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Abstract
Asmachine learning (ML) usage becomes more popular in the healthcare sector, there
are also increasing concerns about potential biases and risks such as privacy. One coun-
termeasure is to use federated learning (FL) to support collaborative learning without
the need for patient data sharing across different organizations. However, the inherent
heterogeneity of data distributions among participating FL parties poses challenges
for exploring group fairness in FL. While personalization within FL can handle per-
formance degradation caused by data heterogeneity, its influence on group fairness
is not fully investigated. Therefore, the primary focus of this study is to rigorously
assess the impact of personalized FL on group fairness in the healthcare domain, offer-
ing a comprehensive understanding of how personalized FL affects group fairness in
clinical outcomes. We conduct an empirical analysis using two prominent real-world
ElectronicHealth Records (EHR) datasets, namely eICU andMIMIC-IV.Ourmethod-
ology involves a thorough comparison between personalized FL and two baselines:
standalone training, where models are developed independently without FL collabo-
ration, and standard FL, which aims to learn a global model via the FedAvg algorithm.
We adopt Ditto as our personalized FL approach, which enables each client in FL to
develop its own personalized model through multi-task learning. Our assessment is
achieved through a series of evaluations, comparing the predictive performance (i.e.,
AUROC and AUPRC) and fairness gaps (i.e., EOPP, EOD, and DP) of these methods.
Personalized FL demonstrates superior predictive accuracy and fairness over stan-
dalone training across both datasets. Nevertheless, in comparison with standard FL,
personalized FL shows improved predictive accuracy but does not consistently offer
better fairness outcomes. For instance, in the 24-h in-hospitalmortality prediction task,
personalized FL achieves an average EOD of 27.4% across racial groups in the eICU
dataset and 47.8% in MIMIC-IV. In comparison, standard FL records a better EOD
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of 26.2% for eICU and 42.0% for MIMIC-IV, while standalone training yields signif-
icantly worse EOD of 69.4% and 54.7% on these datasets, respectively. Our analysis
reveals that personalizedFLhas the potential to enhance fairness in comparison to stan-
dalone training, yet it does not consistently ensure fairness improvements compared
to standard FL. Our findings also show that while personalization can improve fair-
ness for more biased hospitals (i.e., hospitals having larger fairness gaps in standalone
training), it can exacerbate fairness issues for less biased ones. These insights suggest
that the integration of personalized FL with additional strategic designs could be key
to simultaneously boosting prediction accuracy and reducing fairness disparities. The
findings and opportunities outlined in this paper can inform the research agenda for
future studies, to overcome the limitations and further advance health equity research.

Keywords Health disparities · Group fairness · Federated learning · Personalization ·
Privacy

1 Introduction

Today’s discourse on the digitization of healthcare has moved beyond the potential
transformative effects of artifacts such as Electronic Health Records (EHR) to a vision
of the future in which Artificial Intelligence (AI) is poised to significantly enhance
healthcare practices and delivery [1–4]. Research advances inAI, particularlyMachine
Learning (ML) and Deep Learning (DL), have led to groundbreaking innovations that
disrupt various fields in healthcare, including radiology, pathology, and genomics
[5]. As ML model usage proliferates into many aspects of our lives, there is growing
concern regarding their ability to cause harm by introducing biases in decision-making
[6]. ML models are known, for example, to be susceptible to algorithmic biases that
can exacerbate existing health disparities [7].

Health equity can be broadly defined as minimizing unjustifiable disparities in
health and its determinants among groups of people with varying levels of underlying
social advantage or privilege, typically dictated by their relative positions in society in
termsof power,wealth, or prestige in comparison to other groups [8].However, existing
studies have reported that ML models can potentially generate biased outcomes that
disproportionately affect certain socio-demographic groups [7, 9]. For instance, the
work of [6] has revealed significant disparities in the performance of state-of-the-
art clinical prediction models. These models have been found to underperform when
applied to women, ethnic and racial minorities, as well as individuals with public
insurance. Additionally, other research has highlighted biases in popular language
models when trained on scientific articles. Notably, these models have been observed
to generate biased recommendations in clinical note templates, suggesting hospitals
for violent white patients and prisons for violent black patients [10].

The design and utilization of ML systems are marked by a series of cascading
effects resulting from health disparities and discrimination. First, ML models rely
heavily on large datasets, and any biases from existing practices, institutional policies,
norms, and social science factors that affect these datasets can be reproduced in the
algorithmic models that they generate [7]. However, numerous factors contribute to
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health disparities, inevitably introducing biases into datasets. These factors encompass
widespread disparities in living and working conditions, differential access to and
quality of healthcare, systemic racism, and other ingrained patterns of discrimination,
all of which are likely to leave disadvantaged groups vulnerable to disproportionate
health risks [7]. Moreover, the datasets used to develop and validate ML models are
often insufficient in representing the general population, particularly with regard to
variations in the prevalence and incidence of diseases and their risk factors [11–13]. If
datasets do not cover adequate representation of populations at higher risk of a disease,
the trained prediction models used in clinical AI decision support may not be able to
accurately detect the target disease systematically [7, 13]. Additionally, the tendency
to create health data silos can exacerbate this challenge, particularly when privacy
regulations such as the General Data Protection Regulation (GDPR) [14] and the
Health Insurance Portability and Accountability Act (HIPAA) [15] restrict the sharing
of medical data between parties [5]. In addition to the lack of representativeness
and patterns of discrimination, MLmodels are also susceptible to bias stemming from
institutional racism and the implicit biases of bothAI developers and users. Such biases
can influence decision-making during the design and deployment process, potentially
integrating discrimination and prejudice into the deployment process and resulting
products [7]. Therefore, it is crucial to incorporate fairness-aware algorithms in the
design of ML models to ensure group fairness, which refers to the idea that ML
models should not be biased against specific groups and should not reveal real-world
discrimination.

Extensive research efforts such as those presented in [16–19] have focused on study-
ing howMLmodels can exhibit bias against socio-demographic groups in centralized
scenarios where a single entity possesses all the data, and various fairness-related
methods have been developed to mitigate the impact of such biases and promote
group fairness [19–22]. However, these works rely on the availability of the entire
dataset at a central entity during training, while in real-world healthcare applications,
data are typically owned by multiple parties who are restricted from sharing it due
to privacy concerns [5, 23]. Federated Learning (FL) provides a promising solution
by enabling parties to collaboratively learn a global model without sharing their data
[23–28]. Nevertheless, the decentralized nature and data heterogeneity of FL make it
challenging to address this issue by applying fair training solutions from centralized
settings to federated settings. One of the key obstacles is the fact that data cannot be
shared between parties in a federated setting. Additionally, there are often significant
differences in data distributions across parties, as well as across groups. For example,
in healthcare, different hospitals will have different patient populations with distinct
demographic compositions including race or gender. Although several fairness-aware
FL approaches have been designed to mitigate bias by focusing on achieving group
fairness using a single global model [29–31], their capacity for substantial improve-
ments is limited due to the heterogeneity of data distributions in FL systems. This
limitation is rooted in the disparate impact of the global model learned in FL on group
fairness across participating parties, leading to unequal fairness benefits for different
clients [32]. In this case, despite the importance of group fairness in the context of FL,
it has not been fully investigated due to various challenges.
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Personalization is a technique that has beenwidely utilized in FL tomitigate the data
heterogeneity issue across clients, a universal characteristic inherent in all real-world
datasets [33–35]. Unlike general FL methods that only have a global model, personal-
ized FL methods allow each client to have their own local personalized models, which
brings better adaptability on local private datasets. As a result, personalized FL often
outperforms standard FL in terms of prediction accuracy, especially under practical
non-IID (Independent and Identically Distributed) scenarios where data distributions
vary significantly across different clients, leading to dependencies and heterogeneities
in the data [34, 35]. In such contexts, the assumption of IID data, where each data
point is drawn from a uniform distribution and each sample is independent of others
does not hold, making standard FL approaches less effective [36]. The unique aspect
of personalized FL, where clients can learn their own personalized models, makes
us wonder whether it has the potential to reduce bias in these personalized models
compared to the one-size-fits-all global model. Therefore, we investigate the follow-
ing questions in this paper: Can personalization in FL improve fairness for parties
compared to standalone training (i.e., each party conducts local training using its own
data without collaboration via FL)? Can it provide more benefits than standard FL
in terms of fairness? Can personalization mitigate the disparate impact of the global
model on fairness in FL?

In this paper, we provide an empirical analysis based on two real-world EHR
datasets: eICU and MIMIC-IV. We show that personalization, intended to handle
performance degradation caused by data heterogeneity across parties, is insufficient
for sustaining fairness benefits, as compared to its performance benefits. Specifically,
we observe that the model trained using personalized FL can, on average, yield greater
fairness benefits than standalone training. We also demonstrate that personalization
does not necessarily guarantee enhanced fairness benefits compared to standard FL.

The rest of this paper is organized as follows. To begin, we briefly review the
extant literature on group fairness and personalization in FL. We then proceed to
elaborate on the background of FL, personalized FL, and the definition of group
fairness within FL. Following this, we introduce our experimental setup, followed
by a comprehensive analysis of our empirical findings. Subsequently, we proceed
to discuss the contributions and practical implications of our work, highlighting the
potential benefits it offers to various stakeholders. We also suggest potential solutions
to mitigate the bias in personalized FL. Finally, we summarize our work and suggest
promising future research directions.

2 RelatedWork

2.1 Group Fairness in CentralizedML

The proliferation of ML algorithms in decision-making processes has resulted in a
significant focus on fairness. Several definitions of fairness have been proposed, with
particular emphasis on group fairness [16, 18]. Specifically, group fairness focuses
on ensuring that a model’s predictions and outcomes should be equitable regardless
of demographic groups that are defined by sensitive attributes such as race and sex.
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Extensive research has investigated how ML models can exhibit bias against socio-
demographic groups in centralized scenarios where a single entity possesses all the
data [20, 21, 37, 38]. Common approaches for realizing group fairness in centralized
settings can be classified into three categories: preprocessing [17], in-processing [20,
21, 39], and post-processing [40]. Notably, in the particular data context of EHRs,
[41] involves the utilization of adversarial learning to mitigate bias in an ML model
tasked with predicting the risk of cardiovascular diseases from EHRs. Regularization
techniques have been used to achieve counterfactual fairness [42], where the model is
required to generate consistent predictions for a patient even when the value of their
sensitive attribute is changed. Additionally, methods such as fine-tuning and pruning
of pre-trainedmodels have been proposed, especially for chest X-ray applications [43].
Nevertheless, the exploration of group fairness within the realm of FL using EHRs
remains an avenue yet to be thoroughly investigated.

2.2 Group Fairness in FL

Recently, considerable progress has been made in training group fair models in FL
[29–31, 44]. Most of these studies focus on achieving group fairness by measuring
and mitigating bias utilizing a single global model [29–31]. For example, [29] derive
a framework from a constrained multi-objective optimization perspective, wherein
they seek the Pareto optimal model that achieves fairness constraints across all clients
while maintaining consistent performance. Another study introduced a FL approach
that incorporates fairness-aware aggregation and local debiasing techniques to improve
group fairness within the FL setting [44]. However, in practice, the data distributions
of different parties (i.e., hospitals) in healthcare are often heterogeneous. In this case,
by learning a global model, these approaches could result in a decline in prediction
accuracy for individual parties, because a global model may not accurately reflect the
fairness of FL concerning the local data distributions of the parties [32]. A recent study
[32] has revealed that FL can have a disparate impact on parties where those having
more bias in the standalone setting (caused by local-only training on their local data)
could obtain a fairer model through FL.

2.3 Personalization in FL

The existing literature on personalization in FL has primarily concentrated on eval-
uating the performance accuracy of FL methods across clients (e.g., parties or user
devices), disregarding socio-demographic groups. Personalized FL has garnered sig-
nificant attention as a potential solution to address the data heterogeneity inherent
in FL [33–35, 45–47]. In the conventional design of FL, the objective is to train a
global model using clients’ data in a privacy-preserving and communication-efficient
manner [23]. However, if the data distributions across clients are distinct (i.e., non-
IID), the learned global model may not generalize well to each client’s data [48].
This phenomenon has been reported in literature [49, 50], where an increase in sta-
tistical diversity leads to a significant increase in generalization errors of the global
model on clients’ local data. Consequently, multiple approaches have been proposed
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to achieve personalization in FL, such as multi-task learning [33, 34], meta-learning
[45, 46], representation learning [35, 51], etc. From the universal learning perspec-
tive, we can divide the existing personalized FL algorithms into two categories [52]:
full model-sharing (with a global shared model) [34, 48] and partial model-sharing
(without a global shared model) [35, 53]. Typically, full model-sharing algorithms
are mainly extended from the conventional FL methods, i.e., FedAvg [23] or FedProx
[54], which combines the adaption of local personalized features on local training
updates procedure, such as regularized loss function [34, 48], model mixture [55], and
meta-learning [56]. Full model-sharing also indicates knowledge from every client’s
local dataset could be transferred to local models of other clients by sharing the global
model. Partial model-sharing often advocates for learning a shared representation
across various clients and indicates each client could only utilize knowledge of partial
model parameters trained on the other clients’ local datasets so that each client could
gain certain degrees of personalization [35, 53]. In general, regardless of the personal-
ization techniques, existing work has demonstrated that learning personalized models
for clients in the FL setting could work better than the global shared model or the local
individual models when the data distributions across clients are highly non-IID as in
the real-world datasets [57, 58].

3 Background

3.1 Standard FL

In standard FL, the goal is to learn a global model that achieves uniformly good
performance over all clients [23]. Motivated by this goal, many existing methods, with
the most common one being FedAvg [23], adopt a process that involves the following
steps at each communication round: (i) the server selects a random subset of clients
to participate in training, and delivers the current copy of the global model to them;
(ii) each selected client computes a local model using its local dataset; and (iii) the
server aggregates the local models received from clients to update the global model.
The above process is repeated for multiple communication rounds until convergence.

Formally, a FL system contains a server and K clients, where each client k ∈ [K ]
holds a local dataset Dk sampled from a distribution (Xk,Yk) ∼ Dk . Here Xk ∈ R

d

denotes the input feature vector and Yk ∈ Y denotes the corresponding label. The
sample size of the local dataset Dk is nk . The goal of standard FL is to fit a single
global model f parameterized by w across all clients as follows:

min
w

1

K

∑

k∈[K ]
Lk(w), (1)

where Lk(w) := E(Xk ,Yk )∼Dk [�k( f (Xk;w),Yk)] is the empirical risk of client k, and
�k is the loss function. The workflow of a standard FL system is shown in Fig. 1.
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Fig. 1 The workflow of the standard FL system with K hospitals

3.2 Personalized FL

In practice, the local dataset Dk of each client may follow a distinct distribution Dk .
Therefore, it is common to consider learning personalized, client-specific models for
all clients k ∈ [K ]. In this work, we exclusively focus on full model-sharing among
the two personalized FL categories due to its flexibility for personalization and strong
connections with both global and local models. Under the full model-sharing category,
we learn both a global model f parameterized by w and K local personalized models
hk parameterized by θk for each client k. The objective can be formulated as:

min
w,{θk }k∈[K ]

1

K

∑

k∈[K ]
Lk(w; θk), (2)

where Lk(w; θk) := E(Xk ,Yk )∼Dk [�k( f (Xk;w),Yk)]+λH(w, θk). Note θk represents
local personalizedmodel parameters owned by each client andw means the global ref-
erence model parameters shared among all clients. The new addedH is the regularizer
of similarity between w and θk and λ is the coefficient for each client.

Specifically, we adopt a common FL framework called Ditto [34] for personal-
ization so that each client can obtain its own personalized model through multi-task
learning in FL. We choose Ditto because of its flexible degree of personalization and
its adaptability across different types of models as a full model-sharing method, in
contrast to partial model-sharing methods [35, 53]. More importantly, compared to
other full model-sharing methods [33, 48], Ditto’s strength lies in the way it produces
personalized models. The personalized models it produces acted as an interpolation
between the global and local models, and Ditto can be viewed as a highly adapt-
able, lightweight personalization add-on for any global federated objective, which
also maintains the privacy and communication efficiency of the global objective [34].
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In Ditto, the global objective to obtain the global model is the same as that of the
standard FL, and each local objective adds a regularization term to the empirical risk
over the local dataset that encourages the personalized model of each client to be close
to the optimal global model. Specifically, the bi-level optimization problem solved by
each client k ∈ [K ] is defined as

min{θk }k∈[K ]
Lk(θk) + λ

2
‖θk − w‖2

s.t. w ∈ argmin
w

1

K

∑

k∈[K ]
Lk(w),

(3)

where λ is a hyperparameter that controls the interpolation between the global and
local models, i.e., the personalization degree of each client. The training procedure for
Ditto is presented in Algorithm 1. It involves the following steps at each round: (i) the
server randomly chooses a subset of clients S t for training and sends them the current
global model parameter wt ; (ii) the selected clients update their personalized models’
parameters θk throughmultiple local iterations usingwt as the reference with an added
regularizer λ

2‖θk − w‖2, and update the received global model parameter wt in the
sameway as in standard FL; and (iii) the updated globalmodelswith parameterswt

k are
sent back to the server for aggregation, while the personalized models with parameters
θk are kept locally. This process is repeated for multiple rounds until convergence. At
the end of the training, a global model with parameter w∗ and K personalized models
with parameters {θ∗

k }k∈[K ] are obtained.

Algorithm 1 Ditto for personalized FL with FedAvg being the aggregation strat-
egy.
Input: Number of training rounds T , local iteration number s and r , global learning rate ηg , and

personalized learning rate η.
Initialize w0,{θ0k }k∈[K ]
for round t = 0, . . . , T − 1 do

Server randomly selects a subset of clients S t and sends the current wt to the selected clients
/* Client k Local Update */
for client k ∈ S t in parallel do

Update wt
k for r local iterations:

wt
k ← wt − ηg∇Lk (w

t )

Update θk for s local iterations:
θk ← θk − η(∇Lk (θk ) + λ(θk − wt ))

Send �t
k := wt

k − wt back to the server
end
/* Server Aggregation */

Server computes wt+1 ← wt + 1
|Kt |

∑
k∈[Kt ] �t

k

end
return {θTk }k∈[K ], wT
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3.3 Group Fairness in FL

In light of the definition of group fairness, which demands equitable and unbiased
treatment of distinct groups by the model, we quantify group fairness within FL by
focusing on three widely used group fairness notions, namely Equal Opportunity
(EOPP) [18], Equalized Odds (EOD) [18], and Demographic Parity (DP) [16]. A
model meets the DP fairness criteria when the predicted outcome doesn’t rely on the
sensitive attributes. However, pushing for DPmight not alwaysworkwell, especially if
the actual outcome is tied to these sensitive attributes. To address this issue, EOPP aims
to make sure that the predicted outcome is conditionally independent of the sensitive
attributes, particularly when the target label is positive. EOPP goes a step further by
ensuring that the True Positive Rates (TPRs) are the same for different groups. In
the case of a binary target, EOD serves to guarantee that the predicted outcome is
conditionally independent of the sensitive attributes, for every value of the target. This
ensures both the TPRs and the False Positive Rates (FPRs) are equal, consequently
ensuring that the False Negative Rates (FNRs) and the True Negative Rates (TNRs)
are also equal.

Suppose there are K local clients, we denote a data sample from dataset Dk on
the k-th client as (Xk,Yk, Ak), where Ak ∈ A is the sensitive attribute, Xk ∈ R

d

denote the input feature vector, and Yk ∈ Y denote the true label. Recall that the goal
of standard FL is to collaboratively learn a global model f with the parameters w

to predict Ŷk as f (Xk;w) on each client. Similarly, personalized FL aims to learn a
personalized model hk with the parameters θk for each client k so that it can predict
the target as hk(Xk; θk) on each client. We can use the fairness gap with respect to the
EOD difference on the k-th client to measure fairness. For example, when considering
the personalized model hk , it is defined as

�k
EOD(hk; Dk) := max

a,a′∈A,y∈Y
|Pr(Ŷk = 1|Ak = a, Yk = y) − Pr(Ŷk = 1|Ak = a′, Yk = y)|,

(4)

where y ∈ {0, 1} for binary classification tasks. The EOD difference is essentially
the largest gap in TPRs and FPRs between any two groups, denoted as a and a′,
considering all combinations of pairs from the involved groups. Consequently, in
scenarios involving multiple groups, the EOD metric will identify the pair of groups
exhibiting the most significant discrepancy. A classifier satisfies EOD if different
groups have equal TPRs and FPRs. �k

EOPP is a relaxed version of �k
EOD that only

considers positive labels, which is defined as

�k
EOPP(hk; Dk) := max

a,a′∈A
|Pr(Ŷk = 1|Ak = a, Yk = 1) − Pr(Ŷk = 1|Ak = a′, Yk = 1)|. (5)

EOPP ensures different groups have equal TPRs. Similarly, the fairness gap with
respect to DP on client k is defined as follows

�k
DP(hk; Dk) := max

a,a′∈A
|Pr(Ŷk = 1|Ak = a) − Pr(Ŷk = 1|Ak = a′)|. (6)
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DP ensures equal positive prediction rates across groups. In the rest of the paper,
we use the fairness gap � (including �EOPP, �EOD and �DP) to measure the bias
(fairness) of a model. The model is considered fairer when the value of � is smaller.

4 Empirical Analysis

The goal of our empirical analysis is to understand how personalization in FL impacts
group fairness for clients. We aim to answer the following questions:

• Can personalization in FL improve fairness for parties compared to standalone
training?

• Can personalization provide more benefits than standard FL in terms of fairness?
• Can personalization mitigate the disparate impact of the global model on fairness
in FL?

In this section, we first describe our experimental setup in Section4.1, including the
descriptions of the dataset, tasks, and model. Then we provide our empirical analysis
and discuss our findings.

4.1 Experimental Setup

4.1.1 Datasets

The eICU Collaborative Research Database (eICU-CRD) [59] is a freely available,
multi-center Intensive Care Unit (ICU) database. It comprises over 200,000 patient
ICU encounters for 139,367 unique patients admitted between 2014 and 2015. Patients
were admitted to one of the 335 units at 208 hospitals located throughout the United
States. It is a collection of a number of tables, and the tables are all linked by a set of
identifiers, and each instance in the database is a specific ICU stay. To simulate the
distributed setting, we naturally partition the database into different hospitals. Figure2

Fig. 2 ICU stay distributions across all hospitals in the eICU-CRD
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depicts the distribution of the number of ICU stays among all hospitals. The database
is highly imbalanced, with most hospitals having less than 1000 data samples.

To preprocess the raw data, we follow the data preprocessing pipeline outlined
in [60]. Specifically, we select all adult patients (older than 18) with at least one
recorded observation and an ICU stay lasting at least 5h. In total, 17 static features
are selected and subject to feature engineering, such as scaling numerical variables
between -1 and 1 and converting categorical variables to one-hot encoding. Static
features include patient and hospital attributes such as gender, race, age, admission
location, etc., and all of them are preprocessed accordingly. Such static features could
potentially impact the fairness of medical outcomes, as supported by existing liter-
ature [61, 62]. Therefore, their inclusion is also crucial for evaluating the model’s
performance across diverse patient groups and identifying potential biases that may
arise from demographic disparities. Furthermore, diseases documented in the pasthis-
tory, admissiondx, and diagnoses tables are extracted and represented through binary
encoding. To maintain the hierarchical structure of diagnosis coding, separate features
are assigned to each hierarchical level using binary encoding, as suggested in [60].
Each patient admission is represented by a single diagnosis encoding. Additionally,
to enhance model performance, we include 87 time series features for each ICU stay
from the following tables in the database: lab, nursecharting, respiratorycharting,
vitalperiodic and vitalaperiodic. Time series features are extracted for every hour of
the ICU stay, from 24h before the ICU visit and up to the discharge time. Only vari-
ables presented in at least 12.5% of the total patient stays are included, or 25% for
lab variables, as suggested in [60]. Moreover, time series features are then re-sampled
according to 1-h intervals and then forward-filled over the gaps to cope with miss-
ing data, in order to handle the relatively sparsely sampled lab variables. Any data
recorded before the ICU admission will be removed after forward-filling is complete.
After that, corresponding decay indicators of time series features are added to specify
how recently the observation was recorded, similar to the masking used in [63].

In this study,we conduct both 24-h and48-h in-hospitalmortality prediction. Specif-
ically, one prediction will be made each hour, and we report the mortality prediction
once per ICU stay (i.e., at 24h or 48h into the stay). For in-hospital mortality predic-
tion, the distribution of the class label is highly skewed, withmost data samples labeled
as survival (i.e., negative class). To avoid lacking positive samples in each hospital,
we only include hospitals that have more than 100 mortality cases (i.e., positive class)
in the experiments. This threshold helps exclude hospitals that not only have fewer
mortality cases but also tend to have a very limited overall data sample size. Such a
criterion guarantees a diverse mix of positive and negative data samples in the training,
validation, and testing sets, following a split of 70% for training, 15% for validation,
and 15% for testing for each hospital’s data. This diversity is crucial for avoiding
datasets dominated by a single class, as the presence of varied data is fundamental for
models to identify and learn from underlying patterns. After applying these steps, we
ultimately include 42 hospitals in our empirical analysis. The distribution of mortality
labels across the 42 hospitals is shown in Fig. 3.

We consider multi-value race, gender (i.e., male and female), and age (i.e., above
63 or not) as the sensitive attribute for both tasks. Figure4 showsmortality distribution
for each race subgroup across the 42 hospitals, and Fig. 5 shows the distributions of
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Fig. 3 Mortality distribution across selected hospitals in the eICU-CRD

mortality in gender and age subgroups across hospitals. The mortality distribution
varies across race subgroups, and the Caucasian group has the most mortality data
points. We observe that the mortality distributions for the two age groups are not
evenly distributed, and the data is biased toward the group with age larger than 63. In
contrast, the mortality rates are similar for the male and female groups, indicating that
mortality is more evenly distributed and less bias exists.

We verify our results on a secondary dataset, the Medical Information Mart for
Intensive Care (MIMIC-IV) database [64], a de-identified, publicly accessible EHR
dataset sourced from the Beth Israel Deaconess Medical Center. It contains 69,619
ICU admissions involving 50,048 patients over the period from 2008 to 2019. We use
the same cohort selection criteria as in eICU to extract 69,609 ICU stays from 50,042
patients. We followed the same feature selection process as in eICU to obtain a short

Fig. 4 Proportion of samples with positive mortality by race groups among samples from the selected
hospitals in the eICU-CRD
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Fig. 5 Proportion of sampleswith positivemortality by gender and age groups among samples from selected
hospitals in the eICU-CRD

list of 172 time series features from the chartevents and labevents tables. Out of these,
71 useless features from chartevents were manually excluded from the time series
features because these variables do not capture the changes in a patient’s condition, or
because their distribution does not provide useful discrimination between patients, as
introduced by [60]. Themissing data is filled in the sameway as in eICU.We eventually
extracted 12 static features and 101 time series features for each ICU admission in
MIMIC-IV. Given that MIMIC-IV contains data from a single medical center and it
cannot be naturally partitioned, we created a non-IID cohort from this dataset, where
we synthesize 20 non-IID clients through a Dirichlet distribution, in line with previous
studies [65, 66]. The tasks performed on this dataset, as well as the sensitive attribute
analyzed, are consistent with those used in the eICU dataset.

4.1.2 Model

For the eICU dataset, we employ the Temporal Pointwise Convolutional (TPC) model
introduced by [60] in our experiments, which is the state-of-the-art model for patient
outcome prediction using time series data. This model combines temporal convo-
lutional layers that capture causal dependencies in the time domain, and pointwise
convolutional layers that compute higher-level features from interactions in the fea-
ture domain to handle time series features. Specifically, the time series features and
corresponding decay indicators are the initial inputs to the first TPC layer, and will be
processed by N TPC layers, where the temporal convolution networks (TCN) [67, 68]
will examine through regular timepoint t and map the X input channels into Y output
channels, and the pointwise convolution will be applied separately to each timepoint
t with information from static features. Besides, static features will be combined with
time series representations among the feature domain using joint fusion. Finally, a
two-layer pointwise convolution model is implemented, so that final predictions can
be obtained.

In the context of the MIMIC-IV dataset, a Transformer-based model is employed,
leveraging the capabilities ofmulti-head self-attentionmechanisms,which has demon-
strated superior performance across various tasks. Our model implementation is the
same as [60].
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4.1.3 Implementation Details

Our empirical analysis is conducted based on three methods briefly described below:

• Standalone training, where each client conducts local training using its own data
without communicating with the central server using FL.

• Standard FL, where FedAvg is used to let clients collaboratively learn a global
model for universal use.

• Personalized FL, where Ditto is implemented, in order to collaboratively learn
local personalized models for individual use only, by interpolating the global
model.

To compare standalone training, FedAvg (standard FL), and Ditto (personalized
FL), we train the model for 30 communication rounds or epochs under each setting.
The learning rate in Ditto for updating the global model is the same learning rate tuned
on FedAvg, and it is set to be 0.001 on both datasets. The learning rate in standalone
training is also 0.001. The batch size is 32 under all settings. We further tune the
personalized learning rates and the hyperparameterλ inDitto for updating personalized
models. All the experiments were run three times, and the average performances with
standard deviations were reported. The evaluation metrics used in our analysis are:

• PerformanceMetrics: We use the area under the precision-recall curve (AUPRC)
and the area under the receiver operating characteristic curve (AUROC) as metrics
to measure prediction performance because the dataset is highly imbalanced.

• Fairness Metrics: We select three metrics EOPP, EOD, and DP to measure the
fairness gaps defined in Section3.3.

To measure the impact of personalized FL, we define the benefits of personalized
FL in terms of fairness and accuracy using two baselines, i.e., standalone training
and standard FL. The benefits of personalization in FL for each client are defined
as the difference between the baseline model θbaseline and the personalized model
θk in terms of accuracy and fairness gaps. Specifically, for a client k, we define the
accuracy benefit of personalized FL as Acc(θk) − Acc(θbaseline), using AUROC and
AUPRC as the metrics. Similarly, the fairness benefit of personalized FL is defined
as �(θbaseline) − �(θk), where the fairness metrics can be EOPP, EOD, and DP. A
positive benefit indicates that personalized FL improves fairness and accuracy, while
a negative benefit implies that it has a detrimental effect.

4.2 Personalization Does Not Ensure Fairness Improvements in FL

Tables 1 and 2 present the average performance and fairness gaps of all methods
for eICU dataset. For 24-h mortality prediction on eICU, as indicated in Table 1,
personalized FL significantly enhances (p-value<0.0001) prediction performance in
terms of AUROC (by 4.1%) and AUPRC (by 10.4%) in comparison to standalone
training. Furthermore, it also significantly reduces (p-value<0.0001) fairness gaps
across all groups. When compared with standard FL, personalized FL demonstrates
a significant improvement of 0.3% in AUPRC (p-value<0.0001), although it does
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Table 1 Average (standard deviation) performance and fairness gaps of standalone training, standard FL
(FedAvg), and personalized FL (Ditto) in terms of 24-h in-hospital mortality prediction across selected
hospitals — eICU

Group Methods AUROC AUPRC �EOPP �EOD �DP

Race Standalone .779 (.009) .293 (.016) .688 (.1) .694 (.1) .274 (.056)

FedAvg .817 (.004) .394 (.01) .257 (.04) .262 (.041) .061 (.007)

Ditto .820 (.006) .397 (.009) .271 (.032) .274 (.035) .059 (.011)

Gender Standalone .779 (.009) .293 (.016) .182 (.009) .189 (.01) .049 (.009)

FedAvg .817 (.004) .394 (.01) .117 (.021) .119 (.022) .015 (.003)

Ditto .820 (.006) .397 (.009) .115 (.02) .116 (.020) .014 (.002)

Age Standalone .779 (.009) .293 (.016) .259 (.008) .267 (.012) .070 (.017)

FedAvg .817 (.004) .394 (.01) .149 (.004) .150 (.003) .015 (.002)

Ditto .820 (.006) .397 (.009) .158 (.009) .159 (.009) .017 (.002)

The standard deviation across three runs is indicated between parentheses. Area under the curve (AUC) is
measured for two prediction metrics (AUROC and AURPC) respectively. The highest prediction perfor-
mance (AUROC and AUPRC) and lowest fairness gaps (�EOPP, �EOD and �DP) are bold

not show a significant enhancement in AUROC (p-value>0.05). It is worth noting
that the fairness gaps in terms of all metrics observed in personalized FL are not
significantly better or worse than (p-value>0.05) standard FL across all groups. In
other words, although personalized FL can outperform standard FL in terms of model
performance, fairness improvements are not ensured compared to standard FL. Similar
results can also be observed in Table 2 for the task of 48-h mortality prediction. One
plausible explanation is that the personalized model, obtained through learning, is
an interpolation between the standalone model and the global model. This model
improves the prediction performance by incorporating the local data distribution to a

Table 2 Average (standard deviation) performance and fairness gaps of standalone training, standard FL
(FedAvg), and personalized FL (Ditto) in terms of 48-h in-hospital mortality prediction across selected
hospitals — eICU

Group Methods AUROC AUPRC �EOPP �EOD �DP

Race Standalone .746 (.009) .307 (.019) .461 (.058) .501 (.057) .268 (.036)

FedAvg .792 (.005) .392 (.006) .118 (.014) .124 (.015) .05 (.011)

Ditto .794 (.003) .396 (.006) .16 (.05) .169 (.046) .064 (.016)

Gender Standalone .746 (.009) .307 (.019) .195 (.011) .198 (.011) .05 (.007)

FedAvg .792 (.005) .392 (.006) .084 (.003) .088 (.004) .016 (.002)

Ditto .794 (.003) .396 (.006) .091 (.029) .095 (.028) .018 (.003)

Age Standalone .746 (.009) .307 (.019) .228 (.028) .234 (.029) .056 (.012)

FedAvg .792 (.005) .392 (.006) .114 (.021) .117 (.021) .015 (.003)

Ditto .794 (.003) .396 (.006) .136 (.048) .14 (.046) .019 (.003)

The standard deviation across three runs is indicated between parentheses. The highest prediction perfor-
mance (AUROC and AUPRC) and lowest fairness gaps (�EOPP , �EOD and �DP ) are bold
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larger extent, while at the same time, it also inherits certain biases from the standalone
model.

The average results for the MIMIC-IV dataset are presented in Tables 3 and 4.
Specifically, personalized FL significantly enhances (p-value<0.05) predictive accu-
racy for 24-h mortality prediction, increasing AUROC by 7.6% and AUPRC by
14.4%, compared to standalone training. It also significantly reduces (p-value<0.001)
fairness gaps in terms of DP but the improvements are not statistically significant (p-
value>0.05) for EOPP and EOD, with race as the sensitive attribute. In comparison
with standard FL, there are no significant differences (p-value>0.05) in all predic-
tion and fairness metrics, indicating that both methods offer comparable performance
in predictive accuracy and fairness on the MIMIC-IV dataset. The results from both
datasets indicate that personalization in FL does not necessarily ensure improvements
in fairness.

4.3 Disparate Impact of Personalization on Group Fairness

To explore the accuracy and fairness benefits obtained through personalization, we
show the average benefits of personalization across hospitals in Fig. 6.When compared
with standalone training, we can observe that personalized FL can improve prediction
performance and the variance in accuracy improvement across hospitals is small.
Note that no significant difference has been observed in the AUROC. AUROC can
be misleading for mortality prediction because the data is highly imbalanced, with
the positive class being the minority class. AUROC can be easily influenced by the
large number of true negatives, and this can result in a high AUROC score even if
the model’s performance on the minority class is poor. On the other hand, AUPRC
considers both precision and recall, which are metrics that are sensitive to imbalanced
data, especially when the positive class is the minority class. We also find that the

Table 3 Average (standard deviation) performance and fairness gaps of standalone training, standard FL
(FedAvg), and personalized FL (Ditto) in terms of 24-h in-hospital mortality prediction across clients —
MIMIC-IV

Group Methods AUROC AUPRC �EOPP �EOD �DP

Race Standalone .753 (.016) .306 (.022) .547 (.019) .547 (.019) .129 (.005)

FedAvg .837 (.008) .433 (.013) .419 (.056) .420 (.056) .070 (.006)

Ditto .829 (.022) .450 (.030) .478 (.042) .478 (.042) .097 (.005)

Gender Standalone .753 (.016) .306 (.022) .107 (.015) .110 (.014) .021 (.002)

FedAvg .837 (.008) .433 (.013) .094 (.021) .095 (.021) .012 (.002)

Ditto .829 (.022) .450 (.030) .124 (.013) .125 (.013) .020 (.003)

Age Standalone .753 (.016) .306 (.022) .131 (.020) .135 (.021) .040 (.004)

FedAvg .837 (.008) .433 (.013) .107 (.009) .109 (.010) .017 (.003)

Ditto .829 (.022) .450 (.030) .120 (.012) .120 (.012) .029 (.007)

The standard deviation across three runs is indicated between parentheses. The highest prediction perfor-
mance (AUROC and AUPRC) and lowest fairness gaps (�EOPP , �EOD and �DP ) are bold
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Table 4 Average (standard deviation) performance and fairness gaps of standalone training, standard FL
(FedAvg), and personalized FL (Ditto) in terms of 48-h in-hospital mortality prediction across clients —
MIMIC-IV

Group Methods AUROC AUPRC �EOPP �EOD �DP

Race Standalone .724 (.009) .324 (.015) .542 (.015) .545 (.016) .165 (.007)

FedAvg .775 (.004) .434 (.021) .442 (.035) .442 (.035) .089 (.008)

Ditto .787 (.013) .434 (.020) .525 (.029) .525 (.029) .132 (.025)

Gender Standalone .724 (.009) .324 (.015) .107 (.007) .112 (.009) .033 (.007)

FedAvg .775 (.004) .434 (.021) .108 (.020) .108 (.019) .017 (.001)

Ditto .787 (.013) .434 (.020) .077 (.017) .079 (.016) .020 (.002)

Age Standalone .724 (.009) .324 (.015) .145 (.004) .151 (.002) .048 (.007)

FedAvg .775 (.004) .434 (.021) .109 (.019) .110 (.019) .017 (.001)

Ditto .787 (.013) .434 (.020) .125 (.015) .126 (.014) .036 (.005)

The standard deviation across three runs is indicated between parentheses. The highest prediction perfor-
mance (AUROC and AUPRC) and lowest fairness gaps (�EOPP , �EOD and �DP ) are bold

personalized model can provide more fairness benefits in terms of EOPP, EOD, and
DP. It implies that most hospitals obtain a fairer model in personalized FL compared
to standalone training. Furthermore, we notice that the variance in the fairness benefits
across hospitals is large, suggesting that hospitals do not benefit from personalization
in FL equally. Additionally, the personalized model does not yield substantial benefits
in comparison to the global model learned from standard FL. While personalization
can indeed enhance both predictive accuracy and fairness for certain hospitals, it leads
to a more biased model for other hospitals. We also notice that there are variances
in the fairness benefits across hospitals, further demonstrating that hospitals do not
benefit equally from personalization.

To further explore the impact of personalization on fairness at the client (hospital)
level, Fig. 7 shows the correlations between the fairness benefits across race groups
that a hospital obtains in personalized FL and the fairness gaps of the standalone
model for the hospital. Note that the fairness gap of the standalone model represents

Fig. 6 Average performance and fairness benefits of personalizedFLversus standalone training and standard
FL for 24-h in-hospital mortality prediction — eICU (Race)
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Fig. 7 Fairness benefit of personalized FL with regard to standalone training — eICU (Race)

the hospital’s bias. It shows strong positive correlations between the fairness benefits
obtained in personalized FL and the hospital’s bias. This result indicates the benefits
of personalized FL on fairness compared to the standalone training. This finding also
highlights the disparate impact of personalization on fairness: it can improve fairness
for more biased clients but at the cost of worsening the issue for less biased clients.
Similar results can also be observed in Fig. 8 for gender and age groups.

However, when comparing the personalized model and the global model learned in
standard FL, there is no strong correlation. Figure9 shows the correlations between
the fairness benefits across race groups a hospital obtains in personalized FL and the
fairness gaps of the global model for the hospital. We can observe that personalized
models and the global model can provide comparable fairness benefits for most hospi-
tals. We can still find that while personalization can increase fairness for more biased
clients in standard FL, it unfortunately tends to worsen the problem for those clients
who are less biased. Similar results can also be observed in Fig. 10 for gender and age
groups.

4.4 PersonalizedModel Learns Similar Patterns as Global Model

Figures11 and 12 show the distribution of attribution values for the sensitive attribute
“race” over individual test points from different race groups within the most biased
hospital.We utilize Integrated Gradients [69] to quantify the contribution of each input
feature to the models’ predictions with respect to the positive class. Notably, the race
attribute exhibits a higher attribution value in the standalone model’s predictions com-
pared to both the global and personalized models. This trend indicates a pronounced
dependency of the standalone model’s predictions on the race attribute of the test
data, which could lead to biased outcomes, especially if the local dataset itself con-
tains biases. On the other hand, the predictions of the global and personalized models

Fig. 8 Fairness benefit of personalized FL with regard to standalone training — eICU (Gender, Age)
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Fig. 9 Fairness benefit of personalized FL with regard to standard FL — eICU (Race)

depend less heavily on the sensitive attribute compared to those of the standalone
model. The difference in attribution to the race attribute implies that standalone mod-
els tend to inadvertently learn more biased patterns compared to what could be learned
in the FL setting. Specifically, standalonemodels, without the benefits of collaboration
and aggregation provided by FL, have the risk of overfitting to biased patterns present
in localized datasets.

Furthermore, the comparison between global and personalized models further
enriches our understanding of bias in FL. Despite the expectation that personalized
models would adapt more closely to individual data characteristics, our findings indi-
cate that they tend to learn similar patterns compared to what could be learned from
the global model. The similarity in pattern learning between personalized and global
models raises critical questions about the effectiveness of personalization in advancing
bias mitigation efforts. It appears that personalization alone is not enough to mitigate
bias in FL. This finding calls for a deeper exploration of personalization strategies in
FL, perhaps by integrating additional fairness-aware and debiasing mechanisms that
can more effectively mitigate bias.

5 Discussion

In this section, we suggest some potential solutions to mitigate the bias in personalized
FL and discuss some implications that our work can offer for different stakehold-
ers. Within the realm of healthcare, privacy is an exceptionally significant concern.
This is primarily because patient-sensitive information is subject to stringent privacy
regulations that strictly prohibit its sharing. Therefore, FL emerges as a highly promis-
ing solution as it empowers multiple parties or clients to collaboratively train a ML
model without the necessity of sharing their individual training data. Nonetheless, one

Fig. 10 Fairness benefit of personalized FL with regard to standard FL — eICU (Gender, Age)
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Fig. 11 Feature attribution value for the sensitive attribute of personalized FL versus standalone training
for 24-h in-hospital mortality prediction — eICU (Race)

prominent issue is the possibility of themodels trained via FL becoming biased against
certain groups. Once there are significant differences in data distribution across par-
ties, as well as across socio-demographic groups, the learned global model may have
a disparate impact on group fairness across parties. Our paper takes the first step in
this direction by providing a comprehensive analysis of the impact of personalization
in FL on local group fairness for parties. By demonstrating that personalization in
FL may exacerbate the issue of fairness for certain parties, we call for auditing group
fairness in the personalized FL and designing fairness-aware learning algorithms that
can mitigate biases. Specifically, a promising direction for future work is to identify
which model parameters contribute to the bias and conduct a thorough audit of how
bias propagates in this context. Another important direction is to design personal-
ized FL algorithms capable of mitigating clients’ local biases, such as by imposing
extra constraints during training, and incorporating local reweighing techniques into
the local training process, etc. Given that personalization in FL can achieve superior
predictive performance, we encourage future research to explore the development of
debiasing techniques, both at the local and global sides, to enhance fairness. This will

Fig. 12 Feature attribution value for the sensitive attribute of standard FL for 24-h in-hospital mortality
prediction — eICU (Race)
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enable clients in FL to acquire less biased models through a combination of fair local
training and fair global aggregation.

Our study offers important practical implications for different stakeholders by pro-
viding insights into addressing bias within the personalized FL powered healthcare
systems. Patients and healthcare recipients belonging to marginalized or underrepre-
sented groups can enjoy more equitable access to healthcare services and personalized
predictive models tailored to their unique needs while safeguarding their privacy
through the adoption of such personalized FL healthcare systems. Specifically, beyond
socio-demographic factors, research has underscored the substantial influence of
socioeconomic, geographic, and environmental determinants on the health and well-
being of individuals and communities [6]. These factors notably impact access to
quality healthcare facilities, potentially exacerbating health disparities. In this con-
text, harnessing a personalized FL-based healthcare system that incorporates these
factors holds the potential to transform healthcare fundamentally. Such a system can
extend its capabilities beyond mere prediction and become a powerful tool for the
active characterization and correction of health disparities. Hospitals and healthcare
providers can enhance the quality of care through collaborative efforts in personalized
FL without concerns about becoming data donors. Additionally, they can boost fair-
ness through the implementation of fairness-aware algorithms, potentially resulting
in improved patient outcomes and contributing to achieving health equity. Ultimately,
for society as a whole, these personalized FL systems have the potential to foster
healthcare equity, ultimately resulting in enhanced overall healthcare outcomes and a
more equitable society.

6 Conclusion

In this work, we have investigated how personalization affects fairness in FL through
an empirical analysis on two real-world EHR datasets. Our findings have shown that,
on average,models trained using personalized FL can achieve better fairness compared
to standalone training. Additionally, we have found that personalized models and the
global model can provide comparable fairness benefits for most hospitals but the ben-
efits vary across hospitals. Specifically, personalization enhances fairness for more
biased hospitals but at the cost of worsening the fairness issues for less biased hos-
pitals. Our work suggests that a combination of personalized FL with fairness-aware
design may have the potential to simultaneously improve prediction performance and
decrease fairness gaps. Therefore, we encourage future research to further audit group
fairness within this context and develop personalized FL algorithms that are capable
of addressing group fairness issues.

Author Contributions TongnianWang: conception, implementation, analysis, andwriting. Kai Zhang: writ-
ing support, and cross-reading. Jiannan Cai: writing support, and cross-reading. Yanmin Gong: conception,
writing support, and cross-reading. Kim-Kwang RaymondChoo: Conception andworking as co-supervisor.
Yuanxiong Guo: providing ideas and working as supervisor. All authors contributed to the manuscript and
reviewed it.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



202 Journal of Healthcare Informatics Research (2024) 8:181–205

Funding The work of Y. Guo was partially supported by NSF CNS-2106761, CMMI-2222670, and UTSA
Office of the Vice President for Research, Economic Development, and Knowledge Enterprise. The work
of Y. Gong was partially supported by NSF CNS-2047761, CNS-2106761, and Cisco Research Award. The
work of J. Cai was partially supported by NSF CMMI-2222670.

Availability of Data and Materials Data used in this study are openly available and free for research [59,
64].

Code Availability Code will be made available upon request.

Declarations

Ethics Approval Not applicable.

Consent to Participate Not applicable.

Consent for Publication Not applicable.

Conflict of Interest The authors declare no competing interests.

References

1. Purushotham S,Meng C, Che Z, Liu Y (2018) Benchmarking deep learning models on large healthcare
datasets. J Biomed Inform 83:112–134

2. Harutyunyan H, Khachatrian H, Kale DC, Ver Steeg G, Galstyan A (2019) Multitask learning and
benchmarking with clinical time series data. Sci Data 6(1):96

3. Wang S, McDermott MB, Chauhan G, Ghassemi M, Hughes MC, Naumann T (2020) MIMIC-extract:
a data extraction, preprocessing, and representation pipeline for MIMIC-III. In: Proceedings of the
ACM conference on health, inference, and learning, pp 222–235

4. Bhatt P, Liu J, Gong Y, Wang J, Guo Y (2022) Emerging artificial intelligence-empowered mhealth:
scoping review. JMIR mHealth and uHealth 10(6):35053

5. Rieke N, Hancox J, Li W, Milletari F, Roth HR, Albarqouni S, Bakas S, Galtier MN, Landman BA,
Maier-Hein K et al (2020) The future of digital health with federated learning. NPJ Digit Med 3(1):119

6. Chen IY, Szolovits P, GhassemiM (2019) Can AI help reduce disparities in general medical and mental
health care? AMA J Ethics 21(2):167–179

7. Leslie D, Mazumder A, Peppin A, Wolters MK, Hagerty A (2021) Does AI stand for augmenting
inequality in the era of covid-19 healthcare? BMJ 372

8. Braveman P (2006) Health disparities and health equity: concepts and measurement. Annu Rev Public
Health 27:167–194

9. Ghassemi M, Naumann T, Schulam P, Beam AL, Chen IY, Ranganath R (2020) A review of challenges
and opportunities in machine learning for health. AMIA Summits Transl Sci Proc 2020:191

10. Zhang H, Lu AX, Abdalla M, McDermott M, Ghassemi M (2020) Hurtful words: quantifying biases
in clinical contextual word embeddings. In: Proceedings of the ACM conference on health, inference,
and learning, pp 110–120

11. Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G (2018) Potential biases in machine learning
algorithms using electronic health record data. JAMA Intern Med 178(11):1544–1547

12. Popejoy AB, Ritter DI, Crooks K, Currey E, Fullerton SM, Hindorff LA, Koenig B, Ramos EM,
Sorokin EP, Wand H et al (2018) The clinical imperative for inclusivity: race, ethnicity, and ancestry
(rea) in genomics. Hum Mutat 39(11):1713–1720

13. Rajkomar A, HardtM, HowellMD, CorradoG, ChinMH (2018) Ensuring fairness in machine learning
to advance health equity. Ann Intern Med 169(12):866–872

14. Voigt P, Bussche A (2017) The eu general data protection regulation (gdpr). A Practical Guide, 1st Ed.,
Cham: Springer International Publishing. 10(3152676):10–5555

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Journal of Healthcare Informatics Research (2024) 8:181–205 203

15. Health UD, Services H (2013) Others: Modifications to the hipaa privacy, security, enforcement, and
breach notification rules under the health information technology for economic and clinical health act
and the genetic information nondiscrimination act; other modifications to the hipaa rules. Fed Regist
78(17):5566–5702

16. Dwork C, HardtM, Pitassi T, Reingold O, Zemel R (2012) Fairness through awareness. In: Proceedings
of the 3rd innovations in theoretical computer science conference, pp 214–226

17. Feldman M, Friedler SA, Moeller J, Scheidegger C, Venkatasubramanian S (2015) Certifying and
removing disparate impact. In: Proceedings of the 21th ACM SIGKDD international conference on
knowledge discovery and data mining, pp 259–268

18. Hardt M, Price E, Srebro N (2016) Equality of opportunity in supervised learning. Adv Neural Inf
Process 29

19. Agarwal A, Dudík M, Wu ZS (2019) Fair regression: Quantitative definitions and reduction-based
algorithms. In: International conference on machine learning. PMLR, pp 120–129

20. Agarwal A, Beygelzimer A, Dudík M, Langford J, Wallach H (2018) A reductions approach to fair
classification. In: International conference on machine learning. PMLR, pp 60–69

21. Roh Y, Lee K, Whang SE, Suh C (2021) Fairbatch: batch selection for model fairness. In: 9th Interna-
tional conference on learning representations

22. Chai J, Wang X (2022) Fairness with adaptive weights. In: International conference on machine learn-
ing. PMLR, pp 2853–2866

23. McMahan B,Moore E, Ramage D, Hampson S, Arcas BA (2017) Communication-efficient learning of
deep networks from decentralized data. In: Artificial intelligence and statistics. PMLR, pp 1273–1282

24. Wu X, Huang F, Hu Z, Huang H (2023) Faster adaptive federated learning. In: Proceedings of the
AAAI conference on artificial intelligence, vol 37, pp 10379–10387

25. Guo Y, Sun Y, Hu R, Gong Y (2022) Hybrid local sgd for federated learning with heterogeneous
communications. In: International conference on learning representations

26. Hu R, Gong Y, Guo Y (2021) Federated learning with sparsification-amplified privacy and adaptive
optimization. In: Proceedings of the thirtieth international joint conference on artificial intelligence

27. Wang T, DuY, GongY, ChooK-KR, GuoY (2023) Applications of federated learning inmobile health:
scoping review. J Med Internet Res 25:43006

28. Wang T, Guo Y, Choo K-KR (2023) Enabling privacy-preserving prediction for length of stay in ICU-
a multimodal federated-learning-based approach. In: European conference on information systems
(ECIS)

29. Cui S, Pan W, Liang J, Zhang C, Wang F (2021) Addressing algorithmic disparity and performance
inconsistency in federated learning. Adv Neural Inf Process Syst 34:26091–26102

30. DuW, Xu D, Wu X, Tong H (2021) Fairness-aware agnostic federated learning. In: Proceedings of the
2021 SIAM International Conference on Data Mining (SDM). SIAM, pp 181–189

31. Papadaki A, Martinez N, Bertran M, Sapiro G, Rodrigues M (2022) Minimax demographic group
fairness in federated learning. In: 2022 ACMConference on fairness, accountability, and transparency,
pp 142–159

32. Chang H, Shokri R (2023) Bias propagation in federated learning. In: The Eleventh international
conference on learning representations. https://openreview.net/forum?id=V7CYzdruWdm

33. Smith V, Chiang C-K, Sanjabi M, Talwalkar AS (2017) Federated multi-task learning. Adv Neural Inf
Process Syst 30

34. Li T, Hu S, BeiramiA, SmithV (2021)Ditto: fair and robust federated learning through personalization.
In: International conference on machine learning. PMLR, pp 6357–6368

35. Collins L, Hassani H, Mokhtari A, Shakkottai S (2021) Exploiting shared representations for person-
alized federated learning. In: International conference on machine learning. PMLR, pp 2089–2099

36. Zhao Y, LiM, Lai L, Suda N, Civin D, Chandra V (2018) Federated learning with non-iid data. Preprint
at arXiv:1806.00582

37. Friedler SA, Scheidegger C, Venkatasubramanian S, Choudhary S, Hamilton EP, Roth D (2019) A
comparative study of fairness-enhancing interventions in machine learning. In: Proceedings of the
conference on fairness, accountability, and transparency, pp 329–338

38. Blum A, Stangl K (2020) Recovering from biased data: can fairness constraints improve accuracy? In:
1st Symposium on foundations of responsible computing

39. Zhang BH, Lemoine B, Mitchell M (2018) Mitigating unwanted biases with adversarial learning. In:
Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, pp 335–340

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



204 Journal of Healthcare Informatics Research (2024) 8:181–205

40. Kim MP, Ghorbani A, Zou J (2019) Multiaccuracy: Black-box post-processing for fairness in classifi-
cation. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, pp 247–254

41. Pfohl S, Marafino B, Coulet A, Rodriguez F, Palaniappan L, Shah NH (2019) Creating fair models of
atherosclerotic cardiovascular disease risk. In: Proceedings of the 2019 AAAI/ACM Conference on
AI, Ethics, and Society, pp 271–278

42. Pfohl SR, Duan T, Ding DY, Shah NH (2019) Counterfactual reasoning for fair clinical risk prediction.
In: Machine learning for healthcare conference. PMLR, pp 325–358

43. Marcinkevics R, Ozkan E, Vogt JE (2022) Debiasing deep chest x-ray classifiers using intra-and post-
processing methods. In: Machine Learning for Healthcare Conference. PMLR, pp 504–536

44. Ezzeldin YH, Yan S, He C, Ferrara E, Avestimehr AS (2023) Fairfed: Enabling group fairness in
federated learning. In: Proceedings of the AAAI conference on artificial intelligence, vol 37, pp 7494–
7502

45. Finn C, Abbeel P, Levine S (2017) Model-agnostic meta-learning for fast adaptation of deep networks.
In: International conference on machine learning. PMLR, pp 1126–1135

46. Khodak M, Balcan M-FF, Talwalkar AS (2019) Adaptive gradient-based meta-learning methods. Adv
Neural Inf Process Syst 32

47. Hu R, Guo Y, Li H, Pei Q, Gong Y (2020) Personalized federated learning with differential privacy.
IEEE Internet Things J 7(10):9530–9539

48. Dinh CT, TranN, Nguyen J (2020) Personalized federated learningwithmoreau envelopes. AdvNeural
Inf Process Syst 33:21394–21405

49. Li D, Wang J (2019) Fedmd: Heterogenous federated learning via model distillation. Preprint at
arXiv:1910.03581

50. Deng Y, Kamani MM, Mahdavi M (2020) Adaptive personalized federated learning. Preprint at
arXiv:2003.13461

51. Liang PP, Liu T, Ziyin L, Allen NB, Auerbach RP, Brent D, Salakhutdinov R, Morency L-P
(2020) Think locally, act globally: Federated learning with local and global representations. Preprint
atarXiv:2001.01523

52. Qin Z, Yao L, Chen D, Li Y, Ding B, Cheng M (2023) Revisiting personalized federated learning:
Robustness against backdoor attacks. In: Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. KDD ’23, Association for Computing Machinery, New York,
USA, pp 4743–4755

53. Li X, Jiang M, Zhang X, Kamp M, Dou Q (2021) FedBN: Federated learning on non-IID features via
local batch normalization. In: International conference on learning representations. https://openreview.
net/forum?id=6YEQUn0QICG

54. Li T, Sahu AK, Zaheer M, Sanjabi M, Talwalkar A, Smith V (2020) Federated optimization in hetero-
geneous networks. Proc Mach Learn Syst 2:429–450

55. Chen H-Y, Chao W-L (2022) On bridging generic and personalized federated learning for image
classification. In: International conference on learning representations. https://openreview.net/forum?
id=I1hQbx10Kxn

56. Fallah A, Mokhtari A, Ozdaglar A (2020) Personalized federated learning with theoretical guarantees:
a model-agnostic meta-learning approach. Adv Neural Inf Process Syst 33:3557–3568

57. Li C, Niu D, Jiang B, Zuo X, Yang J (2021) Meta-har: Federated representation learning for human
activity recognition. In: Proceedings of the web conference 2021, pp 912–922

58. Wu Q, Chen X, Zhou Z, Zhang J (2020) Fedhome: Cloud-edge based personalized federated learning
for in-home health monitoring. IEEE Trans Mob Comput 21(8):2818–2832

59. Pollard TJ, JohnsonAE, Raffa JD, Celi LA,MarkRG,BadawiO (2018) The eicu collaborative research
database, a freely available multi-center database for critical care research. Sci Data 5(1):1–13

60. Rocheteau E, Liò P, Hyland S (2021) Temporal pointwise convolutional networks for length of stay
prediction in the intensive care unit. In: Proceedings of the conference on health, inference, and learning,
pp 58–68

61. Obermeyer Z, Powers B, Vogeli C, Mullainathan S (2019) Dissecting racial bias in an algorithm used
to manage the health of populations. Science 366(6464):447–453

62. Mauvais-Jarvis F, Merz NB, Barnes PJ, Brinton RD, Carrero J-J, DeMeo DL, De Vries GJ, Epperson
CN, Govindan R, Klein SL et al (2020) Sex and gender: modifiers of health, disease, and medicine.
Lancet 396(10250):565–582

63. Che Z, Purushotham S, Cho K, Sontag D, Liu Y (2018) Recurrent neural networks for multivariate
time series with missing values. Sci Rep 8(1):1–12

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Journal of Healthcare Informatics Research (2024) 8:181–205 205

64. JohnsonA,Bulgarelli L, PollardT,HorngS,Celi LA,MarkR (2020)Mimic-iv (version0.4). PhysioNet.
Available online at: https://physionet.org/content/mimiciv/0.4/. Accessed 13 Aug 2020

65. Hsu T-MH,QiH, BrownM (2019)Measuring the effects of non-identical data distribution for federated
visual classification. Preprint arXiv:1909.06335

66. Poulain R, Bin Tarek MF, Beheshti R (2023) Improving fairness in ai models on electronic health
records: the case for federated learning methods. In: Proceedings of the 2023 ACM conference on
fairness, accountability, and transparency, pp 1599–1608

67. KalchbrennerN,Espeholt L, SimonyanK,OordAvd,GravesA,KavukcuogluK (2016)Neuralmachine
translation in linear time. Preprint at arXiv:1610.10099

68. Oord Avd, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A,
Kavukcuoglu K (2016) Wavenet: A generative model for raw audio. Preprint arXiv:1609.03499

69. Sundararajan M, Taly A, Yan Q (2017) Axiomatic attribution for deep networks. In: International
conference on machine learning. PMLR, pp 3319–3328

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Authors and Affiliations

Tongnian Wang1 · Kai Zhang2 · Jiannan Cai3 · Yanmin Gong4 ·
Kim-Kwang Raymond Choo1 · Yuanxiong Guo1

Tongnian Wang
tongnian.wang@utsa.edu

Kai Zhang
kai.zhang.1@uth.tmc.edu

Jiannan Cai
jiannan.cai@utsa.edu

Yanmin Gong
yanmin.gong@utsa.edu

Kim-Kwang Raymond Choo
raymond.choo@fulbrightmail.org

1 Department of Information Systems and Cyber Security, The University of Texas at San Antonio,
San Antonio 78249, TX, USA

2 McWilliams School of Biomedical Informatics, The University of Texas Health Science Center
at Houston, Houston 77030, TX, USA

3 School of Civil and Environmental Engineering, and Construction Management, The University
of Texas at San Antonio, San Antonio 78249, TX, USA

4 Department of Electrical and Computer Engineering, The University of Texas at San Antonio,
San Antonio 78249, TX, USA

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



1.

2.

3.

4.

5.

6.

Terms and Conditions
 
Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center
GmbH (“Springer Nature”). 
Springer Nature supports a reasonable amount of sharing of  research papers by authors, subscribers
and authorised users (“Users”), for small-scale personal, non-commercial use provided that all
copyright, trade and service marks and other proprietary notices are maintained. By accessing,
sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of
use (“Terms”). For these purposes, Springer Nature considers academic use (by researchers and
students) to be non-commercial. 
These Terms are supplementary and will apply in addition to any applicable website terms and
conditions, a relevant site licence or a personal subscription. These Terms will prevail over any
conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription (to
the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of
the Creative Commons license used will apply. 
We collect and use personal data to provide access to the Springer Nature journal content. We may
also use these personal data internally within ResearchGate and Springer Nature and as agreed share
it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not otherwise
disclose your personal data outside the ResearchGate or the Springer Nature group of companies
unless we have your permission as detailed in the Privacy Policy. 
While Users may use the Springer Nature journal content for small scale, personal non-commercial
use, it is important to note that Users may not: 
 

use such content for the purpose of providing other users with access on a regular or large scale

basis or as a means to circumvent access control;

use such content where to do so would be considered a criminal or statutory offence in any

jurisdiction, or gives rise to civil liability, or is otherwise unlawful;

falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association

unless explicitly agreed to by Springer Nature in writing;

use bots or other automated methods to access the content or redirect messages

override any security feature or exclusionary protocol; or

share the content in order to create substitute for Springer Nature products or services or a

systematic database of Springer Nature journal content.
 
In line with the restriction against commercial use, Springer Nature does not permit the creation of a
product or service that creates revenue, royalties, rent or income from our content or its inclusion as
part of a paid for service or for other commercial gain. Springer Nature journal content cannot be
used for inter-library loans and librarians may not upload Springer Nature journal content on a large
scale into their, or any other, institutional repository. 
These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not
obligated to publish any information or content on this website and may remove it or features or
functionality at our sole discretion, at any time with or without notice. Springer Nature may revoke
this licence to you at any time and remove access to any copies of the Springer Nature journal content
which have been saved. 
To the fullest extent permitted by law, Springer Nature makes no warranties, representations or
guarantees to Users, either express or implied with respect to the Springer nature journal content and
all parties disclaim and waive any implied warranties or warranties imposed by law, including
merchantability or fitness for any particular purpose. 
Please note that these rights do not automatically extend to content, data or other material published
by Springer Nature that may be licensed from third parties. 
If you would like to use or distribute our Springer Nature journal content to a wider audience or on a
regular basis or in any other manner not expressly permitted by these Terms, please contact Springer
Nature at 
 

onlineservice@springernature.com
 

mailto:onlineservice@springernature.com

