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Almodels for tasks such as pathology and
dermatology struggle to generalize to new
patient groups or hospitals that they were

not trained on; learning more robust features
fromunlabeled data could prevent overfitting
to the training distribution and thereby
increase fairness.

Despite the number of studies that report expert-level performance of
clinical machine learning algorithms', clinicians, computer scientists
and regulators remain cautious. At the heart of their uncertainty lies
the question of generalization: an algorithm with near-perfect perfor-
mance onits training data may not perform as well when tested on new
data with different properties, an issue known as ‘distribution shift’.
Distribution shifts canlead to healthinequities: a dermatology model
trained primarily on lighter-skinned white patients may perform less
well on race groups with different skin pigmentation®. Because it is
challengingto obtainlarge, labeled medicalimaging datasets, models
areoften trained onrelatively small and specific labeled datasets, and
consequently fail to generalize®.

A promising recent paradigm for combatting distribution shifts
involves training models on unlabeled datasets to learn generalizable
representations of data*. Unlabeled datasets are often much larger and
more diverse than labeled datasets, exposing models to more varia-
tion —which helps them to generalize. Inthis issue of Nature Medicine,
articles by Vaidya et al.’ and Ktena et al.® present two approaches that
exemplify this paradigm: Vaidya et al.’ apply amodel trained on alarge,
unlabeled dataset to extract more generalizable image features, and
Ktena et al.° train a model on unlabeled data to generate synthetic
images used to augment the labeled dataset. Both approaches yield
improvementsinaccuracy, and improve generalization to new hospitals
and minority patient groups who are less represented in training sets.

Vaidya et al.’ train a model to predict cancer subtype from
whole-slide microscopy images, a task which s crucial to guide treat-
ment and predict prognosis. To predict cancer subtype, their model
uses an encoder to extract features from the images, then makes a
prediction from the extracted features. Their key finding is that the
use of anaive encoder thatis trained on non-medicalimages resultsin
substantial disparities across patient race groupsin terms of accuracy.
However, the authors improve performance and reduce disparities by
replacing the non-medical encoder with an encoder trained on a far
larger dataset of unlabeled pathology images spanning diverse tissue
types, cellmorphologies, staining conditions, image resolutions, and
tasks’. Because it is trained on a diverse array of relevant images, the
pathology encoder learns a richer feature set that is more robust to
distribution shifts than the non-medical image encoder.

Ktena et al.° take a different approach to improve generaliza-
tion and fairness. They focus on predicting metastatic breast cancer
(from histopathology images), chest conditions (from X-rays) and skin
carcinomas (from photos). Their key innovationis to train their model
not just on their original training set, but on ‘synthetic’ images that
are created by training animage generation model onunlabeled data,
thus augmenting their original dataset. Where possible, they sample
more synthetic images from groups that were underrepresented in
the original dataset, increasing demographic diversity. Thisapproach
works well: their model performs better onimages from different con-
texts, such as hospitals that were not seenin training or patient groups
with different demographic makeup. Overall, their method mitigates
accuracy disparities across sex and race groups.

Vaidyaetal.’andKtenaet al.® provide twoillustrations of a critical
point for medical machine learning: we canimprove generalization by
trainingmodels notjust from small, labeled, task-specific datasets, but
alsofromunlabeled datasets that can be much larger and more diverse.
Vaidya et al.’ use a pathology-specific encoder that aggregates data
from many different settings, some of which may look more like the
condition inwhichwe want to deploy the model; Ktena et al.® generate
syntheticimages thatlook like the new distribution. Both approaches
incorporate information from unlabeled data to improve generaliza-
tion. More broadly, unlabeled datais only one of many outside sources
of information that we can incorporate to improve generalization of
models trained on small, labeled datasets. For example, other work
makes use of outside information such as the overall prevalence of a
disease® or prior knowledge about the distribution shift’. Incorporating
outsideinformation may be particularly usefulin low-resource settings,
inwhichit canbe difficult to obtain enough clinician-labeled data from
anew hospital or patient group.

The studies also have implications for reducing bias in clinical
algorithms. Many generic methods for bias reduction have been
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developed, but these methods can harm accuracy in some medical
settings'’. Vaidya et al.’ and Ktena et al.® suggest that incorporating
outside information (in this case from unlabeled data) can improve
accuracy and reduce bias simultaneously, by uplifting performance
for all groups — and might represent a promising approach even
when generic bias methods do not perform well. Substantiating this,
Vaidya et al.’ test several existing methods for bias reduction and find
that they have minimal effects on fairness, compared with using the
pathology-specific encoder.

These studies®® also reiterate the importance of evaluating algo-
rithmic performance on subgroups of the population, because evalu-
ating only onthe entire population can conceal subgroup disparities.
Such evaluations remain challenging, owingin part to lack of available
data. Therefore, a high priority must be the continued collection of
large, diverse samples, including from underserved populations, which
must be made widely available to researchers''?. The approaches
developed by Vaidya et al.* and Ktena et al.* focus primarily on widely
known benchmarks and well-resourced hospitals; future work should
assess whether the methods explored in these papers will prove use-
ful for other deployment settings, such as hospitals outside of the
USA. Datasets should be annotated with relevant clinical and demo-
graphicvariables, mitigating the limitations of some existing datasets
(for example, a lack of granular race data or social determinants of
health data'). Reviewers and regulators should encourage subgroup
evaluations. Such evaluations will shed light on algorithms that per-
forminequitably and fail to generalize, encouraging the development
of methods such as those pursued by Vaidya et al.” and Ktena et al.?,
and aiding the development of robust and equitable algorithms.
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