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Data-driven approaches to materials exploration and discovery are building momentum due to
emerging advances in machine learning. However, parsimonious representations of crystals for
navigating the vast materials search space remain limited. To address this limitation, we introduce a
materials discovery framework that utilizes natural language embeddings from language models as
representations of compositional and structural features. The contextual knowledge encoded in these
language representations conveys information about material properties and structures, enabling
both similarity analysis to recall relevant candidates based on a query material and multi-task learning
to share information across related properties. Applying this framework to thermoelectrics, we
demonstrate diversified recommendations of prototype crystal structures and identify under-studied
material spaces. Validation through first-principles calculations and experiments confirms the
potential of the recommended materials as high-performance thermoelectrics. Language-based
frameworks offer versatile and adaptable embedding structures for effective materials exploration and

discovery, applicable across diverse material systems.

The goal of inorganic materials discovery and design is to efficiently navigate
the materials space and identify candidates that exhibit targeted and
desirable properties. However, search and identification remain persistent
challenges due to (i) rapidly growing complexity with structural and che-
mical diversity, and (ii) varied and complicated mappings from material
space to objective space. The lack of a universal technique for exploring the
vast and mostly unlabeled materials space is a significant bottleneck that
limits search efficiency. Ab-initio methods play a crucial role in materials
science by providing accurate and predictive insights into the electronic
structure, properties, and behaviors of materials. High-throughput simu-
lations of material properties through ab-initio simulations have greatly
facilitated material discovery for many functional applications'~. The rapid
growth of data in materials science has led to the promising application of
machine learning (ML) to also overcome these obstacles and expedite
materials discovery workflows**.

A key challenge in the widespread adoption of ML for materials search
lies in defining universal model input representations. An ideal repre-
sentation should enable the conversion of inorganic crystals into a machine-
readable format and facilitate the encoding of inorganic materials into
features that capture complexities such as defects, alloying, and disorder. In

early ML models, material representation involved hand-crafted descriptors
that contained information about composition and structure’”. These
descriptors relied heavily on physical and chemical intuition. In more recent
approaches, material atomic structures have been treated as graphs, where
convolution operations are used to extract features from local chemical
environments'*™"*, enabling more accurate property predictions. However,
both hand-crafted features and specialized structural models have limita-
tions in providing universal and task-agnostic representations within the
vast material space. For instance, representations obtained by tailoring
graph neural networks to energy prediction regression tasks may perform
poorly on conductivity predictions.

In this work, we assess the effectiveness of language representations in
tackling general materials discovery tasks. Advances in natural language
processing have made it possible to extract valuable information from the
extensive corpus of materials science literature. Further, these advances have
made it easier to encode domain knowledge into compact and information-
rich vector representations. A pioneering study demonstrated that word
embeddings have the ability to capture underlying knowledge in materials
science, and effectively applied these embeddings for tasks such as materials
search and ranking"”. However, word embeddings alone do not capture the
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contextual meaning that is present within a sentence or paragraph. Progress
in contextual embeddings has been greatly enhanced by transformer models
using masked language modeling. This advance has enabled the creation of
information-rich contextual embeddings within the latent materials science
domain'®"*. Here, we leverage pretrained transformer models to capture
contextual embeddings, and then utilize them for language representations
to enable materials exploration and discovery.

In the context of materials exploration and discovery, some essential
factors should be included in the recommendation pipeline: (i) effective
representations of both chemical and structural complexity, (ii) successful
recall of relevant candidates to the query material or property of interest, and
(iii) accurate candidate ranking based on multiple desired functional
properties. Previously, recommender-like systems for materials were
developed to filter by identifying materials for which predicted confidence
levels of target properties fall within a desirable range for thermoelectrics'’,
to predict chemically relevant compositions for pseudo-ternary systems™’,
and to propose experimental synthesis conditions™ or by similarity analysis
from word embedding models'’. However, a systematic and generalizable
recommendation approach, which incorporates the three factors mentioned
above for representation, recall, and ranking, could accelerate discovery of
desirable material candidates across diverse applications.

We present a materials recommendation framework that utilizes
language representations to explore the vast materials space. This
framework allows for the identification of similar candidates given a
query material with targeted properties. The framework invokes a
funnel architecture consisting of two steps: candidate generation,
referred to as “recall’, and property evaluation, referred to as
“ranking” (Fig. la). This architecture helps narrow down the search
space by initially generating potential candidates and then evaluating
their properties to identify the most relevant ones. Through the
evaluation of different embedding methods across various down-
stream tasks, our findings demonstrate that language representations
are highly potent in recalling relevant material candidates. Addi-
tionally, these representations are effective in predicting material
properties, achieving performance levels comparable to state-of-the-
art specialized machine learning models. In order to enhance the
ranking performance, we introduce a multi-gate mixture-of-experts
(MMOoE) model, which is a multi-task learning strategy that leverages
correlations between material property prediction tasks (Fig. 1b). By
incorporating MMoE, we demonstrate that pre-existing knowledge
contained in the latent space can be effectively transferred to new
tasks, resulting in faster and more effective learning.

Asademonstration of the framework’s materials discovery capabilities,
we apply it to search for and recommend high-performance thermoelectric
(TE) materials. The framework successfully identifies structurally-
diversified thermoelectric (TE) candidates that are relevant to several
query materials. Furthermore, the framework identifies and subsequently
searches several under-explored materials spaces that host promising TE

candidates. The effectiveness of this framework is evaluated using first-
principles calculations and experimental validation on the recommended
materials, resulting in several promising thermoelectrics.

Results

A language-based framework enables material recommenda-
tions and discovery

Machine learning-based recommender systems leverage a large cor-
pus of training data to provide precise suggestions when querying for
items among a large candidate pool****. During the recommendation
process, a funnel-based architecture is typically applied for initial
screening, followed by more fine-grained ranking steps. Inspired by
the standard design of recommender systems, we adapted the fra-
mework to materials science to effectively search a large space and
recommend relevant materials with similar functional performance
to a query material. Specifically, we designed a funnel-based archi-
tecture that can be decoupled into a recall step and a ranking step
(Fig. la). To enable candidate recall for a query material, we con-
verted each material into text-based descriptions that include both
compositional and structural information. Using language models'*"”
pretrained on materials science literature, we then obtained output
embeddings on these text-based material descriptions. These
embeddings encode contextual representations to capture composi-
tional and structural features with high-level interactions arising
from self-attention”. In the recall step ("candidate generation”),
candidates can be searched via cosine similarity against the query
material in the representation space (Fig. 1b). In the ranking step,
recalled candidate materials are evaluated and ranked using a multi-
objective scoring function trained on the encoded representations to
simultaneously predict multiple material properties through neural
networks. For this work, we exploited task correlations between
predicting five TE properties by training multi-task learning MMoE
models, which provided improved accuracy compared to models
trained on single tasks.

To obtain compositional and structural level representations for the
database consisting of 116K materials (Data Preparation), we embedded all
material formulae (e.g., “PbTe") and sentence descriptors automatically
generated (Robocrystallographer®) from the structures (e.g., “PbTe is
Halite, Rock Salt structured and crystallizes in the cubic Fm3m space
group...") as the input to pretrained language models. Embedding each
formula or structure generates a dense vector output from the model’s
hidden layer, which contains latent material-specific knowledge learnt
during unsupervised pretraining. In Fig. 2, we demonstrate that recalled
candidates in the representation space are not only compositionally and
structurally related to the query material, but also can exhibit similar
functional performance to a query material. Starting with known materials
with favorable properties for TEs such as PbTe, we analyzed the top recalled
candidates and found significantly different predicted figure-of-merit zT

a Funnel-based recommender framework b Representation generation Recalled materials Multi-task Rank by score
learning
Query < Materials Query “PbTe is a rock-salt structure o
material \Mi 7 database material crystalizing in Fm-3m space group..”) Too K £
regaplled g Relevancy
v ‘ 1 vector 5 0 100%
2 Property 1 |
Candidate generation Transformers 2 '
Pre-trained language model © Property 2 [T |
Material representation Property 3 I:I:I
116K vectors !
Ranking S ; Query Query material
S materal properly

Materials

database =
Materials with desired properties

Fig. 1 | Recommender framework for material discovery. a The proposed funnel-

based recommender framework in which candidate materials are recalled, and

ranked based on similarity to the query material. b The schematic workflow to screen

“CuAl,Q, is a spinel structure..”
“CoSb, is a skutterudite that..”

Representation space

candidate materials including constructing language representations, recalling
candidates, and multi-task prediction for ranking.
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Fig. 2 | Overview of recommender framework performance. a Distributions of
predicted zT of the top-100 recalled candidates for PbTe as the query material
predicted by MatBERT, baseline model with fingerprint™ representation (Material
language representations) and randomly sampled 100 materials. The distributions
are also visualized in kernel density estimation. Predicted zT are obtained from the
MMOoE models. b Adjusted p-values of the candidates for the top-100 highest zT
materials from experimental UCSB and ESTM datasets. Out of 100 materials,

94 show significantly different zT distributions from random. ¢ Recall results of
seven high-performing TE materials are highlighted on the UMAP projection of
116K material representations. Each color corresponds to first 100 materials recalled
via cosine similarity. The UMAP projection is obtained on the best performing
embeddings (MatBERT, structure embedding). d UMAP overlaid with the predicted
zT. All known materials with z7>0.4 from the experimental datasets are indicated
by stars.

distributions from selected baseline representations (see details in, Material
language representations) and random sampling, as shown in Fig. 2a. The
differences in distributions are quantified by p-values. The baseline model
distribution exhibits a significant degree of overlap with random sampling,
as indicated by a high p-value (0.88), while our model with contextual
language representation shows statistical significance with p<0.05. We
repeated this experiment for 100 distinct materials with the known highest
zT; 94 of these exhibit statistical significance (Fig. 2b), indicating that
recalled materials show distinct distributions from the baseline repre-
sentation and random sampling. Low-dimensional Uniform Manifold
Approximation and Projection (UMAP)” of the material representations
display latent signatures of seven high-performing TE materials along with
their top-100 recalled materials, each indicated by a different color (Fig. 2¢).
We further observed a distinct clustering pattern, in which known materials
with good zT (> 0.4) form a “band” in the projection (Fig. 2d). Additionally,
the observed “band” overlaps with the MMoE-predicted high zT (also Fig.
2d). The distribution of zT in the representation space provides opportu-
nities to explore under-explored material spaces, such as the region enclosed
in the grey box with high predicted zT.

To understand how individual steps contribute to the perfor-
mance of the material recommendation framework, in the following
we assess the effectiveness of different representation strategies, recall
ability, and property prediction via multi-task learning. Further, we
demonstrate the framework to search, ranking, and exploration tasks
for TE materials.

Language models offer effective representations of material
composition, structure, and properties

Effective representations require rendering information about material
design principles and intrinsic properties. We evaluated several strategies for
material representation, focusing on unsupervised generation of features to
convey diverse chemical and structural information. In total, we investigated
six embedding methods. For composition level representation, we embed
the material formula using pretrained word embedding Mat2Vec" and
contextualized word embedding from MatSciBERT"” and MatBERT". For
structural level representation, we obtained local environment based
structure fingerprints™ and sentence embeddings of text-based material
descriptions from MatSciBERT and MatBERT. Note that for BERT models,
we constructed embedding vectors from entire passages of text consisting of
human-readable crystal structure characteristics®, as described in Material
language representations. In the following analysis, we choose Mat2Vec and
fingerprint as baselines for compositional embedding and structural
embedding respectively.

To assess whether the embedding models have encoded material
knowledge in the representations, we projected the six different
material embedding vectors into low-dimensional spaces with
UMAP, as visualized in Fig. 3. Embedded materials consisting of
groups 15 (pnictogen), 16 (chalcogen), and 17 (halogen) on the
periodic table are indicated by color (Fig. 3a). Overall, structure level
representations exhibit more distinct separation (well-defined
domains) by material groups, apart from fingerprints which are solely
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Fig. 3| UMAP projections of 116K materials using different embedding models. Materials are colored (a) by anionic groups, and (b) by cosine similarity to PbTe under the

indicated embedding model.

Table 1 | Benchmarking six different embedding models on six regression property prediction tasks with MAEs and R*>-scores

Composition embedding

Structure embedding

Property Metric Mat2Vec (Baseline) MatSciBERT MatBERT Fingerprint (Baseline) MatSciBERT MatBERT
E/atom MAE 0.47 £0.02 0.42 +0.01 0.37 +0.01 1.13+0.02 0.32+0.02 0.29+0.03
R? 0.81+0.02 0.86+0.01 0.88+0.01 0.283 +0.02 0.95+0.01 0.96 +0.01
[E5 MAE 0.15+0.01 0.20+0.02 0.19+0.01 0.54 +0.03 0.25+0.01 0.23+0.01
R? 0.92 +0.02 0.88 +0.02 0.88+0.01 0.45+0.04 0.88+0.01 0.89+0.01
log_K MAE 0.18 +0.01 0.18 +0.01 0.17 +0.01 0.45+0.01 0.16 +0.01 0.15+0.01
R? 0.83+0.01 0.83+0.03 0.85+0.02 0.26 +0.02 0.90+0.01 0.93 +0.01
log_G MAE 0.20+0.01 0.23+0.01 0.22+0.01 0.48 +0.01 0.24 +0.01 0.23+0.01
R? 0.82+0.01 0.80+0.01 0.81+0.02 0.29+0.03 0.83+0.01 0.84 +0.01
log10_0 MAE 0.06 +0.01 0.07 +0.01 0.06 +0.01 0.13+0.01 0.07 +0.01 0.06 +0.01
R? 0.81+0.02 0.82+0.03 0.84 +0.02 0.34+0.05 0.85+0.03 0.88 +0.02
log1o_a MAE 0.07 +£0.01 0.07 +£0.01 0.07 +0.01 0.15+0.01 0.07 +0.01 0.06 +0.01
R? 0.78 +£0.03 0.81+0.02 0.81+0.02 0.19+0.02 0.87 +0.03 0.90+0.01

E/atom Energy per atom (eV), E5 Band gap (eV), K Bulk modulus (GPa), G Shear modulus (GPa), 6 Debye temperature (K), a Coefficient of thermal expansion (K).

determined by structural similarity and include information only
about local but not semi-local and global environments. By contrast,
composition level representations retain the expected chemical dif-
ferences, but form more disperse and heterogeneous clusters.

To better interpret the embedding results, we picked three well-studied
TE materials, including SnTe - a rock-salt structural analog of PbTe with
highest reported zT of ~ 1.8”, CuGaTe, - a diamond-like semiconductor in
chalcopyrite structure that achieves a zT of 1.5, as well as Mg;Sh, - a
layered Zintl phase with the highest zT of ~ 1.65""”, and visualized their
proximity to PbTe in the representation space (Fig. 3b). All three materials
have demonstrate high zT around 1.5, but the high performance arises from
different combinations of properties relevant to TEs (i.e. electronic and
thermal transport) due to their different structures. Embedded materials in
the representation space follow our anticipated similarity (PbTe ~ SnTe >
CuGaTe, > Mg;Sb,), apart from fingerprints and composition embeddings
from MatBERT. Although the embedding analysis helps with the visuali-
zation of chemical trends under different embedding models, it is possible
that embedding models could show different clustering patterns when using
alternative measures of similarity.

For further evaluation, we quantitatively evaluated material embedding
performance on downstream property prediction tasks. We applied a feature-
based approach to train regression models directly on the derived embed-
dings, instead of optimizing BERT parameters on the task-specific loss, i.e.,
fine-tuning”. This approach is more computationally efficient due to fixed
features, and grants flexibility to adapt task-specific architectures or combine
features of various sources across different models. We list the cross validation
performance on predicting six material properties for 5700 materials in Table
1. The task models were multi-layer perceptrons (MLPs) with mean-
absolute-error (MAE) training loss. The tasks consisted of band gap, energy
per atom, bulk modulus, shear modulus, Debye temperature, and coefficient
of thermal expansion from AFLOW dataset”. Performance metrics of
models trained using several embeddings, such as structure embeddings
extracted from MatBERT, achieved accurate performance. In addition, we
performed predictions on 7 different material benchmarks from the
MatBench™ dataset as shown in Supplementary Fig. 15. The results indicate
reasonable performances using the language representation as the model
input for downstream predictive tasks. By leveraging latent materials science
knowledge embeddings from pretrained large language models, the language
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Fig. 4 | Evaluation metric of candidate generation stage for 116K materials. Each square represents a different query material. The x and y-axis represent precision at 15%
and nDCG, which measure the accuracy and relative ranking order respectively. Evaluations are performed for composition embedding and structure embedding.

representation supports learning in the face of data scarcity, a ubiquitous
challenge in applying ML to materials science. For small data with only 200
training materials, models trained using these embeddings outperform graph
neural networks (CGCNN' when tested on 100 independent materials
(Supplementary Fig. 1). These results suggest that pretrained language
models, in combination with text-based structure descriptions, provide a
competitive avenue to generate features for material representations.

Unsupervised candidate recall extracts highly relevant materials
For the recall (candidate generation) step, we use an unsupervised approach,
as the models need to generalize to unseen query materials without further
training while correctly recalling relevant candidates. In the unsupervised
context, each query material is an individual prediction task, where the goal
is to find a set of related materials. While material recall is strictly based on
cosine similarity in embedding space from text-based descriptions of
composition and/or structure, we hypothesize that these embeddings con-
tain latent materials science knowledge, in which recalled materials will also
share some similarities in properties to the query material.

For commercial recommender systems, online learning’*** makes data
collection and model evaluation straightforward. For this framework, we
evaluate recalled TE materials in an offline setting with predefined ‘rele-
vancy’ (Ranking score and exploratory analysis) as a measure of the com-
posite differences in TE properties. We considered five TE properties -
power factor, Seebeck coefficient, electrical conductivity, thermal con-
ductivity, and zT for 826 unique host materials (Data preparation) For each
query material, the relevancy is obtained as the summation of absolute
percentage differences of these five properties, i.e., candidates with similarity
across all properties are considered most relevant.

For evaluation, precision and normalized discounted cumulative gain
(nDCG) were used as recall performance metrics (see Evaluation: unsu-
pervised recall of relevant materials). Specifically, we calculated preci-
sion@15% to assess the recall accuracy by defining the top 15% of 826
materials (124 materials) as ‘relevant’ to the query material based on
experimental TE properties. We then evaluated the overlap between the top
124 recalled and relevant materials. A higher precision@15% score indicates
that more relevant materials have been recalled. On the other hand, nDCG
evaluates the ranking from the perspective of relative positions of items in
the similarity-based list. The two metrics are jointly visualized in Fig. 4 and
analyzed separately for composition and structure embeddings. Each scatter
point denotes performance for one queried material. Ideally, candidates
should have high precision@15% and nDCG (top right corner). Using

composition embeddings, Mat2Vec exhibited overall better performance
than MatBERT on both precision@15% and nDCG, indicating the effec-
tiveness of Mat2Vec word embedding in capturing latent material science
knowledge. For single-word inputs like material composition, the word
embedding Mat2Vec model performs well where contextual information is
less critical, while the sentence embedding MatBERT model shows sub-
optimal performance limited by complicated model architectures for simple
tasks. For structure embeddings, however, MatBERT recalls significantly
more relevant materials than using fingerprint. This performance is not
surprising, since fingerprints only contain information about local structure
at the motif level, but lack information at the semi-local level (i.e., motif
connectivity) and global level (e.g. space group). Leveraging the contextual
information from the sentence embedding model derived from robocrys-
tallographer descriptions, MatBERT embeddings achieve better perfor-
mance than the baseline. In general, MatBERT embeddings have the overall
best performance among all embedding models. From both composition
and structure MatBERT embeddings, a considerable number of materials
achieved precision > 0.25 and nDCG > 0.7, suggesting that the representa-
tions extracted similarity preserving signals which could be utilized for
unsupervised search for similarly performing materials.

Multi-task learning exploits cross-task correlations forimproved
property predictions

For a more accurate candidate material ranking, in the second stage of the
funnel approach of Fig. 1 we improved multi-property predictions through
multi-task learning. Learning from multiple related tasks provides superior
performance over single-task learning by modeling task-specific objectives
and cross-task relationships’**. Multi-task learning is thus ideal to learn the
underlying commonalities across different yet correlated material proper-
ties, improving performance for each task.” showed that joint-training on
several material properties leads to better model performance in prediction
tasks. A mixture-of-experts framework” demonstrates transferability
between models trained on different material properties, thereby improving
task performance.

To this aim, we introduce multi-task learning with the MMoE model,
which contains a set of expert networks and gating networks (Fig. 5a).
Through task-specific tower networks, the gating network for each property
prediction allows the model to learn mixture contributions from different
experts, thus exploiting the interconnections between tasks (MMoE and TE
prediction). In the approach adopted here, the input representations for
MMOoE models, discussed later in this section, are concatenated composition
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Fig. 5 | Multi-task learning framework for material property prediction.
a Schematic of the MMoE model. The gating networks learn contributions from
different experts through task-specific tower networks. b Comparison of model

performance for 6 material property prediction tasks between single-task models
and MMOoE using composition or structure embeddings.

Table 2| MAEs and R?-scores of four representation methods as the input for MatBERT model to predict the thermoelectric

properties on the UCSB and ESTM dataset

Property Evaluation Host Host Doped Host structure +
composition structure composition Doped composition

log_PF MAE 0.580 +0.035 0.566 + 0.045 0.471+0.039 0.433+£0.024

R? 0.584 +0.080 0.624 +0.095 0.740 + 0.060 0.778 £ 0.063
S MAE 52.3+6.1 53.3+8.0 36.8+5.1 35.4+3.4

R? 0.741 £ 0.069 0.753 £ 0.032 0.862 +0.070 0.872 +0.046
log_c MAE 1.151 £0.076 1.157 +0.063 0.693 + 0.040 0.654 +0.074

R? 0.576 +0.080 0.585+0.076 0.813+0.036 0.832+0.044
log_x MAE 0.270 +£0.020 0.272 +£0.029 0.237 +0.014 0.221 £0.022

R? 0.779 +0.051 0.772 +0.049 0.824 +0.018 0.841 +0.025
zT MAE 0.098 + 0.009 0.099 + 0.009 0.094 +0.007 0.088+0.010

R? 0.678 + 0.068 0.668 + 0.055 0.708 +0.034 0.741+0.065

Note that for all representations, context features for temperature are also included. (Power factor — PF (S?m2), Seebeck coefficient — S (VK "), Electrical conductivity — o (Sm"), Thermal conductivity — k

(Wm~'K™"), figure-of-merit — zT).

and structure embeddings, as well as context features for growth conditions
(Fig. 5a). We first benchmarked MMOoE with single-task prediction to pre-
dict the six properties shown in Table 1. As shown in Fig. 5b, the MMoE
results are within error of the single-task results, but show modest
improvement by around 5-10% for most cases. MMOoE does show notably
better model stability, indicated by lower variance in cross-validation per-
formance. The complete single-task and MMOoE performance can be found
in Supplementary Figs. 2, 3.

Next, we purposed MMOoE for multi-task learning of thermoelectric
properties. The efficiency of TE energy conversion is given by figure of merit
(zT) as: zT = S?0T/x, where S is Seebeck coefficient, o is electrical con-
ductivity, « is thermal conductivity, and T is the temperature. A high zT
indicates a good thermoelectric, however, the properties that lead to high zT'
are inter-dependent and often conflicting". For example, thermal con-
ductivity increases with electrical conductivity as carrier concentrations
approach the degenerate regime. Optimizing for TE performance is thus a
challenging task that requires a balance of several properties. For this reason,
we speculate that multi-task learning can naturally leverage the TE task
correlations for better model performance. We found moderate Pearson
correlation ranging from 0.15 to 0.5 between the five TE properties con-
sidered here (Supplementary Figure 4), which is considered ideal for multi-

task learning. Interestingly, we found that multi-task learning significantly
enhances the predictive performance of Seebeck coefficient by 71% com-
pared with single-task prediction, with close performance for the other four
tasks within variance from cross-validation (Supplementary Fig. 5).

The accuracy of the property predictions is rooted in the quality of the
data representations. In addition to the embeddings derived from language
models, we added further information based on context features as model
input. Materials science optimization techniques including doping/defect-
engineering®, alloying and phase-boundary mapping’>*’ are widely utilized
and critical to enhance the performance of TE materials. The composition of
a material after optimization (e.g., doping) is different from the original
composition of the host material via the introduction of dopants and other
defects. A small degree of doping can substantially affect TE performance.
For example, in the experimental database the reported zT of PbTe can vary
from as low as 0.10 to as high as 1.56 depending on doping/alloying strategy
according to the UCSB dataset*'. Material properties resulting from different
synthesis conditions (especially temperature) can vary substantially.

For these reasons, we devised different material representations that
can include up to three components: (i) host material structural features, (ii)
composition features accounting for doping, phase boundary mapping, and
alloying (on normalized chemical formulae), and (iii) context features (one-
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Fig. 7 | Ranking results of top 15 materials based on similarity. Materials that
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shown. The color of each data point denotes the structure prototype as shown on the

right panel for each query material. The recommended structure prototypes share
similar structural features with the query material.

hot encoded temperature). For property prediction, structure embeddings
carry important information regarding host material structure, while
composition embeddings bring in information about off-stoichiometry. We
summarize how different input material representations affect MMoE
performance for TE tasks in Table 2. With context features being included,
the best performing multi-task TE model was achieved by concatenating
doped composition, host structure, embeddings (Table 2), whereas host
composition embeddings alone gave the worst performance metrics. While
doping and alloying often present significant challenges for first-principles
modeling, the language representation accounts for such material com-
plexity naturally, through the contextual knowledge contained in the
embedding. In general, models trained with both structure and composition
representations perform consistently better than those with only compo-
sition embeddings. Therefore, modeling TE properties requires accurate
representations of both structural and doped compositions, which can be
effectively extracted through BERT-based language models. The multi-task

learning results from the best-performing material representation and
MMOE is shown in Fig. 6. In all five prediction tasks, MMOoE accurately
predicts the TE properties for the input material under each one-hot
encoded temperature category with R*> > 0.7. Despite being trained directly
on general representations of crystals, this model achieves comparable
accuracy to recent domain-specific models in the TE field"**. It additionally
shows significant enhancement over the MMoE model architecture on
baseline representation fingerprints (Supplementary Fig. 6).

Search ranking of TE materials with similar potential

To interpret and evaluate the ranking performance, we demonstrated the
ranking outcomes from the recommendation framework on seven repre-
sentative TE materials. Candidates were ranked by their relevancy score
(Ranking score and exploratory analysis), which is defined as the reciprocal
of the summed absolute percent difference of five properties from the query
material. Figure 7 shows the ranking results for CoSbs, CuGaTe,, and
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Mg;Sb,, representing skutterudite, diamond-like semiconductors (DLS),
and Zintl phases. For each query material, the top 15 ranked materials that
exhibit the most similar TE potential are shown. A full list of the search
ranking results for the other materials (PbTe, BiCuSeO, Cu,Se, Bi,Te;) can
be found in Supplementary Figure 7.

In Fig. 7, each candidate is colored by its structure prototype to visualize
the structural diversity. The distribution of prototype structures is shown by
the pie chart. For skutterudite CoSbs, the top 15 recommendations consist of
5 prototype structures, and 9 out of the 15 top are different from the space
group of CoSb; (Im3, No. 204). As expected, several AX; skutterudites (grey
in Fig. 7a) appear in the list, sharing the same prototype structure with
CoSb;. Several novel structure prototypes also appear, including pyrite (Pa3,
No. 205, red in Fig. 7a) and marcasite structures (Pnnm, No. 58, green in Fig.
7a), as close relevant TE materials to CoSb;. Two more prototype structures
- covellite (P6;/mmc, No. 194, orange) and carrollite-like AX, structure
(Fd3m, No. 227, blue) are also recommended, both of which have received
limited attention historically but may warrant further investigation”. Note
that all above structure prototypes have corner-sharing octahedral motifs, a
local structural feature shared with query material CoSb; that may correlate
to similar TE properties. The recommendations based on querying of
diamond-like chalcopyrite material CuGaTe, (142d, No. 122, grey in Fig. 7b)
render diversified outcomes with 5 different structure prototypes. In addi-
tion to four more ABX, chalcopyrites, the framework selected quaternary
stannite (I42m, No. 121, orange in Fig. 7b), sulvanite (P43m, No. 215, green
in Fig. 7b), defect kesterite (I4, No. 79, blue in Fig. 7b), and chalcopyrite-like
(P4 m2, No. 115, red in Fig. 7b) structures. For Zintl phase Mg;Sb,, the top 15
recommendations comprise 8 unique prototype structures (5 of which are
shown in Fig. 7c). Interestingly, the prototypes do not exhibit the layered
structure of query material Mg;Sb,. Instead, the common local structural
feature of octahedral motifs is present throughout the recommended pro-
totypes. Unlike other computational materials discovery strategies which
generate candidate materials by applying chemical substitutions to a single
prototype structure’®”, the framework is able to suggest candidates with
diversified structures that are different from, but still related to, the proto-
type. Such capability can offer insights and understanding of structural

similarity between different prototypes and structure-to-property mappings
for ML tasks.

To evaluate the performance of the ranking tasks, we performed first-
principles calculations on the TE properties of top recommended candidates
(see computational details in 4.7). As shown in Supplementary Figure 11, the
calculated properties of the recommended materials resemble those of the
query material. For example, both CuGaTe, and its top ranked candidates
exhibit high p-type TE performance that outperforms the n-type counter-
parts. Upon experimental evaluation of several top ranked candidates, we
identified CuZn,GaTe, as a p-type TE material with high Seebeck coefficient
(§=250VK ™" at 575K) and relatively low thermal conductivity
(k=182 Wm 'K at 575 K), see Supplementary Fig. 12. This immediate
positive result arose from self-doping that yielded a Hall carrier con-
centration near 4.5 x 10” cm™ at 473 K. Compared with query material
CuGaTe, (S=320uVK ">, x=25Wm 'K'* at 575K), CuZn,GaTe,
exhibits overall more favorable thermal transport and comparable Seebeck
coefficients. Preliminary experimental measurements on other candidates,
while not demonstrating good performance immediately, revealed indivi-
dual features that are beneficial to TEs and have the potential to achieve good
performance upon further optimization. The most important features are,
e.g., strongly suppressed thermal conductivities at room temperature of
HgGa,Te, (0.36 Wm™'K™") and CuGaGeSe, (0.62 Wm 'K ™). Cu,ZnGeTe,
also belongs to the group of CuGaTe,-like materials and was previously
reported to show decent mobility (ca. 30 cm®V~'s™" at 550 K,”". Lastly, TiS,
suggested as relevant to CoSbs, has previously been reported with large
Seebeck and zT = 0.3 at 700 K. For future study, we recommend further
investigation on the candidates with the highest predicted figure of merit zT
from our ab initio analysis. Alternatively, one may also consider ab initio
calculations on other compounds that emerged from the recommendation
approach.

Exploration of under-studied materials in the

representation space

Through material language representations, we noticed that the distribu-
tions of materials for both known and predicted high zT appear within the
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same “band”-like region in the UMAP (Fig. 3d). Despite their high predicted
zT, materials at the bottom right corner of the “band” (shown by the dashed
grey box in Fig. 3) are under-explored with no records from the experi-
mental datasets (Fig. 8a). In that region, we have identified high-zT clusters
composed of halide perovskites (fluoride, chloride, bromide, and iodide),
oxide perovskites, spinel-like, and delafossite-like structures, as labeled in
Fig. 8b. The distributions of predicted zT for all materials in each cluster are
visualized in Fig. 8c. Among halide perovskites, bromides have the highest
predicted zT with a mean above 1.0, while fluorides, chlorides, and iodides
are close to each other in the predicted zT distributions. The top 10 highest
zT candidates from bromide and fluoride perovskite clusters (Fig. 8d) are
mostly Cs- and K-containing double perovskites A,BB'Xe, with a few single
perovskites ABX;. The high TE performance of halide perovskites can likely
be attributed to low thermal conductivity. Ref. ** revealed that inorganic
halide perovskites exhibit ultra-low thermal conductivity due to a unique
cluster rattling mechanism, resulting in thermal conductivities comparable
to the amorphous limit. One of the top predicted candidates CsPbBr;, in
particular, has attracted wide attention in the TE field**. Recent first-
principles calculations®* support the findings of high TE performance for
several double perovskites. It is worth noting that all of the recommended
candidates are lead-free and have high-temperature stability”’, good oxi-
dation resistance, and lower processing costs. With recent experimental
advances in improving the stability of perovskites™”, halide perovskites
may become more appealing TE candidates. Oxide perovskites, interest-
ingly, show inferior TE performance to halide counterparts. This observa-
tion aligns with chemical intuition, since oxides are in general more ionic
and insulating materials, rendering them hard to dope to optimize the TE
power factor.

Delafossite-like and spinel-like structures are also under-explored
structural spaces with potential to host TE candidates. Unlike perovskites
which form isolated clusters in the representation space, these two material
groups neighbor the more well-explored chalcopyrites and AB,X, Zintl
phases. Delafossite-like structures, also known as caswellsivlerites, refer to
ABX, (X=0,8, Se, Te) materials crystallizing in the trigonal structure, with
CuFeO, (R3 m, No.166) being the prototype. So far, extensive research
efforts have focused on delafossite-type oxides as TE materials®*', while a
recent high-throughput computational study® revealed that sulfide, sele-
nide and telluride delafossite-like structures are also thermodynamically
stable. For the top 10 predicted zT candidates from the delafossite group
(Fig. 8d), all candidates are sulfides and selenides that we recommend for
further investigation. Similarly, less attention has been focused on sulfide,
selenide, and telluride spinels compared to oxide counterparts, while all top
10 spinels from the recommended list (Fig. 8d) are sulfides and selenides.
Recent theoretical works have suggested several high-performance spinel
sulfides Tm,MgS, (2T ~ 0.8%), Y,CdS (zT ~ 0.8,%*), MgIn,Se, (zT ~ 0.7,%),
suggesting that the discovery framework is able to select good candidates
from a large and diverse search space. As evaluation of the recommended
under-explored material groups, we performed first-principles calculations
on the top candidates from each group in Fig. 8d, which are summarized in
Supplementary Fig. 11. These calculations corroborated the promising TE
potential of several candidates, e.g. delafossite-like CdPbS, (n-type,
zT,=1.7 at 800 K), halide perovskite Cs,InSbF¢ (n-type, 2T, =1.0 at
800 K), etc.

Discussion

While representation learning has facilitated extraction of more meaningful
features from large unlabeled data, methods for learning material repre-
sentations have also gained substantial momentum for predition tasks** .
On the other hand, language-based models have achieved remarkable
outcomes in prediction and generation tasks across an extensive array of
domain areas. In this work, we demonstrated the use of language repre-
sentations in the inorganic crystalline materials domain. Specifically, we
introduced a language-based framework to extract composition and
structure embeddings as material representations via pretrained language
models. The discovery framework is designed to be task-agnostic. We

anticipate that it can be expanded upon and utilized to search and explore
vast chemical and structural spaces, towards functional materials design and
discovery.

Representing materials in the format of natural language enables
effective utilization of materials science knowledge learnt from ever-
growing unstructured scientific texts. Indeed, the extracted embeddings
form a chemically meaningful representation space without task-specific
supervision. We find that knowledge can be extracted from representations
by unsupervised recall on embedding vectors and supervised neural net-
works, together enabling the funnel-based approach of Fig 1. In particular,
the recall step allows reliable recommendation by constraining the ranking
on candidates that are similar to the query material in the representation
space. A benefit of such pre-screening is the avoidance of common pitfalls
where materials exhibit similar properties for inherently different reasons,
ie. far from each other in the representation space. For the use case of
thermoelectrics, for example, high zT can arise from either high power
factor or low thermal conductivity. Another strength of language repre-
sentations is that they can effectively handle off-stoichiometric material
compositions to account for alloying and doping, which typically require
complicated computational techniques (e.g., disorder modelling) for accu-
rate predictions in first-principles simulations.

An interesting consideration is model performance for embed-
ding models trained on materials science specific language models,
compared to those trained on general Large Language Models
(LLMs). While both encoder-only and decoder-only large language
models (LLMs) can generate language representations, we believe
that BERT-based models may outperform them for the following
reasons. Unlike decoder-only models (e.g. GPT) which are tailored
for sequence generation tasks, encoder-only models (e.g., BERT) are
generally more versatile for understanding and encoding information
due to the bi-directional context and masked language modeling
training technique. In the context of recommendation tasks, encoder-
only LLMs can generate more effective representations for down-
stream tasks like material property prediction or similarity analysis.
As has been verified by Trewartha et al.'’, language models with
extended materials science knowledge tend to perform better on
materials science-related tasks, with the simpler model consistently
outperforming models with more parameters. Even so, GPT-based
models show promise for certain chemistry applications in the small
data limit®.

Exploitation and exploration trade-off has been a common phenom-
enon in recommender systems*”'. For the recommendation framework,
while exploitation refers to seeking maximum reward, exploration may be
thought of as consideration of new structural prototypes present in the top-
ranked candidates that share structural features with, but are distinct from,
the query material. A reasonable balance between exploitation and
exploration, which can be tuned by the number of candidates recalled from
the candidate generation step, will diversify the recommendation while still
proposing structurally-related materials. For example, the top-15 ranked
materials for both CoSb; and CuGaTe, each contain 5 different prototype
structures when 100 recalled materials from the candidate generation step
are considered for ranking, while the number of prototypes increases to 14
and 9 respectively if the number of recalled materials considered is increased
to 1000 (Supplementary Fig. 8).

As future directions for language representation for crystals, we suggest
to enrich the material representations by diversifying both text-based input
and structures. The automatically generated text descriptions from Robo-
crystallographer are repetitive with subtle differences for similar materials.
The descriptions are monotonic with little variation between descriptive
words/phrasing””. We suggest that including more detailed structural
descriptions (off-centering, bond distortions, etc) and including different
writing styles from multiple sources could help improve performance. For
instance, these descriptions can possibly be diversified via paraphrasing or
developing structure to sentence machine translation models to describe
crystal structures in text or using crystal structure descriptions from
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published papers. The structural complexity in the representation space can
be diversified via generative models, e.g., diffusion models™", to design new
prototype structures beyond simple lattice decoration of known crystals.

Methods

Data preparation

The training dataset was collected from the Materials Project” to include
116,216 materials that are possible to be thermodynamically stable. Using
decomposition enthalpy < 0.5 €V as a query criteria, we utilized Materials
Project APT® and Pymatgen” library to collect materials for use in
this study.

In this work we considered five different property datasets, all of which
include properties relevant to thermoelectric materials; UCSB dataset™ - an
experimental dataset from Materials Research Laboratory (MRL) about
1092 materials (500 unique materials) with their thermoelectric properties;
ESTM dataset™ — an experimental dataset containing 5205 materials (880
unique materials) with their thermoelectric properties; ChemExtracter
dataset’® - a mixture of experimental and theory dataset by auto-generation
from the scientific literature spanning 10,641 unique chemical names;
TEDesignLab dataset”” - a theory dataset containing lattice thermal con-
ductivity for 3278 materials; Citrine dataset® — an experimental dataset from
Matminer® containing thermal conductivity records for 871 materials. In all
five datasets, 826 materials that have records for five TE properties are used
for evaluation of recall performance in Evaluation: unsupervised recall of
relevant materials. We calculated the numeric mean for materials with
repeated entry for certain properties and properties at different tempera-
tures. For MMoE model training and testing, UCSB and ESTM datasets are
utilized as ground-truth labels. During training, the TE properties are
matched to corresponding temperature range via one-hot encoding.

Embedding models

Three model-based and one model-free embedding methods were used
in this work. For the model-based approach, we obtained pretrained
weights for Mat2Vec'®, MatsciBERT", and MatBERT . For Mat2Vec, it
was trained similarly as Word2vec training through skip-gram with
negative sampling. Each word is embedded into a 200-dimensional
vector. For the BERT-based models, MatsciBERT was pretrained on
whole sections of more than 1 million materials science articles, whereas
MatBERT was trained by sampling 50 million paragraphs from 2 mil-
lion articles. Both models were trained with masked language modeling
(15% dynamic whole word masking) and next-sentence prediction as
the unsupervised training objectives. Both models are uncased, and
have maximum 512 input token size with 768 hidden dimensions. The
vocabulary size for the tokenizer is 30,522. For the fingerprint genera-
tion, it was generated using CrystaNN** algorithm as implemented in
Matminer” package. The fingerprint contains statistical information
about local motifs with a size dimension of 122.

Material language representations

We acquired compositional and structural level representations for 116K
materials in total. To acquire structural level representations for each
individual material, we applied robocrystallographer®, an open-source
toolkit that converts the material structure into a human-readable text
passage describing local, semi-local and global structural features of the
given material. We used robocrystallographer descriptions from’”. Similar
to material descriptions found in literature, such material passage encodes
naturally interpretable structural information. The whole passage is pro-
cessed by tokenizers and fed into the pretrained BERT models (MatsciBERT
and MatBERT) for output embeddings from hidden layers. The output
embeddings are L by 768 dimensional matrix, where L € (0512] is the total
number of tokens within the passage. We partitioned passages with more
than 512 tokens to fit the maximum input token size. The final embeddings
for each material are constructed by averaging output embeddings across all
tokens, resulting in a fixed length of vector representations with 768
dimensions.

For the compositional level representations, Mat2Vec embeddings are
directly obtained as the 200-dimensional word embedding vectors of the
material formulas. With BERT models, we performed same tokenization
and embedding procedures on material formulas only. This results in the
same number of 768-dimensional embedding vectors but only contains
information related to the material composition. For composition embed-
dings of the doped material formulas (UCSB dataset), we normalized the
compositions to the element with the most number of atoms in the unit cell.
The output embeddings are obtained on the normalized formulas.

To quantify the strength of contextual language representation used in
this work, it is essential to choose reasonable baseline representations that
capture the structural and/or compositional features of solid-state materials
for comparison. Despite the existence of various representations of solid-
state materials”', not all can serve as the baseline representations for this
study because: (1) the language representation utilized in this work contains
latent features that are directly obtained from pretrained models, (2) the
language representation serves as the input to unsupervised downstream
tasks (e.g., recall) in our recommendation framework. For the reasons
above, we select fingerprint as the baseline for structural representation
which characterizes the local environment of each atom and considers the
global structure as a combination of local representations. On the other
hand, we employ Mat2Vec as the chosen baseline for compositional
representation.

MMoE and TE property prediction
A shared-bottom multi-task network was first introduced by™ and widely
applied for multi-task learning. The basic network formulation is:

v = W (f(x)) oy

where k = 1,2, 3...K for K number of tasks, fis the shared-bottom network,
1 is the tower network for task k, and ¥k is the output for task k. The key
difference in MMOoE network is to substitute the shared-bottom f with MoE
layer f*(x) for a specific task k, which is defined as:

F10) = 2 8 wf) @

gk(x) = softmax(W yx) 3)

where i = 1,2, 3...n for n number of experts, g(x) is the gating network for
each task k, and Wy is the trainable matrix. In this implementation, all
expert network is a three-layered MLP with 128, 64, and 32 dimensions. The
gating network is a two-layered MLP with 32 and 16 dimensions. In all
experiments, networks are trained for 500 epochs with learning rate = 1073,
weight decay = 107>, and batch size = 64. We used k-fold cross-validation
method to train and evaluate the model performance. For all datasets, we
employed 5-fold cross validation by splitting the dataset into 5
nonoverlapping portions. The number of experts is set to 8 for both
AFLOW benchmark dataset and TE dataset.

Recent works** reported that doping and alloying information, as
well as context features greatly enhance the model performance for TE
predictions. As for context features for MMOE, we first sorted the con-
tinuous temperatures into four ranges (0, 300], (300, 600], (600, 900],
(900, + o], which were one-hot encoded into sparse feature vectors and
passed to embedding layers of the MMoE model. Since the structure
embeddings are restricted to the host materials, dopant or alloying infor-
mation will be derived from composition embeddings to delineate the
compositional effect. To match doped materials to their hosts, we encoded
the normalized doped formulas into composition vectors (sparse vector
with number of corresponding elements at each site), followed by mapping
to existing host composition vectors via cosine similarity. Host materials
with the highest cosine similarities were selected.
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Ranking score and exploratory analysis
Once candidates are recalled for the query, their predicted properties are
used to compute total absolute percent difference (TAPD) defined as:

K c _ .4
TAPD = (_ka qyk|) (4)
Yk

where K is the total number of material properties, y* and y” are the candidate
and query properties respectively. This measures the composite deviation of
candidate properties from the query properties. All properties need to be
close to those of the query to have alow TAPD. We define relevancy score as
the reciprocal of TAPD:

1
relevancy = TAPD (5)

In these experiments, 100 candidates were recalled per query material. We
ranked the candidates based on their relevancy score. The scores presented in
the figure were normalized by the maximum score within the recalled list.
For the exploratory analysis, clusters were hand-selected based on
localization of materials with high predicted zT. Within each selected
cluster, we extracted and ranked the materials according to their zT. All
predictions were made at high temperature (900, 4 o] as the context
features.

Evaluation: unsupervised recall of relevant materials

Recalling relevant material candidates is an unsupervised process which
does not require training labels. First, candidates are searched in the
representation space by computing cosine similarities between the
embedding vector of the query and the rest of the embedding vectors. The
similarity-sorted top candidates are returned as the relevant materials.
Metrics including Precision@k and Normalized Discounted Cumulative
Gain (nDCGQ) are used to evaluate the recall performance. Such evaluation
metrics are common for recommender system, where the goal is to max-
imize the number of relevant items in the recalled list, i.e., the top@k items
with k being the size of the list, as well as the relative order of recalled items.
Precision@k measures the percentage of the relevant materials in the first k
recalled materials:

precision@k = relevant ;tems@k ©)

while nDCG is an evaluation method which compares the ideal ranking of a
test set (iDCG), with the ranking assigned by the recommendation algo-
rithm (DCG - Equ. (7)).

n  relevance
DCG= X —FF 7
i=tlog, (i + 1) @
DCG
D = —_— 8
nDCG = = e (®)

Evaluation: First-principles calculations

The ab initio scattering and transport (AMSET* software package was used
to estimate scattering rates (or lifetime) and transport properties based on
momentum relaxation time approximation (MRTA), which has been
shown to give comparable results to state-of-art EPW code®. The carrier
mobility was simulated by considering three scattering processes, including
acoustic phonon scattering (ADP), polar optical phonon scattering (POP),
and ionized impurity scattering (IMP). Each component of carrier lifetime
was evaluated by Fermi’s golden rule, with total characteristic scattering
time following Matthiessen’s rule. The associated Seebeck coefficient, elec-
trical conductivity, and electronic component of the thermal conductivity
were were calculated by solving the Boltzmann transport equation

(BoltzTraP) using Onsager transport coefficients. All ab initio inputs are
computed from density functional theory (DFT) using the GGA-PBE™
exchange-correlation functional. Lattice thermal conductivity (k1) was
calculated using a semi-empirical model based on a modified Debye-
Callaway model® which captures anharmonicity. Bulk modulus (B) was
determined by fitting the Birch-Murnaghan equation of state to a set of total
energies computed at different volumes that were expanded and contracted
around the equilibrium volume. Other parameters of the semi-empirical
model are directly accessible from the relaxed structures, including density,
average atomic mass, volume per atom, average coordination number, and
number of atoms in the primitive cell. The expression for lattice thermal
conductivity is give by

Mv, Vg 1
=4, TV2ul/3 T4 V23 (1 - m) ©)

where A; and A, are fitted parameters, M is the average atomic mass, v is the
speed of sound, T is the temperature, V is the volume per atom, and 7 is 1the
number of atoms in the primitive cell. v, is approximated as v, ~ (B/d)-.

KL ac

Evaluation: experiments

CuZn,GaTe,, CuGaGeSe,, and HgGa,Te, samples were prepared
from elements: Cu (99.9%), Hg (99.999%), Ga (99.999%), Zn
(99.999%), Ge (99.999%), and Te (99.999%), Se (99.999%). The
stoichiometric weights were first sealed in evacuated silica ampoules
and melted at 1000° C for several hours. Next, the ingots were milled
in high-energy mechanical mill Spex 8000D for 90 min in an inert
environment. The powders were consolidated in an induction heating
hot press at 500° C, 40 MPa for at least 2 hours. Electrical resistivity
and Hall coefficient were studied under vacuum on a home-built
apparatus with van-der Pauw geometry™. Seebeck coefficient mea-
surements were carried out using a custom-built device®” in 300 Torr
of nitrogen gas. Diffusivity coefficient (D) measurements were per-
formed on Netzsch LFA 467 apparatus. To obtain thermal con-
ductivity (x), we used formula x = DC,d.,,, where C, is heat capacity
and d,,, is experimental density. Values of C, were obtained from
Dulong-Petit law, while density of the samples was measured with
geometric method. For all obtained materials d.,, was ca. 90% of the
theoretical value or higher.

Data availability

The preprocessed AFLOW and thermoelectric datasets used for training
and testing the models, as well as material embeddings obtained in this
work, are available at https://doi.org/10.6084/m9.figshare.22718668.v1.

Code availability
The code and the model weights are available under the MIT license at:
https://github.com/ertekin-research-group/Material_Recommender.
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