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Abstract

Decision-makers often observe the occurrence of events
through a reporting process. City governments, for example,
rely on resident reports to find and then resolve urban infras-
tructural problems such as fallen street trees, flooded base-
ments, or rat infestations. Without additional assumptions,
there is no way to distinguish events that occur but are not
reported from events that truly did not occur–a fundamental
problem in settings with positive-unlabeled data. Because dis-
parities in reporting rates correlate with resident demograph-
ics, addressing incidents only on the basis of reports leads
to systematic neglect in neighborhoods that are less likely to
report events. We show how to overcome this challenge by
leveraging the fact that events are spatially correlated. Our
framework uses a Bayesian spatial latent variable model to
infer event occurrence probabilities and applies it to storm-
induced flooding reports in New York City, further pooling
results across multiple storms. We show that a model ac-
counting for under-reporting and spatial correlation predicts
future reports more accurately than other models, and further
induces a more equitable set of inspections: its allocations
better reflect the population and provide equitable service to
non-white, less traditionally educated, and lower-income res-
idents. This finding reflects heterogeneous reporting behav-
ior learned by the model: reporting rates are higher in Cen-
sus tracts with higher populations, proportions of white res-
idents, and proportions of owner-occupied households. Our
work lays the groundwork for more equitable proactive gov-
ernment services, even with disparate reporting behavior.

1 Introduction
Urban crowdsourcing is key to identifying and resolving
problems such as fallen street trees and flooded basements,
in both emergency and daily contexts. For example, New
York City’s 311 system received over 3 million service re-
quests in 2021 (NYC Open Data 2023). However, report-
ing is heterogeneous – different neighborhoods, even when
facing similar problems, report problems at different rates
(Liu, Bhandaram, and Garg 2023; Kontokosta, Hong, and
Korsberg 2017; Minkoff 2016; O’Brien et al. 2017), and
under-reporting often correlates with socioeconomic factors
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such as race, ethnicity, and income. If agencies primarily ad-
dress incidents that are reported, then under-reporting leads
to downstream disparities. This mistargeting of resources,
especially when it results in inequity, is a substantial concern
and is a stated priority research area for the Federal Emer-
gency Management Agency (FEMA) in the United States
(Federal Emergency Management Agency 2023).

While previous work has quantified the magnitude of re-
porting disparities, they do not estimate the probability that
an event truly occurred at each location, which is essential
for resource allocation. A challenge in estimation is that,
without further assumptions, unreported incidents cannot be
distinguished from incidents which did not occur. This is
analogous to positive-unlabeled (PU) machine learning (Liu
et al. 2003; Shanmugam and Pierson 2021), where data-
points are either labeled positive or unlabeled, and the latter
group consists of both true positives and negatives.

PU learning problems are unsolvable without further as-
sumptions on the data generating process (Bekker and Davis
2020). How do we make progress? Our insight is that many
urban phenomena are spatially correlated, and we can use
this correlation to distinguish under-reporting from true lack
of event occurrence. For example, in our empirical applica-
tion, we use reporting data for flooding after a storm. If an
area does not report flooding but all of its spatial neighbors
do, that area is likely to have experienced flooding (but not
reported it); conversely, if no neighbors report flooding, that
area is not likely to have experienced flooding. Spatial cor-
relation departs from the standard PU learning setup, where
the data points are assumed to be independent.

To encode spatial correlations, we build on top of a spatial
Bayesian model developed in the ecology literature (Spezia,
Friel, and Gimona 2018). The model uses a latent indicator
variable at each location to encode whether an event truly oc-
curs there; latent variables at adjacent locations are spatially
correlated according to an Ising model (Onsager 1944). If
an event does occur, the probability it generates an (ob-
served) report varies as a function of location demograph-
ics. In semi-synthetic simulations, we show that the model
infers where events have truly occurred more accurately than
baseline models. For example, the model significantly out-
performs a Gaussian Process (GP) in terms of AUC with an
improvement of 0.14.

Using this model, we develop a novel framework to iden-
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tify non-reported events in urban crowdsourcing and show it
leads to more efficient and equitable resource allocation. We
apply the framework to street flooding reports after storms in
New York City obtained from public 311 data (NYC Open
Data 2023). NYC uses such report data to allocate post-
storm resources, such as addressing wood debris, clogged
catch basins, or building water leaks (City of New York
2023). Storms cause severe damage; Hurricane Ida in 2021
was responsible for the largest rainfall hour in the city’s his-
tory, over 7 billions of dollars in damage to infrastructure
and the transportation system, and at least 13 deaths, heav-
ily skewed along socioeconomic lines (Newman 2021).

Our framework—which accounts for both heterogeneous
under-reporting and spatial correlation—outperforms base-
line approaches in terms of efficiency: using report data im-
mediately after the storm, it better predicts reports made
days later. Such prediction can facilitate a more timely al-
location of resources. Our framework also leads to more eq-

uitable allocation of inspections: the allocations are more in
line with population proportions, as opposed to other mod-
els that are likely to rate minority and lower-income neigh-
borhoods as lower priority for inspections, due to under-
reporting. Finally, we show how to pool model estimates
across storms to learn historical heterogeneous reporting
patterns: we find that reporting rates are higher in Census
tracts with higher median incomes, proportions of white res-
idents, and proportions of owner-occupied housing.

Overall, our work (a) leverages spatial correlation in a
Bayesian machine learning model to overcome the positive-
unlabeled challenge in crowdsourcing; (b) develops a frame-
work to validate and apply the model for more efficient and
equitable emergency management response to a given storm
event, and to pool reports across storms to identify under-
reporting patterns; (c) applies the framework to real-world
data, showing that it can substantially improve both the effi-
ciency and equity of government responses to crowdsourc-
ing. Our framework can improve responses in other contexts
with spatial correlation, such as in public health and power
outages. Together, we provide and validate a novel approach
to resource allocation in the presence of under-reporting.

We further provide an open-source Python implementa-
tion of our approach for application in other contexts1.

2 Related Work
Our work relates to multiple threads of prior literature from
PU Learning, Bayesian methods in ecology, flood predic-
tion, and urban crowdsourcing.

Our setting is one with positive-unlabeled data. With-
out further assumptions, even the proportion of true pos-
itive points—the prevalence—is unidentifiable because a
positive-class, unlabeled data point is indistinguishable from
a negative-class point. Hence, PU learning methods must

make further assumptions (Bekker and Davis 2020); e.g., a
common assumption is that each true positive point has the
same uniform probability of being labeled positive (Elkan
and Noto 2008). Even this strong assumption, which of-
ten does not hold in real-world settings where the labeling

1Available at github.com/gsagostini/networks underreporting/

probability is non-uniform (e.g. when reporting is heteroge-
neous), is not sufficient. In contrast, our work overcomes the
challenge by leveraging spatial correlation.

Methodologically, our work builds on approaches from
the ecology literature, which seeks to count animal popu-
lations in the presence of detection errors (Heikkinen and
Hogmander 1994; Sicacha-Parada et al. 2021; Della Rocca
and Milanesi 2022; Xu et al. 2023). Santos-Fernandez et al.
(2021) fit a Bayesian model to correct for misreporting er-
rors in coral detection, leveraging spatial correlation and in-
dividuals that analyze coral in multiple locations. Most rel-
evant is work by Spezia, Friel, and Gimona (2018). Their
model assumes that the true probability of animal species
presence is described by an Ising model, and observed pres-
ence is described by a reporting process. We build a frame-
work to effectively use and validate this approach in urban
crowdsourcing, showing that the model is predictive of fu-
ture reports, can guide equitable resource allocation, and can
be pooled across multiple events.

This work’s specific empirical application – urban flood
detection – is complementary to the substantial machine
learning work on flood prediction, using precipitation and
seasonal climate information and data from satellites or sen-
sors (see Mosavi, Ozturk, and Chau (2018) for a compre-
hensive review). Mauerman et al. (2022), for example, use a
Bayesian latent variable model to predict seasonal floods in
Bangladesh through the reconstruction of historical satellite
data. Agonafir et al. (2022) study infrastructure correlates of
flooding using 311 reports in NYC. We believe that report-
ing data is a valuable complementary data source to sen-
sors and satellites, and is especially temporally and spatially
granular in urban environments; however, for both efficiency
and equity, it is important to quantify and correct heteroge-
neous under-reporting. Future work could incorporate such
outside sensor data into our model. Our approach is also ap-
plicable to reporting contexts beyond flooding.

There is a large literature quantifying disparities in ur-
ban crowdsourcing; a consistent challenge is disambiguat-
ing between low reporting rates and low ground truth rates.
Liu, Bhandaram, and Garg (2023) show that time-stamped,
duplicate reports about the same event can be used to iden-
tify the reporting process; O’Brien, Sampson, and Win-
ship (2015) send researchers to neighborhoods to document
ground-truth conditions. We contribute a method that lever-
ages spatial correlation and, unlike other methods, predicts

the probability an event has occurred in each location.
Finally, our work relates to a much broader literature on

methods to quantify and compensate for the effects of miss-
ing and imperfect data in inequality-related contexts, includ-
ing healthcare, policing, education, and government inspec-
tions (Coston, Rambachan, and Chouldechova 2021; Ram-
bachan et al. 2021; Movva et al. 2023; Franchi et al. 2023;
Laufer, Pierson, and Garg 2022; Guerdan et al. 2023; Zink,
Obermeyer, and Pierson 2023; Cai et al. 2020; Pierson 2020;
Liu, Rankin, and Garg 2024; Balachandar, Garg, and Pierson
2023; Obermeyer et al. 2019; Kleinberg et al. 2018; Zanger-
Tishler, Nyarko, and Goel 2023; Jung et al. 2018; Garg, Li,
and Monachou 2021; Lakkaraju et al. 2017; Arnold, Dob-
bie, and Hull 2022). This broader literature considers many



types of missingness besides the PU-missingness we study
here, and many types of identification approaches besides
the spatial correlations leveraged here.

3 Model, Inference, and Framework
Our model captures three characteristics common to many
urban crowdsourcing systems: (a) the city does not observe
ground truth data (where incidents actually occurred), only
reports; (b) there is under-reporting, i.e., not all incidents are
reported, and under-reporting may be heterogeneous across
demographic groups; (c) incidents are spatially correlated.

Formally, consider a network G with N nodes and adja-
cency matrix E. Each node i has two binary state variables.
First, Ai 2 {�1,+1} denotes the latent, ground-truth state;
second, Ti 2 {0, 1} denotes the observed, reported state. In
the flood setting, Ai = 1 if a flood occurred in that node and
�1 if not, while Ti = 1 denotes that there was a report for
flooding at the node. We observe reports Ti and the network
G, but not incidents Ai.

Our specific approach follows that of Spezia, Friel, and
Gimona (2018). Ground truth states A1, . . . AN are gen-
erated according to an Ising model with two real-valued pa-
rameters, ✓0 and ✓1, controlling the event incidence rate and
spatial correlation respectively. The probability distribution
of the vector ~A 2 {±1}N is:

Pr( ~A) =
exp

⇣
✓0
P

i Ai + ✓1
P

i,j AiAj · Eij

⌘

Z(✓0, ✓1)
(1)

where Z(✓0, ✓1) is an intractable partition function ensuring
the distribution is normalized. As proven by Besag (1974),
the conditional distribution for a single node Ai given all
other nodes, is, with positive spatially correlation ✓1 > 0:

Pr(Ai = 1 |Ak 8 k 6= i)

=
1

1 + exp
⇣
�2
⇣
✓0 + ✓1

P
j Aj · Eij

⌘⌘ (2)

A report at node i only depends on the incident state at i
and a reporting rate  i, i.e.,

Pr(Ti = 1 |Ai = 1) =  i. (3)

As in PU learning, we assume that there are no false positive
reports: Pr (Ti = 1 | Ai = �1) = 0.

We fit and compare two models for reporting rates  i:
• With homogeneous reporting,  i = ↵ is assumed con-

stant across nodes.
• With heterogeneous reporting, report rates  i are a

function of demographic factors of node i. That is, given
M node-specific features Xi1 . . . XiM ,

 i = logit�1

 
↵0 +

MX

`=1

↵`Xi`

!
, (4)

where the coefficients ↵0, . . .↵M are learned latent pa-
rameters shared across nodes.

We discuss some of the modeling choices in Section 7.

3.1 Inference procedure

Given reporting data {Ti} and a spatial network with known
edges {Eij}, we use a Gibbs sampling MCMC procedure
for posterior inference: namely, at each iteration, we draw
each latent value from its conditional distribution given the
current values of all the other variables. All variables are
initialized at random. Model priors are in Appendix F.

We provide code with our submission – we note that we
modify the procedure of Spezia, Friel, and Gimona (2018),
to speed up inference, such as by jointly sampling some of
the parameters within the outer Gibbs routine and imple-
menting dynamic step size optimization. We believe that the
public Python code release will enable other practitioners in
crowdsourcing or ecology settings to apply such methods.

Sampling ✓0 and ✓1: The conditional distribution of ✓0
and ✓1 given all other variables depends only on ~A. We can-
not directly compute it due to the presence of the partition
function Z in eq. (1) (Murray, Ghahramani, and MacKay
2006). This normalization constant is intractable, as it must
be evaluated for 2N values of the ground-truth vector ~A.

We use the Single-Variable Exchange Algorithm (SVEA)
to circumvent this difficulty (Møller et al. 2006). The SVEA
is a Metropolis-Hasting type sampling algorithm that intro-
duces an auxiliary variable ~w to cancel two terms with the
partition function when computing the acceptance ratio. To
do so, ~w must be sampled from the same distribution family
as ~A. We generate auxiliary variables from the Ising model
distribution in eq. (1) using the Swendsen-Wang algorithm
with 50 burn-in samples (Swendsen and Wang 1987; Wolff
1989). This is an efficient method to sample from an Ising
Model with ✓1 > 0 (Park et al. 2017; Cooper et al. 2000).

Sampling Ai: We sample each of the Ai through Gibbs
sampling. The conditional distribution of Ai depends on ✓0,
✓1, Ti, and Aj for j such that Eij = 1. If the correspond-
ing Ti = 1, then the no false positives assumption leads to
Pr(Ai = 1 | ·) = 1. Otherwise, Pr(Ai | ·) is the conditional
probability implied by eqs. (2) and (3).

Sampling  i: In the homogeneous reporting model, we
fit a single parameter ↵ to describe the reporting rate. Given
a beta prior, the conditional distribution of ↵ is a beta dis-
tribution depending on the numbers of incidents that 1) oc-
curred and are reported and 2) occurred and are not reported.

In the heterogeneous reporting model, the conditional dis-
tribution for the coefficients ↵0, . . .↵M can be found by fit-
ting a Bayesian logistic regression of the reports Ti on the
demographic features, restricted to the nodes for which the
current latent ground truth parameters are positive (Ai = 1).
We compute  i following eq. (4).

Sampling hyper-parameters. We draw 3 chains with
40,000 samples each, after 20,000 burn-in samples. During
burn-in, we optimize the auxiliary variable sampling step
size. Further hyper-parameters are described on Appendix F.

Inferred values. Our procedure gives posterior samples
for each of ✓0, ✓1,↵` (and thus induced  i), and Ai. We use
these parameters to calculate Pr(Ai = 1|·).



3.2 Framework overview
We use the above model as a foundation and present a novel
framework for resource allocation in the presence of under-
reporting. Our framework for evaluation and application,
implemented in the remainder of the paper, is as follows.

First, we evaluate the approach semi-synthetically using
the real spatial map, showing model expressivity (that it can
generate the full range of storm data), parameter recovery
(that estimated parameter point estimates are correct and
posteriors are calibrated), and predictive performance (that
it correctly identifies unreported events Ai).

Second, we evaluate performance on real storm data,
without needing external ground truth data. In particular, we
show that, using data in the initial hours after the storm, the
model predicts future reports in the following days.

Third, we demonstrate the approach’s application to more
efficient and equitable resource allocation. We show that, us-
ing the model predictions of ground truth unreported events
P (Ai), the resulting allocation better matches the popula-
tion distribution and in particular does not deprioritize pop-
ulations with lower reporting rates, unlike other approaches.

Finally, we pool parameters across storms (using a Bayes
factor approach as described in Appendix A.1) to robustly
characterize under-reporting behavior over time. Leveraging
estimates of under-reporting behavior across storms would
further aid in proactive resource allocation for future storms.

4 Data and models
Data. We apply our model to flood reports in New York
City. We primarily use Census tracts as nodes in our graph;
two tracts are adjacent if they share a border. Minimum-
distance edges are drawn whenever needed to make the
graph connected (e.g. linking Staten Island to Brooklyn). For
node-specific features X , we use demographic variables ob-
tained from Census data, which include population, socioe-
conomic status, and racial composition measurements.

We use 311 resident reports of street floods. For our main
results, we look at reports in the week of September 1st
through September 8th, following Hurricane Ida. The 311
reports dataset is publicly available in the NYC Open Data
portal, supporting replication of our results. We split the data
into train and test reporting periods: we fit our models with
reports created until 8% of the census tracts have received
at least one report—this threshold is reached around 4 hours
after the storm starting time. The remaining reports are used
for evaluation. Out of the 2221 census tracts in our network,
177 tracts report at least one flooding incident during the
training period, and 346 tracts report during the test period.

When evaluating historical under-reporting, we also con-
sider reports of other floods in New York City. We look
at data following the passage of Hurricane Henri (August
2021) and Tropical Storm Ophelia (September 2023). Fur-
ther details on reports and data are presented in Appendix G.

Models evaluated. We present results from four mod-
els: (a) Our model with homogeneous reporting; (b) Our
model with heterogeneous reporting, with reporting prob-
ability varying as a function of demographic features; (c)

a spatial baseline model in which we predict test-time re-
porting as the fraction of a node’s neighbors that reported
during training period; (d) a Gaussian Process (GP) base-
line model, a standard approach to leverage geographic in-
formation. The baselines reflect approaches to incorporating
spatial correlation, without explicitly modeling the report-
ing process as distinct from the incident occurrence process.
Other modeling approaches (such as graph neural networks)
may also be appropriate and perform well in terms of pre-
diction, but it may be challenging to use such models to sep-
arately recover reporting from ground truth processes – we
leave such approaches to future work.

5 Semi-synthetic simulation experiments
We verify that our models correctly recover the true param-
eters and latent states in semi-synthetic data settings where
the ground truth parameters and latent state are known. To
generate semi-synthetic data, we begin with the real NYC
spatial network E and demographic features X , and then for
each of the two reporting models (homogeneous and hetero-
geneous), we generate latent states A and reports T through
MCMC sampling assuming the corresponding data generat-
ing process. The observed data given to each model is T , E,
and (for the heterogeneous reporting model) X . For all ex-
periments, 500 trials were performed; for each trial, we re-
sample new values of the latent parameters, re-generate A
and T , and run two MCMC chains for inference. Here, we
report results when data is drawn according to the heteroge-
neous model; details and other results, including validating
model expressivity, are in Appendix D.

Calibration and Identifiability. We verify that our infer-
ence procedure correctly recovers the true data generating
parameters, a standard identifiability check (Chang et al.
2021; Pierson et al. 2019). We find an overall high corre-
lation between the recovered parameters and the true, latent
parameter values. Correlation values all 0.60. For the regres-
sion slope coefficients ↵`, which we more directly analyze,
correlations of 0.91 and higher are observed. We also ver-
ify that our confidence intervals are calibrated, another stan-
dard check (Wilder, Mina, and Tambe 2021): at each signif-
icance level, whether posterior distribution confidence inter-
vals cover the correct fraction of true values.

Predictive Performance. An advantage of semi-synthetic
data (in contrast to real data) is that the ground truth latent
states Ai are known. We can therefore compare the model’s
inferred event probabilities Pr(Ai) to the true latent states
Ai. Table 1 reports model AUC (area under the ROC curve),
comparing the heterogeneous reporting model to the base-
lines and the homogeneous model when data is drawn fol-

lowing the heterogeneous model. We find that correctly ac-
counting for heterogeneous under-reporting has strong pre-
dictive performance, increasing increases AUC by 0.122
from the homogeneous reporting model, by 0.129 from the
spatial baseline, and by 0.142 from the GP baseline—all at a
significance level of 10�4 or less. These values are repeated
alongside analogous results for RMSE in Appendix Table 4.

Overall, our semi-synthetic experiments validate that our
model correctly recovers the true latent parameters, includ-



Model AUC 95% CI
Heterogeneous Reporting 0.642 (0.637, 0.647)
Homogeneous Reporting 0.520 (0.515, 0.525)

GP Baseline 0.501 (0.497, 0.505)
Spatial Baseline 0.513 (0.509, 0.518)

Table 1: In simulation, average AUC to predict latent
ground-truth Ai according to each model. Nodes with ob-
served training reports are excluded, as they are perfectly
predicted by all models by definition. Confidence intervals
were obtained through bootstrapping with 10,000 iterates.

ing how demographic covariates influence reporting rates.
In this way, the use of spatial correlation overcomes the PU
learning identifiability challenge. Further, our model outper-
forms baselines in the ability to infer the unobserved ground
truth states Ai. Finally, the simulations demonstrate that,
when true reporting processes are heterogeneous, assuming
homogeneous under-reporting worsens estimation.

6 Empirical Results
We now apply our framework to NYC 311 data. First, we
fit the models to training report data from Hurricane Ida
and show that our models outperform the baseline in terms
of efficiency, i.e., predicting future reports. Then, we show
that accounting for heterogeneous under-reporting leads to
more equitable allocation of resources. Finally, looking at
results across multiple storms, we investigate the socioeco-
nomic and demographic features that are mostly associated
with heterogeneity in under-reporting.

Prediction of floods and future reports. Figure 1 shows,
for the heterogeneous reporting model, the inferred proba-
bility of flood by census tract, Pr(Ai). This map indicates
that there is a substantial spatial correlation in reporting, but
also that there is likely substantial under-reporting: many
tracts have several neighboring tracts with reports, but did
not report themselves. The positive spatial correlation is cap-
tured by our positive estimate for the spatial correlation pa-
rameter ✓1 (0.15, 95% CI (0.08, 0.21)). Convergence diag-
nostics indicate that the inference procedure converged, with
maximum R̂ = 1.03 for the latent parameters.

We evaluate the four models by how well they predict fu-

ture reports. Unlike the simulation results discussed in Sec-
tion 5, we cannot evaluate the models in terms of predict-
ing ground truth Ai: we do not have access to true flooding
events, just reports – lack of such ground truth data indeed
motivates the city to use 311 reporting data. We fit the model
using train time data and then compare the model estimates
of Pr(T ) to future reports T during the test period. This pre-
diction task is decision-relevant because better prediction of
future reports would allow the agency to proactively allocate
resources (though, as we discuss below, the agency should
still be aware of heterogeneous under-reporting).

Table 2 reports AUC and RMSE for each model, along
with bootstrapped 95% confidence intervals and relative
improvements. The models accounting for under-reporting
achieve better predictive performance than the baseline

Figure 1: Model-inferred probabilities Pr(Ai) that each
New York City Census tract is flooded after Hurricane Ida,
from the heterogeneous reporting model. Hatched lines in-
dicate tracts that reported during the training period.

models that do not. The p-values shown test for positive
differences between each pair of models. Performance im-
provements are statistically significant at the 0.05 level for
each of our models over the baselines. In practice, an im-
provement in report prediction – when converted to esti-
mates of ground truth Ai – would translate to more efficient
resource allocation, as city governments can anticipate what
areas will need attention after a disaster.

Equitable inspection allocation. Consider an agency that
is allocating resources (such as emergency response, main-
tenance, or inspections) after storms, in response to reports.
Table 2 suggests that our models could lead to more efficient

allocations, as they are more predictive of future reports af-
ter the first day. Here, we analyze how equitable these al-
locations are, under each of the three models we study. We
consider the task of allocating a fixed number of resources
to Census tracts without reports (Ti = 0) – as most tracts
receive no report, the agency can allocate some resources
to such tracts. We suppose that the agency first infers flood
probabilities Pr(Ai) for each tract in which no report was
received, Ti = 0. It then allocates resources to the k tracts
with the highest inferred probabilities Pr(Ai).

Figure 2 shows the fraction of resources allocated to non-
white residents and residents without a high school de-
gree, when k = 100, alongside the population fractions of
the tracts without a report. The model accounting for het-
erogeneous reporting allocates resources more in line with
the population distribution, especially in comparison to the
homogeneous reporting model which accounts for under-
reporting but not differences between populations. Note that



Model AUC Estimate AUC 95% CI RMSE Estimate RMSE 95% CI
Heterogeneous Reporting 0.680 (0.646, 0.713) 0.355 (0.338, 0.371)
Homogeneous Reporting 0.682 (0.649, 0.714) 0.360 (0.343, 0.376)

GP Baseline 0.629 (0.595, 0.662) 0.417 (0.400, 0.434)
Spatial Baseline 0.647 (0.616, 0.678) 0.395 (0.377, 0.412)

(a) AUC and RMSE point estimates and confidence intervals for each of the four models.
Model A Model B �AUC �AUC p-value �RMSE �RMSE p-value

Heterogeneous Reporting Homogeneous Reporting -0.002 0.831 -0.004 0.004
GP Baseline 0.051 0.003 -0.062 < 10�3

Spatial Baseline 0.033 0.009 -0.040 < 10�3

Homogeneous Reporting GP Baseline 0.054 < 10�3 -0.058 < 10�3

Spatial Baseline 0.035 < 10�3 -0.035 < 10�3

(b) AUC and RMSE changes. Two-sided p-values report whether model A and model B differ significantly in performance.

Table 2: Performance metrics for the four models in predicting future reports. Confidence intervals were obtained by bootstrap-
ping the tracts with 10,000 iterates.

Figure 2: Demographic disparities when allocating re-
sources to 100 census tracts (among those that do not re-
port), using inferred flood probabilities from the four mod-
els. The horizontal axes shows the proportion of all residents
served by the inspections (i.e. those who reside in the 100 in-
spected census tracts) who are non-white and do not have a
high school degree, computed as a weighted average from
the proportions on inspected tracts. Dashed lines represent
the total proportion of residents in tracts without a report
who are non-white and do not have a high school degree.

the model does so while achieving similar predictive perfor-
mance, as established above.

Additional results in Appendix E show these results are
robust to other values of k and for other socioeconomic and

demographic factors. The results establish that taking into
account heterogeneous under-reporting leads to less deprior-
itization of non-white and socioeconomically disadvantaged
populations (more in line with population distributions).

Socioeconomic factors of heterogeneous reporting. Fig-
ure 2 suggests that the heterogenous reporting model iden-
tifies and corrects for demographic disparities in under-
reporting. We now analyze such differences directly. To un-
derstand persistent reporting behavior across storms, we
also run our model for Hurricanes Ophelia (September
2023) and Henri (August 2021) and pool together the feature
coefficients. The pooling method and (qualitatively identi-
cal) results for individual storms are in Appendix A.

Using the pooled regression coefficients, we estimate re-
port rates  i for each census tract, with results shown in
Figure 3. Demographic patterns emerge – e.g., the Upper
West and Upper East Side neighborhoods in Manhattan,
with higher median incomes, are estimated to have a higher
reporting rate  i than surrounding areas, even though few
reports were received in those areas. In contrast, the Bronx
(relatively lower incomes) is estimated to have a low report-
ing rate. Taking a weighted average across neighborhoods,
the reporting rate for white populations is, on average: 24%
higher than Black populations, 18% higher than Hispanic
populations, and 12% higher than Asian populations.

Next, we ask: what demographic factors are associated
with under-reporting? Figure 4 shows the pooled posteriors
for each coefficient ↵` in equation 4: population, income,
education, race/ethnicity, age, and household ownership.

We find that there are significant demographic disparities
in reporting. As expected, a higher population is associated
with higher reporting rates. However, other demographic
factors are also associated with reporting rates. Higher pro-
portions of white residents are positively correlated with
reporting rate even when controlling for the other five de-
mographic features considered, consistent with the differ-
ent average report rates per subpopulation shown in Fig-
ure 3. Median age and fraction of households occupied by
a renter are negatively correlated with higher reporting, sug-



gesting that neighborhoods with older, home-owning pop-
ulations tend to receive reports at a higher rate. These esti-
mates are consistent with prior work on demographic dispar-
ities in reporting in the NYC 311 system (Liu, Bhandaram,
and Garg 2023). These estimates further explain the results
in Figure 2: the heterogeneous reporting model can identify
and correct for these reporting disparities when calculating
P (Ai|·), the probability that an area is actually flooded (even
when no one submitted a report).

Further discussion, as well as similar analyses for other
features, is in Appendix C.

Figure 3: Model-inferred report rates  i per census tract,
from the heterogeneous reporting model. The report rates
range from near 0.1 to 0.9. Weighted averages of report rates
per racial composition are shown in a bar plot.

Figure 4: Estimated multivariate coefficients after pooling
the three storms. Features were all standardized. Confidence
intervals shown, and estimates with insignificant non-zero
association colored in grey.

7 Discussion
This work shows the promise of leveraging the spatial

correlation of incidents to quantify and correct for under-

reporting in city crowdsourcing systems. Using a case study

of flood reporting in New York City, we show that a
Bayesian spatial model can accurately recover ground truth
under-reporting patterns on semi-synthetic data by leverag-
ing spatial correlation—a challenging task in missing data
(PU learning) settings like the one we study. Using this
model, we develop a framework for more accurate predic-
tion of future flood reports compared to baselines, and allo-
cation of resources that are more in line with population pro-
portions (not neglecting neighborhoods with larger propor-
tions of non-white and lower-income residents) – improving
both efficiency and equity.

Future work might extend the model in several directions.
(1) First, we fit the model on binarized reporting data: i.e.,
whether a location has any reports, as opposed to the count

of reports. While, in our setting, a binary variable is suffi-
cient to capture most of the variation (96.5% of locations
have zero or one report) the modeling approach here could
plausibly be extended to accommodate count data as well.
(2) Second, we assume that flooding is spatially correlated
according to an Ising model, and do not explicitly model
shared infrastructure and weather patterns. We adopt this
model given the well-studied nature of Ising models, which
aids estimation. Future work – as driven by the model setting
– may choose to modify these choices, though model iden-
tifiability may be a challenge. (3) Third, in crowdsourcing
settings, we can sometimes incorporate external data, such
as (potentially noisy or non-randomly distributed) sensors.
That is: if we have access to data from a different source
(e.g. sensors to detect floods that are placed sparsely through
the city) which reveals that Ai = 1 even though Ti = 0 for
some i, will estimates improve? This question is practically
important: often inspections occur in clusters of regions, and
it would be important for decision-makers to be able to in-
corporate the results of negative inspections in the model. (4)
Fourth, 311 data is richer than data in other under-reporting
settings (such as in ecology) due to spatiotemporal correla-
tions in reporting rates across different incident types or dif-
ferent events of the same type. For example, report rates for
flood events may be related to report rates for pest infesta-
tions or noise complaints, as both may be related to socioe-
conomic or other factors. We further note that we can use
the pooled estimates of reporting rates across storms when
new storms occur, leading to faster, more efficient and equi-
table allocation. All of these directions represent important
opportunities for future work.
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A Model Results for Other Storms
We repeat our empirical process for other storms, and then pool our estimates together across storms. In particular, we run
our heterogeneous reporting model on two other New York City storms: Hurricane Henri (August 2021) and Tropical Storm
Ophelia (September 2023). We compare our estimates across storms to each other, finding remarkable consistency. We further
compare the results with those of (Liu, Bhandaram, and Garg 2023), who also estimate census tract-level reporting rates in
NYC 311, though using a different method that leverages duplicate reports about the same incident.

A.1 Method for Pooling results across storm events
A benefit of our Bayesian approach is that we can pool model estimates across storm events. While some parameters such
as reporting intercepts (↵0), overall flooding frequency (✓0), and spatial correlation (✓1) are likely to be storm specific, other
reporting parameters ↵` (representing effects of demographic or socioeconomic factors) may be relatively consistent across
events. We thus pool our estimates across events to increase statistical power.

Pooling is done via a Bayesian model pooling approach. We assume that the data (reports for each node for a given storm)
are conditionally independent across storms, given the model parameters and flood occurrence – i.e., whether a node (or two
separate nodes) make reports in two separate events is not correlated, given the ground truth (similar to the assumption within
each storm). Given this assumption, we can pool the results as follows.

For a given parameter ↵ (for example, the coefficient corresponding to the population density or median income), suppose
we have posterior distributions for a set of storms {1, . . . k, . . .K} – i.e., given the report data ~Tk for each storm k, we have a
posterior Pr(↵ | ~Tk). We want to estimate the posterior of the parameter given all the storm data, which is:
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Where Pr(↵ | ~Tk)
Pr(↵) is called the Bayes factor for a given storm k and parameter ↵. The data-dependent term C is a normalization

constant that can be computed so that the pooled posterior is a valid probability distribution integrating to 1. Note that our
Bayesian procedure for each storm gives us samples from the posterior Pr(↵ | ~Tk) for each k, and Pr(↵) corresponds to the
known prior. Thus, to get our pooled posterior estimates Pr(↵ | ~Tk) for each parameter, we do the following procedure:
1. Fit a normal distribution to the posterior samples for each storm.
2. Calculate the probability density function at each point for the posterior using Equation (5), the above distributions, and the

prior distribution.
3. Calculate the posterior summary statistics (95% confidence interval, mean, median) from the calculated probability density

function.
Note that, crucially, this procedure does not require refitting models after each storm – we can simply leverage the posterior
distributions estimated using each storm’s reports separately. After a new storm, we can create an updated pooled estimate
without refitting models from other storms.

A.2 Parameter Estimates for Multiple Storms
We showed in Figure 4 the pooled multivariate regression coefficients from our heterogeneous reporting model. We present
results from the individual events—Hurricane Henri, Hurricane Ida, and Tropical Storm Ophelia—that were used to produce



these estimates in Figure 5. Estimates for storm-specific parameters (✓0, ✓1, and ↵0) were not pooled. The regression coefficient
results, however, qualitatively agree across storms: the coefficients do not change direction, but may become statistically signif-
icant when pooled. We believe the pooled results are more powerful in providing an interpretation for historical demographic
and socioeconomic trends of under-reporting.

Figure 5: Estimated coefficients for the model trained in each storm individually. For the regression component, all features
were standardized to have zero mean and unit variance. Confidence intervals are shown, and estimates with insignificant positive
or negative associations are colored in grey.

A.3 Tract Level Reporting Rates Across Multiple Storms
In the main text, we presented a map of inferred census tract report rates  i in Hurricane Ida (Figure 3). We could infer  i

similarly for any of the three storms. Figure 6 shows the resulting scatter plots and correlation. We find a high internal correlation
of our method’s results across storms. Note that, to compute the pooled report rate, we ignore the intercept ↵0—whose role is
simply to normalize for the average number of observed reports ~T—i.e.

 pool
i = logit�1

 
MX

`=1

↵pool
` Xi`

!
, (6)

We also verify that our report rates correlate with previous work on 311 reporting behavior, namely the work of Liu, Bhan-
daram, and Garg (2023).The correlation with these results is positive but weaker, reflecting the different model estimand and
data (reporting rates for tree-related incidents), as well as methodological discrepancies (Liu, Bhandaram, and Garg (2023) use
duplicate reports for a given incident).



Figure 6: Correlation between the inferred report rates  i per census tract for the three different storms considered, as well
as the pooled posteriors. The high rank correlation between results for all storms justifies using the pooled results in lieu of
results for a specific storm to estimate the report rate. We also include correlations between our model and the model in Liu,
Bhandaram, and Garg (2023), previous work focusing on 311 reports of fallen trees.



B Model Results for Geohash Networks
To verify our results are robust to different graphs (on the same underlying spatial setting), we re-run our models using geo-
hashes. Geohashes encode latitude and longitudes as strings to partition the globe in rectangles of similar areas (see Suwardi
et al. (2015) for some properties). We use resolution-6 geohashes and construct a network with 1238 nodes after pre-processing
to remove nodes with high water area and low population. Therefore, our geohash network has around 54% as many nodes as
the Census tract network used in our primary results. To associate demographics with each geohash, we project census tract
demographic onto the geohash geometry—weighting each tract by the assumed population of the geohash that it contains.

In this section, we show that the model trained on geohashes is consistent (i) within itself, across different storms, and (ii)
with the results presented in the main text for the census tract model.

B.1 Consistency of the Geohash Model Across Multiple Storms
We present results showing that the geohash model is consistent across the three storms considered, mirroring Appendix A. First,
Figure 7 shows the parameter estimates inferred from the models. Similar to what we see in Figure 5, most of the regression
coefficients ↵ directionally agree across the three storms. We note, however, that the confidence intervals are wider in the
case of geohash, resulting in many statistically insignificant coefficients. Increasing the sample size through using resolution-7
geohashes, for example, could address this issue, as there are nearly 50000 nodes in such graph. However, this procedure would
increase model run time and significantly sparsify the reports ~T , affecting model priors and other hyperparameters.

Figure 7: Estimated coefficients for the model trained in each storm individually withe the geohash network. For the regression
component, all features were standardized to have zero mean and unit variance. Confidence intervals are shown, and estimates
with insignificant positive or negative associations are colored in grey.

Second, we verify in Figure 8 that the predicted report rates for different storms are correlated. We again find positive rank
correlation across results for all three storms. We note that we find lower correlation when it comes to Tropical Storm Ophelia
(2023). As shown in Figure 7, the regression coefficients for this storm are mostly non significant and four of them have point
estimates very close to zero, so that we expect the inferred  i to have high uncertainty.

B.2 Consistency of the Geohash and the Census Tract Models
We further verify that the geohash models produce estimates consistent with the ones produced by the census tract models,
reported on the main text. Figure 9 shows pooled multivariate estimates from geohashes along with main text pooled census
estimates. All the coefficients agree directionally, although geohashes produce wider posteriors. Finally, Figure 10 shows that,
when we apply the multivariate estimates from each of the model to demographic features, the inferred report rates have positive
correlation.



Figure 8: Correlation between the inferred report rates  i per geohash for the three different storms considered and the work of
Liu, Bhandaram, and Garg (2023). To compute the correlation with the latter, where coefficients are presented per census tract,
we apply the estimates attained from geohash models to tract level demographic features.



Figure 9: Pooled multivariate coefficients for census tract and geohash models.

Figure 10: Inferred report rates  i per census tract according to the coefficients estimated by Geohash and Census Tract Models
in each of the storms as well as for the pooled model.



C Univariate Heterogeneous Reporting Models
In our primary analyses, we report the result of multivariate reporting coefficients, i.e., include both population and income in
the same model. A standard limitation of such an approach is that these coefficients have high co-linearity in NYC, limiting
interpretation. We further cannot use the findings from Figure 4 to report associations between each feature and the report
probability. Additionally, many other features of interest were not included, so as to not to incur further co-linearity.

To address these issues, we train our heterogeneous reporting models with one socioeconomic or demographic feature at a

time. These univariate models present faster convergence than the full heterogeneous reporting model presented on the main
text. We draw 15,000 samples from three chains, after 10,000 burn-in samples. All other sampling hyper-parameters remain the
same—including the network.

Figure 11 shows the pooled results for the census tract and the geohash networks. Patterns from Figure 3 re-emerge on census
tracts: reports are heavily skewed along racial lines for census tracts, where a higher percentage of White or Asian residents
correlates positively with report probability but a higher percentage of Hispanic or Black residents correlates negatively. Sim-
ilarly, neighborhoods with higher populations, higher median incomes, and higher proportion of owner-occupied households
tend to report events at higher rates than other areas.

One difference between the models is the coefficients for population density (either population normalized by total node area
or just by the land area). The census tract model learns negative coefficients for these values, which may be against intuition
(more people who can report the same flooded area should increase reporting probability). This negative coefficient shows a
limitation of our current Bayesian model: it assumes that the prior probability that each node is flooded P (A) is the same –
even if, e.g., some nodes are larger (so more potential area to be flooded) or in lower lying areas. Thus, if a larger land area
(lower population density) is more likely to flood conditional on the flooding reports of neighbors, the model fits this via
higher reporting rates. As geohashes have extremely similar land areas, this effect does not appear in the geohash model (and so
population density and population data are very similar). Model changes that incorporate such differential priors as a function
of node characteristics are a step for future work; we note that all our primary results, as reported in the main text, are consistent
between the geohash and census data preprocessing.

Figure 11: Estimated effect of each demographic feature on reporting rate, according to the pooled posterior for each of the
networks. Covariates were standardized prior to fitting the model.

Overall, other results directionally agree between the census tract and geohash models. However, most of the geohash correla-
tions are not statistically significant. We attribute this to (1) the lower network size in the case of geohashes, and so fewer data for
the associated parameter estimation, and (2) the fact that geohash geometries are not delineated to consider some demographic
coherence such as ensuring similar population counts or respecting physical and geographic boundaries—resulting in noisy



measurements. These univariate results are consistent across storm—although noisier on the geohash setting, as expected—as
shown by Figure 12.

(a) Results for the census tract network models

(b) Results for the geohash network models

Figure 12: Estimated effect of each demographic feature on reporting rate for each storm according to the (a) census tracts and
(b) geohash models.



D Further Details on Semi-Synthetic Simulation Experiments
We now report additional results with our semi-synthetic simulations. Recall that these experiments use the real census tract
network and associated demographic features. However, instead of using real report data ~T , we simulate ground-truth ~A and
report data ~T , assuming that either the homogeneous reporting or heterogeneous reporting models are correctly specified. In the
former case (drawing data according to the homogeneous reporting model), we sample ✓0, ✓1,↵ from their prior distributions,
and then use those values to draw Ai, Ti for all nodes i. In the latter case (drawing data according to heterogeneous reporting
model), we sample ✓0, ✓1, {↵`}, and then draw Ai, Ti.

D.1 Calibration and Identifiability
First, we illustrate the calibration and identifiability findings. Figure 13 shows that both models approach perfect calibration on
all latent parameters. We then report parameter identifiability results when the simulated data is drawn from the homogeneous
model, and from the heterogeneous model. As the Pearson correlation coefficients ⇢ illustrate in Figure 14, the inferred posterior
means are well-correlated with the true parameters. Accurate estimation of the ↵` is especially important, as these parameters
correspond to relative reporting behavior as a function of demographics.

Figure 13: Calibration of synthetic experiments with each of the homogeneous and the heterogeneous reporting models. Point
(x, y) corresponds to the x% confidence interval of the parameter’s posterior distribution containing y% of the ground truth
parameters. A perfectly calibrated model lies along the diagonal line.

D.2 Predictive Performance
We report the AUC and RMSE for our semi-synthetic simulations. We measure the ability of our model to recover the latent

ground-truth Ai of each node. In all evaluations, nodes that did report during the training period (i.e. Ti = 1) are excluded as
these nodes are perfectly predicted by all models by definition.

Table 3 shows results for data generated from the homogeneous reporting model i.e. assuming a constant report rate through-
out the graph. All three models over-perform random classification, with evidence that our model—the only one which directly
accounts for under-reporting—performs better than the two baseline models.

Model AUC Estimate AUC 95% CI RMSE Estimate RMSE 95% CI
Homogeneous Reporting 0.577 (0.573, 0.580) 0.400 (0.390, 0.410)

GP Baseline 0.536 (0.533, 0.539) 0.494 (0.482, 0.506)
Spatial Baseline 0.558 (0.554, 0.561) 0.463 (0.450, 0.477)

(a) AUC and RMSE point estimates and confidence intervals for each of the three models.
Model A Model B �AUC AUC p-value �RMSE RMSE p-value

Homogeneous Reporting GP Baseline 0.041 < 10�4 -0.094 < 10�4

Spatial Baseline 0.019 < 10�4 -0.063 < 10�4

(b) AUC and RMSE changes. The p-values correspond to a two-sided test that Model A and Model B perform differently.

Table 3: Performance metrics when the data is generated with homogeneous under-reporting. Confidence intervals were
obtained through bootstrapping the tracts with 10,000 iterates.



When we simulated data according to the heterogeneous reporting model, we additionally compared the performance of the
(correctly specified) heterogeneous reporting model to the homogeneous reporting model and the baselines. Table 4 shows that
accounting for difference in report rates leads to significant improvements on predicting latent ground truth.

Model AUC Estimate AUC 95% CI RMSE Estimate RMSE 95% CI
Heterogeneous Reporting 0.642 (0.637, 0.647) 0.378 (0.369, 0.386)
Homogeneous Reporting 0.520 (0.515, 0.525) 0.464 (0.450, 0.478)

GP Baseline 0.501 (0.497, 0.505) 0.512 (0.499, 0.524)
Spatial Baseline 0.513 (0.509, 0.518) 0.487 (0.472, 0.501))

(a) AUC and RMSE point estimates and confidence intervals for each of the three models.
Model A Model B �AUC AUC p-value �RMSE RMSE p-value

Heterogeneous Reporting Homogeneous Reporting 0.123 < 10�4 -0.087 < 10�4

GP Baseline 0.142 < 10�4 -0.134 < 10�4

Spatial Baseline 0.129 < 10�4 -0.109 < 10�4

Homogeneous Reporting GP Baseline 0.019 < 10�4 -0.030 < 10�4

Spatial Baseline 0.007 0.042 -0.022 0.025

(b) AUC and RMSE changes. The p-values correspond to a two-sided test that Model A and Model B perform differently.

Table 4: Performance metrics when the data is generated with heterogeneous under-reporting. Confidence intervals were
obtained through bootstrapping the tracts with 10,000 iterates. The AUC estimates are repeated from main text.



(a) Results for the homogeneous reporting model

(b) Results for the heterogeneous reporting model

Figure 14: Recovery of parameters in simulation in the well-specified (a) homogeneous and (b) heterogeneous reporting models.
Vertical axes corresponds to inferred parameter posterior, and horizontal axes to the true parameter value—so that a perfect
model would lie along the diagonal. Error bars correspond to 95% confidence intervals of the posteriors.



E Further Details on the Equity Allocation Analysis
Qualitatively, the improvements in equity are independent of the number of inspected Census tracts and the socioeconomic or
demographic factors considered. We showed in Figure 2 that the heterogeneous reporting model allocates inspection resources
to un-reported census tracts more in line with the population distribution than the homogeneous reporting model along the lines
of race and education, when the agency hypothetically would inspect 100 tracts in order of highest posterior probability of a
flood. In Figure 15, we extend this result to more socioeconomic factors as well as different numbers of inspected census tracts.

Figure 15: Percentage of non-white, below poverty level, without a high school degree, and household renter populations that are
served by inspections of 100 unreported census tracts—along with a line plot of these values for varying numbers of inspected
tracts. Dashed lines correspond to the underlying sub-population percentage living on tracts that did not receive a report.

Regardless of the number of inspected tracts (after an initial, noisy period), the sub-population rates inspected according
to the heterogeneous model and the GP baseline better approach the underlying population base rate than the other models.
The GP baseline does so while achieving poor overall performance—as discussed in Table 2 (i.e., inspecting tracts close to at
random)—whereas the heterogeneous reporting model simultaneously achieves high performance and equity.

Note also that the lines for the spatial baseline model are smoother due to tie-breaking: many tracts have the exact same
fraction of their neighbors with a report, and when that happens there is a chance we cannot fit tracts with the same priority in
the inspection capacity. We weigh the tracts at the last position equally to fill all the leftover spots.



F Further Details on Model Parameters
F.1 Model Priors
Event prevalence ✓0 We assume a centered normal prior of the form:

✓0 ⇠ N (0, 0.5)

Spatial correlation ✓1 We assume a non-negative normal prior of the form:

✓1 ⇠ N (0.1, 0.03)

We make two important comments about this prior. First, it forces the spatial correlation to be likely positive; Zero spatial
correlation leads to a non-identifiable PU model, and as shown in the data generation experiments, negative spatial correlation—
which is not common in the application we leverage—produces a significantly tighter range of latent states ~A regardless of the
✓0 value. Second, although this prior distribution has low standard deviation, the joint distribution of ✓0 and ✓1 generates vectors
~A whose average spans most of the (�1, 1) interval as shown in Figure 16—suitable therefore for real-world data settings.

Regression coefficients ↵` We assume centered normal prior distributions of the form:

↵0 ⇠ N (0, 1.0) ↵` ⇠ N (0, 0.5)

Homogeneous Report Rate ↵ With homogeneous reporting, we impose a loose Beta prior on ↵:

↵ ⇠ Beta(1.2, 0.8)

We confirm that our prior choices are not restrictive – that they can represent a full range of data. Through Figure 16 we
show that our spatial correlation ✓1 and location ✓0 parameters can together generate a full range of the fraction of nodes that
are positive with the assumed priors.

F.2 Sampling Hyperparameters
Each of our chains follows:

• The number of MCMC iterations used is 60,000.
• The number of burn-in iterations used is 20,000.
• The thinning fraction of post burn-in MCMC iterations used is 0.5.

The SVEA is implemented following Møller et al. (2006).
• The number of SVEA iterations per MCMC iteration is 1.
• The number of burn-in samples in the Swendsen-Wang algorithm used to generate the auxiliary variable is 50.
• The initial proposal step size � on the distribution ✓NEW ⇠ N (✓OLD,�) is 0.2.
• The stepsize is adapted every 50 MCMC iterations if the acceptance rate is not between 0.25 and 0.60. The multiplica-

tive factor is 0.15—either decreasing or increasing the current stepsize, depending on whether we were under-accepting
proposals or over-accepting respectively.

• The parameter initialization takes the current parameter values for both the ✓ parameters and the auxiliary variables (taking
current ~A values).

The Bayesian logistic regression sampling is implemented with PyMC.
• The number of burn-in iterations per MCMC iteration is 50.
• The parameter initialization takes the current parameter values.



Figure 16: Estimated densities for the fractions of nodes with Ai = 1 for different choices of ✓0 and ✓1. We generated 500
samples per pair of parameters.



G Further Details on Data

Figure 17: Counts of reports during the training period for Hurricane Ida for both networks. Locations in grey received no
report. We note that most of the reported tracts have only one or very few reports, validating our use of only the presence of any
reports. Because there is a different number of geohashes and census tracts yet we keep a fixed rate of 8% of units reporting in
the training period, some census tracts with reports have no corresponding reported geohashes.

Feature Average sd
log(Population) 8.162 0.519
Population density (per m2) 0.021 0.014
Land area (m2) 283,996 396,845
Median age 37.9 5.8
Median income $ 73,909 $ 37,072
Population living below the poverty level (%) 16.4 12.2
Population without a high school degree (%) 17.4 11.4
Population with a bachelor’s degree (%) 36.9 21.3
White population (%) 30.3 27.3
Hispanic population (%) 26.9 21.0
Black population (%) 21.7 25.8
Asian population (%) 15.7 17.4
Population from another race (%) 1.7 2.7
Households occupied by the owner (%) 37.26 26.0
Households occupied by a renter (%) 61.0 26.0

Table 5: All demographic and socioeconomic features used in the heterogeneous reporting model. Data was obtained from
the 2020 Decennial Census. Land area was computed from the geometry. Percentage columns are normalized by the total
population (or households) of the Census tract—and tracts with no population are excluded. All features were standardized
prior to model fitting. For the full model, we used six features: log(Population), median age, median income, population with a
bachelor’s degree, white population, and households occupied by the owner.



Figure 18: Race and Ethnicity in New York City per Census tracts. Each map shows the proportion of tract residents identifying
as (a) White (b) Hispanic (c) Black and (d) Asian. As shown, this is a very spatially correlated feature, possibly due to systemic
patterns of segregation. As seen in the histograms counting the number of tracts according to their percentage of subpopulation
residents, the Hispanic population is more dispersed compared to Black and Asian populations, i.e. few tracts have zero Hispanic
residents.


