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Quantifying disparities in intimate partner
violence: a machine learning method to
correct for underreporting
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The first step towards reducing the pervasive disparities in women’s health is to quantify them.
Accurate estimates of the relative prevalence across groups—capturing, for example, that a condition
affects Black women more frequently than white women—facilitate effective and equitable health
policy that prioritizes groupswho are disproportionately affected by a condition. However, it is difficult
to estimate relative prevalence when a health condition is underreported, as many women’s health
conditions are. In this work, we present PURPLE, a method for accurately estimating the relative
prevalence of underreported health conditions which builds upon the literature in positive unlabeled
learning. We show that under a commonly made assumption—that the probability of having a health
condition given a set of symptoms remains constant across groups—we can recover the relative
prevalence, even without restrictive assumptions commonly made in positive unlabeled learning and
even if it is impossible to recover the absolute prevalence. We conduct experiments on synthetic and
real health data which demonstrate PURPLE’s ability to recover the relative prevalence more
accurately than do previous methods. We then use PURPLE to quantify the relative prevalence of
intimate partner violence (IPV) in two large emergency department datasets. We find higher
prevalences of IPV among patients who are on Medicaid, not legally married, and non-white, and
among patients who live in lower-income zip codes or in metropolitan counties. We show that
correcting for underreporting is important to accurately quantify these disparities and that failing to do
so yields less plausible estimates. Our method is broadly applicable to underreported conditions in
women’s health, as well as to gender biases beyond healthcare.

There are enormous disparities in women’s health across race, age,
socioeconomic status, and other dimensions. Mitigating these dis-
parities requires accurate estimates of the extent to which a medical
condition disproportionately affects different groups. The relative
prevalence does so by capturing howmuchmore frequently a condition

occurs in one group compared to another—prevalence in group A
prevalence in group B—

with high relative prevalence estimates suggesting concrete areas to

increase funding, research, and resources. Public health decisions often

rely on such estimates to develop, allocate, and advocate for interven-
tions. For example, research revealing startling disparities in maternal
mortality between Black and white women1 led to Congressional policy

that has invested billions in funding towards evidence-based inter-
ventions to improve Black maternal health2.

However, it remains challenging to produce accurate relative pre-
valence estimates for many conditions in women’s health and healthcare
more generally due to widespread underreporting (Fig. 1A). With under-
reported health conditions, only a small percentage of true positives may be
labeled as positive; worse, the probability of correctly diagnosing a positive
case can vary by group3. This is especially relevant to intimate partner
violence, a notoriously underreported condition: true cases are only cor-
rectly diagnosed an estimated ~25% of the time, and this probability varies
across racial groups4. Underreporting in one group and not another can
skew estimates of health disparities, making it appear that a condition is
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equally prevalent in two populationswhen it is not ormore prevalent in one
population than in another when it is not. These errors obscure where
resources are most needed and consequently inhibit the development of
effective health policy.

Efforts in both epidemiology and machine learning have addressed
these challenges but often rely on either data that is unavailable or
assumptions that are unrealistic in women’s health contexts (refer to the
Supplement for adetaileddiscussionof relatedwork). Epidemiologicalwork
aims to quantify true prevalences in the context of imperfect diagnostic tests
and commonly assumes the presence of information that is not always
available (for example, ground truth annotations5–9, multiple tests10–12, or
informative priors13). For conditions in women’s health, we often have no
access to ground truth, only a single diagnosis perpatient, and little notionof
how accurate that diagnosis truly is14. The machine learning literature has
modeled underreporting using the positive-unlabeled (PU) learning fra-
mework, which assumes that only some positive cases are correctly labeled
as positive, and the unlabeled examples consist of both true negatives and
unlabeled true positives. In order to recover prevalence in the presence of
underdiagnosis, many PU learningmethods assume that there is a region of
the feature spacewhere cases are certain to be true positives.However, this is
a restrictive assumption which, while potentially suitable in other PU set-
tings, is unlikely to hold in health data15 because it is rare that a set of
symptoms corresponds to a health condition with 100% certainty. This is
especially true in the context of intimate partner violence, where symptoms
are frequently not specific to a particular condition (for example, pregnancy
complications, which are well-known to occur at higher rates among IPV
patients16, could suggest a number of underlying conditions).

Here, we present PURPLE (Positive Unlabeled Relative PrevaLence
Estimator), a method that is complementary to the prior epidemiology and
PU learning literature. In contrast to epidemiological approaches, it requires
no external information (for example, the sensitivity and specificity of a test)
to recover the relative prevalence of an underreported disease. In contrast to
the prior PU learning literature, PURPLE relies on no assumptions about
the overlap in symptomdistribution of positive andnegative cases.PURPLE
is designed to address underreporting in intimate partner violence and

women’s health more broadly by estimating the relative prevalence of the
condition given three assumptions: (1) no false-positive diagnoses; (2)
random diagnosis within the group; and (3) constant p(y = 1∣x) between
groups, i.e., that theprobability of having adisease conditional on symptoms
remains constant across groups. The first two assumptions are standard in
PU learning; the third, which is specific to our method, replaces PU
assumptions about the separability of the positive and negative classes. We
show that if these assumptions are satisfied, it is possible to recover the
relative prevalence even if it is not possible to recover the absolute pre-
valence: that is, prevalence in group A

prevalence in group B can be estimated even if neither the
numerator nor denominator can. PURPLE does this by jointly estimating
the conditional probability that a case is a true positive given a set of
symptoms and the diagnosis probability (i.e., the probability a positive case
is diagnosed as such; Fig. 1B).We demonstrate via experiments on synthetic
and real health data that PURPLE recovers the relative prevalence more
accurately than do existing methods. We provide procedures for checking
whetherPURPLE’s underlying assumptions hold and show that evenunder
a plausible violation of the assumptions, PURPLE still provides a useful
lower bound on the magnitude of disparities.

Having validatedPURPLE, we use it to estimate the relative prevalence
of the condition that motivates this work—intimate partner violence (IPV)
—in two widely-used datasets of electronic health records, which together
describe millions of emergency department visits: MIMIC-IV17 and
NEDS18. Across both datasets, we find higher prevalences of IPV among
patients who are on Medicaid than among those who are not. Relative
prevalences are higher among non-white patients (though these disparities
are noisily estimated in the MIMIC dataset). We also quantify the relative
prevalence of IPV across income quartiles, marital statuses, and the
rural–urban spectrum, finding that IPV is more prevalent among patients
who are lower-income, not legally married, and in metropolitan counties.
Finally, we show that PURPLE’s corrections for underreporting are
important: they yield more plausible estimates of how relative prevalence
varies with income than estimation methods that do not correct for
underreporting. Specifically, PURPLE estimates that the relative prevalence

Fig. 1 |Underreporting can skewobserved relative prevalences and conceal health
disparities. PURPLE is designed to estimate the relative prevalence while correcting
for underreporting. A Underreporting leads to inaccurate observed relative pre-
valences. Understanding the relative prevalence of a health condition between
groups g—for example, men and women—is important to effective medical care.
However, these estimates are often based on diagnoses s (i.e., positive diagnosis vs. no
diagnosis) instead of the true patient state y (sick vs. not sick). Underreporting,
which is known to vary by demographic groups, leads to inaccurate relative

prevalence estimates that can hide the groups most affected by a condition.
B PURPLE uses data on patient diagnoses s, symptoms x, and group membership g
to accurately estimate the relative prevalence of a condition. PURPLE first estimates
the group-specific diagnosis probability, p(s = 1∣y = 1, g), and disease likelihood,
p(y = 1∣x), up to constantmultiplicative factors and then combines these estimates to
compute the relative prevalence. We show this is possible under three widely-made
assumptions: no false positives, random diagnosis within groups, and constant
p(y = 1∣x) between groups.
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of IPV decreases with income, consistent with prior work19–21. In contrast,
failing to correct for underdiagnosis (i.e., computing relative prevalence
estimates using observed diagnoses) yields estimates that do not show any
consistent trend with respect to income and which are harder to explain.
Overall, this analysis contributes to the literature on IPV disparities in
several ways: it uses some of the largest and most recent samples; evaluates
robustness across multiple datasets; and corrects for underreporting.

Together, our analyses illustrate how PURPLE is a general method for
estimating relative prevalences in the presence of underreporting, allowing
practitioners to discover and quantify group-specific disparities in a wide
range of settings in which underreporting is common, including outcomes
in women’s health and beyond.

Results
Here, we introduce PURPLE, a method to quantify disparities in the pre-
valence of a health condition between groups given only positive and
unlabeled data. A key idea underpinning our method is that knowing the

exact prevalence in a group is not necessary to calculate the relative pre-

valence across groups: one can estimate the fraction prevalence in group A
prevalence in group B

without knowing its numerator or denominator. We adopt terminology

standard in the PU learning literature and assume that we have access to
three pieces of data for the ith example: a feature vectorxi; a groupvariable gi;
and abinaryobserved label si.We let yidenote the true (unobserved) label. In
healthcare, example i may correspond to a specific patient and their pre-
senting symptoms (xi), race (gi), and observed diagnosis (si). Here, yi cor-
responds to whether the patient truly has the medical condition. We first
introduce PURPLE and then validate our approach on synthetic and semi-
synthetic data.

Overview of PURPLE: Positive-Unlabeled Relative PrevaLence
Estimation
We provide a conceptual overview of PURPLE here and describe the full
details in the “Deriving the Relative Prevalence–Implementation” Section.
PURPLE is designed to address how, for underreported women’s health
conditions, the ratio of diagnosis rates between demographic groups may
not equal the ratio of true prevalences due to differential underreporting
across groups. To address this,PURPLE first uses the observed data to learn
a model of which symptoms correlate with having the condition; so long as
this relationship between symptoms and the condition remains constant
across groups, we will be able to estimate the relative prevalence. Mathe-
matically, PURPLE first estimates p(y = 1∣x) up to a constant multiplicative
factor; second, it uses this estimate to compute the relative prevalence
between groups.We use p to denote the true probabilities in the underlying
data distribution and p̂ to denotePURPLE’s estimates of these probabilities.
1. Estimate p(y = 1∣x) up to a constant factor. PURPLE fits the following

model:

p̂ðs ¼ 1∣g; xÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
probability patient

is diagnosed

¼ p̂ðy ¼ 1∣xÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
probability patient
truly has condition

$ p̂ðs ¼ 1∣y ¼ 1; gÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
probability true positives
are correctly diagnosed

ð1Þ

In other words, PURPLEmodels the probability a patient is diagnosed with
a condition as the product of two terms: the probability the patient truly has
the condition and the probability that true positives are correctly diagnosed.
The first term is constant across groups g, while the second can vary,
accounting for underdiagnosis. This decomposition is valid under three
assumptions which we discuss below. To estimate the two terms on the
right-hand side of Eq. (1), we parameterize the first term as a logistic
regression and the second as a constant cg∈ [0, 1] for each group g. We
optimize these parameters by minimizing the cross-entropy loss between
the predicted p̂ðs ¼ 1jg; xÞ and the empirical p(s = 1∣g, x), which is possible
because s, g, and x are all observed (“Implementation” Section).Note thatwe
can only estimate both terms on the right-hand side up to a constant

multiplicative factor because multiplying the first term by a non-negative β
and dividing the second term by β leaves p̂ðs ¼ 1jg; xÞ unchanged.
2. Estimate the relative prevalence using p̂ðy ¼ 1jxÞ. Fortunately, even

though p̂ðy ¼ 1jxÞ is only correct up to a constantmultiplicative factor,
this suffices to estimate the relative prevalence pðy¼1jg¼aÞ

pðy¼1jg¼bÞ, as we derive in
the “Deriving the relative prevalence” Section. Specifically, our esti-
mator of the relative prevalence is

P
xp̂ðy ¼ 1jxÞp̂ðxjg ¼ aÞP
xp̂ðy ¼ 1jxÞp̂ðxjg ¼ bÞ

ð2Þ

In practice, this is simply the mean value of p̂ðy ¼ 1jxÞ for samples from
group a divided by the mean value of p̂ðy ¼ 1jxÞ for samples from group b.

It is impossible to estimate outcome prevalence in PU settings without
assumptions22. Our estimation procedure relies on three assumptions: (1)
observed positives are true positives (the positive-unlabeled assumption
common to all PU methods), (2) within each group, diagnosis s depends
only on y (the randomdiagnosiswithin group assumption, commonlymade
in PU settings) and (3) the probability of having a disease conditional on
symptoms remains constant across groups (the constant p(y∣x) assumption,
common to work in both domain adaptation23,24 and healthcare25). Details
about the required assumptions can be found in the “Assumptions” Section.
We also provide checks to assess whether the assumptions hold
(“Assumption checks” Section) and show that even under a plausible vio-
lation of these assumptions, PURPLE is guaranteed to produce a lower
bound on the truemagnitude of disparities (“Robustness to violations of the
Constant p(y|x) assumption” Section). An illustration of PURPLE’s beha-
vior under violations of the PU assumption and the random-diagnosis-
within-group assumption is available in the “Effect of positive-unlabeled
assumption violations” and “Effect of random-diagnosis-within-groups
assumption violations” Sections, respectively.Weprovide the full derivation
of our estimation procedure in the “PURPLE: positive unlabeled prevalence
estimator” Section.

PURPLE recovers the true relative prevalence in synthetic data
Prior to applying PURPLE to estimate the relative prevalence of IPV, we
confirm that the method can correctly recover the true prevalence on
synthetic data where the true relative prevalence is known, a standard
machine learning check. We compare PURPLE to four previous machine
learning methods (“Baselines” Section) drawn from the literature on PU
learning, where estimating prevalence is a critical step26. We generate the
synthetic data by simulating group-specific features (p(x∣g)) and labels using
a decision rule (p(y∣x)). The two groups,a and b, correspond to 5DGaussian
distributions with different means (see “Gauss-Synth” Section for full data
generation details).

Figure 2B comparesPURPLE’s performance to the performance of the
othermethods on purely synthetic data.We evaluate each approach in both
separable (in which the datapoints with y = 1 and the datapoints with y = 0
can be perfectly separated in the feature space x) and non-separable settings.
We perform this comparison because existing methods rely on separability
assumptions which often do not hold in realistic health settings15. PURPLE
is the only method that accurately recovers the relative prevalence in both
the separable and non-separable settings. We also show that PURPLE
maintains consistent performance regardless of the extent to which p(x), or
the distribution of symptoms, differs between groups (Fig. S1B).

PURPLE recovers the true relative prevalence in realistic semi-
synthetic health data
Having established that PURPLE outperforms previous work on synthetic
data, we investigate its performance on more realistic data: specifically,
MIMIC-IV27, a dataset of electronic health records that describes ~450,000
patient hospital visits between 2008 and 2018. We generate realistic semi-
synthetic data basedon these records to examinePURPLE’s performanceon
the high-dimensional, sparse data common in clinical settings. Specifically,
we use the patient symptoms x—encoded as a binary one-hot vector of ICD
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codes—to simulate whether the patient truly has the medical condition, y.
Using data in which we know y allows us to assess how accurately PURPLE
recovers the relative prevalence; in contrast, if we did not simulate y, we
would not have access to ground truth and could not assess relative pre-
valence estimates. We simulate y for four settings: (1) a condition with
common symptoms, (2) a condition that is less common among Black
patients, (3) endometriosis, and (4) intimate partner violence (see Section
“MIMIC-semi-synth” for full details).

Across the semi-synthetic settings we consider, the estimation error of
previousmethods is large,with somemethodsproducing relativeprevalence
estimates more than 4x the true value (Fig. 2C). Further, each previous
methodproduces both overestimates andunderestimates of the true relative
prevalence depending on how underreported the medical condition is. In
contrast, PURPLE remains accurate across the different settings.

Quantifying the relative prevalence of intimate partner violence
Wehave validatedPURPLE’s accuracy in recovering the relative prevalence
by using synthetic and semi-synthetic datasets where the true relative pre-
valence is known. We now use PURPLE to estimate relative prevalence on

two real datasets where the true relative prevalence is unknown. Specifically,
we applyPURPLE to quantify the relative prevalence of the underdiagnosed
condition motivating this work—intimate partner violence (IPV)—across
different demographic groups.

Datasets. We conduct our study using two widely-used datasets of
emergency department visits: MIMIC-IV ED17 and the 2019 Nationwide
Emergency Department Sample (NEDS)18. MIMIC-IV ED describes
293,297 emergency department visits to a single, Boston-area hospital;
NEDS is a nationwide sample that is approximately one hundred times as
large (it contains 33.1 million emergency department visits, which, when
reweighted, represent the universe of 143 million US emergency
department visits in 2019). We assess results across multiple datasets to
verify the robustness of the disparities we observe. Because our sample
consists of emergency department visits, we estimate the relative pre-
valence of IPV conditional on going to the emergency department—in
particular, our data does not allow us to quantify disparities among
populations who do not interact with the healthcare system at all28.
Relative prevalence estimates among patients who visit emergency

Fig. 2 | Validation ofPURPLE on synthetic and semi-synthetic data. AMethods in
positive-unlabeled learning commonly make assumptions about the separability of
the positive and negative distributions. Settings inwhich underreporting occursmap
directly to work in positive-unlabeled learning, in which learning algorithms have
access to a set of positive labeled examples and an unlabeled mixture of positive and
negative examples. Most works in positive-unlabeled learning assume A (left panel),
or a positive subdomain. PURPLE makes no assumptions about the separability of
the positive and negative distributions and instead assumes that p(y = 1∣x) remains
constant across patient subgroups. B PURPLE accurately recovers the relative
prevalence on both separable and nonseparable synthetic data. The vertical axis plots
the ratio of estimated relative prevalence to true relative prevalence, with 1 (dotted
line) indicating perfect performance.We report variation across 5 randomized train,
validation, and test splits.Negative,KM2,BBE, andDEDPUL baselines do not always
accurately estimate the relative prevalence, especially on nonseparable data.Oracle is
impossible to implement in practice because it relies on ground truth labels y which
are not available; it is provided as ametric for ideal performance.CPURPLE recovers

the relative prevalence accurately in simulations based on real health data. We
generate semi-synthetic data by using patient visits from MIMIC-IV27 and simu-
lating a disease label given a set of symptoms. This allows us to testPURPLE on a real,
high-dimensional distribution of symptoms while retaining access to ground truth
labels. Each dataset simulates disease likelihood on the basis of a different symptom
set: (1) symptoms that appear most frequently, (2) symptoms that occur frequently
in one group but not the other, (3) symptoms that co-occur frequently with endo-
metriosis, and (4) symptoms known to indicate risk of intimate partner violence
based on past literature. We define group A to be Black patients and group B to be
white patients. Across symptom sets and a range of group-specific diagnosis fre-
quencies, PURPLE produces more consistently accurate relative prevalence esti-
mates than existing work. Two semisynthetic experiments involving real conditions
in women’s health—endometriosis and intimate partner violence—demonstrate the
potential to apply PURPLE to conditions in women’s health and produce accurate,
actionable relative prevalence estimates.
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departments, however, remain of interest to IPV researchers due to the
unique role emergency departments play as a point of care and inter-
vention for patients who experience IPV29.

For both datasets, we filter for female patients because the symptoms
associated with IPV in male patients are less well understood, and the
constant p(y = 1∣x) assumption may not hold30; we also filter out patients
younger than 18 years old because symptoms that indicate intimate partner
violence could be instances of child abuse in this patient subgroup31,32. We
describe all preprocessing steps in the “Datasets” Section.All point estimates
and uncertainties reported below represent the mean and standard devia-
tion, respectively, across five randomized train/test splits of each dataset.

Analysis. Results are plotted in Fig. 3 (we verify that PURPLE passes the
assumption checks detailed in the “Assumption checks” Section in SI
Figs. 4–6). We find, in both datasets, that intimate partner violence is
more common among patients on Medicaid (NEDS relative prevalence
2.44 ± 0.07 in Medicaid patients vs non-Medicaid patients; MIMIC-IV
relative prevalence 2.65 ± 0.31) and less common among patients on
Medicare (NEDS relative prevalence of 0.37 ± 0.01; MIMIC-IV relative
prevalence of 0.38 ± 0.04). Of course, Medicaid is likely not the causal
factor underlying IPV risk; rather, it acts as a proxy that identifies
populations who are disproportionately affected by IPV.

Examining racial differences reveals disparities that are smaller and less
consistent than disparities by insurance status. In both datasets, white
patients have the lowest relative prevalence of the four race groups, and in

the NEDS dataset, white patients have significantly lower prevalence than
non-white patients overall (relative prevalence for white patients vs. non-
white patients equal to 0.82 ± 0.02). However, in MIMIC-IV, racial dis-
parities are more noisily estimated due to the smaller size of the dataset,
yielding an ordering of race groups that is similar but not completely con-
sistent across the two datasets. This attests to the importance of using large
samples and assessing results across multiple datasets.

TheMIMIC-IVdataset provides information onpatientmarital status,
allowing us to estimate that IPV is more common among patients who are
“Legally Unmarried”, or not officially married but may still be in relation-
ships (relative prevalence equal to 1.48 ± 0.21). The NEDS dataset provides
information on the population density and estimated median household
income of areas where patients live.We estimate higher rates of IPV among
patients living in central metropolitan counties with a population > 1 mil-
lion (relative prevalence equal to 1.18 ± 0.02). We also find that IPV pre-
valence decreases with income (relative prevalence equal to 1.16 ± 0.02 in
the bottom income quartile versus 0.87 ± 0.03 in the top income quartile).

In Fig. S3, we report the prevalence of observed IPV diagnoses—i.e.,
p(s = 1∣g)—without correcting for underdiagnosis. While often the trends
are qualitatively similar, in some cases correcting for underdiagnosis is
important to yield plausible trends. For example, failing to correct for
underdiagnosis produces an inconsistent relationship between IPV pre-
valence and income which is difficult to reconcile with past work, which
consistently documents that IPV prevalence decreases with income19–21.
This suggests the importance of using methods like PURPLE, which

Fig. 3 | Estimates of the relative prevalence of intimate partner violence across
demographic subgroups. We apply PURPLE to two large emergency department
datasets: NEDS18 and MIMIC-IV ED17. We compute each relative prevalence with
respect to each group’s complement (i.e., estimating the prevalence of IPV among
married patients vs. non-married patients). Relative prevalences are higher among
non-white patients overall (A) though these disparities are noisily estimated in the
MIMIC-IV ED dataset, and the ordering across race groups is not completely
consistent. We also find higher prevalences among patients who are on Medicaid

(B), not legally married (C), in lower-income zip codes (D), and in metropolitan
counties (E). Counties with more than 1 million residents are further differentiated
by how urban they are (as “central” or “fringe"). Error bars report the standard
deviations for each estimate across 5 randomized train/test splits of each dataset.
Panels C–E are reported on only a single dataset due to different demographic
feature availability in the two datasets; note the slightly larger y-axis range on Panel
B due to the greater range of the estimates.
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attempts to correct for underdiagnosis. Our income results also suggest that
IPV is less likely to be correctly diagnosed in lower-income women, a
finding that reflects the broader phenomenon of underdiagnosis among
lower-income patients, as has been shown in the context of dementia33,34,
asthma35,36, and depression37–39.

Discussion
In this work, we provide amethod for estimating relative prevalence even in
the presence of underreporting, a difficult but essential task in healthcare
andpublichealth.Weshowthatwe canestimate the relativeprevalence even
in settings where absolute prevalence estimation is impossible, by exchan-
ging the restrictive separability assumptions typical in the PU learning lit-
erature for the constant p(y = 1∣x) assumption, which is arguably more
appropriate in clinical settings. Although this assumption may not hold for
all settings—for example, the conditional probability of intimate partner
violence is known to be dependent on a patient’s age group40—it is realistic
in many settings, and we provide methods for checking its validity and a
lower-bound guarantee even when it fails to hold. Based on these
assumptions, we present a method for relative prevalence estimation,
PURPLE, a complementary approach to those in the epidemiology and PU
learning literature: it works when one does not have the external informa-
tion that epidemiological methods generally require and cannot make the
separability assumptions PU learning methods rely on. We show PURPLE
outperforms previous methods in terms of its ability to recover the relative
prevalence on both synthetic and real health data.

We apply PURPLE to estimate the relative prevalence of intimate
partner violence in two widely-used, large-scale datasets of emergency
department visits. We find that IPV is more prevalent among patients who
are onMedicaid, non-white, not legally married, in lower-income zip codes,
and in metropolitan counties. We also show that correcting for under-
diagnosis produces estimates of IPVprevalence across income groupswhich
are more plausible in light of prior work19–21, highlighting the importance of
modeling underdiagnosis. In general, past work on IPV disparities corro-
borates the plausibility of our findings. Our finding that intimate partner
violence ismorecommonamongpatientsonMedicaid compared topatients
who are not is consistent with earlier results that show that IPV is 40–42 more
common among patients who live below the poverty line20,43,44. Past work
documenting higher IPV prevalences among unmarried women45–47 and in
metropolitan areas19,48,49 also corroborates the plausibility of our findings.
Our finding that IPV is more common among non-white patients is cor-
roborated by some past work4,19,50. However, the fact that we find that racial
disparities are smaller and not completely consistent across datasets is also
concordant with past work documenting inconsistent racial differences
across samples44,51–53. This suggests the importance of using large samples
and multiple datasets to assess how consistently and robustly racial dis-
parities emerge. Overall, our analysis contributes to the literature on IPV
disparities by using large samples; evaluating robustness across multiple
datasets; and correcting for underreporting.

Our work is motivated by the widespread underreporting of women’s
health, and we foresee numerous opportunities for future work. PURPLE
could be applied to obtain relative prevalence estimates for many other
health conditions that are known to be underreported, including polycystic
ovarian syndrome54, endometriosis55, and traumatic brain injuries56. Addi-
tionally, quantifying relative prevalence in the presence of underreporting is
a problemof interest inmanydomains beyondhealthcare andpublic health:
for example, quantifying the relative prevalence of underreported police
misconduct across precincts or quantifying the relative prevalence of
underreported hate speech across demographic groups. We believe that
PURPLE canalso yielduseful insight intodisparities in thesenon-healthcare
settings.

Methods
PURPLE: Positive Unlabeled Relative PrevaLence Estimator
PURPLE estimates p(y = 1∣x) up to a constant multiplicative factor in order
to estimate the relative prevalence of a condition y. Underlying this

procedure are two insights: first, that estimating p(y = 1∣x) up to a constant
factor suffices to estimate the relative prevalence, and second, that it is
possible to produce this estimate using the observed labels s, symptoms x,
and group statuses g. We first describe the three assumptions underlying
PURPLE and showhow these statements follow from them in the “Deriving
the relative prevalence” Section and M1.3. We describe implementation
details in the “Implementation” Section. We provide checks to determine
whether PURPLE’s assumptions hold true (“Assumption checks” Section)
and show that evenunder a plausible violationof our assumptions,PURPLE
produces a lower bound on the true magnitude of disparities (“Robustness
to violations of the Constant p(y|x) assumption” Section).

Assumptions. Neither the exact prevalence nor the relative prevalence
can be recovered withoutmaking assumptions about the data-generating
process: intuitively, without further assumptions, it is impossible to
distinguish between whether a medical condition is truly rare or merely
rarely diagnosed. We adopt terminology standard in the PU learning
literature and assume that we have access to three pieces of data for the ith
example: a feature vector xi; a group variable gi; and a binary observed
label si. We let yi denote the true (unobserved) label. In healthcare,
example i may correspond to a specific patient and their presenting
symptoms (xi), race (gi), and observed diagnosis (si). Here, yi corresponds
to whether the patient truly has the medical condition. This is an
unobserved binary variable, and because the medical condition is
underreported, not all patients who truly have the condition are diag-
nosed with it, so p(si = 1∣yi = 1) < 1. Because we are interested in health
disparities, we focus on groups g defined by sensitive attributes (e.g.,
gender, race, or socioeconomic status) but our method is applicable to
any set of groups for which our assumptions hold. We make three
assumptions:
1. No false positives: We assume that examples labeled as positive (s = 1)

are truly positive (y = 1): i.e., p(y = 0∣s = 1) = 0 (and thus, by Bayes’ rule,
p(s = 1∣y = 0) = 0). This is the positive unlabeled assumption and is the
foundational assumption of PU learning methods57.

2. Random diagnosis within groups: We assume that positive examples
within a specific group are equally likely to be labeled as positive:
p(s = 1∣y = 1, g = a) = ca, where ca represents the diagnosis frequency of
group a (i.e., the probability that a positive case is diagnosed as such).
Random diagnosis within groups amounts to the commonly made
Selected-Completely-at-Random assumption58 within each group.We
allow ca to vary across groups to allow for group-specific
underdiagnosis rates.

3. Constant p(y = 1∣x) between Groups: We assume that p(y = 1∣x)
remains constant across groups: examples in different groups with the
same features are equally likely to be true positives. In the medical
setting, this means that patients in different groups with the same
symptomshave the sameprobability of trulyhaving a condition.This is
equivalent to assuming only a covariate shift between groups, a com-
monly made assumption in the literature on domain adaptation23,24

and healthcare25.

Notably, wemake no assumptions about the separability of the positive
and negative distributions. Pastwork in PU learning has shown that the true
prevalence p(y = 1) can be recovered under a restrictive set of assumptions
about the structure of the positive and negative distributions59, which we
refer to as “separability assumptions”. Many PU learning methods assume
that the positive distribution is not completely containedwithin the negative
distribution: in healthcare, this means there is a region of the feature space
where all examples are true positives57,60–62 (Fig. 2A). This assumption is
unrealistic in medical settings because it is unlikely that a set of symptoms
maps to a diagnosis with 100%probability63, and as a result,PURPLEmakes
no such assumption.

While it is necessary to make assumptions to infer the relative pre-
valence, no assumptions will hold on all datasets, a point we consider in the
Discussion. To ensure PURPLE is applied to appropriate datasets, we
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provide two checks for violations of PURPLE’s assumptions (“Assumption
checks” Section). We also show that even under a plausible violation of the
Constant p(y = 1∣x) assumption, PURPLE provides a useful lower bound on
the magnitude of health disparities (“Robustness to violations of the Con-
stant p(y|x) assumption” Section).

Deriving the relative prevalence. Here, we show that an estimate of
p(y = 1∣x) up to a constant multiplicative factor recovers the relative
prevalence between groups a and b (ρa,b) exactly. The derivation is as
follows:

ρa;b :¼
pðy ¼ 1jg ¼ aÞ
pðy ¼ 1jg ¼ bÞ

ð3Þ

¼
P

xpðy ¼ 1jx; g ¼ aÞpðxjg ¼ aÞP
xpðy ¼ 1jx; g ¼ bÞpðxjg ¼ bÞ

ð4Þ

¼
P

xpðy ¼ 1jxÞpðxjg ¼ aÞP
xpðy ¼ 1jxÞpðxjg ¼ bÞ

ð5Þ

¼
P

x
p̂ðy¼1jxÞpðxjg¼aÞP

x
p̂ðy¼1jxÞpðxjg¼bÞ

for all p̂ðy ¼ 1jxÞ / pðy ¼ 1jxÞ
ð6Þ

where Eq. (5) follows from the constant p(y = 1∣x) assumption and Eq. (6)
follows because estimates of p(y = 1∣x) up to a constantmultiplicative factor
will yield a constant term in the numerator and denominatorwhich cancels.
Thus, estimates of p(y = 1∣x) up to a constant multiplicative factor suffice to
compute the relative prevalence. p(x∣g) is directly observable from the data,
so we can estimate the numerator as the mean of p̂ðy ¼ 1jxÞ over all x in
group a and similarly estimate the denominator as the mean of p̂ðy ¼ 1jxÞ
over all x in group b.

Estimating p(y = 1∣x) up to a constant multiplicative factor. We have
shown that if we can estimate p(y = 1∣x) up to a constant multiplicative
factor, we can use this estimate to compute the relative prevalence ρa,b.
Now we show how to estimate p(y = 1∣x) up to a constant multiplicative
factor. We do so by applying our three assumptions to derive a decom-
position for p(s = 1∣x, g):

pðs ¼ 1jx; gÞ ¼ pðy ¼ 1jx; gÞpðs ¼ 1jy ¼ 1; x; gÞ
þ pðy ¼ 0jx; gÞpðs ¼ 1jy ¼ 0; x; gÞ

ð7Þ

¼ pðy ¼ 1jx; gÞpðs ¼ 1jy ¼ 1; x; gÞ ð8Þ

¼ pðy ¼ 1jx; gÞpðs ¼ 1jy ¼ 1; gÞ ð9Þ

¼ pðy ¼ 1jxÞpðs ¼ 1jy ¼ 1; gÞ ð10Þ

Applying theNo False Positives assumption allows us to remove the second
term in Eq. (7), producing Eq. (8). The Random Diagnosis within Groups
assumption removes the dependence of the diagnosis probability on x,
leading to Eq. (9). The Constant p(y = 1∣x) assumption leads to Eq. (10).

Thus, p(s = 1∣x, g) can be decomposed as the product of two terms: the
probability the patient truly has the condition given their symptoms,
p(y = 1∣x), and the probability that true positives are correctly diagnosed,
p(s = 1∣y = 1, g). The fact that the second term varies across groups accounts
for group-specific underdiagnosis. This decomposition can be fit via max-
imum likelihood estimation with respect to the empirical p(s = 1∣x, g), since
s, x, and g are observed. Note that this only allows estimation of the two
terms on the right side of Eqn. (10) up to constant multiplicative factors,
since we can multiply p(y = 1∣x) by a non-negative β and divide p(s = 1∣
y = 1, g) byβwhile leaving our estimate ofp(s = 1∣x, g) unchanged.However,

constant-factor estimation of p(y = 1∣x) suffices to estimate the relative
prevalence. Concretely, we estimate p(y = 1∣x) and p(s = 1∣y = 1, g) up to
constant multiplicative factors by fitting to p(s = 1∣x, g); we then use our
constant-factor estimate of p(y = 1∣x) to estimate the relative prevalence as
described in Section “Deriving the relative prevalence”.

We note that the probabilistic model described by Eqn. (10) has been
previously applied to estimate absolute prevalence in PU settings26. Our
novel contribution is to derive a precise set of assumptions in which this
probabilistic model can be used to estimate relative prevalence and provide
an estimation method to do so.

Implementation. Thus far, we have shown that it is possible to estimate
the relative prevalence of an underreported condition by estimating
p(y = 1∣x) up to a constant factor and provided a way to conduct this
estimation given only the observed data. One can applyPURPLE to a new
dataset in two steps:
1. Estimate p(y = 1∣x) up to a constant multiplicative factor using the

observed diagnoses and the following probabilistic model:

p̂ðs ¼ 1jg; xÞ ¼ p̂ðy ¼ 1jxÞp̂ðs ¼ 1jy ¼ 1; gÞ ð11Þ

2. Plug our constant multiplicative factor estimate, p̂ðy ¼ 1jxÞ, into Eq.
(6) toproduce the relative prevalence estimate. Specifically,we estimate
the relative prevalence ρa,b as:

P
xp̂ðy ¼ 1jxÞp̂ðxjg ¼ aÞP
xp̂ðy ¼ 1jxÞp̂ðxjg ¼ bÞ

ð12Þ

In practice, we can compute this fraction simply by taking themean value of
p̂ðy ¼ 1jxÞ in each group to compute the numerator and denominator.

We implement the model in PyTorch64 using a single-layer neural
network to represent p̂ðy ¼ 1jxÞ and group-specific parameters cg ¼
p̂ðs ¼ 1jy ¼ 1; gÞ for each group g. Note that a single layer neural net-
work, followed by a logistic activation, is functionally equivalent to a
logistic regression, as they both learn a linear transformation of the
input features followed by a logistic transformation to produce a pre-
dicted probability of the positive class. We train the model using the
Adam optimizer with default parameters (i.e., a learning rate of 0.001,
epsilon of 10−8, and weight decay of 0) and implement early stopping
based on the cross-entropy loss on the held-out validation set. For the
semi-synthetic and real data, we use L1 regularization because these
experiments are conducted on high-dimensional vectors describing
thousands of symptoms, most of which we expect to be unrelated to the
medical condition, and select the regularization parameter λ ∈ [10−2,
10−3, 10−4, 10−5, 10−6, 0] using the held-out validation set bymaximizing
the AUC with respect to the diagnosis labels s. While we use a single-
layer neural network because our symptoms x are one-hot encoded and
we do not anticipate interactions between symptoms, our approach is
general and could be applied with deeper neural network architectures
to accommodate interactions and nonlinearities.

Assumption checks. Like all PU learning methods, PURPLEmust rely
on assumptions. To prevent users from applying PURPLE to datasets
where these assumptions do not hold, we provide two empirical tests
whose failure implies at least one of the underlying assumptions fails:
• Compare the model fit of PURPLE to the fit of an unconstrainedmodel.

If PURPLE’s assumptions hold, the diagnosis likelihood p(s = 1∣x, g)
decomposes as the product of two terms: p(s = 1∣x, g) = p(y = 1∣x)
p(s = 1∣y = 1, g). This is a constrained model of p(s = 1∣x, g): for
example, it does not allow for interaction terms between group g and
symptoms x. We can compare the performance of PURPLE to a fully
unconstrained model for p(s = 1∣x, g) which allows these interaction
terms. If the unconstrained model better fits the data, metrics,
including the AUC and AUPRC, will be higher on a held-out set of
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patients. If the constrained and constrained models exhibit similar
performance, it is still possible for oneof the assumptions tonotbe true;
however, if the models exhibit different performance, it is a sign that
PURPLE’s assumptions are not appropriate.

• Compare calibration across groups. PURPLE estimates a probabilistic
model of diagnosis, p(s = 1∣x, g), which means we can check how well
the outputted probabilities reflect the real data by examining model
calibration, a standard check65. Concretely, we expect that a proportion
z of examples that ourmodel gives a probability z of receiving a positive
diagnosis truly receive a positive diagnosis, andwe expect this to be true
for each group. Violations of PURPLE’s assumptions will often cause
group-specific calibration to not hold. For example, if p(y = 1∣x) differs
between groups beyond a scalar constant factor, PURPLE’s estimate of
p(s = 1∣x, g) cannot be correct for both groups (sincePURPLE assumes
p(y = 1∣x) remains constant).

We note that these assumption checks cannot rule out all forms of
modelmisspecification—and, indeed, no assumption checks can. Since only
x, g, and s are observed, it is impossible to prove anything about the dis-
tribution of y. However, the assumption checks will rule out some forms of
model misspecification and guide users away from datasets where applying
PURPLE is clearly inappropriate.

Robustness to violations of the constant p(y∣x) assumption. In this
section, we show that under a plausible violation of the central new
assumption of our work (constant p(y = 1∣x) between groups), PUR-
PLE produces a lower bound on the magnitude of disparities. This
lower bound is useful because we can be confident that if PURPLE
infers that a group suffers disproportionately from a condition, that is,
in fact, the case, and we can be confident in targeting policy to
that group.

Specifically, we relax the assumption of constant p(y = 1∣x) across
groups by assuming that if group A has a higher overall prevalence of a
condition than group B—i.e., p(y = 1∣g = A) > p(y = 1∣g = B)—group A
also has a higher prevalence by a constant factor given the same set of
symptoms—i.e., p(y = 1∣x, g = A) = α ⋅ p(y = 1∣x, g = B), α > 1. This
assumption is a reasonable one: when a condition is more prevalent in
one group than another, the same symptoms plausibly correspond to
higher posterior probabilities p(y = 1∣x) in the disproportionately
affected group. For example, female patients are more likely than male
patients to be victims of intimate partner violence overall30, and if a
woman and aman arrive in a hospital with the same injuries, doctors are
plausiblymore likely to suspect intimate partner violence as the cause of
the woman’s injuries.

Proof 1. Without loss of generality, assume that groupA is the group with
higher overall disease prevalence: p(y = 1∣g =A) > p(y = 1∣g = B). We make
the following assumptions:

1. Disease prevalence in groupA conditional on symptoms is higher by a
constant multiplicative factor: p(y = 1∣x, g =A) = α ⋅ p(y = 1∣x, g = B),
α > 1.

2. The other PURPLE assumptions hold: that is, p(y = 1∣s = 1) = 1 (PU
assumption) and p(s = 1∣y = 1, g, x) = p(s = 1∣y = 1, g) (random diag-
nosis within groups).
Under these assumptions, we show thatPURPLE’s estimate provides a

lower bound on the true relative prevalence. As before, we use p to denote
the true probabilities in the underlying data distribution and p̂ to denote
PURPLE’s estimates of these probabilities. We have

pðs ¼ 1jx; g ¼ AÞ ¼ pðs ¼ 1jy ¼ 1; g ¼ AÞ $ pðy ¼ 1jx; g ¼ BÞ $ α
pðs ¼ 1jx; g ¼ BÞ ¼ pðs ¼ 1jy ¼ 1; g ¼ BÞ $ pðy ¼ 1jx; g ¼ BÞ

PURPLE estimates p̂ðs ¼ 1jx; gÞ ¼ p̂ðs ¼ 1jy ¼ 1; gÞ $ p̂ðy ¼ 1jxÞ. It can
minimize the cross-entropy loss by achieving an estimate p̂ðs ¼ 1jx; gÞ

which matches the true p(s = 1∣x, g) by setting:

p̂ðy ¼ 1jxÞ ¼ β $ pðy ¼ 1jx; g ¼ BÞ
p̂ðs ¼ 1jy ¼ 1; g ¼ AÞ ¼ 1

β $ α $ pðs ¼ 1jy ¼ 1; g ¼ AÞ

p̂ðs ¼ 1jy ¼ 1; g ¼ BÞ ¼ 1
β $ pðs ¼ 1jy ¼ 1; g ¼ BÞ

where β is a positive constant (this captures the fact that, as discussed
previously, PURPLE only ever estimates p(y = 1∣x) up to a constant multi-
plicative factor). In other words, PURPLE can perfectly match the true
probabilitiesp(s = 1∣g, x) bypushing the variationacross groups inp(y = 1∣x)
into p̂ðs ¼ 1jy ¼ 1; gÞ (since PURPLE assumes p̂ðy ¼ 1jxÞ remains con-
stant across groups.) Given its estimate p̂ðy ¼ 1jxÞ,PURPLE’s estimate ρ̂A;B
of the relative prevalence is

ρ̂A;B ¼
P

x2A
p̂ðy¼1jxÞP

x2B
p̂ðy¼1jxÞ

¼
P

x2A
β$pðy¼1jx;g¼BÞP

x2B
β$pðy¼1jx;g¼BÞ

<
P

x2A
pðy¼1jx;g¼AÞP

x2B
pðy¼1jx;g¼BÞ

¼ ρA;B

so PURPLE’s estimate ρ̂A;B provides a lower bound on the true relative
prevalence ρA,B.

Empirical validation. We verify this behavior empirically under synthetic
violations of the constant p(y∣x) assumption, again using the synthetic data
described in Section “Gauss-Synth”. Concretely, we vary the difference in
the probability of a positive case between group a and group b (p(y = 1∣
x, g = a)− p(y = 1∣x, g = b)), where p(y = 1∣g = a)≥p(y = 1∣g = b).

Figure 1B in the Supplement demonstrates how PURPLE consistently
underestimates the true relative prevalence behavior empirically by plotting
PURPLE’s behavior over a range of values for α, where α∈ [0, 1] and
αp(y = 1∣x, g = a) = p(y = 1∣x, g = b). In each case, PURPLE provides a lower
bound on the true relative prevalence.We replicate this analysis for varying
separations of the group-specific Gaussian distributions, where darker
shades of purple correspond to group-specific distributions that are further
from one another.

Effect of positive-unlabeled assumption violations. Here we
demonstrate how PURPLE’s performance varies when the positive-
unlabeled assumption is violated, meaning that the sample of observed
positives contains some number of negatives. This can arise if the diag-
nostic test used to create the set of observed positives exhibits a non-zero
false positive rate. In SI Fig. 2A, we plot the behavior of PURPLE as we
increase the extent to which the setting violates the PU assumption;
specifically, we vary the percentage of the observed positives that truly are
negative—p(y = 0∣s = 1)—from 0% to 20%. When p(y = 0∣s = 1) = 0, this
is equivalent to the positive-unlabeled assumption, and PURPLE
recovers the relative prevalence exactly, as expected. At greater violations
of the PU assumption, PURPLE’s performance degrades somewhat, as
expected.

Effect of random-diagnosis-within-groups assumption violations.
We illustrate PURPLE’s behavior under violations of the random-
diagnosis-within-groups assumption in Fig. S2B. The assumption states
that the probability that a true positive is diagnosed as such does not
depend on x or that p(s = 1∣y = 1, g, x) = p(s = 1∣y = 1, g). We simulate
violations of the assumption by generating s according to
p(s = 1∣y = 1, g, x) = cg ⋅ σ(β ⋅ x0). In other words, the diagnosis frequency
for group g is scaled by the sigmoid function of parameter βmultiplied by
the first component of x. For β = 0, the setting adheres to the random-
diagnosis-within-groups assumption. Higher values of β translate to a
higher correlation between the diagnosis probability and x0. As Fig. S2B
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demonstrates, PURPLE recovers the relative prevalence under no vio-
lation of the assumption (β = 0) and incurs small errors in the estimated
relative prevalence as β increases.

Datasets
Wemake use of five datasets. We begin with two synthetic datasets:Gauss-
Synth, a completely synthetic dataset, and MIMIC-Semi-Synth, a semi-
synthetic dataset based on real health data.We then applyPURPLE to three
non-synthetic datasets:MIMIC-IVED, a dataset of electronic health records
collected from a single hospital in the Boston area, and NEDS, a dataset of
emergency department visits occurring in the US in 2019.

We begin with synthetic and semi-synthetic data so that the ground
truth labels y are known, as is standard in the PU learning literature22,
enabling us to assess how well methods recover the relative prevalence. To
assess the performance of all methods in our synthetic and semi-synthetic
experiments,we report themean ratio of the estimated relative prevalence to
the true relative prevalence over 5 random train/test splits of the dataset;
values closer to 1 correspond to better performance. Code to reproduce all
experiments can be found at https://github.com/epierson9/invisible-
conditions.

Gauss-Synth. We generate completely synthetic data by simulating
group-specific features (p(x∣g)), and labels using a decision rule (p(y∣x)).
Formally, we simulate groups a and b using two 5D Gaussian distribu-
tions with different means:

xi ∼
N 5ð&1; 16 $ 1Þ if gi ¼ a

N 5ð1; 16 $ 1Þ if gi ¼ b

"
ð13Þ

The likelihood function (p(y = 1∣x)) is a logistic function of the signed dis-
tance to a hyperplane through the origin. Observed labels s are drawn such
that positive labels in group i are observed with a probability of cgi . The
generative model for y and s is:

yi ∼ Bernoulli ðσðð1TxiÞ= k 1 kÞÞ ð14Þ

si ∼ Bernoulli ðcgi yiÞ ð15Þ

where σ represents a logistic function (σðxÞ ¼ 1
1þe&x) and cgi is the group-

specific diagnosis frequency for gi.We draw 10,000 observations for group a
and 20,000 for group b. We create the separable data by modifying the
generative model described above, which does not generate separable data.
Specifically, we replace each p(y = 1∣x) > 0.5 with p(y = 1∣x) = 1 and each
p(y = 1∣x) < 0.5with p(y = 1∣x) = 0, and remove the 40%of the data closest to
the original decision boundary to ensure the classes are cleanly separable, as
illustrated in Fig. 2A.

MIMIC-semi-synth. We generate semi-synthetic data usingMIMIC-IV,
a public dataset of real patient visits to a Boston-area hospital over the
course of 2008–201827. We filter out ICD codes that appear 10 or fewer
times, leaving 5544 unique ICD codes. Each feature vector xi is a one-hot
vector corresponding to the ICD codes assigned in a particular patient
visit to the hospital. We generate true labels y based on a set of suspicious
symptoms. Formally, this replaces Eq. (15) in our generative model with:

yi ∼ Bernoulli ðσðvTsymxiÞ= k vsym kÞ ð16Þ

where vsym is a one-hot encoding of the suspicious symptoms and vTsymxi
corresponds to the number of suspicious symptoms present during a
hospital visit. Thus, the probability a patient has a medical condition is a
logistic function of the number of suspicious symptoms. As before, we
have si ∼ Bernoulli ðcgi yiÞ.

In all experiments, we compute the relative prevalence for Black (group
a) versus white (group b) patients since these are the largest race groups in
MIMIC data. We filter the dataset for patients belonging to each group.

However, our method can be applied to more than 2 groups, as described
above. To assess how our method performs under diverse conditions, we
experiment with selecting the suspicious symptoms vsym in four
different ways:

Common symptoms. We identify the 50 most common ICD codes in
MIMIC-IV and randomly select 25 to be suspicious symptoms (described
fully in the Supplement). Group a consists of 73,090 visits from Black
patients (p(y = 1∣g = a) = 0.157), and group b consists of 305, 002 visits from
White patients (p(y = 1∣g = b) = 0.185).

High relative prevalence symptoms. We filter out ICD codes that appear
fewer than 50 times in each group and patients less than 18 years old. After
ranking the ICD codes by relative prevalence—prevalence among visits by
white patients, divided by prevalence among visits by Black patients—we
select the top10 ICDcodes as our suspicious symptomset (described fully in
the Supplement). Group a contains 14,618 visits from Black patients p(y =
1∣g = a) = 0.061), and group b contains 61,000 visits from white patients
(p(y = 1∣g = b) = 0.098).

Correlated symptoms. We consider endometriosis, a widely under-
diagnosed condition66. We define our suspicious symptoms as the symp-
toms most highly associated with known endometriosis codes. We first
identify a set of patients who receive any one of 10 gold-standard ICD
endometriosis diagnosis codes (described fully in the Supplement).We then
identify the ICD codes which are most highly associated with a gold-
standard diagnosis of endometriosis: for each ICD code, we compute the
ratio prevalence of ICD code among endometriosis patients

prevalence of ICD code among all patients . We define
our suspicious symptoms as the 25 ICD codes with the highest value of this
ratio, which includes known endometriosis symptoms such as “Excessive
and frequent menstruation with regular cycle” and “Pelvic and perineal
pain” (all codes are included in the Supplement). We do not include the 10
ICD codes used to determine the 25 suspicious symptoms in x.We filter for
female patients because endometriosis is extremely rare among male
patients67, leaving 47,138 unique hospital visits from Black patients
(p(y = 1∣g = a) = 0.0534) and 165,653 unique hospital visits from white
patients (p(y = 1∣g = a) = 0.0495).

Recognized symptoms for IPV. Prior work has found that suspicious
symptoms for IPV include head, neck, and facial injuries68. The symptoms
in this experiment consist of the 100 ICD codes corresponding to these
injuries (described fully in the Supplement). We filter for female patients
because the symptoms associated with IPV in male patients are not well
understood30. We also filter out patients less than 18 years old because it is
difficult to distinguish between intimate partner violence and child abuse in
minors. This results in a dataset with p(y = 1∣g = a) = 0.0541 (25,546 unique
patient visits) and p(y = 1∣g = b) = 0.0568 (80,227 unique patient visits).

In Sections “MIMIC-IV ED” and “NEDS”, we describe the construc-
tion of the two non-synthetic datasets, MIMIC-IV and NEDS. In all these
datasets, y is unknown, so we need only define the features x and known
positive examples in which s = 1.

MIMIC-IV ED
Data filtering. MIMIC-IV contains two related databases: one representing
diagnoses made in the hospital (which we will refer to as the hospital
database) and one representing diagnoses made in the emergency depart-
ment. There are slight inconsistencies between the two, as is to be expected;
for example, one emergency department stay can be associated with mul-
tiple unique hospital admissions. We exclude 600 hospital admissions
linked to multiple emergency department stays and exclude 59 emergency
department stays associated with invalid hospital admissions. For emer-
gency department stays that result in hospital admission, we include all
diagnoses assigned in the emergency department or hospital. We also
include patient visits that appear only in the hospital database but indicate
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admission through the emergencydepartment via the “admission_location”
field. We provide code to replicate these preprocessing steps.

We further filter for patients who are female and above 18. We do
so because we are interested in the relative prevalence of intimate
partner violence between subgroups of adult female patients. This
leaves 293,297 individual hospital visits over 133,470 unique patients.
For each demographic attribute we wish to analyze disparities over
(ethnicity, insurance status, and marital status), we also filter out
patients who are missing data for this attribute. This translates to
192,768 stays across marital statuses, 208,512 stays across ethnicities,
and 108,948 stays across insurance statuses.We have significantly fewer
stays in the insurance subgroups because we only have patients for
whom the insurance status is known (i.e., Medicare and Medicaid
recipients). We produce 5 randomized dataset splits, where we reserve
60% of the data for training, 20% for validation, and 20% for testing.
Each patient appears in only one of these sets.

Defining features x.We represent each patient visit as a one-hot encoding of
the ICD codes assigned. Concretely, 15,699 features represent each patient
visit, where each feature corresponds to the presence or absence of one ICD
code (across the ICD-9 and ICD-10 standards). Note that this is different
from the semi-synthetic setup and we do not filter out codes that appeared
fewer than10 times.Wedo this because IPV itself is rare, andwedonotwant
to exclude symptoms that are predictive of IPV and donot occur frequently.

Defining s = 1. To define examples where s = 1 (known positive examples),
we use criteria for reported instances of intimate partner violence fromprior
work. The most specific code is E967.3, or ”Battering by an intimate part-
ner”, drawn from the ICD-9 standard. Other codes include V6111, or
”Counseling for a victim of spousal or partner abuse”. The full code set can
be found inTable S6. If a patient receives any one of the codes in the positive
code set, the visit is deemed to be positively labeled for intimate partner
violence.

Defining g. We define the groups over which we quantify disparities via
demographic variables associated with each electronic health record. These
include race/ethnicity (Black, white, Asian, Hispanic/Latino), insurance
status (Medicare or Medicaid), and marital status (Legally Unmarried,
Married, Divorced).

NEDS. The National Emergency Department Sample (NEDS) is the
largest publicly available, all-payer database describing visits to hospital-
owned emergency departments in the United States and is commonly
used in studies of disease prevalence. In this work, we make use of NEDS
2019. The survey from this year produced a dataset containing 33.1
million visits, which represents the 143 million total visits occurring in
hospital-owned EDs across the United States in 2019. To create nation-
ally representative estimates, NEDS releases “discharge weights”, which
allow the analyst to reweight estimates to represent the universe of
emergency department visits. We follow this procedure to reweight our
relative prevalence estimates.

Data filtering. As with MIMIC-IV, we include visits from patients who are
female and above the age of 18. The resulting dataset contains 15,357,528
visits.

Defining features x. As before,we treat the ICDcodes loggedduring a visit as
the input features, as a proxy for the symptoms a patient presents with. The
feature set consists of 19,710 ICD-10 codes (excluding those used to identify
positive cases, as described in the next section), whichwe one-hot encode to
create features for each ED visit.

Defining s = 1. We use the same criteria to identify positive cases as with
MIMIC-IV: we consider a case to be labeled positive if it is associated with if
it has any of the codes described in the Supplement.

Defining g. We define groups according to race/ethnicity groups, insurance
status, income quartile, and urban/rural designation. The income quartile is
calculated using the estimated median household income in the patient’s
zipcode. In 2019, the first quartile corresponds to an estimated median
household income between $0 and $48k, the second to $48k to $61k, the
third to $61k–$82k, and the fourth to the remaining zip codes. The urban/
rural designations are based on the population of the patient’s home county.
From most to least rural, the four categories are 50k residents to 250k
residents, 250k residents to 1million residents, 1million residents in a fringe
metropolitan county, and 1 million residents in a central metropolitan
county.

Baselines
Each of the baseline methods described below is designed to estimate
the absolute prevalence. To obtain the relative prevalence, we apply each
baseline to groups a and b individually to obtain estimates of the
absolute prevalence in each group; we then divide the resulting quan-
tities to produce an estimate of the relative prevalence. To provide
consistent comparisons, we constrain each baseline to use the same
function class as PURPLE. We do not compare to baselines in the
epidemiology literature because they assume access to external infor-
mation (e.g., diagnostic accuracy) that is often not available; we also do
not consider work that places parametric assumptions on p(y = 1∣x)69–72
because these assumptions will not hold in general.
• Negative: Assign all unlabeled examples a negative label. This approach

replaces p(y = 1∣x) with p(s = 1∣x) and assumes no underreporting
occurs. Past work refers to this model as a nontraditional classifier57

(NTC). We use sklearn’s logistic regression implementation with no
regularization and default settings for all other hyperparameters,
trained with target s.

• KM2:Models thedistributionof unlabeledexamples as amixture of the
positive and negative distribution and estimates the proportion of
positives using a kernel mean embedding approach62. This method is
known to perform poorly on large datasets withmany features73. KM2
assumes that there exists a function that only selects positive examples.

• DEDPUL: Uses a non-traditional classifier to map each example to a
predicted probability of diagnosis and performs mixture proportion
estimation using the classifier’s outputs on the unlabeled examples73.
Specifically, the method applies heuristics to the estimated densities of
the positive and unlabeled distribution.

• BBE: Identifies a small subset of positive examples using the outputs of
an non-traditional classifier on the positive and unlabeled sample74.
The method uses this subset to infer the proportion of positive
examples in the unlabeled sample.

• Oracle: Uses the true label y to estimate p(y = 1∣x). Importantly, this
method cannot actually be applied in real data since y is unobserved,
but it represents an upper bound on performance.

Data availability
Anonymized imaging and clinical data to reproduce the results of this study
are available online. MIMIC-IV is a publicly available database of emer-
gency department and hospital admissions occurring between 2008 and
2019 at the Beth Israel Deaconess Medical Center and can be found at:
https://physionet.org/content/mimiciv/2.2/. We make use of the National
Emergency Department Sample (2019), made available by the Agency for
HealthcareResearch andQuality,which is publicly available at https://www.
hcup-us.ahrq.gov/nedsoverview.jsp. Code to preprocess all datasets and
reproduce all experiments can be found at https://github.com/epierson9/
invisible-conditions.
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