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Abstract

Growth in computational materials science and initiatives such as the Materials Genome
Initiative (MGI) and the European Materials Modelling Council (EMMC) has motivated the
development and application of ontologies. A key factor has been increased adoption of the
FAIR principles, making research data findable, accessible, interoperable, and reusable
(Wilkinson et al. 2016). This paper characterizes semantic interoperability among a subset of
materials science ontologies in the MatPortal repository. Background context covers semantic
interoperability, ontological commitment, and the materials science ontology landscape. The
research focused on MatPortal’s two interoperability protocols: LOOM ferm matching and
URI matching. Results report the degree of overlap and demonstrate the different types of
ambiguity among ontologies. The discussion considers implications for FAIR and Al, and the
conclusion highlight key findings and next steps.

1.0 Introduction

Ontologies, as structured knowledge systems, support information
organization, discovery, and retrieval both within and among
communities. Moreover, they describe fields of knowledge and encode both
conceptual and real-world relationships (Gruber 1993). Biagetti (2020)
describes ontologies as follows: “ontologies are considered either a conceptual,
semantic-level framework, or a concrete artifact provided for a specific
purpose,” and this dual nature raises problems of “terminological ambiguity.”
Interconnected here is the relationship among ontologies as reflected in
overlapping terminology, specifically terms representing semantic
interoperabilty. This topic gained greater significance, as researchers seek to
ontologies to support FAIR data and Al operations (Voigt and Kalidindi



2021).

Semantic interoperability, specifically term overlap, has been studied
extensively in domains such as biology, biomedicine, and agriculture, within
the context of ontology repositories, like BioPortal and AgroPortal (Kamdar
etal. 2017, Laadhar et al. 2020). Less attention has been given to this topic in
the materials science space, likely due to more recent interest in this discipline
compared to biology, biomedicine, and other domains The limited research
here, along with the global adoption of FAIR and increased interest and
growth in materials science ontologies, point to an opportunity to study
semantic interoperability across these domain ontologies. The research
presented in this paper considers this opportunity and examines
MatPortortal’s two semantic interoperability protocols (LOOM term overlap
and URI matching), and explores some of the complications and issues they
present and their implications for FAIR and Al. The goal of the research is to
gain insight into semantic ambiguity among materials science ontologies
through term overlapping analysis. We pursued the following research
objectives:

e  Measured the degree of term overlap for a sample of MS ontologies

from MatPortal

e Lexical OWL Ontology Matcher (LOOM): Algorithm which matches

two terms based on lexical similarity

e  URI: Algorithm which matches term URIs between two ontologies

e Examined the types of semantic ambiguity across a subsection of

MatPortal ontologies.
To our knowledge, this is one of the first studies characterizing semantic
overlap of materials science ontologies in order to understand semantic
ambiguity.

This paper is organized in the following manner. The background section
discusses semantic interoperability and provides an overview of the materials
science ontology landscape. Next, we present our research objectives and
procedures, followed by the results. Explored in the discussion are research
implications and, finally, highlighted in the conclusion are key results and
next steps.

2.0 Term Querlap and Semantic Ambiguity

Term overlap occurs when the symbolic representation overlaps across two
or more textual resources, whereas semantic interoperability involves overlap
or equivalence of meaning and seeks to address ‘“inconsistencies in
terminology and meanings” (Zeng 2018). The symbolic representation with
term overlap generally follows letter by letter, and word by word, and may
rely upon various stemming or word order algorithms to account for minor
linguistic variations. There are two basic types of term overlap renderings.



First, term overlap can reveal true semantic interoperability. In this case the
linguistic context confirms the same meaning of the overlapping terms.
Second, term overlap can present distinct linguistic contexts, illustrating
homonymy. A classic example of homonymy is demonstrated with the term
plant, which may represent flora in the biological sense, or an industrial
construction, where items are manufactured. This latter instance represents
the contextual problems present in semantic ambiguity which interfere with
semantic interoperability. Research pursuing term overlap presents one way
to examine an aspect semantic interoperability, even if term overlap does not
always represent a valid semantic overlap.

3.0 The Materials Science Ontological Landscape

Materials science (MS) functions as an umbrella term for a wide range of sub-
domains which vary in scale from the atomic to the architectural. In addition to
this a variety of disciplines structure and influence materials science, ranging
from chemistry and physics to design and engineering (Ashby et al. 2010). Due
to this, the materials science landscape reflects a wide variation of ontological
systems. These systems are stratified according to the level of abstraction or
detail they present. This stratification of ontologies has led to a landscape of
materials science ontologies which often describe a limited subdomain area
within the context of a specific project. For example, the early Plinius ontology
for ceramics evinces this aspect: “The ontology covers the domain of ceramic
materials and is developed specifically for the Plinius project (van der Vet et al.
1994, p. 2).” Similarly, the more recent Laser Powder Bed Fusion Ontology
(LPBFO) was developed by Fraunhofer to streamline industrial
processes. Recent efforts such as the European Union’s Horizon 2020 project
and the United States Materials Genome Initiative (MGI) have bolstered research
into knowledge graphs based on ontologies for data-driven materials science
research.

The field of materials science ontologies is a complex space of knowledge
representations which includes not only ontologies but also thesauri and
knowledge graphs. Overlap is crucial to ensuring the preservation of semantics
across knowledge representations. Methods of semantic disambiguation for
similar and identical terms have been studied in biology and medicine which may
similarly be applicable to MS ontologies (Kamdar et al. 2017). Researchers
explored the deployment of the explicit reference (xref) syntax in BioPortal
which allowed for cross-referencing terms without using the OWL sameas
syntax, and the results showed an unintended and often ambiguous usage of xref,
creating connections which were outside the scope of the intended syntax
(Kamdar et al. 2017). This research offered the initial motivation for this study;
however, MatPortal does not use the xref syntax, but it does utilize automatic
ontology term matching algorithms. This study seeks to identify the types of
semantic ambiguity that occur due to term overlap in the MatPortal repository
that arise from the results yielded from automatic matching.



The MatPortal repository is a curated set of materials science ontologies and
vocabularies that are accessible through an application platform based on
BioPortal. The ontologies hosted on MatPortal represent different degrees of
knowledge including abstract domain ontologies, mid-level ontologies, and area-
specific ontologies. This arrangement connects a wide range of representations
of the materials science space, and it allows users to explore these structures
using matching tools based on two protocols: 1) semantic matching, which starts
with letter-by-letter and word-by-word and results in a true semantic equivalent,
and 2.) URI matching, which matches terms based on their URIs.

4.0 Research Methods and Procedures

Two term overlapping analysis methods, automatic mapping followed by
crosswalk analysis, were used in this research. The automatic mapping approach
leverages standard ontology encoding, allowing us to generate lists of
overlapping terms between two selected ontologies. Mappings either matched
distinct URIs or term-level semantics, the latter utilized the Lexical OWL
Ontology Matcher (LOOM) algorithm (Ghazvinian et al. 2009). LOOM creates
mappings using the following procedure:

In order to identify the correspondences, LOOM compares preferred names
and synonyms of the concepts in both ontologies. It identifies two concepts from
different ontologies as similar, if and only if their preferred names or synonyms
are equivalent based on a modified string-comparison function (Ghazvinian et
al. 2009, p. 199).

The crosswalk analysis method was supported by human verification of the
terminological matches and analyzed some of the semantic issues involved in
utilizing such a procedure. The basic approach to systematized mapping work
was facilitated by MatPortal’s infrastructure and use of OWL, RDF/XML and
standards articulated by researchers to support interoperability and term mapping
across thesauri and other vocabularies (Clarke and Zeng 2012, Roe and Thomas
2013).

Data was collected using the MatPortal ontology mapping tool which matches
terms between two selected ontologies using the following two methods:

1. URI matching: This method compares the underlying URI for terms in

an ontology, returning a positive SAME_URI if the values were exact.

2. LOOM matching: This method utilizes the LOOM algorithm which

compares terms at several semantic levels within an ontology including

any synonyms embedded within the OWL code (Ghazvinian et al.

2009).
Matching results from these two methods were downloaded, and then coded into
a series of spreadsheets to examine the features present. The research focused on
a convenient sample of five ontologies, selected, based largely upon their overall
representation of LOOM and SAME_URI overlap. Table 1 shows the the number
of overlaps between the terms of the ontology named and all other ontologies
located in MatPortal at the time the study was performed. The subset of



ontologies chosen show a diversity of overlapping terms but between themselves
only account for approximately 15% of all overlapping terms among all
MatPortal ontologies. Moreover, the choices attempt to mitigate the relatively
insular set of origins for ontologies in MatPortal several produced by Fraunhofer
and or the Materials Open Lab (Matolab) project, which is described as a
“venture between Fraunhofer Alliance MATERIALS and Bundesanstalt fiir
Materialforschung und -priifung (BAM) (“PP20 Mat-o-Lab—Materials-open-
Laboratory”).” In addition to this, the ontologies chosen attempt to represent
different subdomains of MS as well as varying levels of abstraction. The five
ontologies selected for analysis included in this study are presented in the
following key:

Key to ontologies:
e MaterialsMine (MM)

e  Materials Science and Engineering Ontology (MSEO)—

e  BWMD Domain Ontology (BWMD_ DOM)

e Laser Power Bed Fusion Ontology (LPBFO)

e  Matolab Tensile Test Ontology (MOL TENSILE)
Ontology Name Total Classes URI LOOM

Matches Matches

MSEO 1657 1563 767
BWMD DOM 772 1075 543
LPBFO 509 1074 447
MOL TENSILE 372 869 439
MM 2052 4 998

Table 1. Values of MatPortal ontology overlap using both URI and LOOM
matching methods. These values show matches with all other ontologies in
MatPortal; matches among the sample are shown in the Results section.

5.0 Results

The results reported here cover aggregate counts for matching, an overview
and the specific count for URI matching and the LOOM matching algorithms.
Each of the semantic and URI matching techniques produced distinct results
which point toward patterns of overlap which are both beneficial and
detrimental to varying degrees discussed below. The values and syntactical
samples used for this study derive from the RDF/XML implementations of the
ontologies unless otherwise noted.

5.1 URI Matching



BWMD DOM | LPBFO| MSEO| MM | MOL TENSILE
(772) (509) | (1657) | (2052)| (372)

BWMD_DOM (772) 0 347

LPBFO (509) 0 347

MSEO (1657) 35 35

MM (2052) 0 0

MOL _TENSILE 347 347

(372)

Total 729 729

Table 2. URI Matching Data Among Sample Ontologies. Values in
parentheses show the number of classes for each ontology.

Table 2 displays the number of terms identified by the URI matching algorithm
which match between pairs of ontologies; parenthetical values show the total
number of terms for each ontology. URI matching exposed a division in the
data with two distinct subsets arising. The first of these subsets, MSEO and
MM, showed few to no overlaps among the compared ontologies. MM
displayed no URI matches with the sample subset but has the most classes, as
can be seen in Table 2 above. These statistics reflect the lack of URI matches
for MM displayed in Table 1 above. MSEO returned 35 URI matches each
with BWMD_DOM, LPBFO, and MOL TENSILE despite having 1657 terms
of its own. Moreover, overlap viewed as a percentage of ontology terms varies
widely with MOL_TENSILE sharing 93% of its terms with both
BWMD DOM and LPBFO. The more plentiful URI matches might occur due
to either a common source as those between BWMD-DOM, LPBFO, MSEO,
and MOL_TENSILE, which share a common point origin at Fraunhofer as
noted or from the use of a common abstract framework, in this case BFO.
Moreover, MOL TENSILE and LPBFO both import the BWMD MID
ontology whose terms overlap.

Focusing on connections that occur at the individual term level exposes
some complexity in their relationships. In the syntax from the OWL
implementation, Example 1, where the term
“AdditiveManufacturingMachine” is grafted to the class “EquipmentSet,” we
can see that LPBFO uses BWMD MID as a parent ontology. In this case the
connected terms form throught the interaction of the comment and isDefinedBy
properties which conceptually situate the term
“AdditiveManufacturingMachine” in the external reality which the ontology
seeks to represent.

<owl:Class

rdf:about="https://www.emi.fraunhofer.de/ontologies/LPBFO#LPBFO_0

M”>

<rdfs:subClassOf

rdf:resource="https://www.materials.fraunhofer.de/ontologies’ BWMD on

tology/mid#BWMD_00170"/>

<rdfs:comment xml:lang="en">Section of the additive manufacturing



https://www.emi.fraunhofer.de/ontologies/LPBFO#LPBFO_00002
https://www.emi.fraunhofer.de/ontologies/LPBFO#LPBFO_00002

system, including hardware and machine control software, required
commissioning software and peripheral accessories that are necessary to
complete a construction cycle for producing parts.</rdfs:comment>
<rdfs:isDefinedBy xml:lang="en"> ISO/ASTM
52900</rdfs:isDefinedBy>
<rdfs:label xml:lang="en">AMMachine</rdfs:label>
<rdfs:label xml:lang="en">AdditiveManufacturingMachine</rdfs:label>
</owl:Class>

Example 1. ‘Additive Manufacturing Machine’ term from LPBFO.

This usage broadens the representative capacity of the ontology by

providing an intersecting set of shared terms, the mid-level ontology in this
case, which permits interoperability between the highly localized vocabulary
of LPBFO and the more general top-level ontology such as BFO (Huschka
2020).
The use of OWL import statements complicates the question of URI matching
and is reflected in several of the results (Table 2). The cluster of overlapping
terms shared by BWMD_ DOM, LPBFO, and MOL_TENSILE are primarily
the result of this syntax. This issue is addressed further below in the Discussion
section.

Among the most common ontologies that appear in the SAME URI
matches is the Basic Formal Ontology (BFO), which forms a backbone for
many ontological structures. Arp et al. (2015) describe it as “an upper-level
ontology developed to support integration of data obtained through scientific
research.” The Fraunhofer associated ontologies, BWMD-DOM, LPBFO,
MOL_TENSILE and MSEO, employ the most recent version of BFO.
However, there is an earlier version of BFO which utilizes a different
namespace and whose semantics differ. While the earlier version is convertible
to the more recent one, the two are not necessarily compatible. This points to a
secondary problem where changes to externally maintained ontologies can lead
to future semantic ambiguity, reducing interoperability between ontologies,
especially when relying on the OWL import property.

5.2 LOOM (Terminological) Matching

BWMD DOM | LPBFO | MSEO | MM MOL _TENSILE
(772) (509) (1657) | (2052) (372)
BWMD DOM 17 127 71 6

(772)
LPBFO (509)

126 63

MSEO (1657) 127
MM (2052) 71
MOL_TENSILE 6
(372)

Total 221




Table 3. LOOM Matching Data Among Sample Ontologies. Values in
parentheses show number of classes for each ontology.

Table 3 displays the number of terms identified by the LOOM algorithm
which match between pairs of ontologies; parenthetical values show the total
number of terms for each ontology. The LOOM algorithm returned matches
between almost all ontologies in the sample. MM and MSEO displayed the
greatest degrees of overlap between the sample ontologies. The remaining
three ontologies in the sample showed high degrees of overlap between each
other and also with the larger MatPortal repository. Only one pair of
ontologies in the sample which show no LOOM matches are
MOL_TENSILE and LPBFO. This lack of overlap might be due to the
specificity of domains which each ontology covers, or else offset by high
levels of URI matches as seen in Table 2 above. MOL_TENSILE and LPBFO
both import large numbers of their terms directly from the BWMD ontologies,
probably reducing the possible pool of terminological matches. Between
individual ontologies, semantic overlap occurs in a somewhat varied pattern
with MM and MSEO showing the most consistent pattern of matches with
the other ontologies in the sample, as can be seen above in Table 3. The
overlap for MM and MSEO with other ontologies could be an effect of their
relative size, 2052 and 1657 classes respectively.
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Figure 1. Predominance of abstract terms using LOOM algorithm

At the term level, corresponding elements display several characteristics



which require attention due to the questions about semantic ambiguity that
they raise. The majority of term overlap tends to occur at more abstract or
generic levels rather than at what might be considered the granular, area-
specific level. The word cloud in Figure 1 above offers an overview of the
terminology, with very few area-specific terms represented and a
predominance of abstractions or generic concepts. Some of this overlap
occurs at the highly generic level such as terms like ‘person’ or ‘software
script’ which explicitly provide categories to differentiate commonly
occurring instances, and both of these terms occur across all of the ontologies
in the sample. In addition, the basis of comparison determines the match
which occurs; MM presents a LOOM match for the term ‘disposition” with
all members of the sample. This aspect is complicated by the fact that the MM
term is itself imported from the Semanticscience Integrated Ontology. In
addition, matching terms such as ‘voltage’ or even ‘transmission electron
microscopy’ display specific, if somewhat generic, points of similarity.

Looking at the granular case of the term ‘agent’ as expressed in the MM
and MSEO ontologies some distinct issues with term matching become
apparent. MM utilizes three different representations, each of which is slightly
different: 1. FOAF, 2. PROV, 3. DCTERMS. Each of these defines ‘agent’
slightly differently:

e FOAF (http://xmlns.com/foaf/0.1/Agent): “The_Agent class is the
class of agents; things that do stuff. A well known sub-class is_Person,
representing people. Other kinds of agents include_Organization and
Group.”

e PROV (http://www.w3.org/ns/prov#Agent): “An agent is something
that bears some form of responsibility for an activity taking place, for
the existence of an entity, or for another agent's activity.”

e DCTERMS (http://purl.org/dc/terms/Agent): “A resource that acts or
has the power to act.”

MSEO imports its use of agent from the Common Core Ontologies (CCO),
which describes it as, “The class AGENT comprises both individual agents
(PERSON) and coordinated groups of individuals (ORGANIZATION)”
(CUBRC 2021). Though there is overlap at the level of meaning in each
definition, there are slight differences between how each is defined, which
leads to possible ambiguity at the semantic level.

6.0 Discussion

The results presented above give insight into some ambiguities in term overlap
among a sample of ontologies in MatPortal. These results may aid materials
science researchers seeking to leverage ontologies to support the FAIR
principles (Wilkinson et al. 2016), data-driven research (Moreno Torres 2021),
and even Al (Aggour et al. 2022, Voigt and Kalidindi 2021). For data-driven


http://xmlns.com/foaf/spec/#term_Agent
http://xmlns.com/foaf/spec/#term_Agent
http://xmlns.com/foaf/spec/#term_Person
http://xmlns.com/foaf/spec/#term_Person
http://xmlns.com/foaf/spec/#term_Organization
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http://xmlns.com/foaf/spec/#term_Group

environments, categorizing large volumes of data and outputs accurately
assists in deeloping meaningful results. For Al applications, ontologies and
terminologies provide a semantic and logical backbone for knowledge graphs
from which meaning derives. The results specifically demonstrate s several
problems that arise from the term overlaps. For example, URI matching results
provide isomorphic mappings between terms, limiting ambiguity. This can
offer a high degree of interoperability, however, many of these terms occur in
ontologies produced by a small number of institutions, such as BWMD and
Fraunhofer, which share similar research projects. This is not to say that such
ontologies are not representative of the research landscape, but they are
limiting. The overlapping terms tend to be the result of the OWL import
function which includes all terms whether representative of the domain or not
from the imported ontology, and this leads to an excess of terms that are not
relevant. Moreover, importing an ontology in OWL is transitive leading to a
case where terminology and logic could lead to semantic ambiguity as was the
case with the analysis of the term ‘agent’ where definitions within and among
ontologies can vary by degrees (Antoniou et al 2012).

While LOOM matches decrease when URI matches increase in the sample,
the relationship is not strictly inverse. This may indicate that the two types of
term overlap account for different features of the ontologies. For example,
terms identified by the LOOM algorithm seem to display greater ambiguity as
they can occur multiple times between ontologies, referring to similar
definitions located at different URIs. Overall, these results give insight into the
ambiguities that researchers as well as systems face when trying to leverage
ontologies for data interoperability. Further research in this area and gaining a
deeper understanding of these relationships will allow for more precise
semantic interoperability by better defining the lexical connections between
ontological systems.

7.0 Conclusion

This paper characterized semantic ambiguity as it relates to interoperability
across a sample of materials science ontologies, specifically through term
overlap. The research focused on a subset of five MatPortal materials science
ontologies. Two separate automatic indexing algorithms were employed: one
which assessed terms based on term similarity and another which matched
terms based on identical URIs. These terms were then analyzed using
crosswalk analysis to see possible types of ambiguity which could arise from
term overlap.

The analyses found that both term and URI matching revealed different
types of ambiguity between ontologies. In URI matching, high levels of
overlap were often the result of ontologies importing related area ontologies or
else upper- or domain-level ontologies. Importing an outside ontology
artificially inflates the quantifiable overlap, and, in the case of this study, is
highly dependent on the sample as can be seen with discussion of MSEO and



CCO above. Term matching presented a different concern related to the
meanings which underpinned overlapping terms; differences in meanings,
especially for terms which occur multiple times where each could reference a
separate resource. This structure entails several ontological commitments
creating some confusion regarding what is meant by a term, such as the case
with ‘agent’ above.

Although this research employs a basic set of methods applied to a limited
sample, the results lay groundwork for a number of next steps. One key
direction is to explore the complexity of importing external ontologies and their
impacts on URI matching in MatPortal and the broader materials science
ontology interoperability is one avenue to examine. Another direction is to
investigate term matching and how it affects meaning as well as ontological
commitments is also of great importance in understanding interoperability.

In conclusion, the work reported in this paper presents preliminary look at
the problem of term overlap in a limited setting which points toward the need for
a broader engagement of the subject of interoperability of terminology in the MS
semantic space. Furthermore, this paper contributes a methodological approach
for future ressearch in this area. Finally, the ground work and the research
direction covered in this paper has particular importance, as a proper aligned
set of representations both within the ontology and real-world spaces of
materials science is imperative for effective use of ontologies in Al and other
machine-driven research. This research provides a preliminary look at the
problem of term overlap in a limited setting which points toward the need for
a broader engagement of the subject of interoperability of terminology in the
MS semantic space.
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