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Abstract

Collaborative robots are increasingly recognized as potential assistants to relieve workers from
repetitive and physically demanding tasks on construction jobsites. Despite the great potential,
most efforts have focused on developing various artificial intelligence (AI) and robotic

technologies to achieve specific human-robot collaboration (HRC) functions. However, there is a
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significant lack of research regarding the impacts of such collaboration on construction work
performance and workers’ perception and acceptance of collaborative robots, which could be a
critical influence factor on the feasibility and effectiveness of HRC on construction jobsites. To
this end, this study aims to evaluate the multi-dimensional impacts of collaborative robots on work
efficiency, quality, workers’ workload, as well as workers’ perception and acceptance. HRC
experiments on sample construction tasks (i.e., wood assembly) were conducted in conjunction
with quantitative measurements and subject surveys. Through comparison between HRC
experiments and human-human collaboration (HHC) experiments based on this case study, it was
found that HRC could improve up to 29.3% and 88.6% in work efficiency and assembly accuracy,
respectively, and reduce worker’s workload by up to 20.3%. Furthermore, workers’ perception of
HRC is found to be positive overall with higher acceptance after HRC experience, characterized
by questionnaires designed based on the technology acceptance model. Through physical
experiments, this research is expected to produce more reliable results compared to conventional
approaches where participants are simply provided with imaginary scenarios. The findings will
also guide the development of robotic technologies to enhance the practical application of HRC in
construction.

1. Introduction

Automation and robotic technology have been increasingly recognized as promising solutions to
longstanding challenges in construction, such as low productivity and safety, and workforce aging
and shortage (de Soto et al., 2018; Saidi et al., 2016). For instance, as indicated by a worldwide
survey (ASEA Brown Boveri Group, 2021), 91% of construction companies face a skills crisis
over the next decades, and 81% of them are willing to introduce or increase the use of construction

robots to alleviate such issues. The global construction robot market size is expected to reach 242.4
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million U.S. dollars in 2030, a 238% increase from the size in 2020 (Statista, 2022). Robotic
technology has been introduced in various applications in construction, ranging from single-task
construction robots, including robotic excavators (ASI, 2019), brick-laying robots (Madsen, 2019),
rebar-tying robots (Cardno, 2018), painting robots (Asadi et al., 2018), to recent general-purpose
robotic platforms (e.g., collaborative robots) for more flexible human-robot collaboration (HRC)
(Kim et al., 2021). Specifically, collaborative robots are considered potential assistants to relieve
workers from repetitive and physically demanding construction tasks, such as material handling
(Liu et al., 2021b), assembly (Kramberger et al., 2022), and wall installation (Wang et al., 2021),
etc.

Despite the research achievements, most efforts have been focused on developing various Al and
robotic technologies to achieve specific capabilities for certain tasks. Significantly less research
focused on studying the impacts of HRC on construction work performance, as well as workers’
perception and acceptance, which could be a critical influence factor on the feasibility and
effectiveness of HRC in field construction. Some studies conducted interviews and surveys with
industry experts to identify the challenges of adopting automation and robotic technologies in
practice (Bademosi & Issa, 2021; Delgado et al., 2019). Another study developed a modeling
framework through the simulation of HRC processes to evaluate the impacts of HRC on
construction productivity (Wu et al., 2022). The main limitation is that imaginary or simulated
scenarios were used to elicit insights from domain stakeholders and estimate potential impacts,
which could be biased and do not reflect reality. Physical HRC experiments are needed to quantify
the multi-dimensional implications for construction work, such as quality, productivity, etc., and

to obtain workers’ feedback after experiencing real collaboration.
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Therefore, using HRC experiments on sample construction tasks (i.e., wood assembly), combined
with quantitative measurements and subject surveys, this study aims to evaluate the multi-
dimensional impacts of a collaborative robot on construction work and workers in terms of work
efficiency, quality, workers’ workload, as well as worker’s perception and acceptance of
collaborative robots. This study contributes to the body of knowledge in two aspects. First, through
comparison between HRC experiments and human-human collaboration (HHC) experiments on
tasks with different complexity levels, the improvement of HRC over traditional HHC was
quantified, including the increase in efficiency and quality, and the reduction in worker’s workload,
proving the validity and benefits of introducing HRC in construction operations. Second, through
surveys that are designed based on the technology acceptance model (TAM), the change of
attitudes before and after HRC experiments was identified, and the perception of workers on HRC
in various aspects, such as perceived usefulness, perceived ease of use, and safety anxiety, was
characterized. Our findings also suggest the need for enhancing acceptance of HRC among
construction workers to facilitate its implementation in the construction industry.

2. Related Studies

2.1. Robotic Applications and Human-Robot Collaboration in Construction

With advances in Al sensing technology, and robotics systems, a wide range of assistive robots
has emerged in different construction tasks such as bricklaying (Bruckmann et al., 2018), additive
manufacturing (Tankova & da Silva, 2020), demolition (Adami et al., 2021), etc. The idea of using
fully autonomous construction robots to improve safety and productivity, and mitigate challenges
of labor shortage has been explored by different researchers (Groll et al., 2019; Ha et al., 2002;
Jud et al., 2021; Ma et al., 2022; Petereit et al., 2019; Yang et al., 2019). For instance, La et al.

(2019) presented a steel climbing robot for monitoring and inspection of steel structures and
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bridges. Multiple sensors were attached to the robot to aid in both navigation and steel surface
inspection. The suggested system can gather pictures and 3D point cloud data and transmit those
data to the ground station for additional monitoring. Groll et al. (2019) presented an autonomous
trenching system that uses a hierarchical organization of primitives to excavate trenches in
complex environments. The system combines high-level task planning and low-level motion
control to increase efficiency. A human-robot teaming approach was explored for the construction
inspection and monitoring process using quadruped robots through an on-site experiment to
investigate inspector assistant robot for future construction inspection tasks (Halder et al., 2023).
Despite the great potential, the nature of construction tasks still requires human judgment,
adaptability, and precision, which are missing in available autonomous construction robots (Pan
et al., 2020). The presence of various entities (e.g., workers, machines, other resources) on the
worksite, combined with frequently changing operations, generates a dynamic and unorganized
work environment that usually impedes the safe operation of autonomous robots, posing
significant challenges to automating construction processes (Carra et al., 2018).

Liang et al. (2021) investigated the evolution of construction robots over the last two decades.
They concluded that HRC is more effective than autonomous robots for complicated construction
tasks that involve a combination of construction methods or materials and knowledge transfer from
human workers. Through HRC, workers can be relieved from tiresome and repetitive work and
concentrate on operations that involve flexibility and dexterity, thus improving the safety,
productivity, and quality of work (Okpala et al., 2020). To enable effective HRC, many studies
have been dedicated to developing various human-robot interfaces (Berg et al., 2019; Gustavsson
etal., 2018; Kim et al., 2019). For instance, Liu et al. (2021a) proposed a brain-computer interface

to teleoperate a robot by continuously capturing workers’ brainwaves received from a wearable
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electroencephalogram device. The electroencephalogram data was then processed by a computer,
which analyzes the worker's brainwaves and translates them into specific commands for the robot
with 90% accuracy. Liu et al. (2021b) also made it possible for robots to assess worker workload
by monitoring their brainwaves and modifying their performance accordingly to relieve the
workload of human workers. Czarnowski et al. (2018) suggested that virtual reality (VR) and
audible sound systems are viable options to bridge the remote contactless interaction gaps between
construction workers and robots because the generated explicit information such as visual cues,
and sound alarms could teach workers about the robot's behavior during HRC tasks.
Dimitropoulos et al. (2021) proposed a system for parts assembly in a human-robot collaborative
assembly cell using Al and wearable devices. They used Al algorithms to enable the robot to
anticipate and adapt to the movements of the human worker, and wearable devices to facilitate
communication between the human worker and the robot. The experimental evaluation of the
proposed system proved to improve the efficiency and safety of the assembly process, and the
system was able to adapt to the movements of the human worker. They also report positive
feedback from the participants who used the system, indicating that the system provides a
satisfactory user experience.

2.2. Work Performance in Human-Robot Collaboration

The inclusion of robotics in the construction industry is promising to improve the productivity of
construction workers in performing challenging tasks and maintaining a safe workspace (Kim et
al., 2018). Extensive research focuses on investigating different approaches of HRC and
developing advanced collaborative robots to improve work productivity by increasing efficiency,
quality, and safety. A high-performance collaborative robot has been introduced for proactively

assisting workers in maintenance jobs (e.g., handover tasks, and tool-fetch tasks) to enhance
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efficiency in real-world scenarios (Asfour et al., 2019). HRC has also been applied on construction
sites. The mobile robot can provide construction workers with exact design information of
pipelines by projecting it onto the walls using projective augmented reality to improve work
quality (Xiang et al., 2021). To examine work performance in HRC, Wu et al. (2022) evaluated
work productivity based on modeling HRC scenarios with different worker-to-robot ratios in the
bricklaying task, where the robot continuously brings in bricks.

In addition, as the mental workload of workers is critically connected to their performance in
construction, studies have been conducted to explore whether the HRC is associated with workload
reduction (Dybvik et al., 2021; Memar & Esfahani, 2018; Tao et al., 2019). A theoretical data-
driven analysis states that the human workload for some jobs, among 16 selected occupations,
decreased by introducing collaborative robots (Liu et al., 2022). Sadrfaridpour and Wang (2017)
examined human workload in a manufacturing assembly task. They found that the interaction
approaches of HRC (i.e., physical and social factors in controllers) could affect human workload.
HRC was proven to increase productivity by reducing the cognitive load of the worker during task
performance (Landi et al., 2018). These studies examined work performance from theoretical
perspectives (e.g., effectiveness of methods) and lack of proof in validating the practical effects of
HRC in construction tasks.

2.3. Worker Perception of Human-Robot Collaboration

Despite considerable attention and investment in HRC, there has been limited success in
translating HRC from research to real-world practice (Brohl et al., 2016; Delgado et al., 2019).
One factor that impedes the successful realization of HRC is the workers’ acceptance of the robots
(Brohl et al., 2019). Workers are the ones who experience the most changes after introducing HRC

into construction jobsites. However, unlike researchers dedicated to advancing collaborative
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robots, construction workers have limited knowledge of HRC and may feel unwilling to
collaborate with robots, which could lead to non-usage and ineffective HRC. The existing worker
perception could lower workers’ acceptance of HRC, which could limit its successful
implementation (Kopp et al., 2021).

TAM is the most influential model that predicts and explains the acceptance and rejection of
advanced technology (e.g., information systems). Initially proposed by Davis (1989), TAM has
been confirmed by numerous studies for its applicability in various fields (Maranguni¢ & Granic,
2015). Bertrand and Bouchard (2008) applied TAM to the use of virtual reality, where they
revealed the parameters determining the final intention of use. Also, there are several studies that
adapted TAM to analyze the acceptance of HRC. Lotz et al. (2019) explored and validated three
key factors of anxiety that employees have in the manufacturing industry to address workers’
intentions for facilitating HRC implementation. Brohl et al. (2016) extended the TAM-based
acceptance model with ethical, legal, and social implications for HRC in the production industry
to give a more precise prediction on the acceptance of HRC in a real-world application. In the
construction sector, Park et al. (2023) applied TAM to investigate comprehensive factors that could
affect the worker’s acceptance of assistant robots. Thus, to advance the HRC implementation in
the construction industry, this study adapted TAM-based constructs to HRC usage in construction
tasks for understanding the attitudes of workers toward HRC.

2.4. Performance Evaluation of Human-Robot Collaboration

The concept of assessing construction performance has been well-explored in existing research
(Bassioni et al., 2004). The evaluation holds significant value in traditional construction, where
HHC is prevalent. Likewise, the evaluation is crucial for determining whether the implementation

of HRC in construction projects is successful. However, an assessment that focuses solely on work
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quality is not adequate for HRC scenarios, as humans may be reluctant to collaborate with robots,
potentially hindering the implementation of an effective HRC.

Steinfeld et al. (2006) identified key metrics for evaluating human-robot interaction, focusing on
work performance, encompassing efficiency and quality, and human performance including
workload and situation awareness. This is consistent with Freedy et al. (2007) conclusion, which
suggests two categories for assessing the performance of HRC teams: measures of team
performance and measures of effectiveness. These include both individual and collaborative
performance, as well as the quality of the tasks completed by the team. Typically, for work
performance, time efficiency and task quality are the primary indicators used in HRC assessments.
For instance, Mitterberger et al. (2022) measured the completion time and the angles of each timber
strut in a wooden structure assembly task to gauge HRC work performance. In the pursuit of more
precise quality metrics, Qin and colleagues evaluated error frequency, framing accuracy, and time
to completion in the assembly of wood frame walls with Augmented Reality (Qin et al., 2021).
Therefore, in our study, which also involves wooden structures, task completion time, frame layout
accuracy, and nailing quality are employed as the key metrics to assess work performance.

The significance of the human component in evaluating HRC is paramount. The success of HRC
implementation hinges on the willingness of human workers to engage with it (Meissner et al.,
2020). Understanding the degree to which individuals adopt or resist collaborative robots involves
examining their attitudes and acceptance levels. Coronado et al. (2022) emphasized the importance
of these aspects in assessing HRC. Additionally, Shah and colleagues expanded their analysis
beyond the realm of work performance in scenarios where a robot assists humans in material
retrieval, incorporating qualitative data derived from participant questionnaires and feedback to

gain insights into human perceptions of collaborative robots (Shah et al., 2011). Accordingly, for
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worker assessment, our study focuses on measuring both the workload experienced by humans
and their acceptance levels towards collaborative robots.

2.5. Motivation and Objective

It has been shown that HRC could be a promising solution for the challenges (i.e., poor
productivity, aging force, labor shortage) that construction is struggling with. Previous studies
have validated and evaluated the influence of HRC either in simulated scenarios (e.g., virtual
reality) (Faccio et al., 2020; Freedy et al., 2007; Wu et al., 2022; Zhu et al., 2020) or in
experimental assessments. However, such assessments focused on a particular perspective (i.e.,
the influence of product characteristics) or the performance of their proposed methods (e.g.,
projective augmented reality) (Faccio et al., 2020; Xiang et al., 2021). Limited studies have
explored the practical impact (i.e., work performance) of HRC on construction tasks (i.e., assembly
tasks) compared with traditional HHC on the same tasks, where users can give feedback and
insights into the collaboration process. Considering that an effective HRC is joint work between
workers and robots in real-world construction tasks, workers’ willingness and attitude towards the
robot are critical. Although previous studies have investigated acceptance models and factors for
HRC implementation via online surveys collected from workers and managers (Brohl et al., 2016;
Meissner et al., 2020; Park et al., 2023), the majority of the participants have no physical
experience in completing a construction task with the assistance of collaborative robots, which
could limit their actual experience and perceptions with HRC.

To this end, the present study aims to examine the impact of HRC on work performance and the
perception of workers via experimental analysis using sample construction tasks. To achieve the
goal, this research (1) quantifies the efficiency, quality, and workload of HRC in a sample task

(i.e., wood structure assembly) across two difficulty levels and compares them to the performance
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in traditional HHC settings, and (2) identifies workers’ perception and attitude toward HRC by
analyzing the survey data based on TAM. By focusing on both work performance and workers’
perception in a human-robot collaborative task, this research provides valuable insights into HRC
in construction tasks from the implementation side and the worker’s side. Additionally, this study
generates stimulating ideas from workers’ post-interview to inspire future HRC research in the
construction field.

3. Methodology

This study used experimental analysis to investigate the impact of HRC on construction work
performance and worker perception, where two wood assembly tasks with different levels of
complexity were conducted in a controlled environment as a simplified setup. Besides the HRC
experiments, HHC experiments were performed as comparison groups. A total of 13 participants
were recruited to form nine groups, and the assignment of groups was based on participants’
demographic information and their work experience. Each group was tasked to conduct both HRC
and HHC experiments for comparison. The work performance was examined in terms of time
efficiency, product quality, and task workload. Additionally, worker perception was investigated
through the constructs of TAM such as perceived usefulness, perceived ease of use, and intention
to use etc., where data was collected before and after HRC, to study the acceptance of collaborative
robots in construction tasks. Fig. 1 illustrates the overall framework.

3.1.Experiment Design

3.1.1. Task Design

On-site jobs involving assembly tasks require reasonable productivity and reduced human errors
due to a limited project budget and completion time commitment to the subject (Liang et al., 2021).

Wood framing is a prevalent method employed in the construction of residential, commercial, and

11



253 industrial structures (Belousov et al., 2022; Dietz, 2015). Roof trusses are a fundamental element
254  of wood-based construction. The complexity of roof trusses assembly requires the team effort of
255 multiple workers, often positioned at elevated heights. This scenario is marked by a high
256  occurrence of falls and fatalities among roofers, highlighting an urgent need for innovative
257  approaches. By incorporating HRC into wood assembly tasks, especially in roof construction, the

258  construction sector could potentially enhance both productivity and safety.
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in wood assembly tasks. It was noted that one worker holds the heavy part, and another
concentrates on nailing. However, it's always challenging for the worker to hold the piece for an
extended period, especially when the workpieces are positioned at non-vertical or non-horizontal
angles and must be maintained at specific orientations (Nath et al., 2017). Therefore, the design of
the task was inspired by the issues faced in actual timber assembly operations, mirroring the
complexity found in real-world construction scenarios. For both simple and complex tasks, robots
could serve as assistants to take over dangerous and tedious tasks, like handling heavy trusses,
while human workers could focus on connecting different components. Considering the capability
of collaborative robots used in research, laboratory assembly tasks are simplified and scaled based
on roof trusses (a typical wooden structure to assemble) in actual construction tasks for practical
implication. Despite the scaled experiments in this study, the task settings could be potentially
extended to real-world settings.

Two wood assembly tasks were designed in two difficulty levels, i.e., a simple-structured task and
a complex-structured task, to better understand the impact of HRC on different complexity. The
design criteria were reflected by practical insight. In consultation with industrial professionals
from a wood manufacturing company, the experts highlighted that the assembly on a stable surface,
such as a table, enables easier connection of two parts. Conversely, the challenge amplifies when
pieces, particularly heavy trusses, require positioning and holding in mid-air for connection,
extending the duration of the physical effort of workers. Therefore, a 2D wood structure was
adopted as a simple-structured task, and a 3D wood structure as a more complex task within this
study.

Fig. 2 shows the layouts of both tasks, where labeled joints as A, B, C, D, E, and F indicate the

placement and connection point of each lumber. The simple-structured task is a 2D structure task
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with only one layer structure, requiring participants to work stably on the flat tabletop. The
complex-structured task is a 3D structure task with two layers, which requires participants to
assemble two simple structures spatially. This 3D structure makes it difficult to hold both layers
and connecting pieces still while nailing. Regarding task allocation in HRC assembly, the robot is
tasked to pick and place the main lumber pieces while the joints are placed manually in the simple-

structured task (Liau & Ryu, 2020). In the complex-structured task, the robot is assigned to hold

the vertical connection pieces in place for the human worker.

(a) (b)
Fig. 2. Design of wood assemblies: (a) simple structure, (b) complex structure

3.1.2. Experiment Design

To evaluate the work performance of HRC in construction assembly tasks, HRC and HHC
experiments were performed for each task, where HHC is considered as the baseline. For the same
task, HRC and HHC experiments were performed on different days to avoid bias due to repeated
practice. There are two participants in the HHC experiment, one primary person and one helper.
In HHC, the helper fetches all wood pieces and places them on the workbench. The primary person
collaborates with the helper to assemble the wood structure according to the design drawing. In
the procedures, the helper works with the primary person in measuring and placing the lumbers,

and then only the primary person uses a nail gun to connect wood pieces. On the other hand, the
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robot plays the helper’s role in HRC, where it is programmed to pick and place the wood pieces
following the design drawing. That means the primary person can focus on connecting workpieces
while the robot continuously places lumbers for the participant based on the drawing.

In this study, Clearpath Husky A200 equipped with Universal Robot 5 e-Series (UR5e) and a 2-
finger Robotiq gripper was used as the collaborative robot in this wood assembly task. The Husky
is an Unmanned Ground Vehicle with four wheels, suitable for various ground conditions. The
URSe is a robot arm with six degrees of freedom, which has the ability to perform pick-up and
placement tasks. In real-world manufacturing settings, this robot arm has demonstrated its
capability to assist human workers with different frame structures by manually changing how and
when to hold a piece in place. It has more flexibility than task-specific robot systems like framing
machines. Although the capacity for material transportation is critical in the construction
environment, due to the scope of the study, the aspect of mobility was not encompassed within the
experimental framework. Emphasis has been placed on the collaborative assembly with a robot
arm. A workbench was placed as the assembly space for this experiment. The wood pieces used
for the tasks were distributed in a pile on the ground near the bench for each group. Besides, for
recording purposes, two cameras were set up from both the front view and back view of the
working space. Fig. 3 shows the experimental setup and procedures for a simple task. The upper
row in Fig. 3 shows the experiment procedures for HHC, where the helper fetches the lumbers,
works with the primary person to place them according to the design drawing, and then the primary
person nails them. The lower row in Fig. 3 shows the experiment procedures for HRC, where the
primary person makes the connection while the robot brings and places more lumber
simultaneously. The experiment protocol was approved by the Institutional Review Board at the

university.
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Fig. 3. Experiment procedures for HHC and HRC. (a) the human helper picks and places lumber
on the table; (b) the primary person and the helper measure the lumber; (c) the primary person
and the helper place the lumber; (d) the primary person connects wood pieces. In the second row,
€ the robot picks and places lumber; (f) the primary person focuses on the connection while the
robot brings more lumber; (g) the robot continuously places more lumber according to the
design; (h) the primary person finishes the connection.

3.1.3. Robot Setup

The PolyScope interface was used to pre-program robots for construction tasks. This software
enables the manual positioning of the robot to establish and record specific movement trajectories.
Key operational actions, including 'Grip' and 'Release', were incorporated into these programmed
sequences to ensure the effective execution of tasks. Following the programming and saving of
these movements and actions, a research assistant performed detailed testing to confirm that the

robot's functioning was in precise accordance with the planned tasks.
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PolyScope's functionality as a programming tool lies in its ability to direct robots along defined
trajectories and maneuvers. Thus, precision in executing construction tasks is attainable
irrespective of their complexity, provided that the trajectories and maneuvers are distinctly
outlined and programmed.

3.2. Group Assignment

3.2.1. Participants Recruitment

The participants of the experiments are college students, who have basic carpentry skills (i.e.,
cutting, drawing reading) and have passed safety training in the woodshop. Most of these
participants will enter the construction and architecture industry after graduation, and some of
them have already worked in the industry. Therefore, the individuals included in this pilot study
have been determined to be appropriate candidates. A demographic survey was administered
before the group assignment. A total of 13 persons participated in the experiment, including 9
primary persons and 4 helpers. Helpers played the same role in different groups. Among
participants, around 42% are female, and 58% are male. The groups were assigned based on gender
and work experience, where the primary persons had never experienced any kind of collaborative
robots and had little to no work experience. The participants playing helper roles have two to three
years of work experience. All participants were trained to use the nail gun safely before the
experiment.

3.2.2. Group Assignment

A total of 13 participants were assigned to 9 groups as two persons in one group (some participants
played the helper role more than once but in different tasks). To analyze the impact of HRC on
construction work performance, a within-subjects design was used (de Winter et al., 2017). In each

group, one person performed as the primary person who worked in HHC and interacted with a
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robot in HRC. Another person played as a helper who assisted the primary person in HHC.
Additionally, a between-subjects design was applied to compare work performance in different
difficulty-level tasks. As shown in Table 1, there are four groups in the simple task and five groups
in the complex task. Each group had two participants in HHC, but only one person was in HRC
because the robot served as the helper.

Table 1: Group assignment for HHC and HRC

Human-Human Collaboration Human-Robot Collaboration

Simple Task | PG1+H1; PG2+H2; PG3+H3; PG4+H4; | PG1+R; PG2+R; PG3+R; PG4+R

Complex Task | PG5+H1; PG6+H2; PG7+H3; PG8+H4; | PG5+R; PG6+R; PG7+R; PG8+R

PG9+HI;

Note: PG represents the primary person in a group and H represents the helper. R represents the
robot. Group 9 did not perform the HRC experiment.

3.3.TAM-based Pre- and Post-surveys

Pre-survey was distributed and collected from participants before the HRC experiment to establish
a base understanding of workers’ perception of HRC. Post-survey was distributed and collected
after the HRC experiment to identify the change in workers’ perception after actually working with
the robot. The surveys were adapted based on the TAM’s constructs (Venkatesh & Bala, 2008;
Venkatesh & Davis, 2000). TAM proposed that perceived usefulness (PU) and perceived ease of
use (PEU) are two key factors determining whether users will accept a specific technology. PU
refers to the user’s expectation of the extent to which the technology will improve the user’s
performance. For example, in the context of HRC in construction, a worker may be concerned
about how the robot will improve his/her construction task performance. On the other hand, PEU

is defined as the expected amount of effort required to use the technology effectively and addresses
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384  questions on whether the worker believes that the robot will be easy to collaborate with (Davis,
385 1989). The person’s PU and PEU jointly determine the intention of use (IU) (Davis, 1989;
386  Venkatesh & Davis, 2000). Both PU and PEU could be affected by external variables, including
387  self-efficacy (SE), intrinsic motivation of use (IMU), safety anxiety (SA), job relevance (JR),
388  output quality (OQ), and result demonstrability (RD), etc. Table 2. lists the definition and a sample
389  question of each construct asked in the surveys. The scores of each factor collected before and
390  after HRC were analyzed and compared to obtain the attitude change of workers towards HRC.
391 Table 2. Definitions of variables in pre- and post-surveys
Item Definitions Sample Questions (7-likert-scale)
The degree of usefulness that a person feels Using a collaborative robot improves
PU :
about a collaborative robot. my task performance.
PEU The level of easiness that a person believes I find it easy to get collaborative robot
when working with a collaborative robot. to do what [ want it to do.
The willingness to use a collaborative robot In the future, I plan to work with a
| LU . .
in future construction tasks. collaborative robot.
The degree of ability to work with a I'can comp lete the tgsk witha
SE . collaborative robot if someone showed
collaborative robot that a person holds. .
me how to do it first.
The motivation to use a collaborative robot I feel playful when I work with a
IMU o .
that a person has intrinsically. collaborative robot.
SA The degree.of an?(lety that a person feels Robots do not scare me at all.
when working with a collaborative robot
The d'egree of enj oyment that apetson The actual process of using a
PE perceived when working with a collaborative . )
robot collaborative robot is pleasant.
The degree; of relevance to his/her task that a In the task, the usage of the
JR  person believes when using collaborative . .
collaborative robot is important.
robot
The quality of the end product that a person The quahty of the output I get from.
0Q working with a collaborative robot is
feels by the performance of HRC high
RD The degree of observability and tangibility The results of using collaborative robot
that a person holds on the results of HRC are apparent to me.
392
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3.4.Data Analysis

The work performance was evaluated in terms of work efficiency, quality, and workload of
participants. The time of completion for each trial was recorded and used as an indicator of work
efficiency. To capture the work quality, we quantified the accuracy of the end product (i.e., wood
assembly), and nailing quality. The accuracy was calculated by measuring the connection of each
lumber and comparing it to the design. For nailing quality, a visual inspection was conducted and
nails that went through the lumber but not connecting the lumber and connector were counted as
“bad nailing quality”. For the workload quantification, the Heart Rate Reserve (HRR), the average
of beats per minute used to measure the intensity of physical activity level was employed and
calculated based on one standardized equation to represent the workload of workers (Jae et al.,
2016).

3.4.1. Work Performance Analysis

To quantify work efficiency, the time of completion for each trial was recorded and compared
between HHC and HRC. Different error types were examined to evaluate the work quality of the
end product (i.e., wood structure). For accurate measurement of the structure, the accuracy of
assembling individual joints was calculated first based on Equations (1) and (2), and the product
of accuracies of all joints was used to calculate the accuracy of the final product, shown in Equation

(3) (Devore et al., 2012; Guang et al., 1995; Khair et al., 2017).

M,— M

t

= —— X 1009 1

err o, % (1)

acc= 1—err (2)
jointF

= ] ace ®
k=jointA
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where err is percentage error; M, is experimental values measured from end product; M, is
theoretical values from design drawing; acc is percentage accuracy; accyyq,; 1S the total accuracy
of a structure (from jointA to jointF); acc, means percentage accuracy of each joint.

To evaluate the nailing quality of the structure, both the total number of nails used in the structure
and the number of nails poorly nailed were counted, such as nails coming out through the wood
piece but not connecting the connector, as shown in Fig. 4. By calculating the number of nails
poorly nailed out of the total nail counts, the good nailing quality was quantified as a percentage.
To estimate workload, the heart rate was measured by a wearable device, Fitbit, from the primary
persons (Gorny et al., 2017). We started to collect the heart rates of the participants around 20
minutes before the experiment time and continuously measured them till 20 minutes after the
experiment was completed. With the heart rate data, HRR was calculated based on the Karvonen
Formula to measure the intensity of activity (Goldberg et al., 1988) (see Equations (4) & (5)).

HR, 0 = 220 — age (4)

HR — HR
HRR = —2ork et % 100% (5)
HRmax - HRrest

where HR 4, 1s maximum heart rate; HR,,, 1s the heart rate while the participant is working;

HR,.; is resting heart rate; age is the number of participant’s age.

Fig. 4. An example of poor nailing.
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3.4.2. Worker Perception Analysis

The 7-likert-scale questionnaires of HRC perception, ranging from “strongly disagree” (1) to
“strongly agree” (7), were distributed and collected before and after the HRC experiment. A TAM-
based approach was applied to examine the participants’ perception of HRC in this study. The
mean scores of several questions in one factor were calculated and represented the final scores of
the factor. Survey data was collected from all participants, as the helpers observed HRC
experiments. The overall attitude of participants was analyzed by comparing the final scores of
each factor to the neutral scores (4). To analyze the impact of HRC on worker perception in this
construction assembly task, the scores of each variable collected from the primary persons in each
group were used and compared before and after the experiment, including PU, PEU, SE, IMU, SA,
and JR.

4. Results

A total of 9 groups were included in this study. Four groups’ data were collected from HHC and
HRC in simple tasks. Five groups’ data were collected from HHC in complex tasks, while only
four groups’ data from HRC in complex tasks because one group did not complete the HRC
experiment. Among the groups in complex tasks, the data of group#7 in HHC was excluded from
the analysis, because group #7 assembled the structure incorrectly in HHC. The data of group#8
in HRC was also excluded because there was a misunderstanding of the design drawing, so the
experimental condition was changed and different from other groups. Thus, for complex tasks, the
data of four groups in HHC and three groups in HRC was analyzed.

4.1. Results of Work Performance

Fig. 5 illustrates the results of four aspects regarding work performance, including the time of

completion, the workload of participants, the accuracy of structures, and the nailing quality. For
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the comparison between HHC and HRC within the same difficulty-level task, HRC has a relatively

lower completion time for both simple tasks and complex tasks. The participants have a lower

workload in HRC, which means that participants in HRC are less stressed in completing those

tasks with the assistance of robots. For the accuracy of structures, HRC has a higher mean accuracy

than HHC in the same tasks. However, there is no significant difference in the nailing quality,

when comparing the results of HHC and HRC. Besides, in all aspects, HRC has a relatively small

standard deviation compared to HHC in simple and complex tasks. This indicates that the work

performance of HRC is more consistent than that of HHC.
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Fig. 5. Results of work performance. a) completion time, b) workload, ¢) accuracy, d) nailing

Comparing two difficulty-level tasks, the difficulty level of tasks has an impact on the time of

completion — the complex structure requires more time for assembly. Additionally, HRC has a
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significantly higher mean accuracy than HHC in simple tasks, showing an 88.6% improvement
compared to HHC. In complex tasks, the mean accuracy in HRC consistently outperforms that of
HHC. For workload comparison, HRC in complex tasks holds a very small standard deviation,
because only two groups of data are included under this condition. The heart rate data of one group
in the complex task of HRC is omitted due to its lack of reliability because the wearable device
was not tightly attached to the participant. On the other hand, the nailing quality was relatively
high around 96% in all conditions.

The accuracy of assembling individual joints for simple and complex experiments in HHC and
HRC is shown in Table 3. It shows that the mean accuracy of assembling individual joints of the
structure in simple tasks increases in HRC except for joint C which decreases from 90.98% in
HHC to 83% in HRC. It could be because the robot sometimes may make collisions with other
pieces when placing the lumber which includes joint C, as the pieces could be slightly moved when
nailing. In complex tasks, there is no big difference between HHC and HRC in the mean accuracy
of all joints, respectively. However, HRC has a smaller standard deviation in each joint compared
to the results of HHC. This tells that the accuracy of the wood structure in HRC is more consistent.

Table 3 Accuracy of assembling individual joints of the structure in two tasks (% in unit).

Mean accuracy Joint A JointB  JointC JointD  Joint E Joint F
(standard deviation)
Simple task 68.84 89.44 90.98 85.57 80.67 83.57
HHC (22.20) (12.86) (5.93) (12.21) (22.07) (19.80)
Simple task 91.25 99.30 83.23 97.97 94.47 96.84
HRC (5.44) (0.69) (7.34) (1.27) (3.43) (2.06)
Complex task 95.255 90.575 97.345 98.63 89.72 N/A
HHC (5.65) (4.83) (0.81) (0.37) (7.05)
Complex task 96.72 88.30 97.04 98.6 97.76 N/A
HRC (0.80) (9.94) (1.14) (0.40) (0.89)
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4.2. Results of Worker Perception

Participants, including main persons and helpers, were asked to complete the pre-survey after the
HHC experiment. This pre-survey data provides a baseline of participants’ perceptions of HRC.
Accordingly, participants also completed the post-survey after the HRC experiment. Although the
helpers did not interact with the robot physically, their feedback was also included because they
sat nearby and observed the HRC experiment. Therefore, survey feedback from both the main
persons and helpers was collected. In total, 31 responses were obtained, including 16 on the pre-
survey and 15 on the post-survey. One helper’s survey response after HRC was missing. The
constructs included in the pre-survey are PU, PEU, IU, SE, SA, JR, and IMU. The post-survey
constructs are PU, PEU, IU, SE, SA, PE, JR, OQ, RD, and IMU. OQ, RD, and PE are not included
in the pre-survey because those questions are detailed in describing HRC experience, which is
better to have participants answer afterward.

The mean of each factor over 31 responses is compared to the neutral value of the score. It is found
that the means of all the constructs are higher than the neutral value before and after the HRC
experiment. This shows that participants held an overall positive attitude toward HRC before and
after the practical experiment. The mean scores of each construct collected before the HRC
experiment are compared to the values obtained after the experiment. The results show that the
means of most constructs increased after the experiment. The scores of PEU, IU, and SA increased
by 0.69, 0.38, and 0.31. SE slightly increased by 0.06. It indicates that participants feel safe and
easy to use HRC and are more willing to use it than their initial thoughts. Among those constructs,
the scores of JR decreased by 0.49; PU and IMU slightly decreased by 0.04 and 0.01. This may
arise from the experiment task not mirroring a real-world scale task, rendering it somewhat

challenging for participants to draw parallels between the on-site job and this task. The results of
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OQ and RD covered in the post-survey show that participants hold a somewhat positive attitude
toward the end-product quality and feel the HRC is somewhat tangible and communicable. In
conclusion, participants hold a positive attitude toward HRC and have increased their intentions
to use HRC after the experiment.

To investigate the impact of difficulty level on worker perception, a comparison between the
simple task results and the complex task results is conducted. For this purpose, the primary persons’
data is used. Fig. 6 (a) shows the score ranges of each construct, suggesting that the scores of IMU
and SE in both tasks are consistent and have no significant difference before and after HRC. While
other constructs’ scores vary in simple and complex tasks. To investigate how participants’
perceptions change after the experimental HRC, the difference of mean values between post- and
pre-survey are calculated for each construct, following different tasks (see Fig. 6 (b)). The results
show that on both tasks, the scores of IU, PEU, SA, and SE have increased after the HRC
experiment, and the simple task has relatively higher scores. It reflects that the participants
increased their willingness to use HRC in both tasks after practice. However, PU and IMU have
increased after the HRC experiment in simple tasks, while a decrease is observed in complex tasks.
It implies that participants feel HRC is useful in simple tasks to improve their performance and
have a higher intrinsic motivation to use HRC but not much in complex tasks. A possible reason
could be that the complex tasks experienced more uncertainties (e.g., more constraints for the
robot). The preprogrammed robot makes it hard to accommodate those uncertainties in complex
tasks. In both tasks, the results show a decrease in JR after the HRC experiment. It may suggest
that the participants perceive the HRC used in the experiment task as less applicable to on-site

scenarios.

26



531

532

533

534

535

536

537

538

539

540

541

542

543

544

SE —— BB —— = T
SA e _ _ SA; - S ——
PU e PU/1 . S
PEU sy PEU| ——————————————== T
JR e JRA —— e
IU _— Uy = = e R
IMU ——— IMU ey T W
i 2 3 4 35 6 7 2 X 0 1 )
Score Change in Score
t Pre t+ Post 1 Simple | Complex
(a) (b)

Fig. 6. Impact of task complexity level on worker perception: (a) range of scores for each
construct; (b) change in scores between post- and pre-surveys.
The reasons can be found in the interviews with open-ended questions conducted at the end of
experiments. Almost all the participants believe that HRC is interesting and innovative, and it
improves their work performance, but some drawbacks of the collaborative robot have
disappointed them, including the low operating pace of the robot, and lack of communication on
the robot’s intentions. Besides, despite the increased intention to use HRC, participants are more
likely to use HRC in a simple task. It could be because the collaborative robot used in this
experiment is a preprogrammed robot, which is not able to adjust its movement accordingly during
the collaboration. This aligns with suggestions provided by participants in the interview, including
“better navigation” and “dynamic coordination” for future robot systems. This feedback from

participants also sheds light on the technical development of intelligent robots.
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5. Discussion

5.1. Research Findings and Comparison with Related Studies

This study empirically investigated the impact of collaborative robots on work performance and
worker perception in wood assembly tasks. The HRC experiment is designed to mimic typical
collaborative processes in such tasks, where the collaborative robot acts in a capacity similar to a
human assistant. In the complex task, the robot positions and holds the connecting piece, enabling
the human worker to make the connection, similar to how one person might hold a heavy timber
while another nails it. In the simple task, human workers concentrate on joining components, while
the robot persistently brings, and places additional lumber based on the provided design.

The findings of this study align well with other related studies and further validate the potential
benefits of HRC in construction. For instance, it is found that HRC can enhance work quality and
efficiency while reducing workers' workload in the given case study. This shows the beneficial
impact of HRC on work performance. This concurs with the conclusions drawn by the referenced
study, which highlights the promising potential of HRC in a teaching cell for assembling complex
timber trusses (Kramberger et al. 2022). In a separate study focused on construction productivity,
the beneficial effects of HRC are similarly noted within an agent-based simulation (Wu et al.,
2022). The outcomes underscore the potential of collaborative robots to enhance work productivity
in the simulated setting. Our results further validate the applicability and benefits of HRC in
standard construction assembly tasks.

The assessment of worker perception measures the acceptance level of HRC and the change
occurring before and after the HRC experiment. Results indicate that participants tend to be more
receptive to HRC after undergoing the HRC experiment, denoting a rise in acceptance compared

to their initial views. Moreover, the derived insights from the study's constructs strengthen the
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conclusion of another study that both object-related (robot functionality) and subject-related
(individual background) factors play a significant role in influencing the thoughts and feelings of
workers (Meissner et al. 2020). This finding serves as a complementary extension to another study,
which inclusively examined participants regardless of their prior experience with robots, affirming
the observation that PU and PEU are intimately associated with IU in HRC (Brohl et al., 2016).
This is particularly noteworthy in the context of individuals surveyed in that study who had no
previous hands-on experience with actual HRC scenarios.

5.2. Practical Implications and Future Directions

Simplified versions of wood roof trusses are adopted in this study to represent those typically used
in construction work. This small-scale structure facilitates timely and cost-effective usability
testing, allowing for the observation of end-user interaction with the new concept (Camburn et al.,
2017). Previous research has used small-scale designs for various purposes, such as testing new
robot designs in assembly tasks (Jenett et al., 2019; Leder et al., 2019), demonstrating robot arm
trajectories in HRC setups with simple timber models (Kramberger et al., 2022), and enhancing
HRC intuitiveness through simplified wooden car structures (Gustavsson et al., 2018). Building
upon these studies, currently only a small-scale structure was fabricated to investigate the effect
of HRC on work performance and worker perception in construction assembly tasks. Future
research is needed to focus on large-scale structures to include a broader range of real-world
construction scenarios. As the scale increases, more robust programming is needed to meet the
demands of these tasks.

The complexity of real-world construction scenarios with sophisticated programming triggers the
demand for collaborative robots with enhanced intelligence to engage in the teamwork. Recent

literature provides evidence of such innovations. One investigation delved into the potential of
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equipping robots with gaze-based cues to control a robotic arm, thereby enhancing the
intuitiveness of HRC (Wd&hle & Gebhard, 2021). In the context of construction, Cai et al. (2023)
introduced a novel path-planning approach that incorporates anticipated construction worker
movements, ensuring the HRC process is both safe and effective. In addition, participants showed
positive feedback on working with the pre-programmed robot in this study and expressed their
willingness to work with the robot more intuitively. Eventually, the paradigm would shift from a
scenario where operators tediously script every robot function towards a more effortless interaction
where collaborative robots are able to independently adjust their movements in response to the
evolving environment and the subtle cues of human movement. This level of adaptability could
ensure that robots can work alongside human partners safely and intuitively, thus achieving
common objectives with greater efficiency.

Furthermore, the generalizability of the effect of HRC needs further investigation. By recruiting
college students with minimal or no prior construction experience, our study indicates that HRC
increased work efficiency and productivity and was well-accepted. However, we acknowledge that
our sample was limited to novice workers only. Future research should replicate and extend these
findings to more experienced workers, thereby offering a more comprehensive view of HRC's
impact across workers with varying levels of work experience.

Regarding the robots, in the future, we will focus on enhancing the intelligence of collaborative
robots. This involves empowering them with autonomous physical interactions and the capacity to
proactively and safely plan their actions. Upcoming advancements should merge automatic
execution with seamless communication with human worker. It is vital for robots to interpret
human intentions and convey their own. These capabilities would greatly facilitate intuitive and

smooth HRC in assembly tasks.
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6. Conclusions

This research evaluated the multi-dimensional impacts of collaborative robots on construction
work and workers in terms of work efficiency, quality, workers’ workload, as well as worker’s
perception and acceptance of collaborative robots, via HRC experiments on sample construction
tasks (i.e., wood assembly), combined with quantitative measurements and TAM-based surveys.
Two wood assembly tasks were designed in two difficulty levels, and both HRC and HHC
experiments for performed as a comparison. In HHC experiments, a primary person was tasked to
nail wood pieces and complete the assembly, and a helper was asked to assist the primary person
in measuring, placing, and picking up lumbers. In HRC experiments, the robot played the helper’s
role in HRC, where it was programmed to grasp and place the wood pieces following the design
drawings for the primary person.

To examine the impact of HRC on work performance in construction, this pilot study quantified
the efficiency, quality, and workload in construction tasks and compared it to HHC. Based on our
case study, it is found that HRC can increase the accuracy of construction assembly tasks by 88.6%
in simple tasks and 6.7% in complex tasks, and reduce the time of completion by 29.3% in simple
tasks and 28.5% in complex tasks. Furthermore, the workload of participants decreased by 20.3%
in simple tasks and 7.8% in complex tasks, comparing HRC to HHC.

From the workers’ side, surveys adapted from TAM were collected to learn workers’ acceptance
and perceptions toward HRC, alongside a post-interview. The survey results indicate a generally
positive reception towards HRC among workers, with an increased willingness to engage with
collaborative robots compared to pre-experiment perspectives. The survey analysis in both simple
and complex tasks suggests that HRC holds greater potential in complex tasks, where workers face

higher physical and mental demands. Through interviews, it emerges that the primary barriers to
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workers' acceptance of HRC in their tasks are the lack of flexibility and communication with the
collaborative robot. Accordingly, to fully leverage the advantages offered by collaborative robots,
it is imperative to engineer intelligent robots that can interact safely and adaptively with human
workers, by operating based on the evolving context and human partner's actions.

This research enriches our understanding of HRC in construction in two key areas. First, through
case studies of scaled wood assembly experiments, we quantified the advantages of HRC over
traditional HHC by comparing experiments with both settings across tasks of varying complexities.
The benefits of HRC include enhancements in efficiency and quality and a decrease in worker
workload. These findings underscore the potential and merits of integrating HRC into construction
processes. Second, leveraging surveys adapted from TAM, shifts in attitudes were identified before
and after the HRC experiments. This provided insights into workers' perceptions of HRC,
including perceived value, ease of use, and concerns about safety. Future technological
advancement can be pivotal to meet the need for enhanced acceptance among construction workers,
thereby further encouraging the adoption of HRC in the construction industry.

There remain some limitations that deserve future study. First, as a pilot study, this research
leveraged scaled experiments in controlled lab environments. The main purpose and benefit of
such settings is the ability to control experiment conditions and environment variables to better
examine the impacts of HRC. However, the simplified operational setting of a small-scale
experiment might not capture the complexity of real-world construction environments, thus
affecting the generalizability of the findings. To accurately examine the impact of HRC on specific
construction tasks, more experiments and pilot implementation are needed in real-world settings.
Second, the sample size of the experiments is relatively small and the participants in the

experiments have limited experience in the field. In future research, more diverse populations from
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different experience levels and different trades of workers will be recruited to further explore how
the impacts of HRC and worker perception will vary based on worker characteristics.
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