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Using unlabeled data to enhance fairness of  
medical AI

Rajiv Movva, Pang Wei Koh & Emma Pierson

AI models for tasks such as pathology and 
dermatology struggle to generalize to new 
patient groups or hospitals that they were  
not trained on; learning more robust features 
from unlabeled data could prevent overfitting 
to the training distribution and thereby 
increase fairness.

Despite the number of studies that report expert-level performance of 
clinical machine learning algorithms1, clinicians, computer scientists 
and regulators remain cautious. At the heart of their uncertainty lies 
the question of generalization: an algorithm with near-perfect perfor-
mance on its training data may not perform as well when tested on new 
data with different properties, an issue known as ‘distribution shift’. 
Distribution shifts can lead to health inequities: a dermatology model 
trained primarily on lighter-skinned white patients may perform less 
well on race groups with different skin pigmentation2. Because it is 
challenging to obtain large, labeled medical imaging datasets, models 
are often trained on relatively small and specific labeled datasets, and 
consequently fail to generalize3.

A promising recent paradigm for combatting distribution shifts 
involves training models on unlabeled datasets to learn generalizable 
representations of data4. Unlabeled datasets are often much larger and 
more diverse than labeled datasets, exposing models to more varia-
tion — which helps them to generalize. In this issue of Nature Medicine, 
articles by Vaidya et al.5 and Ktena et al.6 present two approaches that 
exemplify this paradigm: Vaidya et al.5 apply a model trained on a large, 
unlabeled dataset to extract more generalizable image features, and 
Ktena et al.6 train a model on unlabeled data to generate synthetic 
images used to augment the labeled dataset. Both approaches yield 
improvements in accuracy, and improve generalization to new hospitals 
and minority patient groups who are less represented in training sets.

Vaidya et al.5 train a model to predict cancer subtype from 
whole-slide microscopy images, a task which is crucial to guide treat-
ment and predict prognosis. To predict cancer subtype, their model 
uses an encoder to extract features from the images, then makes a 
prediction from the extracted features. Their key finding is that the 
use of a naive encoder that is trained on non-medical images results in 
substantial disparities across patient race groups in terms of accuracy. 
However, the authors improve performance and reduce disparities by 
replacing the non-medical encoder with an encoder trained on a far 
larger dataset of unlabeled pathology images spanning diverse tissue 
types, cell morphologies, staining conditions, image resolutions, and 
tasks7. Because it is trained on a diverse array of relevant images, the 
pathology encoder learns a richer feature set that is more robust to 
distribution shifts than the non-medical image encoder.

Ktena et al.6 take a different approach to improve generaliza-
tion and fairness. They focus on predicting metastatic breast cancer  
(from histopathology images), chest conditions (from X-rays) and skin 
carcinomas (from photos). Their key innovation is to train their model 
not just on their original training set, but on ‘synthetic’ images that 
are created by training an image generation model on unlabeled data, 
thus augmenting their original dataset. Where possible, they sample 
more synthetic images from groups that were underrepresented in 
the original dataset, increasing demographic diversity. This approach 
works well: their model performs better on images from different con-
texts, such as hospitals that were not seen in training or patient groups 
with different demographic makeup. Overall, their method mitigates 
accuracy disparities across sex and race groups.

Vaidya et al.5 and Ktena et al.6 provide two illustrations of a critical 
point for medical machine learning: we can improve generalization by 
training models not just from small, labeled, task-specific datasets, but 
also from unlabeled datasets that can be much larger and more diverse. 
Vaidya et al.5 use a pathology-specific encoder that aggregates data 
from many different settings, some of which may look more like the 
condition in which we want to deploy the model; Ktena et al.6 generate 
synthetic images that look like the new distribution. Both approaches 
incorporate information from unlabeled data to improve generaliza-
tion. More broadly, unlabeled data is only one of many outside sources 
of information that we can incorporate to improve generalization of 
models trained on small, labeled datasets. For example, other work 
makes use of outside information such as the overall prevalence of a 
disease8 or prior knowledge about the distribution shift9. Incorporating 
outside information may be particularly useful in low-resource settings, 
in which it can be difficult to obtain enough clinician-labeled data from 
a new hospital or patient group.

The studies also have implications for reducing bias in clinical 
algorithms. Many generic methods for bias reduction have been 
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developed, but these methods can harm accuracy in some medical 
settings10. Vaidya et al.5 and Ktena et al.6 suggest that incorporating 
outside information (in this case from unlabeled data) can improve 
accuracy and reduce bias simultaneously, by uplifting performance 
for all groups — and might represent a promising approach even 
when generic bias methods do not perform well. Substantiating this, 
Vaidya et al.5 test several existing methods for bias reduction and find 
that they have minimal effects on fairness, compared with using the 
pathology-specific encoder.

These studies5,6 also reiterate the importance of evaluating algo-
rithmic performance on subgroups of the population, because evalu-
ating only on the entire population can conceal subgroup disparities. 
Such evaluations remain challenging, owing in part to lack of available 
data. Therefore, a high priority must be the continued collection of 
large, diverse samples, including from underserved populations, which 
must be made widely available to researchers11,12. The approaches 
developed by Vaidya et al.5 and Ktena et al.6 focus primarily on widely 
known benchmarks and well-resourced hospitals; future work should 
assess whether the methods explored in these papers will prove use-
ful for other deployment settings, such as hospitals outside of the 
USA. Datasets should be annotated with relevant clinical and demo-
graphic variables, mitigating the limitations of some existing datasets  
(for example, a lack of granular race data or social determinants of 
health data13). Reviewers and regulators should encourage subgroup 
evaluations. Such evaluations will shed light on algorithms that per-
form inequitably and fail to generalize, encouraging the development 
of methods such as those pursued by Vaidya et al.5 and Ktena et al.6,  
and aiding the development of robust and equitable algorithms.
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