é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

One Size Does Not Fit All: Uncovering and Exploiting
Cross Platform Discrepant APIs in WeChat
Chao Wang, Yue Zhang, and Zhigiang Lin, The Ohio State University

https://www.usenix.org/conference/usenixsecurity23/presentation/wang-chao

This paper is included in the Proceedings of the
32nd USENIX Security Symposium.
August 9-11, 2023 » Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium
is sponsored by USENIX.

I
+ B - H =
. JEEEES o -
R W E »

One Size Does Not Fit All:
Uncovering and Exploiting Cross Platform Discrepant APIs in WeChat

Chao Wang Yue Zhang Zhigiang Lin
The Ohio State University The Ohio State University The Ohio State University
wang. 15147 @osu.edu zhang. 12047 @osu.edu zlin@cse.ohio-state.edu
Abstract Today, it is estimated that there are more than 4.3 million

The past few years have witnessed a boom of mobile super
apps, which are the apps offering multiple services such as
e-commerce, e-learning, and e-government via miniapps
executed inside. While originally designed for mobile
platforms, super apps such as WeChat have also been made
available on desktop platforms such as Windows. However,
when running on desktop platforms, WeChat experiences
differences in some behaviors, which presents opportunities
for attacks (e.g., platform fingerprinting attacks). This
paper thus aims to systematically identify the potential
discrepancies in the APIs of WeChat across platforms and
demonstrate how these differences can be exploited by re-
mote attackers or local malicious miniapps. To this end, we
present APIDIFF, an automatic tool that generates test cases
for each API and identifies execution discrepancies. With
APIDIFF, we have identified three sets of discrepant APIs
that exhibit existence (109), permission (17), and output (22)
discrepancies across platforms and devices, and provided
concrete examples of their exploitation. We have responsi-
bly disclosed these vulnerabilities to Tencent and received
bug bounties for our findings. These vulnerabilities were
ranked as high-severity and some have already been patched.

1 Introduction

A super app is an app that allows its users to access multiple
services such as online shopping, ride-hailing, and instant
messaging, from a single app. Today, there are many popu-
lar mobile super apps, including China’s WeChat, TikTok,
and AliPay, India’s Paytm, Singapore’s Grab, Indonesia’s
GoTo, Vietnam’s Zalo, and South Korea’s Kakao [8]. In-
creasingly, Whatsapp in India and Brazil is also becoming
super apps [46]. Among these mobile super apps, WeChat
has most of the users (e.g., 1.2 billion monthly users [29]),
and it also offers almost all the services from such as booking
a doctor’s appointment to even filing for a divorce [4].
Certainly, it is impossible for a single super-app company
to provide all the daily services. Therefore, super apps
such as WeChat and also WeCom (the enterprise version
of WeChat) have provided APIs for 3rd-party developers
to develop the apps running inside the super apps. This is
often called the miniapp or app-in-the-app paradigm [39].

miniapps [26] running in WeChat. Through offering the
miniapps, it creates a win-win situation for both super app
providers and 3rd-party developers in that more services are
provided (leading to more users using the platform), and a
single miniapp can be executed atop multiple platforms (e.g.,
both Android and iOS) using a single programming lan-
guage (e.g., JavaScript) rather than different languages such
as Objective-C, Java, and C/C++ for different platforms.

Super apps were originally designed for mobile platforms
such as Android and iOS, but we have seen an increasing
number of them, such as WeChat, WeCom, and Alipay,
supporting desktop platforms such as Windows. Among
these, WeChat is more aggressive and allows all of their
miniapps to be executed on desktops as well. However,
when executed on these platforms, the miniapps may exhibit
different behaviors due to differences in the implementation
of the APIs, such as differences in platform-specific protec-
tions. For instance, WeChat running on Windows allows
miniapps to access the microphone (via API wx.record)
without the user’s consent, leaving the door open for
malware to stealthily record audio and compromising the
user’s privacy. Therefore, it is imperative to systematically
identify all potential platform-discrepant APIs in WeChat
(as it is currently the only platform that supports miniapps
on desktop platforms) and provide concrete demonstrations
of how they can be exploited.

To this end, this paper presents APIDIFF, an automatic
tool that identifies discrepancies across different platforms
and devices. A key challenge lies in automatically gener-
ating the API test cases, which APIDIFF solves through a
domain-guided brute-force approach. Particularly, using
APIDIFF, we have discovered three categories of discrepan-
cies in WeChat: (i) API existence, where the API is present
on some platforms but not others; (ii) API permission, where
the API requires certain permissions on some platforms
but not others; and (iii) API output, where the same API
produces different results on different platforms even with
the same inputs.

With these uncovered discrepant APIs, we then develop
concrete attacks. Since there are three different categories
of discrepancies, we correspondingly demonstrate three dif-
ferent attacks. In particular, we demonstrate: (i) Attacks

USENIX Association

32nd USENIX Security Symposium 6629

caused by API existence discrepancies, where some plat-
forms lack security-focused APIs, allowing attackers to ex-
ploit such absence for malicious purposes. For example, we
notice that Android platforms use stronger protections for
some devices such as Bluetooth when compared with Win-
dows and iOS, where an Android device enforces authentica-
tion with the protections from APIs but the other platforms
do not, leading to Man-in-the-Middle (MitM) attacks. (ii)
Attacks caused by API access control discrepancies, where
some platforms lack the necessary checks for APIs when ac-
cessing sensitive resources (e.g., locations, cameras, and au-
dio recorders), leading to potential privacy breaches by ma-
licious miniapps. (iii) Attacks caused by API output discrep-
ancies, where APIs in some platforms expose fingerprinting
vulnerabilities, leading to attacks similar to browser finger-
printing attacks [45, 34, 38]. In such scenarios, a malicious
miniapp can leverage the signatures generated from specific
APT outputs to uniquely identify a device.

Contributions. We make the following contributions:

e Novel Findings (§3). We are the first to discover that su-
per apps running on top of different platforms and devices
may have a variety of discrepancies during execution,
some of which can lead to security vulnerabilities.

e Empirical Evaluation (§4 and §5). We have developed
an open source, automatic tool APIDIFF! to systemati-
cally uncover discrepant APIs across different platforms
and devices. We have tested our tool with WeChat
on three platforms: Android, i0S, and Windows, and
identified 109 APIs with existence discrepancies, 17 APIs
with permission discrepancies, and 22 APIs with output
discrepancies across platforms.

e New Attacks (§6). We develop three categories of attacks
by exploiting these discrepancies. We show that these at-
tacks can cause severe security and privacy consequences
to massive super apps users as well as miniapp developers.

2 Background

2.1 The Evolution of Mobile Super Apps

During the desktop era, web apps were the dominant type
of applications, easily accessible from any platform by typ-
ing their URLs in a browser. However, the open nature of
the web also led to a proliferation of malicious web apps,
such as phishing [19]. In the mobile era, users switched to
downloading vetted mobile apps from app stores such as the
Google Play Store and Apple App Store. While these mobile
apps underwent centralized vetting, they also had limitations
such as the limited storage and the need for downloads and

IThe source code of APIDIFF is available at github.com/
0SUSecLab/APIDiff.

Tece=0 | N

I

o i
Render Engi Logic Engi . | |
ender Engine ogic Engine r :
R |
\ 1

I

|

System Resources

Figure 1: A typical architecture of mobile super apps

installations. In addition, developers often had to create sep-
arate versions of their apps for different operating systems.

Having recognized the benefits and limitations of both
web and mobile apps, some social network apps (such
as WeChat [26] and TikTok [33]) began to expand their
services and eventually became “super apps”. Some of these
super apps, such as WeChat, even started to provide APIs
in 2017 for third-party developers to create miniapps that
run within the super app. These miniapps offered a more
enhanced user experience and increased user engagement
with the super app, by relying on web technologies, such
as JavaScript, and integrating the capabilities of native apps
and offering the advantages of both types of apps, such as
cross-platform support and the ability to run without instal-
lation. It is important to note that while the miniapps run
within the super app, the super app itself is also considered a
native app. Although Miniapps have evolved from web apps
and native mobile apps, they are different from both.

Table 1 lists popular super apps from around the world,
ranked by monthly active users. It can be seen that these su-
per apps belong to different categories and offer a wide range
of services, from business to social networking. Although
most support multiple platforms and allow the execution of
mini-apps, only WeChat and also WeCom support the exe-
cution of mini-apps on desktop computers.

2.2 The Architecture of Super Apps

A high-level overview of the architecture of super apps
with miniapp support is presented in Figure 1. We can see
that the super app hosts all the miniapps (which can be
directly fetched from the miniapp market that is hosted in
the back-end of the super app), and provides the miniapps
running environment in a sandbox environment. To offer
native-app alike experiences, the super app also provides a

6630 32nd USENIX Security Symposium

USENIX Association

o -\o“ S, & & & D S
& ¢ » > & & & & ¢ & > oQQ & & s\z’ 6‘ & &
& F ST S FE S Yy T &
Super App Category Monthly Users Country ‘
Services | Platform | Miniapp

‘WeChat [29] Social 1,200 million + China v v v v v v v v v / v v 7/ v v /
Tiktok [20] Social 1,000 million + China X v v v X v v Xx v vV vV V|V V KX
Alipay [51] Finance 730 million + China v v v v v v v v vV V|V vV V|V VvV X
Snapchat [50] Social 347 million + U.S. X x v x Xx v v X Xx vV vV X |V vV X
WeCom [31] Business 180 million + China v v v v v v v v v Vv v V|V vV /
Paytm [51] Finance 150 million + India SO XX /O X X X X X x|V vV x|V /X
Go-Jek [27] Finance 100 million + Indonesia v X x v v v v v v x|V v X |V vV X
Zalo [63] Social 52 million + Vietnam v X v X X v X X v v \|\v v V|V vV X
Kakao [51] Social 45 million+ SouthKorea | X X v x v x Vv X v JV |/ V V| X X X
Grab [51] Delivery 25 million + Singapore X X X v v X v v v x|V vV X|vV v X

Table 1: Comparison with popular super apps. “Platform” represents the super apps can run atop the specific platform,
and “miniapp” represents the super app have miniapps enabled.

set of in-app APIs for miniapps to access various system
resources (e.g., Bluetooth, NFC, microphone, and camera).
While most APIs are similar across platforms, some differ-
ences exist, such as mobile platforms supporting multiple
sensors but not desktop Windows lack of such support.
For example, NFC APIs are only supported on Android,
and APIs for the gyroscope, compass, and accelerometer
are only available on mobile platforms. Also, similar to
web apps, to enable the cross-platform capabilities, the
miniapps are typically programmed in both script (e.g.,
JavaScript [35]) and markup languages (e.g., WXML [32],
which is an HTML-like language defined by Tencent for Ul
design in WeChat), and they rely on the logic engine of the
super app to execute the script and the rendering engine to
display the webview components.

Mini-apps can access both system resources (e.g., Blue-
tooth, NFC) and user data (e.g., phone number, billing ad-
dress). To access these resources, mini-apps need permission
from users on mobile platforms. Users receive a permission
request dialog box that explains why the mini-app needs ac-
cess to a specific resource, and users can grant or deny per-
mission. Once permission is granted, it is recorded for fu-
ture use, so users don’t have to grant access again. Please
note that in this permission model [7], some permissions are
inherited from the Android system, such as the Bluetooth
permission, while others are not, like the scope.werun
permission, which is required when miniapps attempt to ob-
tain WeRun data (the user’s daily steps) from WeChat. When
a user grants permission for WeChat to access a specific type
of resource, it does not mean that WeChat can automati-
cally grant all access to mini-apps. Therefore, WeChat will
prompt the user again to confirm whether they would like
to grant data access to a specific mini-app. For instance,
if the user grants WeChat access to Bluetooth resources
when a mini-app wants to access Bluetooth through WeChat,
WeChat will ask the user a second time to ensure that the user
wants to give Bluetooth access to that specific miniapp.

2.3 The Comparison

Regarding the differences between different apps and
their corresponding host platforms, Table 2 provides a
summary. We can notice that there could be six differences
when comparing miniapps with traditional native apps and
also web apps. First, similar to web apps, miniapps are
installation-free, and users do not need to install them. In-
stead, the users can directly access those miniapps from the
super apps’ markets. Second, unlike native apps, miniapps
cannot be automatically launched. Instead, users must click
on the icon of a miniapp to launch it. The super app will
keep track of the user’s preferences, including their favorite
miniapps. These preferences will be synced across all
devices owned by the user, although the preferred miniapps
will not be automatically downloaded on all devices. Third,
although most miniapps running on the mobile version of
the super app cannot run in the background for longer than
5 minutes [53], some miniapps can by requesting special
approval from super app vendors. It is important to note
that this restriction only applies to mobile super apps, and
miniapps running on the desktop version of the super app
can run in the background without any time limit. Fourth,
similar to mobile apps, miniapps do not have mandatory
back-ends. Fifth, super apps create the runtime environment
for the miniapps, allowing the developer only to implement
one miniapp, and run it everywhere (e.g., in both Android
and 10S). Finally, before the miniapps open to the public,
they must be vetted by the super apps providers to protect
end users from using any malicious miniapp in the market.

3 Overview

Key Observations and Goals. Miniapps that run on various
platforms may encounter different behaviors due to platform
differences such as permissions and threat models. The ob-

USENIX Association

32nd USENIX Security Symposium 6631

Mobile OS Web Browsers Super Apps
Hosts & Supported Apps (Native Apps) (Web Apps) (Miniapps)
End Users
Install-free? X 4 v
Auto-Started? v X X
Running at Background? v X v
Developers
Mandatory Backend? X v X
Cross-platforms? X v v
Centralized Vetting? v X 4

Table 2: Comparison between different hosts and their
supported apps

jective of this study is to systematically identify these dis-
crepancies at the API level for miniapps and examine their
security implications. This is because the knowledge gained
from testing a single platform does not necessarily apply to
other platforms. At a high level, there are at least three cat-
egories of API discrepancies that could result in security is-
sues. In the following, we dive into the details of the ob-
served root causes and the objectives we aim to accomplish:

e API Existence Discrepancies. The root cause is the
inconsistency in the implementation of security-focused
APIs across platforms. In particular, some APIs are only
available on certain platforms, such as most sensor APIs
(e.g., accelerometer, compass, and gyroscope) which are
only supported on mobile platforms such as Android and
i0S. While most of those API differences may just cause
compatibility issues, some can lead to security attacks.
An example of such APl is wx .makeBluetoothPair,
which initiates authentication for Bluetooth devices. Its
absence on platforms such as iOS makes the Bluetooth de-
vice unable to differentiate between trusted and untrusted
devices, leading to Man-in-the-Middle attacks.

e API Permission Discrepancies. The fundamental reason
behind this issue is that certain APIs are created to enable
access to sensitive resources, but the safeguards to protect
sensitive resources are not applied consistently across
platforms. Specifically, miniapps often need to request
user authorization to access sensitive resources such as
audio, video, and contacts. However, we observed that
the Windows platform (note that WeChat for Windows
is not downloaded from the Microsoft Store because the
store version lacks support for miniapps) does not have
any permission protection when it comes to accessing
these resources. This means that miniapps on the Win-
dows platform can potentially access sensitive resources
without requiring any user consent, which could put user
privacy and security at risk.

API Output Discrepancies. The root cause of this issue
is the varying amounts of device information and config-
uration exposed through super app APIs across different

platforms, leading to the possibility of fingerprinting
attacks. Specifically, it is well known that attackers can
use the browser or mobile APIs to identify specific users
for targeted advertising [45, 34, 38]. Similarly, WeChat
also has APIs that are vulnerable to fingerprinting attacks.
We refer to these types of APIs as “fingerprintable” in
the rest of this paper. Interestingly, we notice that for a
specific API, it can be fingerprintable in some platforms,
but not others. Fingerprintable APIs may also vary
in their accuracy across platforms. For example, the
getScreenBrightness API returns varying levels
of output precision on different platforms. The Windows
version provides precision to two decimal places, whereas
the Android version offers 16 decimal places, allowing
for more accurate differentiation and fingerprinting of
users and devices on the Android platform.

Scope. While we could study all the super apps available
on the market (as listed in Table 1), we focus exclusively on
WeChat for four reasons. First, WeChat has the largest
number of users (with 1.2 billion monthly active users),
and any security vulnerability in this super app can have a
striking impact. Second, WeChat pioneered the concept of
miniapp paradigm, and so far it has more than 4.3 million
miniapps, which is way more than any other platform (e.g.,
Alipay has about 1 million miniapps [55], and Snapchat
has only 62 miniapps). Third, WeChat and WeCom are the
only two super apps that support the execution of miniapps
on three platforms, namely Windows, Android, and iOS.
While miniapps can run on macOS by clicking on a down-
load link, there is no public portal for users to search and
access them, unlike on 10S, Android, and Windows. We be-
lieve that the miniapp environment on macOS is still in de-
velopment. Meanwhile, we conducted tests on macOS and
found that the results were the same to those on iOS. We
attribute this to the adoption of the same sandboxing tech-
niques and runtime on both platforms (iOS and macOS).
Therefore, we have excluded macOS from our analysis to
avoid duplication and only report our findings on iOS, An-
droid, and Windows. Fourth, while we can also analyze We-
Com, we find that it uses the same framework to manage
and execute miniapps, sharing much of the same code base,
as confirmed by both our binary code inspection and Ten-
cent’s official documents [30], which mention that miniapp
developers do not even have to change their code at all to
make their miniapps compatible with WeCom. Therefore,
we just need to focus on WeChat for proof of concept.

Assumptions. Our goal is to find the miniapp APIs that can
be exploited by malicious miniapps due to the discrepant be-
haviors. As such, we make a few assumptions for the mali-
cious miniapps. First, we assume that the attacker is able to
distribute the malicious miniapps onto the user’s mobile, as
in the study by Lu et al. [39]. This is also reasonable, since
miniapps are install-less, and to launch a miniapp is just one-

6632 32nd USENIX Security Symposium

USENIX Association

Test Case Generator (§ 4.1)

Code Executor (§ 4.2)

Discrepancies Analyzer (§ 4.3)

API Existence Discrepancies

iy

o4 ©00

Debug Protocol

API-Doc
(I) API Parameter (IT) API Dependencies
Resolution Resolution

Results

6t
. B

API Output Discrepancies ?

Figure 2: The Architecture of APIDIFF

click away from the users. Second, we assume the trustwor-
thiness of the code from the OS and the super apps, since we
do not believe that they have any malicious intentions (oth-
erwise, they can trivially launch any layer below attacks to
attack the miniapps). Finally, we also assume the trustwor-
thiness of the super apps’ backends or miniapps’ backends,
since they are typically out of reach of the attackers.

4 APIDIFF Design

This section presents the detailed design of APIDIFF.
As illustrated in Figure 2, APIDIFF consists of three key
components.

e Test Case Generator (§4.1). For each API, APIDIFF
needs to create a test case, with the corresponding parame-
ters properly initialized. If an API’s execution depends on
other APIs, APIDIFF also needs to resolve the dependen-
cies with the right order of executing them. Additionally,
to have high coverage of API execution, it also needs to
mutate the values of the parameters when necessary.

e Code Executor (§4.2). To exercise the discrepancies
across platforms (i.e., Windows, Android, and iOS),
APIDIFF must execute the test cases on these platforms,
to produce the corresponding outputs, from which to
identify discrepancies that may have security concerns.

e Discrepancies Analyzer (§4.3). To identify the dis-
crepant APIs, APIDIFF uses differential analysis with a
set of predefined policies to inspect the error code and
return values, which are the ones observed by miniapps,
of the tested APIs.

Note that manual efforts were only required at the be-
ginning to investigate the workflow, including investigating
the possible error codes that may be observed for each API.
After the tool is built, no further manual analysis is required.
This is because we use function evaluate to execute the
tool-generated JavaScript testing code for all the APIs and
collect the outputs. Discrepancies are then identified based
on the returned error code and outputs. With the discovered

API discrepancies, we then demonstrate how to exploit them
for malicious purposes. Since the attacks will highly depend
on the semantics of the APIs, we will not be able to construct
the attacks automatically. Instead, we develop a few case
studies to demonstrate the consequences of the discrepancies
and the impact of the corresponding attacks (§6).

4.1 Test Case Generator

The goal of our test case generator is to produce a code
snippet that contains the API to be tested. However, this is
challenging since we need to feed the testing API with the
right parameters to trigger the discrepant behaviors. That is,
we need to properly understand the parameters and initialize
with the desired seed values. Meanwhile, since some APIs
may have dependencies on the execution of other APIs, we
have to properly resolve the order the API executions.

Generating values for API parameters. Intuitively, we
would have to go through all the documentation to under-
stand the semantics for each API in order to provide the
right values for its parameters, which is tedious and time
consuming. Interestingly, we notice that the documentation
contains well-formatted descriptions for each parameter and
its type. Therefore, we propose first extracting the parame-
ter type from the documentation and then initializing them
based on the domain knowledge.

The rationale for this approach is that our objective is to
initiate API execution to identify discrepant APIs based on
their input and output. Therefore, initializing APIs with seed
values and mutating them can allow us to uncover the three
types of discrepant APIs we aim to identify, without explor-
ing all their branches. For instance, to determine whether
an API exists or not, an error message is thrown regardless
of its parameters. Second, permission checks are often per-
formed before executing an API, and we can thus easily de-
tect permission discrepancies without providing the correct
values. Finally, fingerprintable APIs are mostly used to ob-
tain hardware information, as long as we have initialized the
environment correctly.

USENIX Association

32nd USENIX Security Symposium 6633

Type Value Example

Any null console.log (<any>)

Array Recursively Resolved wx.foo([1,2,3,4])

Boolean true fs.statSync("", true)
Function (e) => {e} success: (e) => {e}

Null null N/A

Number 1 fs.writeSync (1)

Object Recursively Resolved {fail: (e) => {e}}

String test wx.getStorageSync ("test")
Undefined undefined N/A

Table 3: Values Used for Basic Type Parameters

o APIs without Parameters. In total, there are 231 APIs
that do not accept any parameters. They are often used
to obtain the configurations of the execution environment.
For example, APl wx .getSystemSetting () returns
the system settings of the devices (e.g., whether the device
has Bluetooth or Wi-Fi enabled). These APIs can be easily
recognized in the documentation.

e APIs with Basic Type Parameters. Miniapps are
developed using JavaScript. Consequently, the parameters
of miniapp APIs use a variety of basic types such as
String, Boolean, Number, and Array defined in
standard JavaScript, to pass information for the execution.

For example, wx.getStorageSync (string
key) fetches data indexed by key, and
wx.removeStorageSync (string key) deletes

the corresponding data. In total, there are 107 APIs that
accept only the basic type parameters. We initialize these
parameters with the default seed values (See Table 3).

e APIs with Composite Type Parameters. The majority of
the APIs (in total 693) take parameters in composite types.
For example, getLocation (Object), which returns
the user’s actual location, accepts an object as its parame-
ter, and this object has multiple fields, and their types are
just basic types (e.g., String, Boolean) or a callback
function of either success, fail, or complete. For-
tunately, since we already have the pre-cooked values for
the basic types, we just initialize these basic types with the
corresponding seed values.

e APIs with a Callback Function Parameter. Based
on our analysis of the documentation, we found that in
total there are three types of callback functions, which
are needed by 364 APIs. These three callbacks are
success (which specifies the follow-up actions when
the API is invoked successfully), fail (which specifies
the follow-up actions when the API invocation is failed)
and complete (which specifies the follow-up actions
regardless of the success or failure of the API). We just
created an implementation of these three callbacks by just
displaying a message showing they are called.

We now discuss the mutation policy we employed. As
depicted in Table 3, there are various types of parameters
used in our experiment, some of which are limited and

® N U AW —

11
12

const uploadTask = wx.uploadFile ({
url: 'http://example.weixin.qgq.com/upload’',
filePath: tempFilePaths[O0],
name: 'file',
formData: {
success (res) {
const data = res.data
//do something
)
uploadTask.onProgressUpdate ((res) => {
console.log('uploaded:', res.progress)})
uploadTask.abort ()

'user': 'test' I

Figure 3: Code Example for API uploadFile in
WeChat Official Document

enumerable, such as Boolean parameters. We enumerated
these parameters to collect a wider range of outputs. For
instance, consider the method getLocation (type,
isHighAccuracy, highAccuracyExpireTime).

The second parameter, 1sHighAccuracy, is a Boolean
value that can take on the values of either true or false. In
our experiment, we tested this parameter with both true and
false values. Similarly, some parameters can only take on
certain string values. For example, the first parameter of
getLocation is a string that can have the value of either
“wg84” (indicating that the API will return GPS location)
or “gcj02” (indicating that the API will use cellular or
other wireless networks to retrieve location data). These
variables are also enumerable, and we obtained the possible
candidate values (such as wg84 and gcj02) by analyzing the
documentation.

However, the third parameter of getLocation,
highAccuracyExpireTime, is a numerical value that
specifies a time window in which the API should return the
output. This parameter is not enumerable, so we mutated
the numerical values to collect more outputs. To mutate
numerical values, we used a range of numbers from -1 to
100, and for non-enumerable strings (The string list we
used is a set of built-in payloads in Burp Suite, which can
be found in [2]), we utilized a list of strings. Obviously,
we were unable to enumerate all possible numerical values
and strings. This is our limitation. Notwithstanding this,
our confidence in the dependability of our findings persists,
since our objective was to pinpoint inconsistencies in
existence, permission, and output, which can typically be
uncovered irrespective of code coverage. For instance,
highAccuracyExpireTime specifies the allowed
time for the API to return the output. As long as we
can obtain the output from the API, the specific value of
highAccuracyExpireTime becomes irrelevant.

Resolving the execution order of dependent APIs. It is
worth noting that many APIs actually have dependencies,
meaning that some APIs must be executed first (we de-
note them dominating APIs), before the execution of oth-

6634 32nd USENIX Security Symposium

USENIX Association

ers (we denote them dominated APIs). For example, in
Figure 3, onProgressUpdate requires uploadFile
to be execute first. As such, we need to resolve the
API dependencies. An intuitive approach is to use
regular expression with patterns such as startx (e.g.,
startHEC), get« (e.g., getNFCAdapter), createx
(e.g., createUDPSocket) to identify the dominating
APIs. However, there could be multiple dominating APIs
that do not start with these patterns, as shown in Case II
and III in Table 4), where the execution of the last API
depends on all of its predecessors. Then, another intuitive
approach would be to exhaustively enumerate all possible
combinations. However, given that we have 1,031 APIs in
total, theoretically this brute-force approach would require
factorial(1031) combinations (we need to try all of their
permutations since there could be more than three or four
layer of dependencies ahead of the dominated API, as shown
in Case II and III). Certainly, we have to optimize this ap-
proach further.

To effectively identify and order the APIs, we opted
for a category-guided brute-force approach. A key ob-
servation is that the dominating APIs are usually those
APIs that initialize the hardware and environments for
that specific category. Examples of those dominat-
ing APIs include startHCE, which initializes NFC,
wx.getFileSystemManager, which initializes the file
system manager, and wx.openBluetoothAdapter,
which initializes the Bluetooth devices. As such, if an
API is the dominating API for a specific dominated API,
it will likely be the dominating API for those in the same
category. For example, startHCE is the dominating API
for sendHCEMessage, it is also the dominating API for
wx .onHCEMessage and wx.getHCEState. As such,
we determined that we could effectively reduce the number
of possible combinations by categorizing the APIs and
enumerating them in order within each category. Taking the
NFC category as an example, there are only 6 APIs in total,
and we only need to try factorial(6) (i.e., 6!) at most to
exercise them in the right order. Eventually, we decide to
use this category guided brute-force approach to generate
the desired execution orders.

4.2 Code Executor

Our APIDIFF takes the code fragments (which essentially is
a program) that contains the API to be tested, and executes
the programs in order to collect the results. To this end, an
intuitive approach is to compile the miniapp that contains the
API for testing and then execute the produced miniapps to
observe the outputs. However, since this approach requires
developers to produce multiple miniapps when testing
multiple APIs, it is time consuming. Another possible
approach is to use dynamic code execution to load and

Case# API Sequence

wx.startHEC
wx .sendHECMessage
wx.createBLEPeripheralServer
I BLEPeripheralServer.addService
BLEPeripheralServer.removeService
wx.createInterstitialAd
InterstitialAd.load
I InterstitialAd.onLoad
InterstitialAd.show
InterstitialAd.destory
wx .createUDPSocket
UDPSocket.connect

v

Table 4: Examples of API Sequence (The bold font are
the dominating APIs)

execute the code dynamically. Unfortunately, WeChat has
disabled this feature due to security concerns [53].

Our approach, however, does not rely on compile-and-
then-execute process or JavaScript dynamic code execution.
Instead, we notice that the development tool can directly up-
date the code of the miniapp when running on top of the
testing platforms, and as such, we reverse engineered and
customized the debug protocol of WeChat to allow the API
to execute directly on the targeted platform. Specifically, we
found that whenever the miniapps execute the code through
the debug protocol, they pass their JavaScript to be executed
to the IDE, which then invokes an internal function called
evaluate to ultimately execute the JavaScript code and
return the output. Therefore, we simply feed the code into
evaluate directly and log the output if there is any, in-
cluding error codes, for post-mortem analysis.

Next, we need to run the test cases on multiple platforms
(e.g., Android, i0S, and Windows). A straightforward ap-
proach is to test each API on each platform sequentially, but
this would be time-consuming. Instead, we designed a sim-
ple client-server (CS) mode in which a single server main-
tains a task queue containing the APIs to be tested, and col-
lects and records the outputs. Multiple clients, each of which
executes the code on a specific testing platform, fetch the
tasks from the queue and submit the outputs to the server.
This approach allows the testing code to be deployed on An-
droid, i0OS, and Windows simultaneously, enabling the test
results of the APIs to be collected in parallel. To collect re-
sults for both cross-platform and cross-device testing, we run
the test cases on six devices: two Windows, two Android,
and two iOS. This way, we have results for different plat-
forms and devices for the same platform.

Having prepared for the test cases and the devices, we
also have another important problem to solve, namely how
to configure the permissions for each testing API to detect
the missing permissions in the testing platform. An intu-
itive approach is not to assign any permission for the testing
API, and then wait for permission request dialogue to de-

USENIX Association

32nd USENIX Security Symposium 6635

termine whether a particular request requires certain permis-
sion. However, this approach would require parsing the dia-
log window, understanding the output, and meanwhile click-
ing the confirmation button on the screen. Also, note that
if there is no clicking within 5 minutes window, the testing
miniapp will abort and an error message will be logged. If
the permission is configured, then there will be no runtime
permission request, and the miniapp will be executed with-
out any interruption. Therefore, based on these observations,
we propose a simpler approach of directly running the test-
ing miniapps (when testing the specific API) with two sets of
permission configurations without parsing and clicking any
permission request window: one configuration has all per-
mission enabled (the miniapp will be executed quietly), and
the other has all permission disabled (an error message will
be logged if it requires a specific permission). By doing so,
we just parse the logged error message to determine whether
a testing API requires certain permissions.

4.3 Discrepancies Analyzer

With the collected testing results for each API across differ-
ent platforms and devices, we then identify the discrepant
APIs that exhibit the three types of discrepancies we aim to
identify. In the following, we explain the specific policies
we used to detect these APIs.

(I) API Existence Discrepancies. Discrepancies of this
kind can be caused by the missing implementations of the
APIs on the corresponding platforms. To determine whether
an API has been implemented, we then simply inspect the
logged messages on the tested platform: if error code “not
supported” is observed for this particular API, then this
APl is classified into non-existing API for this platform.

An API with existence discrepancies is identified if
the API on one platform is executed successfully,
and the API on another one throws errors “not
supported”.

(IT) API Permission Discrepancies. Discrepancies of this
kind are caused by the missing permission protections on
the testing platform. To determine whether an API has
been implemented on a specific platform, we again inspect
the logged messages on the tested platform: if error code
“permission errors” is observed for this particular
API, then this API requires permission. If it does not require
permission in other platform(s), then this API is classified
into permission discrepant API.

An API with permission discrepancies is identified if
the API execution does not throw any “permission
errors’” in this platform but in others.

(IIT) API Output Discrepancies. Discrepancies of this kind
are caused due to the discrepancies in device-specific out-
puts and platform-specific outputs. As such, we particularly
inspect the output of the APIs for different platforms as well
as different devices. Whenever we notice any differences in
the output, this API is classified into output discrepant APIL.

An API with output discrepancies is identified if the
API’s outputs are platform and/or device specific.

5 Evaluation

5.1 Experiment Setup

To study the security issues and impact of our targeted
super app WeChat, we have registered several user ac-
counts, downloaded the corresponding miniapp development
tools and SDKs, followed their official documents to build
miniapps (e.g., some of the attacks need to be launched by
malicious miniapps). In addition, some results from the ex-
periments require us to reverse engineer WeChat, and there-
fore, we used JEB [5] and IDA Pro [23] to inspect the decom-
plied code statically and programmed Frida [25] scripts to
dynamically verify our findings. Again, we run our APIDIFF
on six devices, two Windows-11 desktops, and four smart-
phones (two with Android-13, and two with i0S-16).

Existence Permission Output
Discrepancies Discrepancies Discrepancies
= O @& = & @& = oM @

= 105 40 16 17 8 12
& 105 69 16 1 8 14
[40 69 17 1 12 14

Table 5: Summary of API Discrepancies

5.2 Experiment Results

Among the tested miniapp APIs, APIDIFF has identified
three sets of APIs that exhibit existence (109), permission
(17), and output (22) discrepancies across platforms and de-
vices, which may be exploited by attackers to launch various
attacks. As shown in Table 5, there are 105 APIs that have
existence discrepancies between Windows and Android, 40
APIs between Windows and i0OS, 69 APIs between Android
and 10S. Meanwhile, there are 16 APIs that have permission
discrepancies between Windows and Android, 17 APIs be-
tween Windows and iOS, and only one API (i.e., Bluetooth
API) between Android and iOS. Finally, there are 8 APIs that
have output discrepancies between Windows and Android,
12 APIs between iOS and Windows, and 14 APIs between
Android and iOS.

We present three figures in Figure 4 to illustrate the three
types of discrepancies (existence, permission, and output)

6636 32nd USENIX Security Symposium

USENIX Association

69 105 40
109 17

APIs
APIs

16

17
22 14 8 12

APls

Android/i0S Windows/Android ~ Windows/iOS

(a) Existence Discrepancies

Android/iOS Windows/Android ~ Windows/iOS

(b) Permission Discrepancies

Android/iOS Windows/Android ~ Windows/iOS

(¢) Output Discrepancies

Figure 4: Discrepancies Summary. Particularly, each row represents one API. Since output discrepancies exist not only
across platforms but also across devices, we have highlighted all the rows in pink.

between different platforms and devices. Each row rep-
resents a specific API, and each column indicates whether
there are discrepancies between the compared platforms. We
color the cells to indicate discrepancies and leave them blank
otherwise. For instance, there are 109 APIs with existence
discrepancies, with 69 APIs exhibiting existence discrep-
ancies between Android and iOS, 105 APIs between Win-
dows and Android, and 40 APIs between Windows and iOS.
Meanwhile, since output discrepancies exist not only across
platforms but also across devices, we have highlighted all the
rows (i.e., APIs) that exhibit output discrepancies across de-
vices in pink. Next, we zoom in the results to obtain a few
insights regarding the discrepancies in each category.

Results of API Existence Discrepancies. The API exis-
tence discrepancies may allow attackers to mount attacks
against the device with weaker protections. In particular,
we have identified 109 APIs of this kind, and these APIs fall
into 32 categories, as shown in Table 6. Note that there are
overlaps among those APIs, and therefore, the total number
is less than the sum of discrepant APIs while comparing
different platforms. For example, while Android has 69
APIs that are different from those on iOS, almost all of
them are also included in Windows and iOS, resulting in
a total of 109 APIs. We notice that Android and Windows
are significantly different with the existence of the APISs,
followed by Android and i0OS. Windows and iOS share
the most similar. Among all the APIs that have existence
discrepancies, we notice that (i) most of those discrepancies
are because of the support of specific hardware. For
example, Windows does not support NFC and Gyroscope at
all. (i1)) Many of the discrepancies are caused by the system
implementation discrepancies. For example, both Android
and iOS support the accessibility services by nature, but
Windows does not. As such, Windows does not have the
accessibility services APIs for the miniapps. (iii) There

are also some of the discrepancies that are caused by the
super app’s implementation discrepancies. For example, the
crypto random number generation API is not implemented
on Windows, but implemented on Android and iOS.

Results of API Permission Discrepancies. We have
identified 17 APIs that have permission discrepancies, and
those APIs fall into 10 categories including location. Again,
we notice that Windows and iOS are mostly diversified,
while Android and iOS are quite similar. The experiment
results show that WeChat in Windows does not request
any permissions from users to access privacy-sensitive
resources (as shown in Table 7), and we can thus simply
create a malicious miniapp to exploit this vulnerability. For
instance, with a malicious miniapp, an attacker can directly
open the microphones quietly without the user’s awareness.
We will demonstrate concretely how to exploit permission
discrepancies in §6.2.

Results of API Output Discrepancies. In our experiment,
we closed the super app first and then re-launched it again to
run the experiment a second time. This was done to ensure
that any observed differences were not caused by the run-
ning environment. As a result, we have identified 22 APIs
that have output discrepancies, falling into 8 categories in-
cluding UI, media, and device. Specifically, a fingerprint-
able API is defined by its unique and stable properties. The
uniqueness of an API refers to its ability to generate a unique
identifier for a user. The stability of the API is measured by
its consistency over time, allowing it to be effectively used
for tracking purposes. The uniqueness of an API is deter-
mined by running the API on multiple devices (6 devices in
our experiment), with the APIs that produce different outputs
considered unique. As shown in Table 8, among all the APIs
with output discrepancies, 22 of them have the uniqueness
feature. Among them, we further evaluated their stability.

USENIX Association

32nd USENIX Security Symposium 6637

API Platforms

Category Total
#6 ome omé
Accessibility 1 1 100.00 1 100.00
Bluetooth 13 5 3846 5 3846
BLE 15 3 20.00 3 20.00
RandomNumber 1 1 100.00 1 100.00
Gyroscope 3 1 3333 1 3333
g iBeacon 8 3 37.50 3 3750
'z Keyboard 4 1 25.00 1 25.00
2 Motion 4 2 50.00 2 50.00
Scan 1 1 100.00 1 100.00
Screen 9 1 1111 1 1111
Vibrate 2 1 50.00 1 50.00
Wi-Fi 13 1 7.69 1 7.69
File 8 1 1250 1 12.50 1 12.50
Location 12 2 16.67 2 16.67
& Audio 9 3 3333 3 3333
T Video 7 2 2857 2 2857
= VoIP 16 3 1875 3 1875
mDNS 10 1 10.00 1 10.00
IsoDep 7 7 100.00 7 100.00 -
MifareClassic 6 6 100.00 6 100.00 -
MifareUltralight 6 6 100.00 6 100.00 -
o Ndef 7 7 100.00 7 100.00 - -
= NfcA 8 8 100.00 8 100.00 - -
z NFCAdapter 13 13 100.00 13 100.00 - -
NfcB 6 6 100.00 6 100.00 -
NfcF 6 6 100.00 6 100.00 -
NfcV 6 6 100.00 6 100.00 -
OpenAPI 5 1 20.00 3 60.00 2 40.00
Storage 4 1 25.00 1 25.00
System 12 1 8.33 1 8.33 1 8.33
= Interaction 8 - 2 25.00 2 25.00
= Sticky 1 1 100.00 - - 1 100.00

Table 6: Summary of APIs w.r.t Existence Discrepancies.
The API categories are defined by Tencent [53], and we
only list the categories that have discrepancies.

An API is deemed stable when it produces consistent out-
puts on the same device over multiple runs (3 times in our
experiment). For all the APIs with uniqueness, 13 of them
were found to be stable, which become fingerprintable APIs
(as highlighted in the pink color in Table 8).

We then further grouped them into two categories: Input-
Oriented Fingerprintable (IOF) APIs are those that accept
inputs and generate outputs that are uniquely identifiable,
while Fingerprintable (OOF) APIs do not accept input but
produce outputs that are fingerprintable. For example, IOF
API getLocalIPAddress takes an object specifying
callback functions as input and produces a fingerprintable
IP address as output. OOF API getSystemInfo does not
take any inputs and directly returns fingerprintable system
information. Specifically, for input-based IOF fingerprint-
able APIs, they may require specific parameters to be passed.
We test them using the simple mutation method described in
the paper, but we cannot guarantee the completeness of such
APIs. However, this issue does not apply to OOF APIs.

At a high level, there are 9 OOF APIs and 4 IOF APIs. We
found discrepancies across platforms, meaning that APIs that

Mobile PC
APIs Permission Scope —

w @& =

APAPAP
getLocation YV VX
chooseLocation userLocation YV X
startLocationUpdate YV X
SLUBackground® userLocationBackground v/ v/ / / X
startRecord VX
joinVoIPChat record SV X
RecorderManager.start YV
createCameraContext camera YV X
createVKSession YV X
openBluetoothAdapter X /X
BLEPeripheralServer bluetooth YV X
saveImageToPhotosAlbum . X
saveVideoToPhotosAlbum writePhotosAlbum YV X
addPhoneContact addPhoneContact SV X
addPhoneRepeatCalendar VX
addPhoneCalendar addphoneCalendar SV X
getWeRunData werun YV X

Table 7: Summary of the API permission discrepancies
across platforms. ‘A’ means ‘“available’” and ‘“P”” means
“permission protected”. “SLUBackground” is short for
startLocationUpdateBackground.

work for fingerprinting on one platform may not work on an-
other. It is worth noting that the precision of an API’s output
can have an impact on the effectiveness of fingerprinting at-
tacks. APIs that provide more precise information can poten-
tially fingerprint more users. For example, on Windows, the
output precision of get ScreenBrightness is limited to
two decimal places, whereas on Android, it offers up to 16
decimal places, allowing for a greater differentiation and fin-
gerprinting of users and devices.Considering that brightness
values range from O to 1, the API output for Android has only
two decimal places, thereby restricting the maximum num-
ber of identifiable users to 10%. However, on Windows, with
an output precision of 16 decimal places, the maximum num-
ber of identifiable users increases significantly to 10'°. For
instance, suppose a user sets their screen brightness to 15%.
While the API output value on Windows may be 0.15, on
Android it can be as precise as 0.1512452067894578, which
can enable the identification of more users due to the higher
level of precision.

We would also like to emphasize that some APIs may pro-
duce different outputs over time, as users may change their
settings or devices may be relocated to a different location.
For instance, getLocalIPAddress API returns the IP
address of the device being tested, and its output may vary
if the device is connected to a different network. Similarly,
the get SystemInfo API contains some information that
is specific to the device’s settings (e.g., whether Bluetooth is
turned on), and its output may also change if the user changes
their settings. However, we will not consider these settings
or changes in our analysis, as in traditional fingerprinting, the
features used for fingerprinting, such as font size and time-
zone, may also change over time.

6638 32nd USENIX Security Symposium

USENIX Association

6 Exploiting the API Discrepancies

6.1 Exploiting API Existence Discrepancies

(A1) Fake Peripheral Attacks against Centrals. We have
detected existence discrepancies in the Bluetooth pairing
API. Note that Bluetooth resorts to pairing for its security,
where the two Bluetooth-enabled devices to negotiate a com-
munication key. In particular, wx .makeBluetoothPair
is an API that can be invoked by the miniapps to initi-
ate the pairing for the devices. Although WeChat has de-
signed wx .makeBluetoothPair for Bluetooth pairing,
this API is only available on Android, making i0OS devices
vulnerable to Bluetooth device impersonation.

We first demonstrate how fake peripheral attacks can be
launched against centrals. Assuming that a miniapp running
on the iOS central is a controller for a peripheral, the at-
tacker waits for a moment when the central and peripheral
(e.g., smart blood pressure monitor) are disconnected but in-
tends to initiate a new session. This moment can be easily
identified, since BLE communication transmits all traffic in
plain text over the air and is sniffable before the connection is
established. The attacker collects the identifier of the blood
pressure monitor (i.e., its Bluetooth MAC address [65]) that
goes over the air and impersonates the blood pressure moni-
tor to establish a connection with the victim’s smartphone. In
aregular scenario, a smartphone is supposed to connect only
one peripheral at a time, and therefore, the smartphone is cur-
rently not available for the blood pressure monitor. When the
miniapp on the smartphone is launched and the victim smart-
phone attempts to start encryption using the key that is nego-
tiated with the blood pressure monitor, the attacker responds
with a PIN_.OR_KEY_MISSING error. This is a widely used
trick to attack Bluetooth devices [67, 57]. According to the
current practice, Android OS will delete the key when it re-
ceives the error code. At this point, the peripheral currently
is the attacker and will not initiate the pairing process for
communication security, and for miniapp platforms, they do
not provide APIs for the victim miniapp to start the pairing
either. As a result, the communication continues in plaintext.
Moreover, there is no way for the miniapp to know whether
the link is secure. The attacker can now wait for the pair-
ing request from the central and select plaintext to communi-
cate with the central. However, since the miniapp running on
iOS does not have API wx .makeBluetoothPair to au-
thenticate the fake peripheral, the communication proceeds
normally as usual without notifying users. This could cause
serious consequences for miniapps running on iOS devices.
For example, the attacker may inject false blood pressure
measurements, misguiding doctors. We have discovered that
the function makeBluetoothPair is widely utilized by many
government system mini-applications. One such example is
the water-meter reading system, which may leverage these
mini-apps to monitor household water usage. Unfortunately,

these mini-apps are vulnerable to attackers who may manip-
ulate the measurement readings. Our investigation also re-
vealed that some major Chinese companies, such as Meituan
(a prominent food delivery company [6]) and DiDi (a ride-
hailing service [3]), employ Bluetooth functionality and are
thus susceptible to these attacks.

Practicality. This type of attack is highly practical due
to three reasons. First, low-cost devices such as Bluetooth
sniffers (e.g., 20 dollars [10]) and smartphones can be eas-
ily obtained to carry out the attack. Second, all traffic in
BLE communication is transmitted in plain text before the
connection is established. This enables the attacker to ob-
tain the MAC address needed for impersonation and to de-
termine the ideal moment for the attack. Third, during
the attack, the user of the victim smartphone will not re-
ceive any notifications or warnings. This is because the
API wx.isBluetoothDevicePaired, which is used
to check the pairing status between two devices, is not avail-
able for i10S devices. As a result, the attack can be deployed
stealthily and without the user’s knowledge.

Defense. To defend against A1, developers may need to uti-
lize cryptographic techniques for authentication, as relying
solely on pairing may not be sufficient to defend against a
fake peripheral injecting messages into miniapps. While
these cryptographic techniques are standard, negotiating
a key between the IoT device and the smartphone can be
challenging. A potential solution is to involve the user in
entering the same password on both devices when they are
first connected, allowing the devices to derive the same
cryptographic key.

(A2) Fake Central Attacks against Peripherals. Miniapps
can also operate as software-defined peripherals (SDPs), al-
lowing developers to add services with APl addService
for other native apps or miniapps to utilize. Since these ser-
vices may contain sensitive information, the Bluetooth Spec-
ification provides security levels [13] that devices can cus-
tomize to safeguard their services. For instance, if two de-
vices are paired, the security level of the connection meets
the “encryption” level. At this point, the central device can
access services configured with “encryption”. However, if
the two devices are not paired, the security level is lower,
and the central device cannot access the services that neces-
sitate an encrypted link. We found that WeChat has imple-
mented security levels for Android devices but not for i0S.
The absence of a stronger security level makes miniapps on
iOS devices vulnerable to MitM attacks, which can result in
unauthorized data access.

In this attack, we assume that an Android phone runs a
peripheral miniapp and makes the phone to be a SDP, which
provides services. Another device, which attempts to con-
nect the peripheral, is denoted as the victim central. We as-
sume that the attacker is in the range of the two communicat-

USENIX Association

32nd USENIX Security Symposium 6639

APIs Mobile Desktop
L] [=
Name Category Type Precision A S U A S U A S U
createAudioContext Media +) X v X v v X v v X v
createBufferURL Storage) X v X v v X v v X v
createCameraContext Media = X v X v v X v v X v
createCanvasContext Canvas) X v X v v X v v X v
createlntersectionObserver WXML) X v X v v X v v X v
createLivePusherContext Media = X v X v v X v v X v
createOffscreenCanvas Canvas ») X v X v v X v v X v
createSelectorQuery WXML = X v X v v X v v X v
createWebAudioContext Media C 4 X v X v v X v v X v
getAccountInfoSync OpenAPI = X v v X v v v v v X
getAppAuthorizeSetting Base = X v v v v v v v v X
getAppBaseInfo Base = X v v v v v v v v v
getDevicelInfo Base = X v v v v v v v v v
getLocalIPAddress Device ») X v v v v v X v v X
getMenuButtonBoundingClientRect Ul = X v v X v v v v v X
getPerformance Base = X v v v v v X v v X
getScreenBrightness Device ») v v v v v v X v v v
getSystemInfo Base ») v v v v v v v v v v
getSystemInfoAsync Base ») v v v v v v v v v v
getSystemInfoSync Base = v v v v v v v v v v
getSystemSetting Base = X v v X v v v v v X
getWindowInfo Base = X v v X v v v v v v

Table 8: Summary of APIs w.r.t Output Discrepancies. %) represents Input-Oriented and (% represents Output-Oriented.
A means ““Available”, S means ‘“Stable” and U means “Unique”. An API is fingerprintable if there is at least one platform
in which it is available (A check), stable (S check), and unique (U check). The fingerprintable APIs have been distinctly

marked in pink for easy identification.

ing devices, and selects the moment when the two communi-
cating devices intend to communicate. First, the attacker pre-
tends to be the victim central and connects to the victim SDP.
Then, the attacker initiates a service access request to the pe-
ripheral. When receiving the request, the peripheral should
have the capabilities to check the status of the link to either
approve or reject the request. For example, for a miniapp
running atop Android, the miniapp can set the security level
to readEncryptionRequired through addService,
which will guide the device to only accept the request when
the link is encrypted. However, there is no protection on the
i0S device, and the attacker can access all the services (e.g.,
the services can be the user’s contact list) on the peripheral
without any protection. Indeed, we have found that SDP ser-
vices are commonly utilized by numerous TV controllers,
and smart home devices (such as weight scales, smart lights,
and smart locks), which are sourced from different vendors
such as Alibaba Group [1] and Zhanzhibao [9].

Practicality. This type of attack is also highly practical for
three reasons. First, since the SDP provides services that are
accessible to all other devices or apps, there is no additional
information required (e.g., MAC address) for the attacker
to impersonate a victim central device. Second, the attacker
can easily use his or her smartphone to connect to the SDP
and consume its services without needing any other devices.
Third, the attack can be carried out quietly since SDPs do
not send notifications to the user when other devices or apps
access their services.

Defense. Since the root cause of A2 is the lack of adequate
security levels for the services SDP, developers can address

this issue by implementing different levels of keys based
on the authentication method used by the two devices.
Additionally, they can track the connection status to ensure
that other miniapps or native apps can only access the
services when a specific security level is met. For instance,
the SDP can detect whether a request is coming from a
device that doesn’t share any keys with the SDP, or shares
a common key produced by cryptographic techniques (i.e.,
encryption level).

6.2 Exploiting API Permission Discrepancies

(A3) Information Collection Attack. APIs for access-
ing sensitive resources lack consistent safeguards across
platforms, enabling attackers to steal privacy-sensitive infor-
mation in Windows based on available resource categories.
Specifically, miniapps on Windows can access resources
even when in the background, allowing a malicious app to
run unnoticed for an extended period. In contrast, miniapps
on Android or iOS can only access system resources when
running in the foreground, and if left in the background for
more than 5 minutes, WeChat on Android and iOS will
terminate their execution to free up resources. This gives a
malicious miniapp on Windows more capability to collect
user data surreptitiously. To confirm these observations, we
developed a miniapp with all the identified resources access
APIs to intentionally collect the resources, and it runs as
expected. We assume that the malicious miniapp can be
installed onto the user’s device (e.g., a Windows device). In

6640 32nd USENIX Security Symposium

USENIX Association

the following, we show how the permission discrepant APIs
in Windows can be exploited.

e User Tracking Attacks: A malicious miniapp can track
a user’s location by invoking API get Location, allow-
ing the attacker to know the user’s whereabouts over time.

e Conversation Eavesdropping Attacks: A
miniapp can activate the user’s microphone (using
wx.startRecord) to eavesdrop on conversations,
recording and uploading the audio files to its back-end.

e Stealthy Photo and Video Capture: A miniapp can
use the user’s camera without their knowledge via
wx.createCameraContext, and take photos and
videos using CameraContext.takePhoto and
CameraContext .record, respectively.

e User Information Stealing: A miniapp can extract
sensitive user information, such as gender, username, and
addresses, by invoking getUserInfo, which should
have been adequately protected to prevent abuse.

Practicality. This attack is highly practical for three reasons.
First, since no permission is required to access sensitive
resources, the user will not be notified when a malicious
miniapp accesses them. The malicious app can disguise its
true intentions by providing seemingly harmless services,
such as a game app, and then records the user’s audio and lo-
cation to send the collected sensitive information to a remote
server. Second, the malicious miniapp on Windows can run
in the background without being terminated by super apps,
allowing the attacker to monitor the victim for an extended
period. Finally, these miniapps are difficult to detect because
when they run on mobile platforms, permissions are actually
required. Therefore, from the super app’s perspective, it is
challenging to determine whether the miniapp is intended to
run on mobile devices or on Windows.

Defense. To address the issue of permission discrepancies,
Tencent must first implement missing permission checks on
resource access APIs for the Windows platform. Currently,
Tencent is working on fixing these issues. For instance, we
observed that WeChat on Windows no longer supports ac-
cessing user locations. In addition to considering the threat
models of different OSs, designers must also consider the
threat models of their services. As discussed, users trust and
install WeChat on Windows, and they do not expect install-
less miniapps to access their resources without authorization.
Web browsers have already implemented some best practices
to address this issue. For instance, regardless of the OS, web
apps running on Chrome must explicitly request permission
to use the camera when needed [44]. WeChat needs to have
its own permission system imposed on miniapps, indepen-
dent of the underlying OS, just like Chrome (on all plat-
forms) does for web apps.

6.3 Exploiting API Output Discrepancies

(A4) Fingerprinting Attacks. This attack collects unique
device information, such as app version, screen resolution,
and installed fonts, through fingerprintable APIs. When
combined, this information can create a unique finger-
print that can be used to track a user’s online behavior
across multiple devices and sessions. While there are
many APIs that can be used to fingerprint users, we select
getSystemInfo to demonstrate the attack given that it
can collect up to 27 types of device-specific information
(please refer to Table 9 in our Appendix-§A for the types
of collected information). Specifically, getSystemInfo
is an API that can collect various types of information about
a device, including its hardware and software specifications,
network information, and other system-related data. To use
getSystemInfo for fingerprinting, a developer can create
a miniapp that calls the API and collects the relevant data.
We assume that the malicious miniapp is installed onto the
user’s device.

The workflow of the attack can be described as follows:
the malicious miniapp first invokes the getSystemInfo
to collect a number of device-specific information (e.g.,
system version, device model). Second, the collected data
can be hashed or otherwise processed to create an identifier
for the device. By combining this information, it is possible
to create a relatively fingerprint for a device, which can be
used to track it across different sessions or applications. The
identifier will be saved for future reference. Finally, the next
time when the attacker would like to fingerprint the device,
the attacker invokes getSystemInfo again to calculate
the identifier. If the identifier matches one of the recorded
identifiers, the device is fingerprinted. Fingerprinting attacks
can lead to privacy violations and potential abuses, such as
targeted advertising or even identity theft.

Practicality. This attack is quite practical as the at-
tack can be conducted stealthily. =~ WeChat miniapps
have the ability to access user ID information, such
as phone numbers (i.e..getPhonenumber) and profiles
(i.e.,getUserInfo). However, accessing this informa-
tion requires specific permissions granted by the user. In
contrast, fingerprintable APIs are more practical for track-
ing users since they do not require explicit permission
from the user. Interestingly, we have already identified
some malicious miniapps that used those fingerprintable
APIs to track the users. For example, Figure 5 shows
a code snippet of miniapp “wx58£310cf31£0d423”,
which generates an identifier for devices with the same
type and settings based on specific device properties, in-
cluding brand, model, pixelRatio, screenWidth,
screenHeight, system, platform. All those infor-
mation is collected by invoking get SystemInfo, which
is one of our identified fingerprintable APIs. Particularly, the

USENIX Association

32nd USENIX Security Symposium 6641

hash function md5 (line 8) is used to provide a simple and ef-
ficient way to compute an identifier for devices with the same
type and settings. As shown in Table 9 of Appendix-§A,
getSystemInfo can identify certain classes of devices
based on the platform information it returns (such as An-
droid, Windows, iOS, or Mac). Indeed, getSystemInfo
returns not only system information (e.g., platform and
brand) but also user-specific settings information such as
font size and language, which can increase the fingerprinting
capabilities.

It is also surprising to notice that even for this single
API, some returned values differ across different platforms.
While most of the returned values are supported by both An-
droid and i0OS, some values are only available in Android or
i0S. For instance, benchmarkLevel indicates the hard-
ware condition of a specific device and is defined by Ten-
cent, ranging from -2 to 50. The higher the value, the better
the device’s performance. Therefore, an extra value is avail-
able for fingerprinting Android devices. Another example
is getScreenBrightness. As discussed, in contrast to
Windows, the get ScreenBrightness function on An-
droid provides a greater output precision of up to 16 deci-
mal places (instead of two), which enables a more detailed
differentiation and fingerprinting of both users and devices.
These findings further highlight the close relationship be-
tween cross-platform nature and our results.

Cross-platform information can be leveraged to enhance
the existing fingerprinting techniques. current fingerprinting
techniques typically do not take cross-platform differences
into account, or simply use platform information as one fea-
ture among others to improve their performance. However,
in a cross-platform context, an attacker can leverage knowl-
edge about which APIs are effective on which platforms to
enhance their fingerprinting accuracy. For example, if mal-
ware detects that the running environment is Android, it can
use benchmarkLevel as a feature to produce a fingerprint
(as this API does not work on i0S). Similarly, if the mal-
ware detects that the running environment is Android, it can
use the 16 decimal place output of getScreenBrightness to
fingerprint more users.

Defense. Fingerprinting attacks are difficult to defend
against because they use unique device properties that are
hard to hide without affecting legitimate functionality. In the
web domain, browser extensions and tools can generate false
fingerprint data to mask actual device or browser properties.
Similarly, as the host of miniapps, WeChat could adopt a
similar strategy. If a miniapp requests device-specific infor-
mation too frequently or in an unexpected way (e.g., collect-
ing multiple device-specific information at the same time),
the super app can return randomized data to prevent track-
ing. It can also alert the user if it detects such behaviors to
inform them of potential tracking attempts.

)

10
11
12
13
14
15
16

function a(t) {

var o = ["brand", "model", "pixelRatio"
— "screenWidth", "screenHeight", "system",
— "platform" 1;

// t = [{key: "brand", value: "samsung"}, {key:
— "model", value: "SM-S901U1"}, {key: "pixelRatio",
— value: 3}, {key: "screenWidth", value: "360"},
o {key: "screenHeight", value: "765"}, {key:
-~ "system", value: "Android 13"}, {key: "platform",
< value: "android"}] (from wx.getSystemInfo)

var n = t.reduce (function(e, t) {
return o.indexOf (t.key) > -1 ? e + t.value +
e + "y
Yoo "M
// n = "samsung, SM-S901U1, 3,360, 765, Android
— 13,android"
_ = f.hex_md5(n.substring (0, n.length - 1)),
— l.setCookie ({
data: {
shshshfp: {
value: _,
maxAge: 3153e3

non
’

Figure 5: Code snippet of a real world miniapp used fin-
gerprintable API

7 Discussion

Lessons Learned. Our findings differ from existing works
(e.g., lack of permissions, fingerprinting) due to security
issues arising from differences in API implementation
across various platforms. As a super app, WeChat should
ensure uniform implementation or protection of APIs for
security purposes. Although some platforms have imple-
mented security functions and are aware of the problem,
their designers may not be aware of the risk (e.g., missing
permissions on essential resources). Despite differing threat
models for underlying systems, WeChat should assume
responsibility for ensuring consistent security guarantees.

Ethics and Responsible Disclosure. We followed commu-
nity practice by analyzing and launching attacks in a con-
trolled environment using our own accounts and machines.
We developed attack code and malware to demonstrate the
attacks, but kept them private to prevent harm to users,
miniapp developers, and platform providers. We reported
our findings to Tencent and they acknowledged them by
awarding us bug bounties. Tencent’s security engineers have
actively worked with us over the past year, meeting online
multiple times to discuss vulnerabilities and corresponding
fixes, some of which have already been applied. For ex-
ample, for (A3), Tencent has taken action on the Windows
version by completely removing sensitive information ac-
cess APIs: invoking wx .getLocation results in a mes-
sage stating that the API is not supported.

6642 32nd USENIX Security Symposium

USENIX Association

8 Related Work

Super App Security. Super apps, despite their popularity
and convenience, are not immune to security vulnerabili-
ties. Lu et al. [39] identified a resource management flaw
that allows attackers to acquire sensitive data without re-
quiring permissions and highlighted the potential for phish-
ing attacks. Meanwhile, Zhang et al. [64] discovered iden-
tity confusion vulnerabilities that could lead to severe con-
sequences, including malware installation. While our study
also focuses on super app security, we specifically address
how to automatically detect and exploit discrepancies in API
execution across different platforms. Zhang er al. devel-
oped MiniCrawler [66], a tool for analyzing security prac-
tices in miniapps. It focuses on aspects such as obfuscation
usage and security-related API invocations. Yang et al. [61]
conducted research on the security check vulnerabilities that
are missing in cross-miniapp channels of miniapps found
on popular platforms such as WeChat and Baidu. Wang et
al. [16] presented TaintMini, a comprehensive framework
aimed at detecting collusion attacks and data leakages among
miniapps through taint analysis. Zhang et al. [68] exam-
ined the misuse and consequences of cryptographic keys
within miniapps, shedding light on the potential risks associ-
ated with improper key handling. Wang et al. [17] revealed
undisclosed APIs in super apps, drawing attention to their
exploitable nature. Additionally, they systematically iden-
tified inconsistencies and derived vulnerabilities in WeChat
APIs across different platforms, offering a comprehensive
overview of potential weaknesses.

Super apps evolved from web browsers, and previous re-
search on browser security, such as web extensions [59,
49, 18, 56], is closely related to our study. For instance,
SABRE [21] tracks in-browser information flow to detect
malicious browser extensions that leak sensitive information,
while Hulk [36] dynamically detects malicious browser ex-
tensions by monitoring their execution. Expector [59] iden-
tifies browser extensions that involve advertisements and de-
tects malicious ones. However, unlike these works, our study
is the first to uncover discrepancies in super apps that can be
exploited for attacks.

Cross Platform App Studies. There are also efforts study-
ing the platform differences on app’s development, security
and privacy. For instance, Han et al. [28] investigated both
Android and iOS apps and examine their difference in the
usage of their security sensitive APIs. Dhillon et al. [22] de-
veloped a framework for evaluating cross-platform develop-
ment tools. Xanthopoulos et al. [58] studied cross-platform
mobile app development approaches. Different from those
works, we studied how the implementation discrepancies af-
fect the security of super apps.

Fingerprinting Attacks. Browser fingerprinting attacks
have been widely discussed in recent years, where the con-

figuration information and hardware information of the user
devices is exposed through JavaScript APIs [15, 41, 54, 40,
41, 14] or HTTP headers [43, 42, 37]. Those attacks can also
be used for various malicious purposes such as breaking re-
CAPTCHA [48, 11] and web authentication [47, 62]. Mean-
while, the topic of detecting fingerprinting attacks on An-
droid has been extensively discussed in the literature, utiliz-
ing both static techniques [24, 12] and dynamic approaches
[60, 52]. When compared with those attacks, our work is
different from at least two aspects: First, our work explores
the attack surface in a novel domain, where the miniapps run
atop super apps (not the web apps running atop browsers).
Second, in addition to the fingerprinting attacks, we also
identified a few types of novel attacks such as info leaks.

9 Conclusion

In this paper, we have shown that there are API discrepancies
for super apps when executed in different platforms and
devices, and such discrepancies can be exploited for various
malicious purposes such as spying and even fingerprinting
users. To automatically uncover these APIs, we have devel-
oped APIDIFF, a tool that is able to automatically generate
and execute the test cases and identify the discrepancies. We
have tested APIDIFF with WeChat, and it has found 109
APIs with existence discrepancies, 17 APIs with permission
discrepancies, and 22 APIs with output discrepancies across
platforms. We have disclosed the vulnerabilities to WeChat,
and some of the vulnerabilities have been patched.

Acknowledgment

We thank our shepherd as well as the anonymous reviewers
for their insightful feedbacks. This research was supported
in part by NSF award 2330264. Any opinions, findings, and
conclusions in this paper are those of the authors only and do
not necessarily reflect the views of NSF.

References

[1] “Alibaba group,”
Alibaba_Group.

https://en.wikipedia.org/wiki/

[2] “Burb suite fuzz payloads,” https://github.com/1N3/
IntruderPayloads/blob/master/FuzzLists/full fuzz.txt.

[3] “Didi,” https://en.wikipedia.org/wiki/DiDi.

[4] “How facebook, apple, google copied china’s wechat
messaging app,” https://exbulletin.com/tech/274959/.

[5] “Jeb,” https://www.pnfsoftware.com/jeb/android.

[6] “Meituan,” https://en.wikipedia.org/wiki/Meituan.

USENIX Association

32nd USENIX Security Symposium 6643

[7] “Scope list of wechat,” https://developers.weixin.
gq.com/miniprogram/en/dev/framework/open-
ability/authorize.html.

[8] “What is a super app and why haven’t they gone
global?” https://www.cnbc.com/video/2021/07/16/
what-is-a-super-app-and-why-havent-they-gone-
global.html.

[9] “Zhanzhibao,”
etsstar.com/.

http://zhanzhibaoqijiandian.mall.

[10] Adafruit, “Adafruit sniffer,” https://learn.adafruit.com/
introducing-the-adafruit-bluefruit-le-sniffer/.

[11] I. Akrout, A. Feriani, and M. Akrout, “Hacking google
recaptcha v3 using reinforcement learning,” arXiv
preprint arXiv:1903.01003, 2019.

[12] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bar-
tel, J. Klein, Y. Le Traon, D. Octeau, and P. Mc-
Daniel, “Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android
apps,” Acm Sigplan Notices, vol. 49, no. 6, pp. 259—
269, 2014.

[13] S. Bluetooth, “Bluetooth core specification version
5.1,” Specification of the Bluetooth System, 2019.

[14] K. Boda, A. M. Féldes, G. G. Gulyés, and S. Imre,
“User tracking on the web via cross-browser finger-
printing,” in Nordic conference on secure it systems.
Springer, 2011, pp. 31-46.

[15] D. Cameron, “Apple declares war on browser finger-
printing, the sneaky tactic that tracks you in incognito
mode.”

[16] W. Chao, Z. Yue, and L. Zhiqgiang, “Taintmini: Detect-
ing flow of sensitive data in mini-programs with static
taint analysis,” in /CSE.

[17] W. Chao, Y. Zhang, and Z. Lin, “Uncovering and ex-
ploiting hidden apis in mobile super apps,” in Proceed-
ings of the 2023 ACM SIGSAC Conference on Com-
puter and Communications Security, 2023.

[18] Q. Chen and A. Kapravelos, “Mystique: Uncovering
information leakage from browser extensions,” in Pro-
ceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp.
1687-1700.

[19] H. Choi, B. B. Zhu, and H. Lee, “Detecting malicious
web links and identifying their attack types.” WebApps,
vol. 11, no. 11, p. 218, 2011.

[20] B. Dean, “Tiktok user statistics (2022),” https://
backlinko.com/tiktok-users.

[21] M. Dhawan and V. Ganapathy, “Analyzing informa-
tion flow in javascript-based browser extensions,” in
2009 Annual Computer Security Applications Confer-
ence. 1EEE, 2009, pp. 382-391.

[22] S. Dhillon and Q. H. Mahmoud, “An evaluation
framework for cross-platform mobile application de-
velopment tools,” Software: Practice and Experience,
vol. 45, no. 10, pp. 1331-1357, 2015.

[23] C. Eagle, The IDA pro book. no starch press, 2011.

[24] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun,
L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth,
“Taintdroid: an information-flow tracking system for
realtime privacy monitoring on smartphones,” ACM
Transactions on Computer Systems (TOCS), vol. 32,
no. 2, pp. 1-29, 2014.

[25] Frida, “Firda—dynamic instrumentation toolkit for de-
velopers, reverse-engineers, and security researchers.”
https://frida.re/docs/android/, 2012.

[26] T. GRAZIANI, “What are wechat mini-
programs? a simple introduction - walkthechat,”
https://walkthechat.com/wechat-mini-programs-
simple-introduction/.

[27] G. Group, “Gojek and tokopedia combine to
form goto,” https://newsroom.gojek.com/gojek/
b8zdnwe8rv98aealdlh05i0pf04v4f.

[28] J. Han, Q. Yan, D. Gao, J. Zhou, and R. H. Deng,
“Comparing mobile privacy protection through cross-
platform applications,” 2013.

[29] T. Inc, “55+ wechat statistics - 2022 update,” https://
99firms.com/blog/wechat-statistics/#gref.

[30] ——, “Wechat official documents - wecom pre-
development notes,” https://developers.weixin.qq.com/
miniprogram/dev/dev_wxwork/.

[31] ——, “Wecom 2022 annual conference,” https://work.
weixin.qq.com/nl/index/v4Intro.

[32] —, “WXML,” https://developers.weixin.qq.com/
miniprogram/en/dev/reference/wxml/, 03 2020.

[33] M. IQBAL, “Tiktok revenue and usage statis-
tics (2020),” https://www.businessofapps.com/data/tik-
tok-statistics/, 2020.

[34] U. Igbal, S. Englehardt, and Z. Shafiq, “Fingerprinting
the fingerprinters: Learning to detect browser finger-
printing behaviors,” in 2021 IEEE Symposium on Secu-
rity and Privacy (SP). 1EEE, 2021, pp. 1143-1161.

6644 32nd USENIX Security Symposium

USENIX Association

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

S. H. Jensen, A. Mgller, and P. Thiemann, “Type analy-
sis for javascript,” in International Static Analysis Sym-
posium. Springer, 2009, pp. 238-255.

A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vi-
gna, and V. Paxson, “Hulk: Eliciting malicious behav-
ior in browser extensions,” in 23rd {USENIX} Security
Symposium ({USENIX} Security 14), 2014, pp. 641-
654.

P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty
and the beast: Diverting modern web browsers to build
unique browser fingerprints,” in 2016 IEEE Symposium
on Security and Privacy (SP). 1EEE, 2016, pp. 878—
894.

X. Lin, P. Ilia, S. Solanki, and J. Polakis, “Phish in
sheep’s clothing: Exploring the authentication pitfalls
of browser fingerprinting,” in 3/st USENIX Security
Symposium (USENIX Security 22), 2022, pp. 1651—
1668.

H. Lu, L. Xing, Y. Xiao, Y. Zhang, X. Liao, X. Wang,
and X. Wang, “Demystifying resource management
risks in emerging mobile app-in-app ecosystems,” in
Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, 2020, pp.
569-585.

K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham,
“Fingerprinting information in javascript implementa-
tions,” Proceedings of W2SP, vol. 2, no. 11, 2011.

M. Mulazzani, P. Reschl, M. Huber, M. Leithner,
S. Schrittwieser, E. Weippl, and F. Wien, “Fast and re-
liable browser identification with javascript engine fin-
gerprinting,” in Web 2.0 Workshop on Security and Pri-
vacy (W2SP), vol. 5. Citeseer, 2013, p. 4.

N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel,
F. Piessens, and G. Vigna, “Cookieless monster: Ex-
ploring the ecosystem of web-based device fingerprint-
ing,” in 2013 IEEE Symposium on Security and Pri-
vacy. 1EEE, 2013, pp. 541-555.

——, “On the workings and current practices of web-
based device fingerprinting,” IEEE Security & Privacy,
vol. 12, no. 3, pp. 28-36, 2014.

K. Paul and S. Mat, “Capturing an image from
the user,” https://developers.google.com/web/
fundamentals/media/capturing-images.

N. Reitinger and M. L. Mazurek, “Ml-cb: Machine
learning canvas block,” Proceedings on Privacy En-
hancing Technologies, vol. 2021, no. 3, pp. 453473,
2021.

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

R. Rodenbaugh, “A breakdown of whatsapp and face-
book’s super-app ambitions,” https://www.techinasia.
com/whatsapp-facebooks-super-app-ambitions.

S. Ruoti, B. Roberts, and K. Seamons, “Authentication
melee: A usability analysis of seven web authentica-

tion systems,” in Proceedings of the 24th international
conference on world wide web, 2015, pp. 916-926.

S. Sivakorn, J. Polakis, and A. D. Keromytis, “I’'m not

a human: Breaking the google recaptcha,” Black Hat,
vol. 14, 2016.

D. F. Somé, “Empoweb: Empowering web applications
with browser extensions,” in 2019 IEEE Symposium on
Security and Privacy (SP). 1EEE, 2019, pp. 227-245.

Statista, “Tiktok user statistics (2022),” https:
/Iwww.statista.com/statistics/55267 1/snapchat-app-
dau-region/.

M. Stiltner, “The top 6 super apps in asia —
and what they reveal about the global trend,”
https://www.rapyd.net/blog/the-top-6-super-apps-
in-asia-and-what-they-reveal-about-a-global-trend/.

K. Tam, A. Fattori, S. Khan, and L. Cavallaro, “Copper-
droid: Automatic reconstruction of android malware
behaviors,” in NDSS Symposium 2015, 2015, pp. 1-15.

Tencent, “WeChat English Documentation,” https:
//developers.weixin.qq.com/miniprogram/en/dev/api/,
06 2020.

R. Upathilake, Y. Li, and A. Matrawy, “A classification
of web browser fingerprinting techniques,” in 2015 7th
International Conference on New Technologies, Mobil-
ity and Security (NTMS). 1EEE, 2015, pp. 1-5.

W3C, “Miniapp standardization white paper,” https://
w3c.github.io/miniapp/white-paper/, 2020.

R. Wang, L. Xing, X. Wang, and S. Chen, “Unautho-
rized origin crossing on mobile platforms: Threats and
mitigation,” in Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security,

2013, pp. 635-646.

J. Wu, Y. Nan, V. Kumar, D. J. Tian, A. Bianchi,
M. Payer, and D. Xu, “Blesa: Spoofing attacks against
reconnections in bluetooth low energy.” in WOOT@
USENIX Security Symposium, 2020.

S. Xanthopoulos and S. Xinogalos, “A comparative
analysis of cross-platform development approaches for
mobile applications,” in Proceedings of the 6th Balkan
Conference in Informatics, 2013, pp. 213-220.

USENIX Association

32nd USENIX Security Symposium 6645

[59] X. Xing, W. Meng, B. Lee, U. Weinsberg, A. Sheth,
R. Perdisci, and W. Lee, “Understanding malvertising
through ad-injecting browser extensions,” in Proceed-
ings of the 24th international conference on world wide

web, 2015, pp. 1286—1295.

[60] L.-K. Yan and H. Yin, “Droidscope: seamlessly recon-
structing the os and dalvik semantic views for dynamic
android malware analysis.” in USENIX security sympo-
sium, 2012, pp. 569-584.

[61] Y. Yang, Y. Zhang, and Z. Lin, “Cross miniapp re-
quest forgery: Root causes, attacks, and vulnerability
detection,” in Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Secu-

rity, 2022, pp. 3079-3092.

[62] N. Yildirim and A. Varol, “Android based mobile appli-
cation development for web login authentication using
fingerprint recognition feature,” in 2015 23nd Signal
Processing and Communications Applications Confer-
ence (SIU). 1EEE, 2015, pp. 2662-2665.

[63] Zalo, “Zalo: About us,” https://zalo.careers/about.

[64] L.Zhang, Z. Zhang, A. Liu, Y. Cao, X. Zhang, Y. Chen,
Y. Zhang, G. Yang, and M. Yang, “Identity confusion
in webview-based mobile app-in-app ecosystems,” in
31st {USENIX} Security Symposium ({USENIX} Se-
curity 22), 2022.

[65] Y. Zhang and Z. Lin, “When good becomes evil:
Tracking bluetooth low energy devices via allowlist-
based side channel and its countermeasure,” in
Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS
’22. New York, NY, USA: Association for Computing
Machinery, 2022, p. 3181-3194. [Online]. Available:
https://doi.org/10.1145/3548606.3559372

[66] Y.Zhang, B. Turkistani, A. Y. Yang, C. Zuo, and Z. Lin,
“A measurement study of wechat mini-apps,” in Pro-
ceedings of the 2021 ACM SIGMETRICS/International
Conference on Measurement and Modeling of Com-
puter Systems, 2021.

[67] Y. Zhang, J. Weng, R. Dey, Y. Jin, Z. Lin, and X. Fu,
“Breaking secure pairing of bluetooth low energy using
downgrade attacks,” in 29th {USENIX} Security Sym-
posium ({USENIX} Security 20), 2020, pp. 37-54.

[68] Y. Zhang, Y. Yang, and Z. Lin, “Don’t leak your
keys: Understanding, measuring, and exploiting the
appsecret leaks in mini-programs.” in Proceedings of
the 2023 ACM SIGSAC Conference on Computer and
Communications Security, 2023.

Property Type Description
brand string Device brand
model string Device model
pixelRatio number Device’s pixel ratio
screenWidth number Screen width in px
screenHeight number Screen height in px
windowWidth number Available window width in px
windowHeight number Available window height in px
statusBarHeight number Status bar height in px
language string Language set in WeChat
version string ~ WeChat version
system string Operating system and version
platform string Client platform
fontSizeSetting number User’s font size in px.
SDKVersion string Base library version for the
’ ‘WeChat app
The device performance grade

R pltey (only for aniapps on Afdroid).

. The switch that allows WeChat
albumAuthorized boolean

to use Photos (only for iOS)
cameraAuthorized boolean The switch that allows WeChat
to use the camera
locationAuthorized boolean The switch that‘ allows WeChat
to use the location function
The switch that allows WeChat
to use the microphone
notificationAuthorized boolean The sw1tch'thal :allows WeChat
to send notifications
The switch that allows WeChat
notificationAlertAuthorized boolean to send notifications with reminders
(only for iOS)
The switch that allows WeChat
notificationBadgeAuthorized boolean to send notifications with flags
(only for iOS)
The switch that allows WeChat
notificationSoundAuthorized boolean to send notifications with sound
(only for iOS).
bluetoothEnabled boolean The system switch for Bluetooth
The system switch
for the GPS function
wifiEnabled boolean The system switch for Wi-Fi
Safe area when the screen
is in vertical orientation

microphoneAuthorized boolean

locationEnabled boolean

safeArea Object

Table 9: The information can be collected through
getSystemInfo

A A Fingerprintable API getSystemInfo

As shown in Table 9, getSystemInfo has the ability
to gather 27 types of information, enhancing its effective-
ness in fingerprinting users. It is noteworthy that some
returned values of this API vary across different platforms.
Although most of the returned values are supported by
both Android and i0S, a few values are exclusive to
either platform. We found some malicious miniapps that
tracked users by using this API. For example, miniapp
“wx58f310cf31£0d423” used the getSystemInfo
API to collect device properties such as brand, model,
pixelRatio, screenWidth, screenHeight,
system, and plat form to generate a device identifier us-
ing the md>5 hash function (line 8 in Figure 5). This allowed
the miniapp to track devices with the same settings and type.

6646 32nd USENIX Security Symposium

USENIX Association

