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Abstract 
 

Growth in computational materials science and initiatives such as the Materials Genome 
Initiative (MGI) and the European Materials Modelling Council (EMMC) has motivated the 
development and application of ontologies. A key factor has been increased adoption of the 
FAIR principles, making research data findable, accessible, interoperable, and reusable 
(Wilkinson et al. 2016). This paper characterizes semantic interoperability among a subset of 
materials science ontologies in the MatPortal repository. Background context covers semantic 
interoperability, ontological commitment, and the materials science ontology landscape. The 
research focused on MatPortal’s two interoperability protocols:  LOOM term matching and 
URI matching. Results report the degree of overlap and demonstrate the different types of 
ambiguity among ontologies. The discussion considers implications for FAIR and AI, and the 
conclusion highlight key findings and next steps. 

 
 

1.0 Introduction 
 

Ontologies, as structured knowledge systems, support information 
organization, discovery, and retrieval both within and among 
communities.  Moreover, they describe fields of knowledge and encode both 
conceptual and real-world relationships (Gruber 1993). Biagetti (2020) 
describes ontologies as follows: “ontologies are considered either a conceptual, 
semantic-level framework, or a concrete artifact provided for a specific 
purpose,” and this dual nature raises problems of “terminological ambiguity.” 
Interconnected here is the relationship among ontologies as reflected in 
overlapping terminology, specifically terms representing semantic 
interoperabilty. This topic gained greater significance, as researchers seek to 
ontologies to support FAIR data and AI operations (Voigt and Kalidindi 



2021).  
Semantic interoperability, specifically term overlap, has been studied 

extensively in domains such as biology, biomedicine, and agriculture, within 
the context of ontology repositories, like BioPortal and AgroPortal (Kamdar 
et al. 2017, Laadhar et al. 2020). Less attention has been given to this topic in 
the materials science space, likely due to more recent interest in this discipline 
compared to biology, biomedicine, and other domains The limited research 
here, along with the global adoption of FAIR and increased interest and 
growth in materials science ontologies, point to an opportunity to study 
semantic interoperability across these domain ontologies. The research 
presented in this paper considers this opportunity and examines 
MatPortortal’s two semantic interoperability protocols (LOOM term overlap 
and URI matching), and explores some of the complications and issues they 
present and their implications for FAIR and AI. The goal of the research is to 
gain insight into semantic ambiguity among materials science ontologies 
through term overlapping analysis.  We pursued the following research 
objectives:  

• Measured the degree of term overlap for a sample of MS ontologies 
from MatPortal  

• Lexical OWL Ontology Matcher (LOOM): Algorithm which matches 
two terms based on lexical similarity  

• URI: Algorithm which matches term URIs between two ontologies  
• Examined the types of semantic ambiguity across a subsection of 

MatPortal ontologies.  
To our knowledge, this is one of the first studies characterizing semantic 
overlap of materials science ontologies in order to understand semantic 
ambiguity.  

This paper is organized in the following manner. The background section 
discusses semantic interoperability and provides an overview of the materials 
science ontology landscape. Next, we present our research objectives and 
procedures, followed by the results. Explored in the discussion are research 
implications and, finally, highlighted in the conclusion are key results and 
next steps.  

 
2.0  Term Overlap and Semantic Ambiguity 

 
Term overlap occurs when the symbolic representation overlaps across two 
or more textual resources, whereas semantic interoperability involves overlap 
or equivalence of meaning and seeks to address “inconsistencies in 
terminology and meanings” (Zeng 2018). The symbolic representation with 
term overlap generally follows letter by letter, and word by word, and may 
rely upon various stemming or word order algorithms to account for minor 
linguistic variations. There are two basic types of term overlap renderings. 



First, term overlap can reveal true semantic interoperability. In this case the 
linguistic context confirms the same meaning of the overlapping terms. 
Second, term overlap can present distinct linguistic contexts, illustrating 
homonymy. A classic example of homonymy is demonstrated with the term 
plant, which may represent flora in the biological sense, or an industrial 
construction, where items are manufactured. This latter instance represents 
the contextual problems present in semantic ambiguity which interfere with 
semantic interoperability. Research pursuing term overlap presents one way 
to examine an aspect semantic interoperability, even if term overlap does not 
always represent a valid semantic overlap.  

 
3.0  The Materials Science Ontological Landscape 
 
Materials science (MS) functions as an umbrella term for a wide range of sub-
domains which vary in scale from the atomic to the architectural. In addition to 
this a variety of disciplines structure and influence materials science, ranging 
from chemistry and physics to design and engineering (Ashby et al. 2010). Due 
to this, the materials science landscape reflects a wide variation of ontological 
systems. These systems are stratified according to the level of abstraction or 
detail they present. This stratification of ontologies has led to a landscape of 
materials science ontologies which often describe a limited subdomain area 
within the context of a specific project. For example, the early Plinius ontology 
for ceramics evinces this aspect: “The ontology covers the domain of ceramic 
materials and is developed specifically for the Plinius project (van der Vet et al. 
1994, p. 2).” Similarly, the more recent Laser Powder Bed Fusion Ontology 
(LPBFO) was developed by Fraunhofer to streamline industrial 
processes. Recent efforts such as the European Union’s Horizon 2020 project 
and the United States Materials Genome Initiative (MGI) have bolstered research 
into knowledge graphs based on ontologies for data-driven materials science 
research.  

The field of materials science ontologies is a complex space of knowledge 
representations which includes not only ontologies but also thesauri and 
knowledge graphs. Overlap is crucial to ensuring the preservation of semantics 
across knowledge representations. Methods of semantic disambiguation for 
similar and identical terms have been studied in biology and medicine which may 
similarly be applicable to MS ontologies (Kamdar et al. 2017). Researchers 
explored the deployment of the explicit reference (xref) syntax in BioPortal 
which allowed for cross-referencing terms without using the OWL sameas 
syntax, and the results showed an unintended and often ambiguous usage of xref, 
creating connections which were outside the scope of the intended syntax 
(Kamdar et al. 2017). This research offered the initial motivation for this study; 
however, MatPortal does not use the xref syntax, but it does utilize automatic 
ontology term matching algorithms. This study seeks to identify the types of 
semantic ambiguity that occur due to term overlap in the MatPortal repository 
that arise from the results yielded from automatic matching.   



The MatPortal repository is a curated set of materials science ontologies and 
vocabularies that are accessible through an application platform based on 
BioPortal. The ontologies hosted on MatPortal represent different degrees of 
knowledge including abstract domain ontologies, mid-level ontologies, and area-
specific ontologies. This arrangement connects a wide range of representations 
of the materials science space, and it allows users to explore these structures 
using matching tools based on two protocols: 1) semantic matching, which starts 
with letter-by-letter and word-by-word and results in a true semantic equivalent, 
and 2.) URI matching, which matches terms based on their URIs.  
 
4.0  Research Methods and Procedures  
 
Two term overlapping analysis methods, automatic mapping followed by 
crosswalk analysis, were used in this research. The automatic mapping approach 
leverages standard ontology encoding, allowing us to generate lists of 
overlapping terms between two selected ontologies. Mappings either matched 
distinct URIs or term-level semantics, the latter utilized the Lexical OWL 
Ontology Matcher (LOOM) algorithm (Ghazvinian et al. 2009). LOOM creates 
mappings using the following procedure:  

In order to identify the correspondences, LOOM compares preferred names 
and synonyms of the concepts in both ontologies. It identifies two concepts from 
different ontologies as similar, if and only if their preferred names or synonyms 
are equivalent based on a modified string-comparison function (Ghazvinian et 
al. 2009, p. 199). 

The crosswalk analysis method was supported by human verification of the 
terminological matches and analyzed some of the semantic issues involved in 
utilizing such a procedure. The basic approach to systematized mapping work 
was facilitated by MatPortal’s infrastructure and use of OWL, RDF/XML and 
standards articulated by researchers to support interoperability and term mapping 
across thesauri and other vocabularies (Clarke and Zeng 2012, Roe and Thomas 
2013).   

Data was collected using the MatPortal ontology mapping tool which matches 
terms between two selected ontologies using the following two methods:  

1.  URI matching: This method compares the underlying URI for terms in 
an ontology, returning a positive SAME_URI if the values were exact.   

2.  LOOM matching: This method utilizes the LOOM algorithm which 
compares terms at several semantic levels within an ontology including 
any synonyms embedded within the OWL code (Ghazvinian et al. 
2009).   

Matching results from these two methods were downloaded, and then coded into 
a series of spreadsheets to examine the features present. The research focused on 
a convenient sample of five ontologies, selected, based largely upon their overall 
representation of LOOM and SAME_URI overlap. Table 1 shows the the number 
of overlaps between the terms of the ontology named and all other ontologies 
located in MatPortal at the time the study was performed. The subset of 



ontologies chosen show a diversity of overlapping terms but between themselves 
only account for approximately 15% of all overlapping terms among all 
MatPortal ontologies. Moreover, the choices attempt to mitigate the relatively 
insular set of origins for ontologies in MatPortal several produced by Fraunhofer 
and or the Materials Open Lab (Matolab) project, which is described as a 
“venture between Fraunhofer Alliance MATERIALS and Bundesanstalt für 
Materialforschung und -prüfung (BAM)  (“PP20 Mat-o-Lab—Materials-open-
Laboratory”).” In addition to this, the ontologies chosen attempt to represent 
different subdomains of MS as well as varying levels of abstraction. The five 
ontologies selected for analysis included in this study are presented in the 
following key:  
 
Key to ontologies:  

• MaterialsMine (MM)  
• Materials Science and Engineering Ontology (MSEO)–  
• BWMD Domain Ontology (BWMD_DOM)  
• Laser Power Bed Fusion Ontology (LPBFO)  
• Matolab Tensile Test Ontology (MOL_TENSILE)  

 
Ontology Name  Total Classes  URI 

Matches  
LOOM 
Matches  

MSEO  1657  1563  767  

BWMD_DOM  772  1075  543  

LPBFO  509  1074  447  

MOL_TENSILE  372  869  439  

MM  2052  4  998  
Table 1. Values of MatPortal ontology overlap using both URI and LOOM 
matching methods. These values show matches with all other ontologies in 
MatPortal; matches among the sample are shown in the Results section.  
 
5.0  Results 

 
The results reported here cover aggregate counts for matching, an overview 
and the specific count for URI matching and the LOOM matching algorithms. 
Each of the semantic and URI matching techniques produced distinct results 
which point toward patterns of overlap which are both beneficial and 
detrimental to varying degrees discussed below. The values and syntactical 
samples used for this study derive from the RDF/XML implementations of the 
ontologies unless otherwise noted.  
 
5.1  URI Matching 



 
  BWMD_DOM  

(772)  
LPBFO  
(509)  

MSEO  
(1657)  

MM  
(2052)  

MOL_TENSILE  
(372)  

BWMD_DOM (772)    347  35  0  347  
LPBFO (509)  347    35  0  347  
MSEO (1657)  35  35    0  35  
MM (2052)  0  0  0    0  
MOL_TENSILE  
(372)  

347  347  35  0    

Total  729  729  105  0  729  
Table 2. URI Matching Data Among Sample Ontologies. Values in 
parentheses show the number of classes for each ontology.  
 
Table 2 displays the number of terms identified by the URI matching algorithm 
which match between pairs of ontologies; parenthetical values show the total 
number of terms for each ontology. URI matching exposed a division in the 
data with two distinct subsets arising. The first of these subsets, MSEO and 
MM, showed few to no overlaps among the compared ontologies. MM 
displayed no URI matches with the sample subset but has the most classes, as 
can be seen in Table 2 above. These statistics reflect the lack of URI matches 
for MM displayed in Table 1 above. MSEO returned 35 URI matches each 
with BWMD_DOM, LPBFO, and MOL_TENSILE despite having 1657 terms 
of its own. Moreover, overlap viewed as a percentage of ontology terms varies 
widely with MOL_TENSILE sharing 93% of its terms with both 
BWMD_DOM and LPBFO. The more plentiful URI matches might occur due 
to either a common source as those between BWMD-DOM, LPBFO, MSEO, 
and MOL_TENSILE, which share a common point origin at Fraunhofer as 
noted or from the use of a common abstract framework, in this case BFO. 
Moreover, MOL_TENSILE and LPBFO both import the BWMD_MID 
ontology whose terms overlap.   

Focusing on connections that occur at the individual term level exposes 
some complexity in their relationships. In the syntax from the OWL 
implementation, Example 1, where the term 
“AdditiveManufacturingMachine” is grafted to the class “EquipmentSet,” we 
can see that LPBFO uses BWMD_MID as a parent ontology. In this case the 
connected terms form throught the interaction of the comment and isDefinedBy 
properties which conceptually situate the term 
“AdditiveManufacturingMachine” in the external reality which the ontology 
seeks to represent.  

<owl:Class 
rdf:about="https://www.emi.fraunhofer.de/ontologies/LPBFO#LPBFO_0
0002">  
<rdfs:subClassOf 
rdf:resource="https://www.materials.fraunhofer.de/ontologies/BWMD_on
tology/mid#BWMD_00170"/>  
<rdfs:comment xml:lang="en">Section of the additive manufacturing 

https://www.emi.fraunhofer.de/ontologies/LPBFO#LPBFO_00002
https://www.emi.fraunhofer.de/ontologies/LPBFO#LPBFO_00002


system, including hardware and machine control software, required 
commissioning software and peripheral accessories that are necessary to 
complete a construction cycle for producing parts.</rdfs:comment>  
<rdfs:isDefinedBy xml:lang="en"> ISO/ASTM 
52900</rdfs:isDefinedBy>  
<rdfs:label xml:lang="en">AMMachine</rdfs:label>  
<rdfs:label xml:lang="en">AdditiveManufacturingMachine</rdfs:label>  
</owl:Class>  

Example 1. ‘Additive Manufacturing Machine’ term from LPBFO.  
 

This usage broadens the representative capacity of the ontology by 
providing an intersecting set of shared terms, the mid-level ontology in this 
case, which permits interoperability between the highly localized vocabulary 
of LPBFO and the more general top-level ontology such as BFO (Huschka 
2020).  
The use of OWL import statements complicates the question of URI matching 
and is reflected in several of the results (Table 2). The cluster of overlapping 
terms shared by BWMD_DOM, LPBFO, and MOL_TENSILE are primarily 
the result of this syntax. This issue is addressed further below in the Discussion 
section.   

Among the most common ontologies that appear in the SAME_URI 
matches is the Basic Formal Ontology (BFO), which forms a backbone for 
many ontological structures. Arp et al. (2015)  describe it as “an upper-level 
ontology developed to support integration of data obtained through scientific 
research.” The Fraunhofer associated ontologies, BWMD-DOM, LPBFO, 
MOL_TENSILE and MSEO, employ the most recent version of BFO. 
However, there is an earlier version of BFO which utilizes a different 
namespace and whose semantics differ. While the earlier version is convertible 
to the more recent one, the two are not necessarily compatible. This points to a 
secondary problem where changes to externally maintained ontologies can lead 
to future semantic ambiguity, reducing interoperability between ontologies, 
especially when relying on the OWL import property.  
  
5.2 LOOM (Terminological) Matching 

 
  BWMD_DOM 

(772)  
LPBFO 
(509)  

MSEO  
(1657)  

MM 
(2052)  

MOL_TENSILE  
(372)  

BWMD_DOM 
(772)  

  17  127  71  6  

LPBFO (509)  17    126  63  0  
MSEO (1657)  127  126    112  126  
MM (2052)  71  63  112    66  
MOL_TENSILE 
(372)  

6  0  126  66    

Total  221  206  491  312  198  



Table 3. LOOM Matching Data Among Sample Ontologies. Values in 
parentheses show number of classes for each ontology.  

 
Table 3 displays the number of terms identified by the LOOM algorithm 
which match between pairs of ontologies; parenthetical values show the total 
number of terms for each ontology. The LOOM algorithm returned matches 
between almost all ontologies in the sample. MM and MSEO displayed the 
greatest degrees of overlap between the sample ontologies. The remaining 
three ontologies in the sample showed high degrees of overlap between each 
other and also with the larger MatPortal repository. Only one pair of 
ontologies in the sample which show no LOOM matches are 
MOL_TENSILE and LPBFO. This lack of overlap might be due to the 
specificity of domains which each ontology covers, or else offset by high 
levels of URI matches as seen in Table 2 above. MOL_TENSILE and LPBFO 
both import large numbers of their terms directly from the BWMD ontologies, 
probably reducing the possible pool of terminological matches. Between 
individual ontologies, semantic overlap occurs in a somewhat varied pattern 
with MM and MSEO showing the most consistent pattern of matches with 
the other ontologies in the sample, as can be seen above in Table 3. The 
overlap for MM and MSEO with other ontologies could be an effect of their 
relative size, 2052 and 1657 classes respectively.  

  
Figure 1. Predominance of abstract terms using LOOM algorithm  
 
At the term level, corresponding elements display several characteristics 



which require attention due to the questions about semantic ambiguity that 
they raise. The majority of term overlap tends to occur at more abstract or 
generic levels rather than at what might be considered the granular, area-
specific level. The word cloud in Figure 1 above offers an overview of the 
terminology, with very few area-specific terms represented and a 
predominance of abstractions or generic concepts. Some of this overlap 
occurs at the highly generic level such as terms like ‘person’ or ‘software 
script’ which explicitly provide categories to differentiate commonly 
occurring instances, and both of these terms occur across all of the ontologies 
in the sample. In addition, the basis of comparison determines the match 
which occurs; MM presents a LOOM match for the term ‘disposition’ with 
all members of the sample. This aspect is complicated by the fact that the MM 
term is itself imported from the Semanticscience Integrated Ontology. In 
addition, matching terms such as ‘voltage’ or even ‘transmission electron 
microscopy’ display specific, if somewhat generic, points of similarity.  

Looking at the granular case of the term ‘agent’ as expressed in the MM 
and MSEO ontologies some distinct issues with term matching become 
apparent. MM utilizes three different representations, each of which is slightly 
different: 1. FOAF, 2. PROV, 3. DCTERMS. Each of these defines ‘agent’ 
slightly differently:  

• FOAF (http://xmlns.com/foaf/0.1/Agent): “The Agent class is the 
class of agents; things that do stuff. A well known sub-class is Person, 
representing people. Other kinds of agents include Organization and 
Group.”   

• PROV (http://www.w3.org/ns/prov#Agent): “An agent is something 
that bears some form of responsibility for an activity taking place, for 
the existence of an entity, or for another agent's activity.”   

• DCTERMS (http://purl.org/dc/terms/Agent): “A resource that acts or 
has the power to act.”   

MSEO imports its use of agent from the Common Core Ontologies (CCO), 
which describes it as, “The class AGENT comprises both individual agents 
(PERSON) and coordinated groups of individuals (ORGANIZATION)” 
(CUBRC 2021). Though there is overlap at the level of meaning in each 
definition, there are slight differences between how each is defined, which 
leads to possible ambiguity at the semantic level.  

. 
6.0  Discussion 

 
The results presented above give insight into some ambiguities in term overlap 
among a sample of ontologies in MatPortal.  These results may aid materials 
science researchers seeking to leverage ontologies to support the FAIR 
principles (Wilkinson et al. 2016), data-driven research (Moreno Torres 2021), 
and even AI (Aggour et al. 2022, Voigt and Kalidindi 2021). For data-driven 

http://xmlns.com/foaf/spec/#term_Agent
http://xmlns.com/foaf/spec/#term_Agent
http://xmlns.com/foaf/spec/#term_Person
http://xmlns.com/foaf/spec/#term_Person
http://xmlns.com/foaf/spec/#term_Organization
http://xmlns.com/foaf/spec/#term_Organization
http://xmlns.com/foaf/spec/#term_Group
http://xmlns.com/foaf/spec/#term_Group
http://xmlns.com/foaf/spec/#term_Group


environments, categorizing large volumes of data and outputs accurately 
assists in deeloping meaningful results. For AI applications, ontologies and 
terminologies provide a semantic and logical backbone for knowledge graphs 
from which meaning derives. The results specifically demonstrate s several 
problems that arise from the term overlaps. For example, URI matching results 
provide isomorphic mappings between terms, limiting ambiguity. This can 
offer a high degree of interoperability, however, many of these terms occur in 
ontologies produced by a small number of institutions, such as BWMD and 
Fraunhofer, which share similar research projects. This is not to say that such 
ontologies are not representative of the research landscape, but they are 
limiting. The overlapping terms tend to be the result of the OWL import 
function which includes all terms whether representative of the domain or not 
from the imported ontology, and this leads to an excess of terms that are not 
relevant. Moreover, importing an ontology in OWL is transitive leading to a 
case where terminology and logic could lead to semantic ambiguity as was the 
case with the analysis of the term ‘agent’ where definitions within and among 
ontologies can vary by degrees (Antoniou et al 2012).   

While LOOM matches decrease when URI matches increase in the sample, 
the relationship is not strictly inverse. This may indicate that the two types of 
term overlap account for different features of the ontologies. For example, 
terms identified by the LOOM algorithm seem to display greater ambiguity as 
they can occur multiple times between ontologies, referring to similar 
definitions located at different URIs. Overall, these results give insight into the 
ambiguities that researchers as well as systems face when trying to leverage 
ontologies for data interoperability. Further research in this area and gaining a 
deeper understanding of these relationships will allow for more precise 
semantic interoperability by better defining the lexical connections between 
ontological systems.  
 
7.0 Conclusion 

 
This paper characterized semantic ambiguity as it relates to interoperability 
across a sample of materials science ontologies, specifically through term 
overlap. The research focused on a subset of five MatPortal materials science 
ontologies. Two separate automatic indexing algorithms were employed: one 
which assessed terms based on term similarity and another which matched 
terms based on identical URIs. These terms were then analyzed using 
crosswalk analysis to see possible types of ambiguity which could arise from 
term overlap.  

The analyses found that both term and URI matching revealed different 
types of ambiguity between ontologies. In URI matching, high levels of 
overlap were often the result of ontologies importing related area ontologies or 
else upper- or domain-level ontologies. Importing an outside ontology 
artificially inflates the quantifiable overlap, and, in the case of this study, is 
highly dependent on the sample as can be seen with discussion of MSEO and 



CCO above. Term matching presented a different concern related to the 
meanings which underpinned overlapping terms; differences in meanings, 
especially for terms which occur multiple times where each could reference a 
separate resource. This structure entails several ontological commitments 
creating some confusion regarding what is meant by a term, such as the case 
with ‘agent’ above.  

Although this research employs a basic set of methods applied to a limited 
sample, the results lay groundwork for a number of next steps. One key 
direction is to explore the complexity of importing external ontologies and their 
impacts on URI matching in MatPortal and the broader materials science 
ontology interoperability is one avenue to examine. Another direction is to 
investigate term matching and how it affects meaning as well as ontological 
commitments is also of great importance in understanding interoperability.  

In conclusion, the work reported in this paper presents preliminary look at 
the problem of term overlap in a limited setting which points toward the need for 
a broader engagement of the subject of interoperability of terminology in the MS 
semantic space. Furthermore, this paper contributes a methodological approach 
for future ressearch in this area. Finally, the ground work and the research 
direction covered in this paper has particular importance, as a proper aligned 
set of representations both within the ontology and real-world spaces of 
materials science is imperative for effective use of ontologies in AI and other 
machine-driven research. This research provides a preliminary look at the 
problem of term overlap in a limited setting which points toward the need for 
a broader engagement of the subject of interoperability of terminology in the 
MS semantic space. 
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