput. Phys. 168 (2001) 1–25.

Please help to maintain this journal in open access!

This journal is currently published in open access under the Subscribe to Open model
(S2O). We are thankful to our subscribers and supporters for making it possible to
publish this journal in open access in the current year, free of charge for authors and
readers.

Check with your library that it subscribes to the journal, or consider making a personal donation to
the S2O programme by contacting subscribers@edpsciences.org.

More information, including a list of supporters and financial transparency reports,
is available at https://edpsciences.org/en/subscribe-to-open-s2o.

mailto:subscribers@edpsciences.org
https://edpsciences.org/en/subscribe-to-open-s2o

	Introduction
	Contributions of this article

	Preliminaries
	Notation
	Polynomial chaos expansion
	Hyperbolic-preserving stochastic Galerkin formulation for shallow water equation

	An entropy-entropy flux pair for SG SWE systems
	Entropy-entropy flux pairs for deterministic shallow water equations
	An entropy-entropy flux pair for the one-dimensional SG SWE

	Well-balanced energy conservative and energy stable schemes for the SG SWE
	Energy conservative schemes
	An EC scheme for the SG SWE
	A first-order ES scheme
	ES1 diffusion vs. Roe diffusion
	A second-order ES scheme
	Algorithmic details
	Velocity desingularization
	Hyperbolicity preservation
	Positivity-preservation
	Adaptive time-stepping


	Numerical experiments
	Accuracy test for the EC scheme on smooth initial data
	Flat-bottom dam break
	Stochastic bottom topography
	Perturbation to lake at rest
	Perturbation to lake at rest with two-dimensional random variable

	Conclusion
	References

