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Abstract 19 

Collaborative robots are increasingly recognized as potential assistants to relieve workers from 20 

repetitive and physically demanding tasks on construction jobsites. Despite the great potential, 21 

most efforts have focused on developing various artificial intelligence (AI) and robotic 22 

technologies to achieve specific human-robot collaboration (HRC) functions. However, there is a 23 
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significant lack of research regarding the impacts of such collaboration on construction work 24 

performance and workers’ perception and acceptance of collaborative robots, which could be a 25 

critical influence factor on the feasibility and effectiveness of HRC on construction jobsites. To 26 

this end, this study aims to evaluate the multi-dimensional impacts of collaborative robots on work 27 

efficiency, quality, workers’ workload, as well as workers’ perception and acceptance. HRC 28 

experiments on sample construction tasks (i.e., wood assembly) were conducted in conjunction 29 

with quantitative measurements and subject surveys. Through comparison between HRC 30 

experiments and human-human collaboration (HHC) experiments based on this case study, it was 31 

found that HRC could improve up to 29.3% and 88.6% in work efficiency and assembly accuracy, 32 

respectively, and reduce worker’s workload by up to 20.3%. Furthermore, workers’ perception of 33 

HRC is found to be positive overall with higher acceptance after HRC experience, characterized 34 

by questionnaires designed based on the technology acceptance model. Through physical 35 

experiments, this research is expected to produce more reliable results compared to conventional 36 

approaches where participants are simply provided with imaginary scenarios. The findings will 37 

also guide the development of robotic technologies to enhance the practical application of HRC in 38 

construction.  39 

1. Introduction 40 

Automation and robotic technology have been increasingly recognized as promising solutions to 41 

longstanding challenges in construction, such as low productivity and safety, and workforce aging 42 

and shortage (de Soto et al., 2018; Saidi et al., 2016). For instance, as indicated by a worldwide 43 

survey (ASEA Brown Boveri Group, 2021), 91% of construction companies face a skills crisis 44 

over the next decades, and 81% of them are willing to introduce or increase the use of construction 45 

robots to alleviate such issues. The global construction robot market size is expected to reach 242.4 46 
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million U.S. dollars in 2030, a 238% increase from the size in 2020 (Statista, 2022). Robotic 47 

technology has been introduced in various applications in construction, ranging from single-task 48 

construction robots, including robotic excavators (ASI, 2019), brick-laying robots (Madsen, 2019), 49 

rebar-tying robots (Cardno, 2018), painting robots (Asadi et al., 2018), to recent general-purpose 50 

robotic platforms (e.g., collaborative robots) for more flexible human-robot collaboration (HRC) 51 

(Kim et al., 2021). Specifically, collaborative robots are considered potential assistants to relieve 52 

workers from repetitive and physically demanding construction tasks, such as material handling 53 

(Liu et al., 2021b), assembly (Kramberger et al., 2022), and wall installation (Wang et al., 2021), 54 

etc. 55 

Despite the research achievements, most efforts have been focused on developing various AI and 56 

robotic technologies to achieve specific capabilities for certain tasks. Significantly less research 57 

focused on studying the impacts of HRC on construction work performance, as well as workers’ 58 

perception and acceptance, which could be a critical influence factor on the feasibility and 59 

effectiveness of HRC in field construction. Some studies conducted interviews and surveys with 60 

industry experts to identify the challenges of adopting automation and robotic technologies in 61 

practice (Bademosi & Issa, 2021; Delgado et al., 2019). Another study developed a modeling 62 

framework through the simulation of HRC processes to evaluate the impacts of HRC on 63 

construction productivity (Wu et al., 2022). The main limitation is that imaginary or simulated 64 

scenarios were used to elicit insights from domain stakeholders and estimate potential impacts, 65 

which could be biased and do not reflect reality. Physical HRC experiments are needed to quantify 66 

the multi-dimensional implications for construction work, such as quality, productivity, etc., and 67 

to obtain workers’ feedback after experiencing real collaboration.  68 
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Therefore, using HRC experiments on sample construction tasks (i.e., wood assembly), combined 69 

with quantitative measurements and subject surveys, this study aims to evaluate the multi-70 

dimensional impacts of a collaborative robot on construction work and workers in terms of work 71 

efficiency, quality, workers’ workload, as well as worker’s perception and acceptance of 72 

collaborative robots. This study contributes to the body of knowledge in two aspects. First, through 73 

comparison between HRC experiments and human-human collaboration (HHC) experiments on 74 

tasks with different complexity levels, the improvement of HRC over traditional HHC was 75 

quantified, including the increase in efficiency and quality, and the reduction in worker’s workload, 76 

proving the validity and benefits of introducing HRC in construction operations. Second, through 77 

surveys that are designed based on the technology acceptance model (TAM), the change of 78 

attitudes before and after HRC experiments was identified, and the perception of workers on HRC 79 

in various aspects, such as perceived usefulness, perceived ease of use, and safety anxiety, was 80 

characterized. Our findings also suggest the need for enhancing acceptance of HRC among 81 

construction workers to facilitate its implementation in the construction industry.  82 

2. Related Studies 83 

2.1. Robotic Applications and Human-Robot Collaboration in Construction 84 

With advances in AI, sensing technology, and robotics systems, a wide range of assistive robots 85 

has emerged in different construction tasks such as bricklaying (Bruckmann et al., 2018), additive 86 

manufacturing (Tankova & da Silva, 2020), demolition (Adami et al., 2021), etc. The idea of using 87 

fully autonomous construction robots to improve safety and productivity, and mitigate challenges 88 

of labor shortage has been explored by different researchers (Groll et al., 2019; Ha et al., 2002; 89 

Jud et al., 2021; Ma et al., 2022; Petereit et al., 2019; Yang et al., 2019). For instance, La et al. 90 

(2019) presented a steel climbing robot for monitoring and inspection of steel structures and 91 
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bridges. Multiple sensors were attached to the robot to aid in both navigation and steel surface 92 

inspection. The suggested system can gather pictures and 3D point cloud data and transmit those 93 

data to the ground station for additional monitoring. Groll et al. (2019) presented an autonomous 94 

trenching system that uses a hierarchical organization of primitives to excavate trenches in 95 

complex environments. The system combines high-level task planning and low-level motion 96 

control to increase efficiency. A human-robot teaming approach was explored for the construction 97 

inspection and monitoring process using quadruped robots through an on-site experiment to 98 

investigate inspector assistant robot for future construction inspection tasks (Halder et al., 2023). 99 

Despite the great potential, the nature of construction tasks still requires human judgment, 100 

adaptability, and precision, which are missing in available autonomous construction robots (Pan 101 

et al., 2020). The presence of various entities (e.g., workers, machines, other resources) on the 102 

worksite, combined with frequently changing operations, generates a dynamic and unorganized 103 

work environment that usually impedes the safe operation of autonomous robots, posing 104 

significant challenges to automating construction processes (Carra et al., 2018). 105 

Liang et al. (2021) investigated the evolution of construction robots over the last two decades. 106 

They concluded that HRC is more effective than autonomous robots for complicated construction 107 

tasks that involve a combination of construction methods or materials and knowledge transfer from 108 

human workers. Through HRC, workers can be relieved from tiresome and repetitive work and 109 

concentrate on operations that involve flexibility and dexterity, thus improving the safety, 110 

productivity, and quality of work (Okpala et al., 2020). To enable effective HRC, many studies 111 

have been dedicated to developing various human-robot interfaces (Berg et al., 2019; Gustavsson 112 

et al., 2018; Kim et al., 2019). For instance, Liu et al. (2021a) proposed a brain-computer interface 113 

to teleoperate a robot by continuously capturing workers’ brainwaves received from a wearable 114 

https://www.sciencedirect.com/topics/engineering/brainwave
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electroencephalogram device. The electroencephalogram data was then processed by a computer, 115 

which analyzes the worker's brainwaves and translates them into specific commands for the robot 116 

with 90% accuracy. Liu et al. (2021b) also made it possible for robots to assess worker workload 117 

by monitoring their brainwaves and modifying their performance accordingly to relieve the 118 

workload of human workers. Czarnowski et al. (2018) suggested that virtual reality (VR) and 119 

audible sound systems are viable options to bridge the remote contactless interaction gaps between 120 

construction workers and robots because the generated explicit information such as visual cues, 121 

and sound alarms could teach workers about the robot's behavior during HRC tasks.  122 

Dimitropoulos et al. (2021) proposed a system for parts assembly in a human-robot collaborative 123 

assembly cell using AI and wearable devices. They used AI algorithms to enable the robot to 124 

anticipate and adapt to the movements of the human worker, and wearable devices to facilitate 125 

communication between the human worker and the robot. The experimental evaluation of the 126 

proposed system proved to improve the efficiency and safety of the assembly process, and the 127 

system was able to adapt to the movements of the human worker. They also report positive 128 

feedback from the participants who used the system, indicating that the system provides a 129 

satisfactory user experience. 130 

2.2. Work Performance in Human-Robot Collaboration  131 

The inclusion of robotics in the construction industry is promising to improve the productivity of 132 

construction workers in performing challenging tasks and maintaining a safe workspace (Kim et 133 

al., 2018). Extensive research focuses on investigating different approaches of HRC and 134 

developing advanced collaborative robots to improve work productivity by increasing efficiency, 135 

quality, and safety. A high-performance collaborative robot has been introduced for proactively 136 

assisting workers in maintenance jobs (e.g., handover tasks, and tool-fetch tasks) to enhance 137 
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efficiency in real-world scenarios (Asfour et al., 2019). HRC has also been applied on construction 138 

sites. The mobile robot can provide construction workers with exact design information of 139 

pipelines by projecting it onto the walls using projective augmented reality to improve work 140 

quality (Xiang et al., 2021). To examine work performance in HRC, Wu et al. (2022) evaluated 141 

work productivity based on modeling HRC scenarios with different worker-to-robot ratios in the 142 

bricklaying task, where the robot continuously brings in bricks.  143 

In addition, as the mental workload of workers is critically connected to their performance in 144 

construction, studies have been conducted to explore whether the HRC is associated with workload 145 

reduction (Dybvik et al., 2021; Memar & Esfahani, 2018; Tao et al., 2019). A theoretical data-146 

driven analysis states that the human workload for some jobs, among 16 selected occupations, 147 

decreased by introducing collaborative robots (Liu et al., 2022). Sadrfaridpour and Wang (2017) 148 

examined human workload in a manufacturing assembly task. They found that the interaction 149 

approaches of HRC (i.e., physical and social factors in controllers) could affect human workload. 150 

HRC was proven to increase productivity by reducing the cognitive load of the worker during task 151 

performance (Landi et al., 2018). These studies examined work performance from theoretical 152 

perspectives (e.g., effectiveness of methods) and lack of proof in validating the practical effects of 153 

HRC in construction tasks.  154 

2.3. Worker Perception of Human-Robot Collaboration  155 

Despite considerable attention and investment in HRC, there has been limited success in 156 

translating HRC from research to real-world practice (Bröhl et al., 2016; Delgado et al., 2019). 157 

One factor that impedes the successful realization of HRC is the workers’ acceptance of the robots 158 

(Bröhl et al., 2019). Workers are the ones who experience the most changes after introducing HRC 159 

into construction jobsites. However, unlike researchers dedicated to advancing collaborative 160 
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robots, construction workers have limited knowledge of HRC and may feel unwilling to 161 

collaborate with robots, which could lead to non-usage and ineffective HRC. The existing worker 162 

perception could lower workers’ acceptance of HRC, which could limit its successful 163 

implementation (Kopp et al., 2021). 164 

TAM is the most influential model that predicts and explains the acceptance and rejection of 165 

advanced technology (e.g., information systems). Initially proposed by Davis (1989), TAM has 166 

been confirmed by numerous studies for its applicability in various fields (Marangunić & Granić, 167 

2015). Bertrand and Bouchard (2008) applied TAM to the use of virtual reality, where they 168 

revealed the parameters determining the final intention of use. Also, there are several studies that 169 

adapted TAM to analyze the acceptance of HRC. Lotz et al. (2019) explored and validated three 170 

key factors of anxiety that employees have in the manufacturing industry to address workers’ 171 

intentions for facilitating HRC implementation. Bröhl et al. (2016) extended the TAM-based 172 

acceptance model with ethical, legal, and social implications for HRC in the production industry 173 

to give a more precise prediction on the acceptance of HRC in a real-world application. In the 174 

construction sector, Park et al. (2023) applied TAM to investigate comprehensive factors that could 175 

affect the worker’s acceptance of assistant robots. Thus, to advance the HRC implementation in 176 

the construction industry, this study adapted TAM-based constructs to HRC usage in construction 177 

tasks for understanding the attitudes of workers toward HRC. 178 

2.4. Performance Evaluation of Human-Robot Collaboration 179 

The concept of assessing construction performance has been well-explored in existing research 180 

(Bassioni et al., 2004). The evaluation holds significant value in traditional construction, where 181 

HHC is prevalent. Likewise, the evaluation is crucial for determining whether the implementation 182 

of HRC in construction projects is successful. However, an assessment that focuses solely on work 183 
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quality is not adequate for HRC scenarios, as humans may be reluctant to collaborate with robots, 184 

potentially hindering the implementation of an effective HRC.  185 

Steinfeld et al. (2006) identified key metrics for evaluating human-robot interaction, focusing on 186 

work performance, encompassing efficiency and quality, and human performance including 187 

workload and situation awareness. This is consistent with Freedy et al. (2007) conclusion, which 188 

suggests two categories for assessing the performance of HRC teams: measures of team 189 

performance and measures of effectiveness. These include both individual and collaborative 190 

performance, as well as the quality of the tasks completed by the team. Typically, for work 191 

performance, time efficiency and task quality are the primary indicators used in HRC assessments. 192 

For instance, Mitterberger et al. (2022) measured the completion time and the angles of each timber 193 

strut in a wooden structure assembly task to gauge HRC work performance. In the pursuit of more 194 

precise quality metrics, Qin and colleagues evaluated error frequency, framing accuracy, and time 195 

to completion in the assembly of wood frame walls with Augmented Reality (Qin et al., 2021). 196 

Therefore, in our study, which also involves wooden structures, task completion time, frame layout 197 

accuracy, and nailing quality are employed as the key metrics to assess work performance. 198 

The significance of the human component in evaluating HRC is paramount. The success of HRC 199 

implementation hinges on the willingness of human workers to engage with it (Meissner et al., 200 

2020). Understanding the degree to which individuals adopt or resist collaborative robots involves 201 

examining their attitudes and acceptance levels. Coronado et al. (2022) emphasized the importance 202 

of these aspects in assessing HRC. Additionally, Shah and colleagues expanded their analysis 203 

beyond the realm of work performance in scenarios where a robot assists humans in material 204 

retrieval, incorporating qualitative data derived from participant questionnaires and feedback to 205 

gain insights into human perceptions of collaborative robots (Shah et al., 2011). Accordingly, for 206 
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worker assessment, our study focuses on measuring both the workload experienced by humans 207 

and their acceptance levels towards collaborative robots. 208 

2.5. Motivation and Objective 209 

It has been shown that HRC could be a promising solution for the challenges (i.e., poor 210 

productivity, aging force, labor shortage) that construction is struggling with. Previous studies 211 

have validated and evaluated the influence of HRC either in simulated scenarios (e.g., virtual 212 

reality) (Faccio et al., 2020; Freedy et al., 2007; Wu et al., 2022; Zhu et al., 2020) or in 213 

experimental assessments. However, such assessments focused on a particular perspective (i.e., 214 

the influence of product characteristics) or the performance of their proposed methods (e.g., 215 

projective augmented reality) (Faccio et al., 2020; Xiang et al., 2021). Limited studies have 216 

explored the practical impact (i.e., work performance) of HRC on construction tasks (i.e., assembly 217 

tasks) compared with traditional HHC on the same tasks, where users can give feedback and 218 

insights into the collaboration process. Considering that an effective HRC is joint work between 219 

workers and robots in real-world construction tasks, workers’ willingness and attitude towards the 220 

robot are critical. Although previous studies have investigated acceptance models and factors for 221 

HRC implementation via online surveys collected from workers and managers (Bröhl et al., 2016; 222 

Meissner et al., 2020; Park et al., 2023), the majority of the participants have no physical 223 

experience in completing a construction task with the assistance of collaborative robots, which 224 

could limit their actual experience and perceptions with HRC.  225 

To this end, the present study aims to examine the impact of HRC on work performance and the 226 

perception of workers via experimental analysis using sample construction tasks. To achieve the 227 

goal, this research (1) quantifies the efficiency, quality, and workload of HRC in a sample task 228 

(i.e., wood structure assembly) across two difficulty levels and compares them to the performance 229 
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in traditional HHC settings, and (2) identifies workers’ perception and attitude toward HRC by 230 

analyzing the survey data based on TAM. By focusing on both work performance and workers’ 231 

perception in a human-robot collaborative task, this research provides valuable insights into HRC 232 

in construction tasks from the implementation side and the worker’s side. Additionally, this study 233 

generates stimulating ideas from workers’ post-interview to inspire future HRC research in the 234 

construction field.  235 

3. Methodology  236 

This study used experimental analysis to investigate the impact of HRC on construction work 237 

performance and worker perception, where two wood assembly tasks with different levels of 238 

complexity were conducted in a controlled environment as a simplified setup. Besides the HRC 239 

experiments, HHC experiments were performed as comparison groups. A total of 13 participants 240 

were recruited to form nine groups, and the assignment of groups was based on participants’ 241 

demographic information and their work experience. Each group was tasked to conduct both HRC 242 

and HHC experiments for comparison. The work performance was examined in terms of time 243 

efficiency, product quality, and task workload. Additionally, worker perception was investigated 244 

through the constructs of TAM such as perceived usefulness, perceived ease of use, and intention 245 

to use etc., where data was collected before and after HRC, to study the acceptance of collaborative 246 

robots in construction tasks. Fig. 1 illustrates the overall framework.  247 

3.1.Experiment Design 248 

3.1.1. Task Design 249 

On-site jobs involving assembly tasks require reasonable productivity and reduced human errors 250 

due to a limited project budget and completion time commitment to the subject (Liang et al., 2021). 251 

Wood framing is a prevalent method employed in the construction of residential, commercial, and 252 
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industrial structures (Belousov et al., 2022; Dietz, 2015). Roof trusses are a fundamental element 253 

of wood-based construction. The complexity of roof trusses assembly requires the team effort of 254 

multiple workers, often positioned at elevated heights. This scenario is marked by a high 255 

occurrence of falls and fatalities among roofers, highlighting an urgent need for innovative 256 

approaches. By incorporating HRC into wood assembly tasks, especially in roof construction, the 257 

construction sector could potentially enhance both productivity and safety.  258 

 259 

Fig. 1. Overall Research Method 260 

The design of the task was formulated after consulting with industrial professionals who work for 261 

a wood manufacturing company. They shared real-world experiences and challenges encountered 262 
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in wood assembly tasks. It was noted that one worker holds the heavy part, and another 263 

concentrates on nailing. However, it's always challenging for the worker to hold the piece for an 264 

extended period, especially when the workpieces are positioned at non-vertical or non-horizontal 265 

angles and must be maintained at specific orientations (Nath et al., 2017). Therefore, the design of 266 

the task was inspired by the issues faced in actual timber assembly operations, mirroring the 267 

complexity found in real-world construction scenarios. For both simple and complex tasks, robots 268 

could serve as assistants to take over dangerous and tedious tasks, like handling heavy trusses, 269 

while human workers could focus on connecting different components. Considering the capability 270 

of collaborative robots used in research, laboratory assembly tasks are simplified and scaled based 271 

on roof trusses (a typical wooden structure to assemble) in actual construction tasks for practical 272 

implication. Despite the scaled experiments in this study, the task settings could be potentially 273 

extended to real-world settings.  274 

Two wood assembly tasks were designed in two difficulty levels, i.e., a simple-structured task and 275 

a complex-structured task, to better understand the impact of HRC on different complexity. The 276 

design criteria were reflected by practical insight. In consultation with industrial professionals 277 

from a wood manufacturing company, the experts highlighted that the assembly on a stable surface, 278 

such as a table, enables easier connection of two parts. Conversely, the challenge amplifies when 279 

pieces, particularly heavy trusses, require positioning and holding in mid-air for connection, 280 

extending the duration of the physical effort of workers. Therefore, a 2D wood structure was 281 

adopted as a simple-structured task, and a 3D wood structure as a more complex task within this 282 

study.  283 

Fig. 2 shows the layouts of both tasks, where labeled joints as A, B, C, D, E, and F indicate the 284 

placement and connection point of each lumber. The simple-structured task is a 2D structure task 285 
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with only one layer structure, requiring participants to work stably on the flat tabletop. The 286 

complex-structured task is a 3D structure task with two layers, which requires participants to 287 

assemble two simple structures spatially. This 3D structure makes it difficult to hold both layers 288 

and connecting pieces still while nailing. Regarding task allocation in HRC assembly, the robot is 289 

tasked to pick and place the main lumber pieces while the joints are placed manually in the simple-290 

structured task (Liau & Ryu, 2020). In the complex-structured task, the robot is assigned to hold 291 

the vertical connection pieces in place for the human worker. 292 

 293 

(a)      (b) 294 

Fig. 2. Design of wood assemblies: (a) simple structure, (b) complex structure 295 

3.1.2. Experiment Design 296 

To evaluate the work performance of HRC in construction assembly tasks, HRC and HHC 297 

experiments were performed for each task, where HHC is considered as the baseline. For the same 298 

task, HRC and HHC experiments were performed on different days to avoid bias due to repeated 299 

practice. There are two participants in the HHC experiment, one primary person and one helper. 300 

In HHC, the helper fetches all wood pieces and places them on the workbench. The primary person 301 

collaborates with the helper to assemble the wood structure according to the design drawing. In 302 

the procedures, the helper works with the primary person in measuring and placing the lumbers, 303 

and then only the primary person uses a nail gun to connect wood pieces. On the other hand, the 304 
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robot plays the helper’s role in HRC, where it is programmed to pick and place the wood pieces 305 

following the design drawing. That means the primary person can focus on connecting workpieces 306 

while the robot continuously places lumbers for the participant based on the drawing.  307 

In this study, Clearpath Husky A200 equipped with Universal Robot 5 e-Series (UR5e) and a 2-308 

finger Robotiq gripper was used as the collaborative robot in this wood assembly task. The Husky 309 

is an Unmanned Ground Vehicle with four wheels, suitable for various ground conditions. The 310 

UR5e is a robot arm with six degrees of freedom, which has the ability to perform pick-up and 311 

placement tasks. In real-world manufacturing settings, this robot arm has demonstrated its 312 

capability to assist human workers with different frame structures by manually changing how and 313 

when to hold a piece in place. It has more flexibility than task-specific robot systems like framing 314 

machines. Although the capacity for material transportation is critical in the construction 315 

environment, due to the scope of the study, the aspect of mobility was not encompassed within the 316 

experimental framework. Emphasis has been placed on the collaborative assembly with a robot 317 

arm. A workbench was placed as the assembly space for this experiment. The wood pieces used 318 

for the tasks were distributed in a pile on the ground near the bench for each group. Besides, for 319 

recording purposes, two cameras were set up from both the front view and back view of the 320 

working space. Fig. 3 shows the experimental setup and procedures for a simple task. The upper 321 

row in Fig. 3 shows the experiment procedures for HHC, where the helper fetches the lumbers, 322 

works with the primary person to place them according to the design drawing, and then the primary 323 

person nails them. The lower row in Fig. 3 shows the experiment procedures for HRC, where the 324 

primary person makes the connection while the robot brings and places more lumber 325 

simultaneously. The experiment protocol was approved by the Institutional Review Board at the 326 

university. 327 
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 328 

Fig. 3. Experiment procedures for HHC and HRC. (a) the human helper picks and places lumber 329 

on the table; (b) the primary person and the helper measure the lumber; (c) the primary person 330 

and the helper place the lumber; (d) the primary person connects wood pieces. In the second row, 331 

€ the robot picks and places lumber; (f) the primary person focuses on the connection while the 332 

robot brings more lumber; (g) the robot continuously places more lumber according to the 333 

design; (h) the primary person finishes the connection. 334 

3.1.3. Robot Setup 335 

The PolyScope interface was used to pre-program robots for construction tasks. This software 336 

enables the manual positioning of the robot to establish and record specific movement trajectories. 337 

Key operational actions, including 'Grip' and 'Release', were incorporated into these programmed 338 

sequences to ensure the effective execution of tasks. Following the programming and saving of 339 

these movements and actions, a research assistant performed detailed testing to confirm that the 340 

robot's functioning was in precise accordance with the planned tasks. 341 



17 

PolyScope's functionality as a programming tool lies in its ability to direct robots along defined 342 

trajectories and maneuvers. Thus, precision in executing construction tasks is attainable 343 

irrespective of their complexity, provided that the trajectories and maneuvers are distinctly 344 

outlined and programmed. 345 

3.2. Group Assignment 346 

3.2.1. Participants Recruitment  347 

The participants of the experiments are college students, who have basic carpentry skills (i.e., 348 

cutting, drawing reading) and have passed safety training in the woodshop. Most of these 349 

participants will enter the construction and architecture industry after graduation, and some of 350 

them have already worked in the industry. Therefore, the individuals included in this pilot study 351 

have been determined to be appropriate candidates. A demographic survey was administered 352 

before the group assignment. A total of 13 persons participated in the experiment, including 9 353 

primary persons and 4 helpers. Helpers played the same role in different groups. Among 354 

participants, around 42% are female, and 58% are male. The groups were assigned based on gender 355 

and work experience, where the primary persons had never experienced any kind of collaborative 356 

robots and had little to no work experience. The participants playing helper roles have two to three 357 

years of work experience. All participants were trained to use the nail gun safely before the 358 

experiment.  359 

3.2.2. Group Assignment 360 

A total of 13 participants were assigned to 9 groups as two persons in one group (some participants 361 

played the helper role more than once but in different tasks). To analyze the impact of HRC on 362 

construction work performance, a within-subjects design was used (de Winter et al., 2017). In each 363 

group, one person performed as the primary person who worked in HHC and interacted with a 364 
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robot in HRC. Another person played as a helper who assisted the primary person in HHC. 365 

Additionally, a between-subjects design was applied to compare work performance in different 366 

difficulty-level tasks. As shown in Table 1, there are four groups in the simple task and five groups 367 

in the complex task. Each group had two participants in HHC, but only one person was in HRC 368 

because the robot served as the helper. 369 

Table 1: Group assignment for HHC and HRC 370 

Note: PG represents the primary person in a group and H represents the helper. R represents the 371 

robot. Group 9 did not perform the HRC experiment. 372 

3.3.TAM-based Pre- and Post-surveys 373 

Pre-survey was distributed and collected from participants before the HRC experiment to establish 374 

a base understanding of workers’ perception of HRC. Post-survey was distributed and collected 375 

after the HRC experiment to identify the change in workers’ perception after actually working with 376 

the robot. The surveys were adapted based on the TAM’s constructs (Venkatesh & Bala, 2008; 377 

Venkatesh & Davis, 2000). TAM proposed that perceived usefulness (PU) and perceived ease of 378 

use (PEU) are two key factors determining whether users will accept a specific technology. PU 379 

refers to the user’s expectation of the extent to which the technology will improve the user’s 380 

performance. For example, in the context of HRC in construction, a worker may be concerned 381 

about how the robot will improve his/her construction task performance. On the other hand, PEU 382 

is defined as the expected amount of effort required to use the technology effectively and addresses 383 

 Human-Human Collaboration Human-Robot Collaboration 

Simple Task PG1+H1; PG2+H2; PG3+H3; PG4+H4; PG1+R; PG2+R; PG3+R; PG4+R 

Complex Task PG5+H1; PG6+H2; PG7+H3; PG8+H4; 

PG9+H1; 

PG5+R; PG6+R; PG7+R; PG8+R 
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questions on whether the worker believes that the robot will be easy to collaborate with (Davis, 384 

1989). The person’s PU and PEU jointly determine the intention of use (IU) (Davis, 1989; 385 

Venkatesh & Davis, 2000). Both PU and PEU could be affected by external variables, including 386 

self-efficacy (SE), intrinsic motivation of use (IMU), safety anxiety (SA), job relevance (JR), 387 

output quality (OQ), and result demonstrability (RD), etc. Table 2. lists the definition and a sample 388 

question of each construct asked in the surveys. The scores of each factor collected before and 389 

after HRC were analyzed and compared to obtain the attitude change of workers towards HRC. 390 

Table 2. Definitions of variables in pre- and post-surveys 391 

Item Definitions Sample Questions (7-likert-scale) 

PU 
The degree of usefulness that a person feels 

about a collaborative robot. 

Using a collaborative robot improves 

my task performance. 

PEU 
The level of easiness that a person believes 

when working with a collaborative robot.  

I find it easy to get collaborative robot 

to do what I want it to do. 

IU 
The willingness to use a collaborative robot 

in future construction tasks. 

In the future, I plan to work with a 

collaborative robot. 

SE 
The degree of ability to work with a 

collaborative robot that a person holds. 

I can complete the task with a 

collaborative robot if someone showed 

me how to do it first. 

IMU 
The motivation to use a collaborative robot 

that a person has intrinsically.  

I feel playful when I work with a 

collaborative robot. 

SA 
The degree of anxiety that a person feels 

when working with a collaborative robot 
Robots do not scare me at all. 

PE 

The degree of enjoyment that a person 

perceived when working with a collaborative 

robot 

The actual process of using a 

collaborative robot is pleasant. 

JR 

The degree of relevance to his/her task that a 

person believes when using collaborative 

robot 

In the task, the usage of the 

collaborative robot is important. 

OQ 
The quality of the end product that a person 

feels by the performance of HRC 

The quality of the output I get from 

working with a collaborative robot is 

high. 

RD 
The degree of observability and tangibility 

that a person holds on the results of HRC 

The results of using collaborative robot 

are apparent to me. 

 392 
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3.4.Data Analysis  393 

The work performance was evaluated in terms of work efficiency, quality, and workload of 394 

participants. The time of completion for each trial was recorded and used as an indicator of work 395 

efficiency. To capture the work quality, we quantified the accuracy of the end product (i.e., wood 396 

assembly), and nailing quality. The accuracy was calculated by measuring the connection of each 397 

lumber and comparing it to the design. For nailing quality, a visual inspection was conducted and 398 

nails that went through the lumber but not connecting the lumber and connector were counted as 399 

“bad nailing quality”. For the workload quantification, the Heart Rate Reserve (HRR), the average 400 

of beats per minute used to measure the intensity of physical activity level was employed and 401 

calculated based on one standardized equation to represent the workload of workers (Jae et al., 402 

2016).  403 

3.4.1.  Work Performance Analysis  404 

To quantify work efficiency, the time of completion for each trial was recorded and compared 405 

between HHC and HRC. Different error types were examined to evaluate the work quality of the 406 

end product (i.e., wood structure). For accurate measurement of the structure, the accuracy of 407 

assembling individual joints was calculated first based on Equations (1) and (2), and the product 408 

of accuracies of all joints was used to calculate the accuracy of the final product, shown in Equation 409 

(3) (Devore et al., 2012; Guang et al., 1995; Khair et al., 2017). 410 

𝑒𝑟𝑟 =  
𝑀𝑒 −  𝑀𝑡

𝑀𝑡
 ×  100%                                (1) 411 

𝑎𝑐𝑐 =  1 − 𝑒𝑟𝑟                                                      (2) 412 

𝑎𝑐𝑐𝑡𝑜𝑡𝑎𝑙 =  ∏ 𝑎𝑐𝑐𝑘

𝑗𝑜𝑖𝑛𝑡𝐹

𝑘=𝑗𝑜𝑖𝑛𝑡𝐴

                                    (3) 413 
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where 𝑒𝑟𝑟  is percentage error; 𝑀𝑒  is experimental values measured from end product; 𝑀𝑡  is 414 

theoretical values from design drawing; 𝑎𝑐𝑐 is percentage accuracy; 𝑎𝑐𝑐𝑡𝑜𝑡𝑎𝑙 is the total accuracy 415 

of a structure (from jointA to jointF); 𝑎𝑐𝑐𝑘 means percentage accuracy of each joint.  416 

To evaluate the nailing quality of the structure, both the total number of nails used in the structure 417 

and the number of nails poorly nailed were counted, such as nails coming out through the wood 418 

piece but not connecting the connector, as shown in Fig. 4. By calculating the number of nails 419 

poorly nailed out of the total nail counts, the good nailing quality was quantified as a percentage. 420 

To estimate workload, the heart rate was measured by a wearable device, Fitbit, from the primary 421 

persons (Gorny et al., 2017). We started to collect the heart rates of the participants around 20 422 

minutes before the experiment time and continuously measured them till 20 minutes after the 423 

experiment was completed. With the heart rate data, HRR was calculated based on the Karvonen 424 

Formula to measure the intensity of activity (Goldberg et al., 1988) (see Equations (4) & (5)). 425 

𝐻𝑅𝑚𝑎𝑥 = 220 − 𝑎𝑔𝑒                                          (4) 426 

𝐻𝑅𝑅 =  
𝐻𝑅𝑤𝑜𝑟𝑘 − 𝐻𝑅𝑟𝑒𝑠𝑡 

𝐻𝑅𝑚𝑎𝑥 − 𝐻𝑅𝑟𝑒𝑠𝑡 
 ×  100%              (5) 427 

where 𝐻𝑅𝑚𝑎𝑥 is maximum heart rate; 𝐻𝑅𝑤𝑜𝑟𝑘 is the heart rate while the participant is working; 428 

𝐻𝑅𝑟𝑒𝑠𝑡 is resting heart rate; 𝑎𝑔𝑒 is the number of participant’s age. 429 

 430 

Fig. 4. An example of poor nailing. 431 
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3.4.2. Worker Perception Analysis 432 

The 7-likert-scale questionnaires of HRC perception, ranging from “strongly disagree” (1) to 433 

“strongly agree” (7), were distributed and collected before and after the HRC experiment. A TAM-434 

based approach was applied to examine the participants’ perception of HRC in this study. The 435 

mean scores of several questions in one factor were calculated and represented the final scores of 436 

the factor. Survey data was collected from all participants, as the helpers observed HRC 437 

experiments. The overall attitude of participants was analyzed by comparing the final scores of 438 

each factor to the neutral scores (4). To analyze the impact of HRC on worker perception in this 439 

construction assembly task, the scores of each variable collected from the primary persons in each 440 

group were used and compared before and after the experiment, including PU, PEU, SE, IMU, SA, 441 

and JR. 442 

4. Results  443 

A total of 9 groups were included in this study. Four groups’ data were collected from HHC and 444 

HRC in simple tasks. Five groups’ data were collected from HHC in complex tasks, while only 445 

four groups’ data from HRC in complex tasks because one group did not complete the HRC 446 

experiment. Among the groups in complex tasks, the data of group#7 in HHC was excluded from 447 

the analysis, because group #7 assembled the structure incorrectly in HHC. The data of group#8 448 

in HRC was also excluded because there was a misunderstanding of the design drawing, so the 449 

experimental condition was changed and different from other groups. Thus, for complex tasks, the 450 

data of four groups in HHC and three groups in HRC was analyzed. 451 

4.1. Results of Work Performance  452 

Fig. 5 illustrates the results of four aspects regarding work performance, including the time of 453 

completion, the workload of participants, the accuracy of structures, and the nailing quality. For 454 
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the comparison between HHC and HRC within the same difficulty-level task, HRC has a relatively 455 

lower completion time for both simple tasks and complex tasks. The participants have a lower 456 

workload in HRC, which means that participants in HRC are less stressed in completing those 457 

tasks with the assistance of robots. For the accuracy of structures, HRC has a higher mean accuracy 458 

than HHC in the same tasks. However, there is no significant difference in the nailing quality, 459 

when comparing the results of HHC and HRC. Besides, in all aspects, HRC has a relatively small 460 

standard deviation compared to HHC in simple and complex tasks. This indicates that the work 461 

performance of HRC is more consistent than that of HHC.  462 

 463 

Fig. 5. Results of work performance. a) completion time, b) workload, c) accuracy, d) nailing 464 

quality 465 

Comparing two difficulty-level tasks, the difficulty level of tasks has an impact on the time of 466 

completion – the complex structure requires more time for assembly. Additionally, HRC has a 467 
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significantly higher mean accuracy than HHC in simple tasks, showing an 88.6% improvement 468 

compared to HHC. In complex tasks, the mean accuracy in HRC consistently outperforms that of 469 

HHC. For workload comparison, HRC in complex tasks holds a very small standard deviation, 470 

because only two groups of data are included under this condition. The heart rate data of one group 471 

in the complex task of HRC is omitted due to its lack of reliability because the wearable device 472 

was not tightly attached to the participant. On the other hand, the nailing quality was relatively 473 

high around 96% in all conditions. 474 

The accuracy of assembling individual joints for simple and complex experiments in HHC and 475 

HRC is shown in Table 3. It shows that the mean accuracy of assembling individual joints of the 476 

structure in simple tasks increases in HRC except for joint C which decreases from 90.98% in 477 

HHC to 83% in HRC. It could be because the robot sometimes may make collisions with other 478 

pieces when placing the lumber which includes joint C, as the pieces could be slightly moved when 479 

nailing. In complex tasks, there is no big difference between HHC and HRC in the mean accuracy 480 

of all joints, respectively. However, HRC has a smaller standard deviation in each joint compared 481 

to the results of HHC. This tells that the accuracy of the wood structure in HRC is more consistent.  482 

Table 3 Accuracy of assembling individual joints of the structure in two tasks (% in unit). 483 

Mean accuracy 

(standard deviation) 

Joint A Joint B 

 

Joint C 

 

Joint D 

 

Joint E 

 

Joint F 

Simple task  

HHC 

68.84 

(22.20) 

89.44 

(12.86) 

90.98 

(5.93) 

85.57 

(12.21) 

80.67 

(22.07) 

83.57 

(19.80) 

Simple task  

HRC 

91.25 

(5.44) 

99.30 

(0.69) 

83.23 

(7.34) 

97.97 

(1.27) 

94.47 

(3.43) 

96.84 

(2.06) 

Complex task 

HHC 

95.255 

(5.65) 

90.575 

(4.83) 

97.345 

(0.81) 

98.63 

(0.37) 

89.72 

(7.05) 
N/A 

Complex task 

HRC 

96.72 

(0.80) 

88.30 

(9.94) 

97.04 

(1.14) 

98.6 

(0.40) 

97.76 

(0.89) 
N/A 

  484 
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4.2. Results of Worker Perception 485 

Participants, including main persons and helpers, were asked to complete the pre-survey after the 486 

HHC experiment. This pre-survey data provides a baseline of participants’ perceptions of HRC. 487 

Accordingly, participants also completed the post-survey after the HRC experiment. Although the 488 

helpers did not interact with the robot physically, their feedback was also included because they 489 

sat nearby and observed the HRC experiment. Therefore, survey feedback from both the main 490 

persons and helpers was collected. In total, 31 responses were obtained, including 16 on the pre-491 

survey and 15 on the post-survey. One helper’s survey response after HRC was missing. The 492 

constructs included in the pre-survey are PU, PEU, IU, SE, SA, JR, and IMU. The post-survey 493 

constructs are PU, PEU, IU, SE, SA, PE, JR, OQ, RD, and IMU. OQ, RD, and PE are not included 494 

in the pre-survey because those questions are detailed in describing HRC experience, which is 495 

better to have participants answer afterward.  496 

The mean of each factor over 31 responses is compared to the neutral value of the score. It is found 497 

that the means of all the constructs are higher than the neutral value before and after the HRC 498 

experiment. This shows that participants held an overall positive attitude toward HRC before and 499 

after the practical experiment. The mean scores of each construct collected before the HRC 500 

experiment are compared to the values obtained after the experiment. The results show that the 501 

means of most constructs increased after the experiment. The scores of PEU, IU, and SA increased 502 

by 0.69, 0.38, and 0.31. SE slightly increased by 0.06. It indicates that participants feel safe and 503 

easy to use HRC and are more willing to use it than their initial thoughts. Among those constructs, 504 

the scores of JR decreased by 0.49; PU and IMU slightly decreased by 0.04 and 0.01. This may 505 

arise from the experiment task not mirroring a real-world scale task, rendering it somewhat 506 

challenging for participants to draw parallels between the on-site job and this task. The results of 507 
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OQ and RD covered in the post-survey show that participants hold a somewhat positive attitude 508 

toward the end-product quality and feel the HRC is somewhat tangible and communicable. In 509 

conclusion, participants hold a positive attitude toward HRC and have increased their intentions 510 

to use HRC after the experiment. 511 

To investigate the impact of difficulty level on worker perception, a comparison between the 512 

simple task results and the complex task results is conducted. For this purpose, the primary persons’ 513 

data is used. Fig. 6 (a) shows the score ranges of each construct, suggesting that the scores of IMU 514 

and SE in both tasks are consistent and have no significant difference before and after HRC. While 515 

other constructs’ scores vary in simple and complex tasks. To investigate how participants’ 516 

perceptions change after the experimental HRC, the difference of mean values between post- and 517 

pre-survey are calculated for each construct, following different tasks (see Fig. 6 (b)). The results 518 

show that on both tasks, the scores of IU, PEU, SA, and SE have increased after the HRC 519 

experiment, and the simple task has relatively higher scores. It reflects that the participants 520 

increased their willingness to use HRC in both tasks after practice. However, PU and IMU have 521 

increased after the HRC experiment in simple tasks, while a decrease is observed in complex tasks. 522 

It implies that participants feel HRC is useful in simple tasks to improve their performance and 523 

have a higher intrinsic motivation to use HRC but not much in complex tasks. A possible reason 524 

could be that the complex tasks experienced more uncertainties (e.g., more constraints for the 525 

robot). The preprogrammed robot makes it hard to accommodate those uncertainties in complex 526 

tasks. In both tasks, the results show a decrease in JR after the HRC experiment. It may suggest 527 

that the participants perceive the HRC used in the experiment task as less applicable to on-site 528 

scenarios.  529 

 530 
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 531 

(a)      (b) 532 

Fig. 6. Impact of task complexity level on worker perception: (a) range of scores for each 533 

construct; (b) change in scores between post- and pre-surveys. 534 

The reasons can be found in the interviews with open-ended questions conducted at the end of 535 

experiments. Almost all the participants believe that HRC is interesting and innovative, and it 536 

improves their work performance, but some drawbacks of the collaborative robot have 537 

disappointed them, including the low operating pace of the robot, and lack of communication on 538 

the robot’s intentions. Besides, despite the increased intention to use HRC, participants are more 539 

likely to use HRC in a simple task. It could be because the collaborative robot used in this 540 

experiment is a preprogrammed robot, which is not able to adjust its movement accordingly during 541 

the collaboration. This aligns with suggestions provided by participants in the interview, including 542 

“better navigation” and “dynamic coordination” for future robot systems. This feedback from 543 

participants also sheds light on the technical development of intelligent robots. 544 
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5. Discussion 545 

5.1. Research Findings and Comparison with Related Studies  546 

This study empirically investigated the impact of collaborative robots on work performance and 547 

worker perception in wood assembly tasks. The HRC experiment is designed to mimic typical 548 

collaborative processes in such tasks, where the collaborative robot acts in a capacity similar to a 549 

human assistant. In the complex task, the robot positions and holds the connecting piece, enabling 550 

the human worker to make the connection, similar to how one person might hold a heavy timber 551 

while another nails it. In the simple task, human workers concentrate on joining components, while 552 

the robot persistently brings, and places additional lumber based on the provided design. 553 

The findings of this study align well with other related studies and further validate the potential 554 

benefits of HRC in construction. For instance, it is found that HRC can enhance work quality and 555 

efficiency while reducing workers' workload in the given case study. This shows the beneficial 556 

impact of HRC on work performance. This concurs with the conclusions drawn by the referenced 557 

study, which highlights the promising potential of HRC in a teaching cell for assembling complex 558 

timber trusses (Kramberger et al. 2022). In a separate study focused on construction productivity, 559 

the beneficial effects of HRC are similarly noted within an agent-based simulation (Wu et al., 560 

2022). The outcomes underscore the potential of collaborative robots to enhance work productivity 561 

in the simulated setting. Our results further validate the applicability and benefits of HRC in 562 

standard construction assembly tasks.  563 

The assessment of worker perception measures the acceptance level of HRC and the change 564 

occurring before and after the HRC experiment. Results indicate that participants tend to be more 565 

receptive to HRC after undergoing the HRC experiment, denoting a rise in acceptance compared 566 

to their initial views. Moreover, the derived insights from the study's constructs strengthen the 567 
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conclusion of another study that both object-related (robot functionality) and subject-related 568 

(individual background) factors play a significant role in influencing the thoughts and feelings of 569 

workers (Meissner et al. 2020). This finding serves as a complementary extension to another study, 570 

which inclusively examined participants regardless of their prior experience with robots, affirming 571 

the observation that PU and PEU are intimately associated with IU in HRC (Bröhl et al., 2016). 572 

This is particularly noteworthy in the context of individuals surveyed in that study who had no 573 

previous hands-on experience with actual HRC scenarios. 574 

5.2. Practical Implications and Future Directions 575 

Simplified versions of wood roof trusses are adopted in this study to represent those typically used 576 

in construction work. This small-scale structure facilitates timely and cost-effective usability 577 

testing, allowing for the observation of end-user interaction with the new concept (Camburn et al., 578 

2017). Previous research has used small-scale designs for various purposes, such as testing new 579 

robot designs in assembly tasks (Jenett et al., 2019; Leder et al., 2019), demonstrating robot arm 580 

trajectories in HRC setups with simple timber models (Kramberger et al., 2022), and enhancing 581 

HRC intuitiveness through simplified wooden car structures (Gustavsson et al., 2018). Building 582 

upon these studies, currently only a small-scale structure was fabricated to investigate the effect 583 

of HRC on work performance and worker perception in construction assembly tasks. Future 584 

research is needed to focus on large-scale structures to include a broader range of real-world 585 

construction scenarios. As the scale increases, more robust programming is needed to meet the 586 

demands of these tasks.  587 

The complexity of real-world construction scenarios with sophisticated programming triggers the 588 

demand for collaborative robots with enhanced intelligence to engage in the teamwork. Recent 589 

literature provides evidence of such innovations. One investigation delved into the potential of 590 
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equipping robots with gaze-based cues to control a robotic arm, thereby enhancing the 591 

intuitiveness of HRC (Wöhle & Gebhard, 2021). In the context of construction, Cai et al. (2023) 592 

introduced a novel path-planning approach that incorporates anticipated construction worker 593 

movements, ensuring the HRC process is both safe and effective. In addition, participants showed 594 

positive feedback on working with the pre-programmed robot in this study and expressed their 595 

willingness to work with the robot more intuitively. Eventually, the paradigm would shift from a 596 

scenario where operators tediously script every robot function towards a more effortless interaction 597 

where collaborative robots are able to independently adjust their movements in response to the 598 

evolving environment and the subtle cues of human movement. This level of adaptability could 599 

ensure that robots can work alongside human partners safely and intuitively, thus achieving 600 

common objectives with greater efficiency. 601 

Furthermore, the generalizability of the effect of HRC needs further investigation. By recruiting 602 

college students with minimal or no prior construction experience, our study indicates that HRC 603 

increased work efficiency and productivity and was well-accepted. However, we acknowledge that 604 

our sample was limited to novice workers only. Future research should replicate and extend these 605 

findings to more experienced workers, thereby offering a more comprehensive view of HRC's 606 

impact across workers with varying levels of work experience. 607 

Regarding the robots, in the future, we will focus on enhancing the intelligence of collaborative 608 

robots. This involves empowering them with autonomous physical interactions and the capacity to 609 

proactively and safely plan their actions. Upcoming advancements should merge automatic 610 

execution with seamless communication with human worker. It is vital for robots to interpret 611 

human intentions and convey their own. These capabilities would greatly facilitate intuitive and 612 

smooth HRC in assembly tasks. 613 
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6. Conclusions 614 

This research evaluated the multi-dimensional impacts of collaborative robots on construction 615 

work and workers in terms of work efficiency, quality, workers’ workload, as well as worker’s 616 

perception and acceptance of collaborative robots, via HRC experiments on sample construction 617 

tasks (i.e., wood assembly), combined with quantitative measurements and TAM-based surveys. 618 

Two wood assembly tasks were designed in two difficulty levels, and both HRC and HHC 619 

experiments for performed as a comparison. In HHC experiments, a primary person was tasked to 620 

nail wood pieces and complete the assembly, and a helper was asked to assist the primary person 621 

in measuring, placing, and picking up lumbers. In HRC experiments, the robot played the helper’s 622 

role in HRC, where it was programmed to grasp and place the wood pieces following the design 623 

drawings for the primary person.  624 

To examine the impact of HRC on work performance in construction, this pilot study quantified 625 

the efficiency, quality, and workload in construction tasks and compared it to HHC. Based on our 626 

case study, it is found that HRC can increase the accuracy of construction assembly tasks by 88.6% 627 

in simple tasks and 6.7% in complex tasks, and reduce the time of completion by 29.3% in simple 628 

tasks and 28.5% in complex tasks. Furthermore, the workload of participants decreased by 20.3% 629 

in simple tasks and 7.8% in complex tasks, comparing HRC to HHC.  630 

From the workers’ side, surveys adapted from TAM were collected to learn workers’ acceptance 631 

and perceptions toward HRC, alongside a post-interview. The survey results indicate a generally 632 

positive reception towards HRC among workers, with an increased willingness to engage with 633 

collaborative robots compared to pre-experiment perspectives. The survey analysis in both simple 634 

and complex tasks suggests that HRC holds greater potential in complex tasks, where workers face 635 

higher physical and mental demands. Through interviews, it emerges that the primary barriers to 636 
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workers' acceptance of HRC in their tasks are the lack of flexibility and communication with the 637 

collaborative robot. Accordingly, to fully leverage the advantages offered by collaborative robots, 638 

it is imperative to engineer intelligent robots that can interact safely and adaptively with human 639 

workers, by operating based on the evolving context and human partner's actions.  640 

This research enriches our understanding of HRC in construction in two key areas. First, through 641 

case studies of scaled wood assembly experiments, we quantified the advantages of HRC over 642 

traditional HHC by comparing experiments with both settings across tasks of varying complexities. 643 

The benefits of HRC include enhancements in efficiency and quality and a decrease in worker 644 

workload. These findings underscore the potential and merits of integrating HRC into construction 645 

processes. Second, leveraging surveys adapted from TAM, shifts in attitudes were identified before 646 

and after the HRC experiments. This provided insights into workers' perceptions of HRC, 647 

including perceived value, ease of use, and concerns about safety. Future technological 648 

advancement can be pivotal to meet the need for enhanced acceptance among construction workers, 649 

thereby further encouraging the adoption of HRC in the construction industry. 650 

There remain some limitations that deserve future study. First, as a pilot study, this research 651 

leveraged scaled experiments in controlled lab environments. The main purpose and benefit of 652 

such settings is the ability to control experiment conditions and environment variables to better 653 

examine the impacts of HRC. However, the simplified operational setting of a small-scale 654 

experiment might not capture the complexity of real-world construction environments, thus 655 

affecting the generalizability of the findings. To accurately examine the impact of HRC on specific 656 

construction tasks, more experiments and pilot implementation are needed in real-world settings. 657 

Second, the sample size of the experiments is relatively small and the participants in the 658 

experiments have limited experience in the field. In future research, more diverse populations from 659 
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different experience levels and different trades of workers will be recruited to further explore how 660 

the impacts of HRC and worker perception will vary based on worker characteristics. 661 
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