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Quantum Hamiltonian simulation, which simulates the evolution of quantum systems and probes quantum
phenomena, is one of the most promising applications of quantum computing. Recent experimental results
suggest that Hamiltonian-oriented analog quantum simulation would be advantageous over circuit-oriented
digital quantum simulation in the Noisy Intermediate-Scale Quantum (NISQ) machine era. However, program-
ming analog quantum simulators is much more challenging due to the lack of a unified interface between
hardware and software. In this paper, we design and implement SimuQ, the first framework for quantum
Hamiltonian simulation that supports Hamiltonian programming and pulse-level compilation to heterogeneous
analog quantum simulators. Specifically, in Simu@Q, front-end users specify the target quantum system with
Hamiltonian Modeling Language, and the Hamiltonian-level programmability of analog quantum simulators
is specified through a new abstraction called the abstract analog instruction set (AAIS) and programmed in
AAIS Specification Language by hardware providers. Through a solver-based compilation, SimuQ generates
executable pulse schedules for real devices to simulate the evolution of desired quantum systems, which is
demonstrated on superconducting (IBM), neutral-atom (QuEra), and trapped-ion (IonQ) quantum devices.
Moreover, we demonstrate the advantages of exposing the Hamiltonian-level programmability of devices
with native operations or interaction-based gates and establish a small benchmark of quantum simulation to
evaluate SimuQ’s compiler with the above analog quantum simulators.
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1 INTRODUCTION
1.1 Background and Motivation

Developing appropriate abstraction is a critical step in designing programming languages that
help bridge the domain users and the potentially complicated computing devices. Abstraction is
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Fig. 1. The circuit-oriented and Hamiltonian-oriented schemes for compiling quantum Hamiltonian simulation
on quantum devices. Here T exp(—i f H(t)dt) is a solution to a Schrédinger equation governed by H(t).

a fundamental factor in the productivity of the underlying programming language. Prominent
early examples of such include, e.g., FORTRAN [Backus 1978] and SIMULA [Nygaard and Dahl
1978], both of which provide high-level abstractions for modeling desirable operations for domain
applications and have been proven enormous successes in history.

Conventionally, abstractions for quantum computing adopt (qubit-level) quantum circuits to
describe procedures, a mathematically simple approach that works well as a mental tool for the
theoretical study of quantum information and algorithms [Childs 2017; Nielsen and Chuang 2002].
As a result, many quantum programming languages [Abhari et al. 2012; Green et al. 2013; Hietala
etal. 2021; Paykin et al. 2017] have adopted quantum circuits as the only abstraction. Many quantum
applications are implemented using these programming languages to generate quantum circuits,
although only a few can be demonstrated on existing quantum devices.

Quantum Hamiltonian simulation (also called quantum simulation') is arguably one of the most
promising quantum applications. The evolution of a quantum system, starting from a quantum
state represented by a high-dimensional complex vector |/(0)), obeys the Schrédinger equation:

d
E [y (1)) = —iH () [y (1)), (1.1.1)

where H(t) is generally a time-dependent Hermitian matrix, also known as the Hamiltonian
governing the system. Probing quantum phenomena from solutions of the Schridinger equation
is a promising approach to tackle many open problems in various domains, including quantum
chemistry, high-energy physics, and condensed matter physics [Cao et al. 2019; Hofstetter and
Qin 2018; Nachman et al. 2021]. However, for an n qubit system, the dimension of both H(¢) and
|¢(¢)) could be 2", which makes its classical simulation exponentially difficult in general. Though
mature software developments for classical simulation of quantum systems using methods like
quantum Monte Carlo [Foulkes et al. 2001] and density-matrix renormalization groups [Schollwéck
2005, 2011] succeed for restricted cases, many intermediate-size (~100 sites) quantum systems of
significance are still out of reach for classical computers.

To address this issue, in his famous 1981 lecture, Feynman [1982] suggested employing a precisely
controlled quantum system to simulate a target quantum system to avoid exponential complexity.
Modern quantum technologies foster a variety of platforms to advance the realization of Feynman’s
proposal, for example, photonic systems [O’brien et al. 2009], superconducting circuits [Wendin
2017], semiconductor nanocrystals [Kloeffel and Loss 2013], neutral atom arrays [Saffman 2016],

n certain contexts, quantum simulation and quantum simulators refer to the classical simulation of quantum circuits and
the corresponding classical software tools, respectively. Yet throughout this paper, quantum simulation represents the task
of simulating a quantum Hamiltonian system, and quantum simulators represent controllable quantum devices that are
capable of simulating other quantum systems.
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and trapped-ion arrays [Bruzewicz et al. 2019]. Most of them are described by a Hamiltonian
with continuous-time parameters characterizing the signals sent through controllable physics
instruments like microwaves or magnetic fields. They are called analog quantum simulators. Only
a few devices support a specific set of system evolutions with sophisticated pulse engineering,
abstracted as a set of universal quantum gates [Kitaev 1997], hence called digital quantum computers.
They include IBM’s superconducting devices [Cross 2018] and IonQ’s trapped-ion devices [Debnath
et al. 2016]. However, inherent noises on near-term digital quantum computers induce detrimental
errors causing short coherence time (i.e., quantum states do not deteriorate to classical states within
it) and preventing demonstrating large quantum applications with provable speedup. The solution
through fault-tolerant quantum computing [Gottesman 2010] requires significantly lower gate
implementation errors and better device connectivity, impractical in the NISQ era [Preskill 2018].

In the past decades, efficient quantum algorithms for quantum Hamiltonian simulation have
been proposed [Childs 2010; Childs and Wiebe 2012; Lauvergnat et al. 2007; Lloyd 1996; Low and
Chuang 2017]. Implementing them follows a circuit-oriented scheme, where the quantum algorithms
are designed and programmed as quantum circuits consisting of quantum gates abstracting the
evolution of a fraction of sites in the quantum system. Then a quantum circuit compiler rewrites
the circuits using a small set of quantum gates and translates each gate to pulses for specific devices.
However, both programming and deploying algorithms in this scheme are highly non-trivial. In a
seminal project, Childs et al. [2018] spent nearly two years programming a few major quantum
simulation algorithms in Quipper [Green et al. 2013] due to tedious implementation details at the
circuit level. Meanwhile, [Childs et al. 2018] shows that implementing algorithms via quantum
circuits, even for a simple quantum system of medium sizes (around 100 qubits), requires an
astronomical number of gates (around 10'° before fault-tolerant encoding). Such circuits are far
out of the reach of near-term quantum devices, which at most support a few thousand physical
gates. The redundancies in programming and deploying algorithms via quantum circuit abstraction
impede wide-range domain applications of quantum simulation. Developing better abstractions for
quantum Hamiltonian simulation is highly desirable for productivity.

Motivated by the experimental success of simulation by designing and building specific precisely
controlled quantum systems mimicking the Hamiltonian of target quantum systems [Ebadi et al.
2021; Gorshkov et al. 2010; Yang et al. 2020; Zohar et al. 2015], programming analog quantum
simulators in a Hamiltonian-oriented scheme is a promising approach to quantum applications
before fault-tolerant digital quantum computers are manufactured. Instead of programming quan-
tum circuits implementing quantum simulation algorithms, Hamiltonian-oriented schemes directly
program Hamiltonians of analog quantum simulators to synthesize an evolution equivalent to the
desired quantum system evolution. Analog quantum simulators have native support for generating
Hamiltonians, resulting in a succinct translation process to construct pulse schedules. Via Hamil-
tonian programming, complicated interactions that demand sophisticated quantum algorithms and
large quantum circuits to simulate can be natively constructed and simulated on analog quantum
simulators. We compare both schemes for quantum simulation in Figure 1 with further details.

By breaking the quantum circuit abstraction and exposing the Hamiltonian-level programmability
of modern quantum devices, resource-efficient protocols can deliver reliable solutions to quantum
applications [Shi et al. 2020] on NISQ devices, including various devices that do not support
universal quantum gates, like QuEra’s neutral atom devices.

For example, using the Hamiltonian-level programmability of IBM devices, an evolution governed
by H(t) = Z1 X, + X, Z3 for time T = 1 (formal definitions in Section 2.1) can be simulated by a pulse
schedule with two cross-resonance pulses [Malekakhlagh et al. 2020], as illustrated in Figure 1. Both
are 280 nanoseconds long and approximately generate Hamiltonians Z; X, and X, 73, respectively.
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Fig. 2. The framework of SimuQ. Here abstract analog instruction sets are designed and programmed by
hardware developers based on the capability of their analog quantum simulators.

Simultaneous execution of these pulses builds H(¢) on the IBM device, and the eventual pulse
schedule is 280 nanosecond long. As a comparison, the circuit-oriented scheme uses a circuit
sequentially applying 4 CNOT gates (each requiring 264 nanoseconds to implement) with several
single qubit gates to simulate H(t). It generates a pulse schedule of length 1660 nanoseconds, around
6 times longer. More details of this example are in Section 5.2. Shortening pulse schedule duration
is especially desirable because of IBM devices’ short coherence time (around 100 microseconds).

Although Hamiltonian-oriented approaches for quantum simulation are beneficial, there is a
lack of formal abstractions and supplementary software stacks. Prior works of analog quantum
simulation following Hamiltonian-oriented schemes [Ebadi et al. 2021; Yang et al. 2020] manu-
ally construct device-specific configurations, which are tedious, error-prone, and demanding for
hardware knowledge, hence not suitable for large-scale experiments.

We propose SimuQ with the first end-to-end automatic framework for quantum simulation
on general analog quantum simulators, illustrated in Figure 2. As a result, domain experts can
focus on describing the desired quantum simulation problems and leave their implementation
and deployment to the automation of SimuQ. Our framework lays the foundation for large-scale
applications of analog quantum simulators, paving the path for a wide range of novel and practical
solutions to domain problems via quantum Hamiltonian simulation for common users.

1.2 Challenges

We identify three main technical challenges in building a framework to compile quantum simulation
problems on analog quantum simulators: modeling the target quantum system, characterizing
analog quantum simulators, and automatic compilation.

Modeling of quantum Hamiltonian simulation. The first challenge is the lack of a scalable
and user-friendly modeling language for quantum simulation. Prior programming languages to
model Hamiltonian systems are designed specifically for numerical classical simulations. They
treat the sites in the quantum system as a 1-dimensional array for the convenience of constructing
matrix-based mathematical objects. One of the most popular languages, QuTiP [Johansson et al.
2012], employs matrices of exponential sizes to represent the quantum system, resulting in poor
scalability. Another inconvenience is caused by the mandatory 1-D array labeling of the sites,
like in OpenFermion [McClean et al. 2020], Pauli IR [Li et al. 2022], and Qiskit Operator Flow
[Aleksandrowicz et al. 2019]. Many quantum systems of interest have complicated site arrangement
structures, for example, a 3-dimensional lattice, forcing users to construct the encoding of sites in
their system manually.

Abstraction and programming of analog quantum simulators. The modeling of analog
quantum simulators is much more challenging. Unlike the circuit model where the fundamental
primitives are a finite number of one or two-qubit quantum gates, analog quantum simulators are
usually described by continuous-time Hamiltonians on the devices with almost infinite degrees of
freedom, which differ significantly among platforms [QuEra 2022; Semeghini et al. 2021; Silvério
et al. 2022]. Moreover, complicated pulse engineering using different technologies generates various
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Hamiltonians with specific hardware restrictions even for one device. Hence a unifying and portable
abstraction is in urgent demand to capture the programmability of analog quantum simulators.

Compilation of quantum simulations on analog quantum simulators. The third challenge
is the lack of an automatic compilation procedure. In the circuit-oriented scheme, the primitive
gates are small-dimensional matrices. Large quantum evolution could be compiled into these
gates with analytical formula (e.g., the Solovay-Kitaev theorem [Kitaev 1997]). In the Hamiltonian-
oriented scheme, the goal of compilation is to synthesize pulse schedules for analog quantum
simulators where the Hamiltonian governing the device evolution approximately composes the
target Hamiltonian H(t). This compilation process needs efficient streamlines for general analog
quantum simulators of medium sizes (around 100 sites) and considers realistic hardware constraints.

1.3 Contributions

To the best of our knowledge, SimuQ is the first framework for programming and compiling quantum
Hamiltonian simulations on heterogeneous analog quantum simulators. The framework tackles
the above three challenges with three major components correspondingly: a new programming
language for descriptions of quantum systems, a new abstraction and a corresponding programming
language for characterizing the programmability of analog quantum simulators, and a compiler
with several novel intermediate representations and compiler passes to deploy and execute solutions
to the simulation problems on analog quantum simulators.

Hamiltonian Modeling Language. Without a strong design need for numerical calculations,
we propose Hamiltonian Modeling Language (HML), which employs a symbolic representation
treating sites as first-class objects and depicts Hamiltonians as algebraic expressions constructed via
operators on the sites. This leads to a succinct description that remains rich enough to express many
interesting quantum many-body systems. Users can focus on describing complicated quantum
systems without tediously handcrafting encoding, reducing the cost of experimenting with new
algorithm design ideas. Many quantum systems are programmed in HML with a few lines of code, as
illustrated in Section 5.4. Beyond this, developing novel Hamiltonian-oriented quantum algorithms
[Leng et al. 2023] can benefit from HML because of the user-friendly description of the algorithms.

Abstract analog instruction sets and AAIS Specification Language. Inspired by the underlying
control of these Hamiltonians, we propose a new abstraction called Abstract analog instruction
set (AAIS) to describe the functionality of heterogeneous analog devices. Precisely, we abstract
different patterns of engineered pulses as parameterized analog instructions. We expose pieces
of Hamiltonian in the AAIS, which are generated by analog pulses on fractions of the system
and abstracted as instruction Hamiltonians induced by instruction executions. The Hamiltonian
governing the evolution of the device at time ¢ is then the summation of instruction Hamiltonians
of the instruction executions covering time ¢.

AAIS exposes the Hamiltonian-level programmability of analog quantum simulators that lies
beyond circuit-level abstractions. This feature enables the programming of non-circuit-based
controllable quantum devices and further exploits the capability of devices supporting quantum
gates within the current hardware limits. Via Hamiltonian-level control, evolution can be simulated
by a much shorter pulse duration and become more robust against device noises.

AAIS provides a new formal computational model of quantum devices and unifies the func-
tionality descriptions for different devices with different technologies, simplifying the transfer of
quantum simulation solutions to quantum devices of multiple platforms. These descriptions also
inform theorists on what Hamiltonian-oriented quantum algorithms are realizable on near-term
devices.
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We propose several AAISs for QuEra, IonQ, and IBM devices. In general, AAISs should be
designed by the hardware providers to expose the Hamiltonian-level control of their devices. We
propose and implement AAIS Specification Language (AAIS-SL), a domain-specific language for
hardware providers to depict the device programmability. We showcase how to design and program
AAISs in AAIS-SL for the mentioned devices in Section 3.2.3.

SimuQ compiler. We propose the first compilation scheme for quantum simulation on analog
quantum simulators with several new intermediate representations. We handle the synthesis of
instruction executions as symbolic pattern matching inspired by the seminal work in classical
analog compilation [Achour and Rinard 2020; Achour et al. 2016]. The instruction executions
are then translated to executable pulses by resolving conflicts and reconstructing pulses using
device-dependent programming languages and pulse engineering.

To the best of our knowledge, there is no existing compilation framework for heterogeneous
analog quantum simulators. Our compiler provides a feasibility demonstration of automatically
compiling quantum Hamiltonian simulation on general analog quantum simulators. Although it
might not be the ultimate solution, we believe our framework provides a natural and intuitive
approach to the modeling and processing of necessary information in constructing executable
pulses from simulation problems. The competence of our compiler is demonstrated in Section 5.4
by showing that it can efficiently and reliably generate executable pulses for various domain
applications. Pulses generated by SimuQ are executed on real devices and produce reasonable
results, which has rarely been demonstrated in previous compiler works for quantum computing
due to the abundance of circuit-oriented descriptions. Users can easily transport their quantum
simulation experiments among different platforms and devices with our portable design of the
compilation framework. It also enables the possibility of benchmarking various quantum devices
on significant domain problems solvable via quantum simulation.

In summary, our contributions include:

e We design and implement Hamiltonian Modeling Language in Section 3.1, a succinct DSL for
describing quantum Hamiltonian simulation.
— Programs in HML are short for many important quantum systems, as shown in Section 5.4.
e We design Abstract Analog Instruction Set as a novel abstraction of Hamiltonian-level pro-
grammability of analog quantum simulators, as illustrated in Section 3.2. We also implement
AAIS Specification Language for hardware providers to design and program AAISs.
— AAISs enable the programming of non-circuit-based quantum devices.
— Hamiltonian-level programming shortens pulse schedule duration and thus is more robust to
device decoherence errors, with case studies detailed in Section 5.2 and Section 5.3.
e We propose and implement a compiler for quantum simulation on analog quantum simulators
in Section 4 with new intermediate representations and compilation passes.
- SimuQ compiler enables portability among different platforms of analog quantum simulators,
and generated pulses are executed on real devices, as demonstrated in Section 5.1.
— It efficiently compiles many significant quantum systems, as shown in Section 5.4.

Related Works. There are a few Hamiltonian-level programming interfaces for analog quantum
simulators, such as IBM Qiskit Pulse [Cross et al. 2022], QuEra Bloqade [QuEra 2022], and Pasqal
Pulser [Silvério et al. 2022] developed by hardware service providers. These interfaces are designed
to represent the specific underlying quantum hardware rather than to provide a unified interface for
all analog quantum simulators like AAIS. Computational quantum physics packages like QuTiP [Jo-
hansson et al. 2012] support modeling and numerical calculation of quantum simulation without any
compilation to quantum devices. Software tools for quantum Hamiltonian simulation are discussed
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extensively for circuit models [Bassman et al. 2022; Li et al. 2022; Powers et al. 2021; Schmitz et al.
2021; Van Den Berg and Temme 2020], while the expressiveness of the circuit abstraction limits
their exploitation of analog quantum simulators. SimuQ’s solver-based compilation is inspired by
the seminal work in classical analog compilation [Achour and Rinard 2020; Achour et al. 2016].
However, the specific abstraction and compilation technique therein is less relevant as the nature
of analog quantum devices is very different from classical ones.

2 RUNNING EXAMPLE

We present a realistic but simple example to motivate our framework and showcase the methodology
of our approach. Many experiments simulating the Ising model on Rydberg atom arrays are
conducted in the literature to probe quantum phenomena barely tractable numerically [Labuhn
et al. 2016; Schauss 2018]. We will introduce the mathematical description of these experiments
and demonstrate how to automate the process with SimuQ’s DSLs, new abstractions, and compiler.

2.1 Quantum Preliminaries

Quantum systems consist of sites representing physics objects like atoms, mathematically described
by qubits. A qubit (or quantum bit) is the analogue of a classical bit in quantum computation. It is
a two-level quantum-mechanical system described by the Hilbert space C2. The classical bits “0”

P . 1 0 . S
and “1” are represented by the qubit states [0) = [ ] and [1) = e and linear combinations of |0)

0
and |1) are also valid states, forming a superpostition of quantum states. An n-qubit state is a unit
vector in the Kronecker tensor product ® of n single-qubit Hilbert spaces, i.e, H = @ C? = c?,
whose dimension is exponential in n. For an n by m matrix A and a p by g matrix B, their Kronecker
product is an np by mq matrix where (A ® B)rsugs+o = ArsBu,o. The complex conjugate transpose
of |/ is denoted as (/| = [)" (f is the Hermitian conjugate). Therefore, the inner product of ¢ and
¥ could be written as ($|/). We let Tr{M} denote the matrix trace of M.

The time evolution of quantum states is specified by a Hermitian matrix function H(¢) over the
corresponding Hilbert space, known as the time-dependent Hamiltonian of the quantum system.
Typical single-site Hamiltonians include the famous Pauli matrices:

10 01 0 —i 10

KR R P | "
By convention, we write X; for a multi-site Hamiltonian to indicate /® --- ® I@ X @ I ® - - - ® I,
where the j-th operand is X. Similarly, we write Y; and Z;. These notations represent operations
on the j-th subsystem. A product Hamiltonian P is a tensor product of Pauli matrices, for example,
X ®1I®Y, also written as X; Y3. A multi-site Hamiltonian can be written as a linear combination of
product Hamiltonians, e.g., H = X1 X, + 2Z,7Z3. When the product Hamiltonians’ coefficients are
time functions, they are called time-dependent Hamiltonians, e.g., H(#) = cos(¢)X. The product
Hamiltonians form a complete basis of n-site Hamiltonians by formula

Te{H()P}
H(t) = ZPE{LX’Y’Z}W — P (2.1.2)

The time evolution of a quantum system under a time-dependent Hamiltonian H(t) obeys the
Schrédinger equation (1.1.1). Its solution is effectively a unitary matrix function U (¢) satisfying

I=

d
EU(t) = —iH(t)U(1). (2.1.3)
If the system evolves from time 0 with initial state |1/(0)), the state at time ¢ is |/ (¢)) = U(t) |{(0)) .
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Fig. 3. Illustrations of the target quantum system and the analog quantum simulator in our running example.

We provide basic physics intuitions of Hamiltonian operations. Hermitian operators correspond
to physics effects like the influences of magnetic fields. Scalar multiplication (e.g., 2 - X) changes
the effect strength. Additions of operators (e.g., Xj + X,) represent simultaneous physics effects,
e.g., the superposition of forces. Multiplications of operators (e.g., X1 X,) represent the interactions
across different sites, e.g., the hopping of atoms between different sites.

A quantum measurement extracts classical information from quantum systems. When measuring
state |@), with probability | (s|¢) |%, we obtain a classical bit-string s and the quantum state |¢)
collapses to a classical state |s) = |s1) ® ... ® |s,).

2.2 Quantum Simulation of Ising Model

To understand the dynamics and properties of quantum systems, physicists have endless needs to
simulate quantum systems. For example, an Ising model is mathematically expressed as

n
H= lej<kgnjijjZk + ijl hiX; (2.2.1)

where Jji, h; € R. This is a significant statistical mechanical model in the study of phase transitions
of magnetic systems [Chakrabarti et al. 2008], with a simple example in Figure 3a. In physics, a
qubit of an Ising model represents the magnetic dipole moment of an atomic spin. Z;Zj represents
the interaction between spins j and k, and Jj; represents the tendency of align direction agreement
between them. X; represents the effect of an external magnetic field interacting with the spins, and
h; represents its strength. The evolution of a quantum system under Ising models with different pa-
rameter regimes of J;; and h; may characterize the magnetism of materials. However, its simulation
generally requires exponential computations for classical computers because of the exponential
dimension of the Hilbert space. Instead, we consider its simulation with analog quantum simulators.
Nowadays, many controllable quantum systems may be utilized for quantum simulation, and one
of the most promising platforms is Rydberg atom arrays [Saffman 2016], where neutral atoms are
cooled and precisely controlled by laser beams.

In this section, we focus on the Ising model simulation using Rydberg atom devices, whose
large-scale experimental demonstrations are repeated in many laboratories [Bernien et al. 2017;
Ebadi et al. 2021; Labuhn et al. 2016; Schauss 2018]. In these demonstrations, experimentalists
configure their quantum systems in a task-specific manner. The following illustration showcases
these procedures, which are mostly done by manual parameter tuning. This procedure is analogous
to the early-day development of classical computers before automated compilers appeared.

We consider a 3-qubit system of the Ising model evolving for time T under

HIsing =712, + 2,73+ X1 + X5 + X3, (222)
illustrated in Figure 3a. We want to reproduce the evolution under Hysng on an ideal Rydberg device,
a simplified Rydberg atom array, illustrated in Figure 3b. Mathematically, the device evolution

is governed by HRydberg(fc, AQ, (;’; t) where %, A, qug are configurable parameters whose details
are introduced later, and ¢ is the time variable whose unit is microseconds. The goal of quantum
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simulation is to reproduce the evolution of Hsne on the device by finding a configuration for
%A, Q(]g satisfying HRydberg (X, AQ, (]; t) = Higing, assuming the device evolution time is Tms.

An ideal Rydberg device contains m atoms (viewed as qubits) and m laser beams addressing
each atom. The positions of the atoms can be configured arbitrarily on a 1-D line. We denote their
coordinates as vector X (unit: gm) and assume they will not move. A Van der Waals force acts
between each pair of atoms, whose effect is described by a time-independent Hamiltonian

HIP (%,1) = —— A (2.2.3)
|%j — Xk
Here Cs ~ 5.42x 10°MHz - ym® is a real physics constant and i; = (I—Z;)/2 is the number operator
of qubit j. For each atom, there is a local laser beam addressing it. It contains three configurable
real-function parameters A (1), Q (1), and ¢§ ;(t) (unit: MHz) representing the detuning, amplitude,
and phase of laser, which can be configured freely over time. It generates an effect described by

i) (cos(gbj(t)) s1n(¢](t)) ) (2.2.4)

Then the collective Hamiltonian governing the evolution is the summation of effects of Van der
Waals forces H,gflk) and lasers Hl(ajs )er,

Hryaerg (600,00 = 3 HZO G0+ 3T L (R 0540, (229)

A manual way to find a device configuration is to match the coefficients of product Hamiltonians
in Hsing by configuring the parameters. Note that Z;Z;,; of Hying is a 2-qubit interaction which only
gYUD) (% 4y =

aa (x > ) -

laser(AJ’ Q]’¢]’t) = A (t)nj

comes from H,g{;k). We configure X; accordingly by setting X; = (j—1)x10.52 so that
ZjZjs1 — Zj — Zj1 + 1. Note by setting X;, the system has unwanted H‘g}f) (%,t) =0.016 - (Z,Z5 —
Z1 —Z3+1I). We then configure the local laser beams to create the X; terms in Hlsmg and compensate
the unwanted Z; terms in Hé{;") by setting A, (t) = As(t) = 2.032, Ag(t) =4,Q; j(t) =2and gb] = 0.
We can confirm our synthesis by checking Hising — Hrydberg (X, A Q, ¢ t) = —0.016Z,Z5 + 2.016I.
Since 2.0161 has no measurable effects on the evolved state by quantum information analysis, The
error term is —0.016Z; Z3, which is small compared to Hging.

2.3 Automated Compilation by SimuQ

SimuQ provides automation to the above procedure for analog quantum simulators by establishing
a workflow via new abstractions, intermediate representations, and compilation passes designed
explicitly for analog compilation of quantum simulation. We illustrate how to program and compile
Hising on the ideal Rydberg device in SimuQ, with a glimpse of our new abstractions.

Programming an Ising evolution. Firstly, we program Hi, in HML with an implementation in
Python as in Figure 4a. The first step is to declare a quantum system Ising (Line 1) and three sites
(qubit) belonging to it (Line 2-3). By storing the sites in a list, we refer to the j-th site of the system
by q[ j 1. Then we construct Hy,g's terms one by one and store them in h (Line 4-8). Here we
program the terms as an expression containing operators on the sites, e.g., X; as q[ j1.X and
ZiZjywasql[jl.2xqlj+11.Z We then let the system evolve under h for time T (Line 9).

Characterizing ideal Rydberg devices. We propose a Rydberg AAIS to characterize the programma-
bility of ideal Rydberg devices. An implementation is in Figure 4b.

The program starts with declaring the quantum device (Line 1) and its sites (Line 2). We can
construct the number operators 7; and store them in n (Line 3).
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We propose analog instructions to characterize the effects produced and configured on the device
over time. An instruction execution generates an instruction Hamiltonian that adds up to the total
Hamiltonian governing the system. In the Rydberg AAIS, we design instructions 7; to model the
effects of the laser beam pulse signals (Line 5). Executing 77; generates an instruction Hamiltonian
{IT]jI}(Aj, Q. ;) =Ajij+ Qj/Z(cos(ngj)Xj - sin(g{)j)Yj), where Aj, Qj, and ¢; are local variables
belonging to n; (Line 6-9). When executing 7;, one may specify a valuation b and execution starting

and ending time z;, 7, to induce a Hamiltonian {]17 j[} (l_;) on the device in time interval [z, 7).

Instructions can be executed simultaneously to create an evolution under their collective effects,
mathematically expressed as a summation of instruction Hamiltonians. For example, we can
simultaneously switch on the laser beams addressing atoms 1 and 2 with configuration lgl and I;z
and switch off others, generating a Hamiltonian {|n; |}(51) + {|q2|}(52)

Besides the instructions executed over time, analog quantum simulators may also have inherent ef-
fects, like the atom-atom interactions in the Rydberg atom devices. We declare a system Hamiltonian
with global variables for them. Let x; be the global variables representing the position of the atoms
(Line 10). Then collective Van der Waals force 21 <<k <m Héék) (x,t) = X1<jck<m Co/|xj — xic|°7 Ak
is characterized as the system Hamiltonian Hyy(X) (Line 11-15).

Overall, the Hamiltonian governing an ideal Rydberg device at time ¢ is

Higp (1) = Hyys (%) + Z(qj,ij)ect {n;l} @), (2.3.1)
where C; contains the active instruction executions at time ¢ and their variable valuations.

Synethsizing Hing on ideal Rydberg devices. The SimuQ compiler automatically synthesizes a
target Hamiltonian with an AAIS and generates executable pulses for devices. We go through the
compilation steps on a 3-atom ideal Rydberg device, creating a configuration satisfying Hjgp(t) =
HIsing'

The first step is to find a site layout between the Hilbert space of Hising and the Hilbert space of
ideal Rydberg devices. A trivial layout that maps the j-th site of Hging to the j-th atom of the ideal
Rydberg device suffices since the atoms are homogeneous.

For simplicity, here we assume the on-device evolution time is the target evolution time T. We then
synthesize Hysing by matching the coefficients of its product Hamiltonians. For a product Hamiltonian
P, let H[P] be the coefficient of P in Hamiltonian H and {lr] jﬂ [P] be the coefficient function of P in
{IT] j ﬂ» We take product Hamiltonian Z; as an example, whose coefficient is Hising[Z1] = 0. Z; has

1 |Rydberg = QMachine()
1 | Ising = QSystem() 2 | q = [qubit(Rydberg) for i in range(N)]
2 |q = [Qubit(Ising) 3 'n = [(qfi]l.I - q[i].Z) / 2 for i in range(N)]
3 for i in range(N)] 4 | for i in range(N) :
4 h=o0 5 n = Rydberg.add_instruction()
5 | for i in range(N) : 6 add_1lVar = p.add_local_variable
N . 7 A, Q, ¢ = add_1lvar(), add_lvar(), add_lvar()
6 h +=qlil.X 8 X_Y = cos($) * qlil.X - sin($) * qCil.Y
7 |for i in range(N - 1) : 9 n.set_ham(-A *n[i] + Q / 2 * X_Y)
8 h += q[i].Z % q[i+1].Z 10 | x = [Rydberg.add_global_variable() for i in range(N)]
9 |Ising.add_evolution(h, T) 1 |h =0
12 | for i in range(N) :
() An evolution governed by Hising 13 for j in range(i) :

14 h += (C / (x[il - x[j1)»*x6) % n[il % n[]]

(2.2.2) programmed in HML. Here 15 | Rydberg. set_sys_ham(hy

N =3 is the number of sites. T = 1 is
the evolution time. (b) The Rydberg AAIS programmed in AAIS-SL. N = 3 is the number of
sites. C is the Rydberg interaction constant.

Fig. 4. Examples of HML and AAIS specification language implemented in Python.
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S . s o] Imb __mdb 1 Mhsing
! c r_ x1 20
212, : 4(x; — x2)° + + + : =1 x, = 10.52
7.7 1 c b x3 = 21.04
243 : 4(x; — x3)° + + + : - Sy =S, =S, = 1
7 ¢ 1 (. 0 * A, =A, =203
S TR T 380, + + - A, =4
I c c 1 (I Q=0,=0,=2
& : Hon )t A ) ! ' EALZSLZ ! : - ¢>L1 = ¢Lz = ¢'L3 =0
Lo 1

Fig. 5. On the left is the equation system to synthesize Hising using the AAIS for the ideal Rydberg device.
On the right is an approximate solution to it. It can be further interpreted as a pulse schedule in Blogade.

non-zero coefficient functions in {|5; [} and the system Hamiltonian Hy,

Cs Cs
4lx1 — %200 4fxy — x3]0

Ay -
{mlZ:1]1(A1, Q1. ¢1) = P Hgys[Z1](X) = - (2.3.2)
We want a set of instruction executions letting the coefficient of Z; be 0. Since instruction 7, is
optionally executed, an indicator variable s; € {0, 1} is declared to represent whether 7; is executed.
Then we establish an equation

C C A
6 ¢ _+Zlg=0. (233)

Hg|Z1] + Z1] - s1 = Hising [ £ s - -
sys[ U+ mblZi] - s Ismg[ 1] 4l — x5 4lxg — x50 2

In general, we declare s; € {0, 1} for each instruction 7; and establish an equation system
VP #1, Hy[P]+ ZJ. {n;}} [P - s; = Higing [P] (2.3.4)

by enumerating every P to match all coefficients of product Hamiltonians in Higjng. Figure 5 shows
other established equations, and the full equation system is in the extended version [Peng et al.
2023b] Appendix.

We employ a numerical solver to search for a solution to the non-linear mixed binary equation
system. An approximate solution to the equation system is displayed in Figure 5. We interpret the
solution as an instruction schedule: it specifies a collection of instruction executions according to the
solutions to s; and local variables. The solution in Figure 5 can then be interpreted: set the positions
of atoms at x = [0, 10.52, 21.04] um, set laser beams configuration (A(t), Q(¢), ¢(t)) = (2.032,2,0)
for atom 1 and 3 and (A(t), Q(t), ¢(t)) = (4,2,0) for atom 2, and evolve the system for Tms. These
configurations can be translated to a Blogade or Braket program to execute on QuEra devices.

With the above procedure, we successfully simulate the evolution under Hysng on the ideal
Rydberg device with the help of SimuQ. In practice, hardware providers design AAIS and implement
the analog instructions for their specific devices. Front-end users only need to program Hig,, and
employ SimuQ to generate executable code to send to backend devices. SimuQ breaks the knowledge
barriers for frontend users to exploit analog quantum simulators easily. The following sections will
explicate SimuQ components and technical details.

3 DOMAIN-SPECIFIC LANGUAGES

SimuQ is the first framework to tackle quantum simulation with Hamiltonian-level compilation
to analog quantum simulators. It includes a collection of novel abstractions and domain-specific
languages (DSL). We propose two DSLs in SimuQ: Hamiltonian Modeling Language (HML) for
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A € Site, reRreR" hagr =Ra
R e Operator :==I1|X|Y|Z hs.m = eval(S) - ha,
S € Scalar t=S1 485|818, |81 -85 181/S; hatem, = B, + b,
| exp(S) | cos(S) | sin(S) | r hat-m, = P, - gy,
M € Hermitian = M; + M, | My - My | S- M| AR [nil] =1L,
E € Evolution :=nil | (M, 7); E [(M,7);E] = [E] - e~
(a) Abstract syntax of HML. (b) Semantics of HML.

Fig. 6. Syntax and denotational semantics of HML. Here Site contains system sites. hys translates to the
Hermitian matrix described by M. R4 is a Hermitian matrix where operator R applies to site A and I applies
to other sites. Function eval evaluates scalar expression S to a real number.

front-end users to depict their target quantum systems and AAIS Specification Language (AAIS-SL)
to specify analog abstract instruction sets (AAISs) of analog quantum simulators.

3.1 Hamiltonian Modeling Language

HML is a DSL designed to describe the physical structure of many-body quantum systems that
introduces many abstractions, including quantum sites and site-based representations of Hamilto-
nians. We implement this language in Python, with its abstract syntax and denotational semantics
formally defined in Figure 6.

Abstract Syntax of HML. The first-class objects in HML are sites of quantum systems. A site
is an abstraction for any quantized 2-level physical entity, like atoms with two energy levels,
whose mathematical description is a qubit. In HML, site identifiers are collected in a set Site, each
representing a site of the system. Four operators, I, X, Y, and Z, are defined to represent the Pauli
operators, and they are site operators. We denote the X operator of qubit ¢ as q.X and other operators
similarly.

A time-independent Hamiltonian is effectively a Hermitian matrix programmed by algebraic
expressions. The basic elements are site operators A.R. Expressions for Hermitian are constructed
using site operators and scalar expressions, consisting of common matrix operations and scalar
operations. An evolution E in HML is a sequence of pairs (M, 7), representing a sequential evolution
where each segment is governed by a time-independent Hamiltonian Ay and for time 7.

REMARK 3.1. Beyond sites representing qubits, sites representing fermionic and bosonic modes can
be defined together with their annihilation and creation operators. These are characterized by different
types of sites in our implementation. Each type of site contains specific site operators, and the operator
algebras are symbolically implemented. We omit formal discussions of them in this paper for simplicity.

REMARK 3.2. HML can generally deal with Hamiltonians with continuous-time coefficients by
introducing an additional identifier t in scalars. We choose sequences of time-independent evolution
for numerical convenience in the compilation stage and leave this possibility for the future.

Semantics of HML. The denotational semantics of a program E in HML is interpreted as a unitary
matrix by [ E] in Figure 6b. We let hys translate program M into Hermitian matrices by evaluating
the expressions. Then [[E] is the product of unitary matrices e "M, each representing the solution
to the Schrodinger equation under H(t) = hy for time duration 7. This is the solution to the
Schrodinger equation governed by the piecewise-constant Hamiltonian programmed in E.

Implementation of HML. We implement HML in Python to ensure accessibility to physicists and
other common users. For a quantum system, we store the sites in a list. A product Hamiltonian
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P is then stored as a list of site operators using the same order of the site list. We also employ a
Python dictionary to store a time-independent Hamiltonian H where the key-value pairs are made
of a product Hamiltonian P and its coefficient denoted by H[P]. Mathematically, H[P] = Tr{H - P}.
We only store those P with non-zero H[P] to compactly store Hamiltonians. For example, Hising in
Section 2.3 is represented by a dictionary {Z17Z, : 1, Z,Z5 : 1, X1 : 1, X5 : 1, X3 : 1}.

To deal with the algebraic operations of Hermitian matrices, we symbolically implement an
algebraic group for site operators (the Pauli group), and then Hermitian expressions are evaluated
accordingly. For example, H; + H is effectively implemented by enumerating P appearing in the
keys of Hy’s and Hy’s dictionary, and construct (H; + Hz) [P] = H; [P] + Hz2[P]. Another example is
multiplication, where H; - H is implemented by enumerating P; in H;’s dictionary keys. Since the
site operators of different sites commute and those of the same sites are in a finite group, P; - P, is a
product Hamiltonian P with an additional scalar multiplier p (i.e., (X1X3) - (Y1Y2) = -1 Z1Z;). We
add p - H1[P1] - Hz[P;] to the coefficient (H; - Hz)[P]. Then we represent the evolution E as a list of
tuples (H, r) encompassing Hermitian matrix H and the evolution time 7 of an evolution segment.

Input Discretization Error. In many-body physics systems, Hamiltonians are commonly continu-
ous, taking form Hi,, (t) = ZIk(:l ay (t)Hg. In HML, these Hamiltonians are discretized into a series of
piecewise time-independent Hamiltonians in the input. Let the evolution duration be T and the dis-
cretization number be D. We discretize Hy,, (t) over time steps {td}g:1 where0 <) <..<tp<T
and use the left endpoint of each interval as its approximation. Formally, Hy,, (¢) is approximated by

A =Y aOH. @)=Y @t (), (3.01)

where 1(43) is the indicator function of set [a, b). We assume ||Hi|| = 1 where ||-|| is the spectral
norm of matrices, oy (t) are piecewise M-Lipschitz functions, and {td}g:1 include all partitioning
points of the piecewise Lipschitz coefficients a (t). Then we can derive the error bound induced
by discretization by the following lemma.

LEmMA 3.1 ([NIELSEN AND CHUANG 2002]). The difference between the unitary U(T) of evolution
under Hyy (t) for duration T and the unitary U(T) of evolution under H(t) is bounded by

|u(r)-0(1)| < C:D'MKT?. (3.1.2)

Here C; > 0 is a constant, D is the discretization number, K is the number of terms in Hy, (t), and L is
the Lipschitz constant for ax (t).

This lemma shows that when we increase the discretization number D, the evolution error in
the approximation can be arbitrarily small, justifying the discretization. The proof is routine in
quantum information and hence omitted.

3.2 Abstract Analog Instruction Set and AAIS Specification Language

3.2.1 Abstract Analog Instruction Set. An AAIS conveys the functionality of an analog quantum sim-
ulator in the form of instructions and system Hamiltonians, including necessary device information
for synthesizing target quantum systems.

We present the AAIS design and their physics correspondences in Table 1. An analog instruction
n of an AAIS contains configurable parameters 7 and generates an instruction Hamiltonian H,(7) on
the device when executed. These parameters are local variables of i, modeling the device parameters
that can change over time. The instruction Hamiltonian H, (7) takes the following form where
up(9) is a real function depending on the local variables d:

H,(3) = ZP up() - P. (3.2.1)
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A € Site, v[q] € Var? for q € {L,G}, r e R har = Ra,
R € Operator =1X|Y|Z hsa.ma = eval(S9) - hya,
S9 € Para. Scalar? == S9+ 57 | 7. 57| 57— 57 | 59/57 hygmg = g + by,
| exp(87) | cos(s7) | sin($7) | r | v[q] hagsmg = hags - Pz
M7 € Para. Herm.9 == M7 + M | M{ - MJ | S7- M7 | AR {MC} = hyso,
D € Device a=MC | M5 D {M": D} = hppe: (DI
(a) Syntax of AAIS specification language. (b) Semantics of AAIS programs.

Fig. 7. Abstract syntax and denotational semantics of AAIS-SL. Here Site contains the sites of the device.
Varl and Var® contain the local and global variables correspondingly. eval(S) evaluates S as a real function.

Table 1. Comparison among physics concepts, Rydberg devices instances, and AAIS abstraction designs.

Physics Signal carriers Pulse signals Signal effects Device evolution
Rydberg devices | Laser emitters | Time-dependent lasers 1?5 )er Obeys HRydberg(t)
AAIS Signal lines Instructions Instruction Hamiltonians | Total Hamiltonian

Additionally, a system Hamiltonian Hgys(Uglo) With a similar form of (3.2.1) applies an always-on
effect on the device. A vector g, of time-independent configurable parameters, called global
variables, belongs to it. These global variables are configured before executing any instructions and
stay unchanged during the execution.

3.2.2  AAIS Specification Language. To specify AAISs with programs, we propose and implement
AAIS-SL and present its abstract syntax and denotational semantics in Figure 7.

Abstract Syntax of AAIS-SL. To characterize the Hamiltonians of instructions, sites are declared
with identifiers stored in a set Site, and site operators are defined as objects of sites by default.

Compared to HML, the major difference in the syntax is variables. Two types of variables whose
identifiers are stored in Var® and Var! represent global variables and local variables, respectively.
They are terms in parameterized scalars and consist of parameterized Hermitians. Then an AAIS
for a device is effectively a collection of instruction Hamiltonians as parameterized Hermitian
matrices, along with the system Hamiltonian.

Denotational Semantics of AAIS-SL. We interpret an AAIS D characterizing a device as a list
of instructions along with the system Hamiltonian. Similar to the HML semantics, we employ
a translation h for expressions S to obtain parameterized Hermitians. Function eval evaluates a
parameterized scalar expression S as a real function taking a valuation of variables and outputting
a real number. Hence h translates parameterized Hermitian expressions to Hamiltonians in the
form of (3.2.1). Without ambiguity, we use {n[}(9) to represent the instruction Hamiltonian of 7.

Implementation of AAIS-SL. We also provide a Python implementation of AAIS-SL. We store sites
and Hermitian matrices similarly to the implementation of HML. The difference is that instead of
storing real numbers as coefficients, we store Python functions taking global variable and local
variable valuations as inputs. We build function algebraic operations (i.e., (fi+f2) (x) = fi(x)+ f2(x)
and (fi - f2)(x) = fi(x) - fo(x)) to deal with expressions and establish the parameterized Hermitian
matrix expressions. As described in Figure 7, an AAIS is effectively represented by a system
Hamiltonian and a list of instruction Hamiltonians.

3.2.3  Examples of AAIS. Through AAISs, we provide a general framework to characterize the
programmability of analog quantum simulators. Here we show how we design AAISs for QuEra,
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IonQ, and IBM devices. The design of AAIS abstraction pursues a balance between expressiveness
and implementation hardness on real devices: to simulate more complicated quantum systems, more
complicated instructions are needed, requiring more advanced technologies in their implementation.

Rydberg AAIS. The Rydberg AAIS designed for ideal Rydberg atom devices is introduced in
Section 2.3. However, current QuEra devices do not support local laser addressing, meaning only a
global laser interacts with every atom simultaneously. We use a variant for QuEra devices, called
the global Rydberg AAIS, where there is only one instruction # with the instruction Hamiltonian

Inb (A Q.¢)=-A 7" i+ % 2o (cos($)X; = sin(¢)Y)). (3.2.2)

Heisenberg AAIS. The IonQ and IBM devices, though using different platforms, share similar
capabilities for constructing interactions. For both platforms, the Heisenberg AAIS is designed and
implemented, which contains 1-site instructions 177 p and 2-site instructions n i pp for j, k € {1, ..., n}
and P € {X,Y, Z}, where n is the number of sites. Each instruction possesses one local variable,
and their instruction Hamiltonians are:

{Ir]j,p[}(a) =a-P, {]?]j’k’Ppl}(a) =a-P;jPy. (3.2.3)

Here, the 1-site instructions 1 p are defined for every site in the system, and the 2-site instructions
1jkpp are only defined when (j, k) € E for an undirected connectivity graph E representing the
connectivity of the detailed device. For ion trap devices, E is a complete graph with an edge between
each site pair. Superconducting devices typically have limited connectivity, and we let E be the
connectivity graph of the IBM devices.

The Heisenberg AAIS can simulate a family of Heisenberg models [Auerbach 1998] covering
the Ising models. A variant of the Heisenberg AAIS called the 2-Pauli AAIS extends the 2-site
interactions to P;Qj interactions for P,Q € {X,Y,Z}, is capable of simulating more quantum
systems, and is realizable on IonQ and IBM devices with specific connectivity.

IBM-Native AAIS. Besides the Heisenberg AAIS, for the IBM devices, we can also model their
native effects in an IBM-native AAIS. Its 2-site instructions are 7, x cr for (j, k) € E where

{I’]j,k,CRI}(Q) = wzxQZLi Xk + w7722k + 0px QX + a)ZIQZZ-, (3.2.4)

where wzx, wzz, wrx, and wzr are device-dependent constants. Instruction 1 ¢ cr and 7 cr can
be simultaneously executed on IBM devices because of platform features. However, since it contains
multiple terms with limited freedom of control, only a few quantum systems can be directly
simulated by the IBM-native AAIS. For the systems that can be simulated, a much shorter pulse
duration can be produced. A more detailed analysis is in Section 5.2.

4 INTERMEDIATE REPRESENTATIONS AND COMPILATION

Compiling a target quantum system to an analog quantum simulator is computationally hard in most
cases, especially when we aim at a general framework. In this section, we build the first compiler
for quantum simulation on general analog quantum simulators and several novel intermediate
representations to conquer various challenges in the overall compilation.

The overall compilation workflow is presented in Figure 8. Since this is the first exploration of
compilation to heterogeneous analog quantum simulators, our proposal intuitively decomposes the
problem into several natural sub-problems that are rarely encountered in prior works and applies
straightforward solutions to each step. Much space for optimizing our workflow within the scope
of our approach is left for future work, which is discussed in Section 6.
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Fig. 8. An illustration of the SimuQ compilation process.

4.1 Instruction Schedules and Hamiltonian Synthesizer

The first intermediate representation is instruction schedules that describe the execution of in-
structions on the device. We will also introduce a Hamiltonian synthesizer to create an instruction
schedule that simulates a target quantum system.

4.1.1 Instruction Schedules. An instruction execution (7, a, T, Te) specifies an instruction 5, a
valuation g — d of n’s local variables, and evolution starting time 7, and ending time 7,. It applies
a Hamiltonian H, (d) to the device during [, 7.). In later cases when the absolute starting time
and ending time are unimportant, we also use duration 7; = 7, — 7, in instruction executions.

An instruction schedule includes a valuation g to the global variables and a set of instruction
executions {(7;, a i Ts,j» Te,j) }- At the time ¢, the instruction executions satisfying 7, ; < t < 7,
generate effects on the device. Executing the instruction schedule evolves the device, governed by:

H(t) = Hsys(g)) + Zjifs

We use a more succinct representation of the instruction schedules generated by our Hamiltonian
synthesizer. We characterize the set of instruction executions as a list S = [(C}, 7;)] ;”: ; Where
Cj ={(njk. djk) }k- S denotes a sequential evolution of simultaneous instruction executions in C;
for time duration 7;. Let T = }x < ; 7; and assume T = 0. The absolute starting and ending time of
instruction execution (nk, djk) € C; are then T;_; and T;. Mathematically, the Hamiltonian H(t)
governing the evolution of the device at time ¢ € [Tj_y, Tj) is H(t) = Hgys(g) + X {Ityjk[}(ﬁjk). As
a solution to the Schrédinger equation, the execution of instruction schedule (S, §) results in an
evolution of the device described by a unitary matrix

U(T,,) = 1—11 1% (Hys @+ Za{|me [}@50)) (4.1.2)

j=m

Hy,(d;). (4.1.1)

L SE<Te,j

4.1.2  Quantum Simulation by Executing Instruction Schedules. We formally define the task of
compiling quantum simulations to a quantum device described by an AAIS. Consider a target
quantum system described by a Hamiltonian Hy,, () and evolution time interval [0, T). Compilation
of a quantum simulation asks for a site layout L and an instruction schedule (S, ). A site layout L
is an injective mapping from each site in the target system to a site in the device system. We call
the Hilbert space of the sites mapped to by L the layout subspace of the device Hilbert space. A
layout L induces a mapping £ from the target system’s Hilbert space to the layout subspace. When
limiting £(H) in the layout subspace where H is a Hermitian matrix in the target Hilbert space,
one can relabel the sites of £ (H) according to L™! and recover H. When H(t) is a time-dependent
Hamiltonian of the target Hilbert space, we write £(H) as a Hamiltonian of the device Hilbert
space satisfying £(H)(t) = L(H(t)). Let the execution of the instruction schedule (S, g) produce
a unitary matrix U and let the evolution under £ (Hy,,) for time interval [0, T) be £ (Uy,;). We say
that a site layout L and the instruction schedule (S, g) simulate Hy,(;) if U approximates £ (Utar).
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Algorithm 1 Equation builder for Hamiltonian syn- List @ with coeff.

thesis.
Inputs: site layout mapping £, target quantum |{|n1[} (a' 6 {]772 I} (T)
system (Huy,j, 7;) for 1 < j < N, AAIS acos(6) X, e*tX,
D = [n1, ... 1m, Hsys], equation system variables - ~
{@kjh sk b g, {t;} asin(6) Y, e Xs
Output: a system of equations Y 2 X X3 I Y, € Q
T} : acos(0) s, +e*’s, =3
for je{1,..,N} do [ ©) — Iz ]
G« {L(Htar,j)};v:l U {Hsys} N
O« [P|3H € G,H[P] # 0] 0XY, Equations
i—0
while i < |Q| do Fig. 9. An example illustrating the equation builder.
P« Q.getitem(i) X is searched for in AAIS, where 11 and n2 are
ie—i+1 found and used in equation for X;.
if P =1 then
continue ; x R
e «— Htar,j [P] (g E ................................. E
for k € {1,...M} do i /R IT/RI R ;
if {ncl[P] # 0 then A T L I
e — e+ b [Pl - si e
fOr P/ ¢ Q : {|’7k|} [P/] ES 0 do wrssssasarassnansnnnnnna s
Q.append(P’) Fig. 10. An example of Trotterization from an in-
Y.add(t; - e = 7; - L(Huar,j)[P]) struction schedule to a block schedule, with a con-

flict graph and its grouping.

4.1.3  Hamiltonian Synthesizer. Since HML discretizes continuous Hamiltonians with small errors,
in this step, we consider a target quantum system described by a sequence of evolution under
Hiar,j for time duration 7; indexed by j € {1, ..., N}. We want to synthesize an instruction schedule
simulating the target quantum system on a device described by an AAIS D = [ny;...; nar; Hyys].
Our Hamiltonian synthesizer follows a three-step loop: (1) propose a site layout L; (2) build a
coefficient equation system; (3) solve the mixed-binary equation system. If the solver does not find
an approximate solution, we repeat this process until a timeout condition is met.

Site layout proposer. The first step of the synthesizer loop proposes a site layout L and later steps
check its feasibility. To the best of our knowledge, although layout synthesis for quantum circuits
is thoroughly studied [Tan and Cong 2020], there is no prior work on the layout synthesis for
Hamiltonian-oriented quantum computing. The main difference between them is the unavailability
of swap gates for many analog quantum devices, i.e., QuEra’s Rydberg atom arrays.

We employ a search with pruning as a general solution to a layout proposer. The pruning strategy
is to abort the search when there exists a product Hamiltonian P and j where Hi, ;[P] # 0 and
L(P) does not have a non-zero coefficient expression in any 7, and Hgy,. This abort condition can
be met halfway through the search. For a partial layout L (where several sites are not assigned in L
yet) and a product Hamiltonian P, we can map it to a product Hamiltonian £(P) of the device with
holes on several sites. When searching for £(P) in an AAIS, holes can match any site operator. If
none is found, the current search branch is aborted.

After proposing a layout, we proceed to steps (2) and (3) to check its feasibility. If rejected, the
above search process returns and proceeds to other search branches to propose another layout. If
all possibilities are not feasible, the compiler will report no solution and fail the process.
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Coefficient equation builder. We synthesize instruction executions by a system of mixed-binary
non-linear equations to match coefficients of product Hamiltonian in the target quantum system.

Given a site layout L, a set of equations is constructed to match the coefficients in Hy,, ; for
every 1 < j < N. We create time variables t; to represent the evolution time for instruction
executions synthesizing evolution of Hi,, ; for time 7;, with constraints t; > 0. For instruction
Nk in the AAIS, we create an indicator variable s ; € {0,1} to indicate whether 7y is selected
to be executed in the synthesis of H, j. Assuming that n; has local variables Uy of dimension
|Uk |, we create || new equation system variables stored in a vector ay ;. For global variables, we
create a vector g of dimension [30b| of the AAIS, which is independent of j. In total, we have
created |Ggiop| + N 2 [0k | + N real variables for global variables, local variables, and time variables
respectively, and NM indicator variables.

Then we establish a coefficient equation for each product Hamiltonian P to match Hi,y, j:

M -
(V). (VP #1) :  t;- Heys(g)[P] + de ti Akl [P1@k,j) - sej = 77 - L(Hear ) [P (4.13)

Here the left-hand-side calculates the summed effects of P from each instruction and the system
Hamiltonian and the right-hand-side calculates the effect of P in the target quantum system.
There are typically many trivial equations in this system having 0 on both sides since only a few
P appear in either Hy, ; or {|nk [} with respect to the exponentially many possible combinations of
site operators. We propose Algorithm 1 to find all non-trivial equations. This algorithm starts with
a list Q containing all the product Hamiltonians with non-zero coefficients in Hyy and £(Hiay,j)-
It then enumerates the list Q and establishes coefficient equations for each P by enumerating
instructions 5y in AAIS. During this process, it may encounter instruction Hamiltonians {|5 [} who
contain product Hamiltonians P’ that never appears in Q. These product Hamiltonians may lead to
non-trivial equations, so we add them to Q. An example of this procedure is illustrated in Figure 9.

Mixed equation solver. The established coefficient equation system is mixed-binary and non-linear.
A solver is applied to obtain approximate solutions which correspond to instruction schedules.

We provide several options for the solver. The first is dReal [Gao et al. 2013] based on d-complete
decision procedures, which supports real variables, binary variables, and algebraic functions in HML
and AAIS-SL. It performs well when the coefficient expressions are close to linear (the Heisenberg
AAIS), while poorly when highly non-linear (the Rydberg AAIS).

As another option, we construct a least-squares-based solver. This solver uses a relaxation-
rounding scheme. We apply a continuous relaxation to loosen the value range of indicator variables
from sy ; € {0,1} to §¢ ; € [0, 1], substitute § ; for s; ; in the equation system, and solve the equation
system by least-squares methods via an implementation in SciPy [Virtanen et al. 2020]. We then
round the indicator variables s ; according to the solution. The criterion sets s ; to 1 if there is
2ptj {I’?k, jl} [P] (T j)$k j > O for a pre-defined tolerance parameter 8, and sets to 0 otherwise. This
criterion evaluates how much error the solution will induce if we set s ; to 0. We then solve the
equation system again to obtain a more precise solution.

The solver generates an approximate solution with error e, defined by

e= 3 T U IPIGiy) = 4 L(Hur P (414)

If e < € where € is a pre-defined tolerance, the solution is accepted. Otherwise, we return to step
(1) to generate another layout and check feasibility. An accepted solution induces an instruction
schedule (S = {(Cj, tj)},g) where C; = {(nk, dr.;) : sk; = 1}

4.14  Error Induced by Hamiltonian Synthesizer. Now we bound the error in the evolution induced
by the approximation in the equation solving of the Hamiltonian synthesizer since our solver
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generates approximate numerical solutions. Let U(T) be the unitary of executing generated in-
struction schedule (S, g), and U’(T) = L(U(T)) be the unitary of the evolution of the discretized
target system after site layout mapping L. We can conclude the error induced by the Hamiltonian
synthesizer is bounded by tolerance € in the equation solving and the proof is routine and omitted.

LeEMMA 4.1 ([NIELSEN AND CHUANG 2002]). The error of evolution induced by equation solving is
bounded by a constant C, > 0 and error bound € with the following inequality:

|0(T) - U(T)|| < Cae. (4.1.5)

REMARK 4.1. In general, compiling a target system is computationally hard. Finding a site layout
for machines with specific topology can be as hard as the sub-graph isomorphism problem, an NP-
complete problem. Besides, since the design of AAIS does not pose strict restrictions on the expressions,
pathological functions may emerge in the coefficients, which complicates the equation-solving process.
Our solutions to these problems may not be optimal but are intuitive, feasible, and efficient enough for
most cases (also refer to Section 5 for detailed case studies).

4.2 Block Schedules and Conflict Resolver

Instruction schedules are oversimplified descriptions of what can be executed on the devices. Mainly,
there are two realistic restrictions not captured by instruction schedules. First, some instructions
on real devices can not be executed simultaneously. For example, on an IonQ device, 11 xx cannot
be simultaneously executed with 75; 2 7 since they use the same interaction process with different
bases. Second, instruction execution implementations may take longer than the scheduled execution
time. We propose a flexible generalization to the instruction schedules called block schedules and
implement a conflict resolver to compile generated instruction schedules to block schedules.

4.2.1 Block Schedules. A block schedule is a temporal graph whose vertices are blocks of instruction
executions, together with the valuation of the global variables. An instruction block B contains a
collection of instruction executions whose evolution duration is 7. The block schedule is then a
directed acyclic graph where an edge (B; — By) is a restriction: instructions in By should start
simultaneously after instruction executions in B; end. Instruction schedules generated by our
Hamiltonian synthesizer are special cases of block schedules where the temporal graph forms a
chain and blocks are the collections of instruction executions.

When executing a block schedule, we first decide the execution order y : (B, ..., B,) of the blocks
and then evolve the system by y sequentially. Let the B; contain {(7;, d; ) }x with evolution time
7j. The evolution will generate a unitary transformation

1 . - R
Uy = l_[j:r e 17 (Hsys (D +Eacf|mjae[Haj0)) (4.2.1)

Our next step is to generate a block schedule where instructions in each block are simultaneously
executable and approximate the execution of the instruction schedule.

4.2.2 Instruction Decorations. In general, the conflict relation of instructions forms a graph F:
(1j, mk) € F means that n; and 1, cannot be executed simultaneously. To ease the description of F,
we introduce decorations to instructions to specify properties like categories of instructions. More
decorations can be added based on the detailed hardware restrictions accordingly.

Signal Lines. Physical pulses are sent to devices through signal carriers like electronic wires or
arbitrary waveform generators (AWG). A natural conflict is that if two instructions require the same
signal carrier, they cannot be executed simultaneously. We abstract the concept of signal carriers
as signal lines and assign each instruction 7 to a signal line denoted by SL(7). If SL(n;) = SL(nx),
instructions 7, x conflict with each other.
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Nativeness. Another aspect leading to conflicts is whether instruction implementations employ
compound pulses to approximate an effective Hamiltonian. For example, IBM devices generate
{IT] j,k,CRI}bY direct microwave controls of a cross-resonance pulse [Malekakhlagh et al. 2020]. Hence
the IBM-native AAIS for IBM devices has 1« cr as native instructions: they can be simultaneously
executed with other native instructions. To effectively realize {Iry j,k,ZZI}, a compound sequence
of microwaves including two cross-resonance pulses is applied to approximate a Z;Z interac-
tion [Alexander et al. 2020]. Simultaneously applying other pulses on site j or k will break the
approximation. Hence 1 7~ are derived instructions in the IBM-native AAIS.

Let inf(H) be the sites on which Hamiltonian H acts non-trivially (when limited on these sites,
H is not identity). We assume that implementing a derived instruction 1 only affects inf({5[}). Then
a derived instruction 5; conflicts with n; if inf({51[}) N inf({n2[}) is not empty.

4.2.3 Conflict Resolver via Trotterization. Given a conflict graph and an instruction schedule (S, §),
we implement a conflict resolver to generate a block schedule without conflicts in each block.

A well-studied technique in quantum information to simulate summed Hamiltonians in quantum
simulation is Trotterization. Let Hamiltonian H = Z]Lﬂ Hj where L Hamiltonians evolve the system
simultaneously. We assume we have a device supporting evolving single H; for any duration t,
realizing unitary matrix e~/ while there is no evolution under ZJL~=1 H;. Trotterization (also
known as the product formula algorithm) [Lloyd 1996] makes use of the Lie-Trotter formula

. ) , N
e i = lim, e (ﬂAe_'%Hf)n ~ (nle_’ﬁHf) . (4.2.2)
J J

By choosing a large N, the above formula shows that we can approximate the evolution under H
for time T by repeating for N times a sequential evolution for j € {1,..., L} under H; for time t/N.
Each segment of evolution realizes a unitary transformation e~*(*/N)H, as in the formula.

First, we consider the case where H,ys = 0. Each (Cg, 74) in S is considered independently. Let
Ca = {(n;,d;)}; and the conflict graph of these instructions be F. To accommodate Trotterization in
a conflict resolver, we first categorize the instructions into groups without conflict. The grouping is
effectively a coloring of vertices in F where no edge connects monochromatic vertices. We employ
a greedy graph coloring algorithm from NetworkX [Hagberg et al. 2008] to find a feasible grouping
{G j}]L.=1 with L colors where G; contains instruction executions in the j-th group.

A temporal graph in a block schedule can depict the process in (4.2.2). Let H; be the Hamiltonian of
simultaneous instruction executions in G;, Hj = 2, ((nca) e, Imelt (ax), and R be the Trotterization
number specified by users. An evolution of H; for time 7,4/R corresponds to a block B; = (G}, 74/R).
Then a sequential evolution of {H; }51:1 forms a chain B; — - - - — Br. We create R copies of this
chain and connect them sequentially to represent the Trotterization process.

Additionally, we deal with the cases where the system Hamiltonian Hgy, is non-zero. Let L be
the maximal coloring number L in the above process. We assume that there exists g; such that
Hqys(G;) = Heys(9)/ L. Some devices may not support this assumption, but it is rarely used since only
a few devices with non-zero system Hamiltonian have conflicting instructions. We then augment
the number of groups to L for each (C i, 7j) € S by adding empty sets in groupings. Now we create
a block schedule with g; and a temporal graph constructed on the augmented groupings. Executing
this block schedule approximates the execution of the given instruction schedule.

4.2.4  Error Induced by Conflict Resolver. The Trotterization resolves conflicts while also introducing
errors. We denote the instruction schedule where S = {({(94,j, d4,)} j, 7a) }dD:1 and its evolution as

U(T). For segment d of evolution in S, we assume the grouping is {G}j }]L; and the evolution by
executing the block schedule as U(T).
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LEMMA 4.2 ([CHILDS ET AL. 2018]). The difference between U(T) and U(T) of evolution after
resolving conflicts by Trotterization is bounded by

AT)?
(AD” 4% (4.2.3)
DR

|O(T) - 0(T)| <

, D and R are the discretization and Trotterization numbers.

Here A = max La[ 2 ;o1 111(@)

Asimplied by this lemma, in ideal cases, increasing the Trotterization number reduces the induced
error to arbitrarily small. However, it also increases the total number of instruction executions.
Due to the non-negligible error accumulations in each instruction execution on devices, there is a
trade-off over the Trotterization number R depending on the real-time parameters of the device,
where we leave the freedom to user specification.

Optimization techniques for Trotterization are also well-developed in theory [Childs et al. 2021],
and we discuss their implementation in the extended version [Peng et al. 2023b] Appendix.

4.3 Signal Line Schedules and Scheduler

The eventual output of SimuQ contains the pulses sent through signal carriers for devices to execute.
We propose another intermediate representation, called a signal line schedule, to depict the concrete
instruction executions sent through each signal line abstracted in Section 4.2.2 before generating
platform-dependent executable pulses. For signal line /, it contains a list of instruction executions
(n, G, 75, T) with absolute starting and ending times and satisfying SL(n) = L.

To obtain a signal line schedule, we build a scheduler to traverse the temporal graph of the block
schedule via a topological sort and generate a valid execution order of block schedules. It employs
a first-arrive-first-serve principle for each signal line. The scheduler first extracts information
about how long implementing each instruction execution takes from real devices. Next, it arranges
instruction executions on the signal lines at the earliest possible starting time obeying the order.

REMARK 4.2. The scheduling process may be independently configured and optimized, and the
scheduler may use other criteria to determine the traversal order of instruction blocks or the alignment
of blocks within the scheduled order as long as the hardware permits. This freedom in the scheduling
process may be leveraged to reduce cross-talk [Murali et al. 2020] between the blocks or save small
implementation overheads. We illustrate only a basic strategy and leave the exploitation for the future.

4.4 Pulse Schedules and Pulse Translator

In its final stage, the SimuQ compiler translates a signal line schedule into a pulse schedule using
hardware providers’ domain languages and APIs.

We extract the pulse shapes from the devices for each platform to implement instruction execu-
tions. We substitute the instruction execution on each signal line for pulse shapes configured by the
valuations of local variables via the format specified by a pulse-enabled quantum device provider.

4.4.1 Translation to Hardware APIs. There are few pulse-enabled quantum device providers, and
programming pulses is a challenging endeavor that requires extensive platform knowledge of
various hardware and software engineering considerations. We demonstrate the effectiveness of
SimuQ using QuEra, IBM, and IonQ devices.

QuEra’s Rydberg atom devices. Two APIs to QuFEra devices are supported by SimuQ for the
global Rydberg AAIS: Blogade [QuEra 2022] programs and Amazon Braket programs. We set the
atom positions according to the valuation of global variables and laser configurations as piecewise
constant functions according to the valuations of local variables. Since the detuning A and amplitude
Q generate linear effects, piecewise linear laser configurations are also supported as an option. For
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Amazon Braket programs, Q(¢) should start and end at amplitude 0, so we add short (0.1ms) time
intervals to the pulses’ beginning and end with linear ramping. We also scale the pulse schedules
to a total length of around 3.5ms to fit in the 4ms duration limit of the device.

IBM’s superconducting devices. For IBM devices, SimuQ can generate Qiskit Pulse programs
for the Heisenberg AAIS and the IBM-native AAIS. For single-site instructions, the IBM device
supports implementations of native X and Y instructions and derived Z instructions. We build up
DRAG pulses [Motzoi et al. 2009] to realize X and Y instructions and free Z rotations [McKay et al.
2017] to realize Z instructions, which are standard superconducting device techniques. Two-qubit
instructions in the Heisenberg AAIS are realized through the Z;Xj interactions created by echoed
cross resonance pulses [Malekakhlagh et al. 2020] together with single-qubit evolution to change
bases. We follow Earnest et al. [2021] and realize interaction-based gate implementations, whose
benefits are further explained in Section 5.3. Additionally, we extract cross-resonance pulses from
Qiskit and compose pulses to realize native 7 x cg in the IBM-native AAIS.

IonQ’s trapped-ion devices. SimuQ supports both IonQ cloud and Qiskit circuit programs for
IonQ devices with the Heisenberg AAIS. Unlike QuEra and IBM devices, IonQ does not provide
pulse-level programmability for their ion trap devices. However, we can still exploit their native
gate set to generate a quantum circuit with precise control of the execution on their devices. With
the support of partially entangling Mglmer-Sgrenson gate [Serensen and Mglmer 2000], we can
implement instructions of the Heisenberg AAIS with higher fidelity. More details are explained in
our case studies in Section 5.3.

4.4.2 Semantics of Pulse Schedules and Errors in Instruction Implementation. Abstractly, a pulse
schedule includes a time-dependent function ﬁ (t) (pulses) for signal line I, generating the effective
Hamiltonian H;(t) physically. For example, instruction execution (1, 4, 7, 7.) for signal line [ in the
signal line schedule should be translated into pulses ﬁ () that effectively generate H;(t) = {n[}(a)
for 7; < t < .. Collectively, the Hamiltonian on the device is Hyey (t) = Hgys + 2,y Hi(t), and the
semantics of executing a pulse schedule is the unitary evolution under Hgey (). Yet, the implemen-
tation of instructions on real devices may be imperfect. We assume that there is a implementation
error threshold A such that the on-device H;(t) and ﬁsys satisfies max; ||ﬁ1(t) - Hl(t)H < A and
”ﬁsys - Hsys” < A, forming on-device evolution under Hyey (1) = ﬁsys +2 H;(t). Since the signal
line scheduler does not alter the semantics of block schedules, we bound the implementation error
on the device.

LEMMA 4.3 ([NIELSEN AND CHUANG 2002]). The difference between the unitary U(T) on the device
and the unitary U(T) of executing the block schedule generated by the conflict resolver is bounded by

|0(T) - U(T)|| < CsSATT, (4.4.1)
where Cs3 > 0 is a constant, S is the number of signal lines and system Hamiltonians, andI' = maxy Ly

is the maximal number of groups in the conflict resolver.

With a faithful implementation of instructions on real devices, the pulse translator produces
negligible errors. The proof is routine in quantum information and is therefore omitted. We remark
that other forms of device errors (e.g., high-energy space leakage) can be analyzed similarly.

4.5 Semantics Preservation of SimuQ Compiler

If compilation succeeds, the SimuQ compiler generates executable pulse schedules from programmed
quantum systems with bounded errors. We conclude the approximate semantics preservation
theorem of the SimuQ compilation process using Lemma 3.1, Lemma 4.1, Lemma 4.2, and Lemma 4.3.
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Fig. 11. The simulation errors of the 6-site Ising models on multiple platforms. Ideal results are obtained by
compiling with SimuQ and executing on noiseless simulators.

THEOREM 4.4 (SEMANTICS PRESERVATION). Given a Hamiltonian H,, (t) = le ax(t)Hy where
ay. is piecewise M-Lipschitz and ||Hy|| = 1, if the compilation succeeds, SimuQ generates a site layout
L and an executable pulse schedule. Let the unitary U(T) represent the evolution under Hy, (1) for
duration [0, T] and U(T) for the evolution executing the pulse schedule on the device. We have

| £U(T)) = U(T)|| < CiD*MKT? + Cye + (AT)?D™'R™'e DR + C3SATT. (4.5.1)

Here, T is the evolution time, L is the site layout mapping of layout L, Cy, Cy, C3 are constants, D is
the discretization number, € is the error threshold in Hamiltonian synthesizer, R is the Trotterization
number, A is the instruction implementation error threshold, S is the number of signal lines and system
Hamiltonians on the device, and A and T depend on the Trotterization strategy in the compilation.

Tuning D, €, R and improving the implementation to decrease § can reduce errors induced by the
SimuQ compiler to arbitrarily small. The evolution under Hi,, is hence simulated on the device.

5 CASE STUDIES

We conduct several case studies highlighting SimuQ’s portability and the advantages of Hamiltonian-
oriented compilation, including native instructions and interaction-based gates. We also establish a
small benchmark of quantum simulation to evaluate the SimuQ compiler performance.

5.1 Multiple-Platform Compatability

We compile and execute the Ising model on multiple supported devices of SimuQ. The following
experiments show the portability of SimuQ on heterogeneous analog quantum simulators. We only
need to program the target quantum systems once and apply the SimuQ compiler to generate code
for different platforms and deploy and execute them on multiple real devices.

We focus on the simulation of the Ising model introduced in Section 2.2. We demonstrate two
instances: a 6-site cycle and a 6-site chain, mathematically depicted by

5 6
Hehain = Zj:l Zij+1 + Zj:l Xj, Hcycle = Hehain + Z1%s. (5'1'1)

The target quantum system is to simulate Heycle and Hepain for T = 1. When Trotterization is utilized,
we set the Trotterization number to be 4, which is empirically selected based on experiment results.

SimuQ successfully compiles Heyee on QuEra devices using the global Rydberg AAIS, both
Heyele and Hepain on IonQ devices using the Heisenberg AAIS, and Hepain on IBM devices using the
Heisenberg AAIS. We send the generated code to execute on corresponding devices. Since QuEra
devices do not support state tomography, we evaluate the results on these platforms by a metric
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based on measurements supported by all devices in our experiments. We obtain the frequency of
reading a bit-string s in a measurement instantly after the simulation finishes as a distribution
Pexp[s] and numerically calculate the ground truth distribution Pgr[s] of obtaining s. We utilize
the total variation distance TV (Pexp, PoT) = % 2se{01}¢|Pexp[s] — Par[s]| to evaluates the errors.
We present the classical simulation of devices and real device execution results in Figure 11.

The minor errors in the classical simulations indicate the correctness of our framework. In ideal
cases, the errors are induced by uncancellable non-neighboring Z; 7 interactions and short ramping
times for the global Rydberg AAIS and by Trotterization errors for the Heisenberg AAIS. The real
device execution results show higher errors than classical simulation because of device noises,
while they are valid quantum simulation results. The errors on the IBM device are non-monotone,
likely because the large state preparation and measurement errors affect more heavily the cases
where the states deviate only a little from the initial state.

SimuQ fails to compile Hcp,in on QuEra devices since it requires different local detuning parame-
ters for different sites, which current QuFEra devices and the global Rydberg AAIS do not support.
It also fails to compile Hycle on IBM devices since there is no 6-vertex cycle in IBM devices.

5.2 Hamiltonian-Oriented Compilation with Native Instructions

The most significant benefit of enabling Hamiltonian-level programming is to gain fine-grained
and multi-site control via native operations. Near-term quantum devices have short coherence
times: quantum states will deteriorate and lose their quantumness quickly. Generating shorter
pulses to achieve the same effects is one of the crucial tasks for compilers of modern quantum
devices. In this case study, we showcase the advantage in the lengths of pulse schedules enabled by
Hamiltonian-oriented compilation using the IBM-native AAIS.

Our target quantum system evolves under Hyzx = Z1 Xz + X223 for time T = 1, a small 3-site
system. The IBM-native AAIS contains two native instructions 7,2 cr and 33 cr with Z1X; and
X,Z5 interactions respectively. Following Greenaway et al. [2022], the simultaneous execution of
them can be realized by simultaneously applying two cross-resonance pulses on IBM devices. By
automatically compensating the other terms in SimuQ with native instructions r, x and derived
instructions 1y z and ny 7 (their effects commute with ﬂryLz,CR[} and 732 cr so no Trotterization
is needed), the uncancellable remains are Z;Z;, interactions and Z,Z3 interactions. Fortunately,
they can be reduced to one magnitude smaller than Z; X, and X,Z3 interactions when selecting a
relatively large Q, and are considered small errors in the compilation. The pulse schedule to realize
Hazx, displayed in Figure 12, is around 280ns long.

H,zx can also be compiled on IBM devices by a circuit-based compilation with the help of
Qiskit. It first decomposes the simulation into a circuit with two gates Rz, x, (2)Rx,z, (2) where
Rz,x,(0) = e7"(0/2ZXk Tt then invokes Qiskit’s transpiler to decompose each Rz x, (6) into two
CNOT gates and several single qubit gates and generates a Qiskit pulse schedule, which is displayed
in Figure 13 and is around 1660ns long. This is around six times longer than the pulse schedule
generated by SimuQ using the IBM-native AAIS.

5.3 Hamiltonian-Oriented Compilation with Interaction-based Gates

For some devices that lack the support of simultaneous instruction executions by native operations,
we can still exploit the capability of realizing gates based on evolving interaction for various time
periods. By interaction-based gates, we refer to quantum gates of form Ry (t) = e~ "*H| where the
time duration of the pulse shapes implementing them is strongly correlated with t. These gates are
common on platforms supporting universal gates like IBM devices and IonQ devices but are not
exploited in their provided compiler due to the hardness in calibration. Under the conventional
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Fig. 14. Pulses generated by SimuQ for evolving ZpZ; for T = 1.
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circuit-oriented compilation where quantum programs are compiled to a gate set with fixed number
2-qubit gates (typically, only CNOT gates), interaction-based gates are decomposed using multiple
2-qubit gates for the convenience of calibration, like Rz, x, (¢) gates that are decomposed using
2 CNOT gates by Qiskit and translated to a pulse schedule of long and fixed duration. Although
interaction-based gates cannot be simultaneously applied on devices when overlapping sites exist,
exploiting them can still significantly reduce the duration of generated pulse schedules and increase
the fidelity of simulations as observed in [Earnest et al. 2021; Stenger et al. 2021].

In this section, we implement the quantum approximate optimization algorithm (QAOA) in
SimuQ and execute it on IBM and IonQ devices. The QAOA algorithm is a classical-quantum
Hamiltonian-oriented algorithm designed to solve combinatorial problems. We omit the algorithm
analysis and refer interested readers to [Farhi et al. 2014]. We consider the quantum simulation
part of a typical case of the QAOA algorithm, where the target quantum system evolves under a
length-p sequence of alternative evolution between H; and H; where

N-1 N
H, =7ZZnx+ Zj:l Zij+1, H, = Zj:l Xj. (5.3.1)

Here N = 12 is the problem size. Two pre-defined parameter lists {6; }§=1 and {y; }§=1 of length p
describe the time of each evolution segment. Le., the j-th segment first lets the system evolve under

H, for time 6; and then lets the system evolve under H; for time y;. Ultimately, we measure the
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sites and store the results in a bit-string s. The more precisely we simulate the system, the larger
the evaluation function C(s) = [{j : 1 £ j £ N, s; # sj41}| will be (assuming sy+1 = 7).

When compiling the target system for the Heisenberg AAIS, 1; j+1, 7z are executed frequently. We
take an execution 7, 5 7 for t = 1 as an example, which effectively realizes the gate e ~*41%2, Qiskit
decomposes it with 2 CNOT gates and single qubit rotation gates, and the generated pulse duration
takes a constant 662ns independent of ¢, as illustrated in Figure 15. An alternative solution is to create
Z1X, interaction constructed by echoed cross-resonance pulses for a duration positively correlated
to t with short pulses implementing Hadamard gates to effectively realize the Z;Z, interaction, as
illustrated in Figure 14. The pulse schedule is around (330t + 130)ns long to execute ﬂ’]j,jl,zzl}(l)
for time t. When t = 1, it is 462ns long, 30% shorter than the Qiskit compiler. Interaction-based
gates are especially beneficial when a program requires many short instruction executions, like
compiled simulations with a large Trotterization number.

We then compile and execute the QAOA system simulation to IBM and IonQ devices for cases
p = 1,2,3. Similarly, we reproduce this problem in Qiskit and compile it with the Qiskit compiler
(CNOT-based decomposition is applied). On IBM devices, for p = 3, the pulse schedule generated
by SimuQ is 3.35us long. In contrast, the one generated by Qiskit is 7.48us long, which is more than
two times longer?. On average, SimuQ generates pulse schedules 59% percent shorter than Qiskit.
We then execute the generated programs on IBM devices and IonQ devices. The differences of the
evaluation function C(s) measured on devices and ground truth values are present in Table 2. We
observe that, on average, the pulse schedules generated by SimuQ reduce errors (the difference
to ideal results) by 34% on IBM devices and 28% on IonQ devices for p = 3 compared to pulse
schedules from Qiskit. The advantage is less significant for shallow cases where p = 1, 2 because
of state preparation and measurement errors on real devices [Tannu and Qureshi 2019]. These
experiments demonstrate the advantage and the necessity of Hamiltonian-oriented compilation
using interaction-based gates on devices not supporting simultaneous instruction executions.

5.4 Benchmarking Quantum Simulation Compilation

To illustrate SimuQ’s capability of dealing with various quantum simulation problems, we craft
a small benchmark containing models collected from multiple domains like condensed matter
physics, high-energy physics, particle physics, and optimization. The diversity of the cases in this
benchmark of different topologies, time dependency, and system sizes exhibits our compiler’s
feasibility and efficiency in dealing with significant simulation problems.

We present the benchmark in Table 3, and further illustrations of its quantum systems are in
the extended version [Peng et al. 2023b] Appendix. We report each quantum system’s number of
sites and lines of code to implement them with HML in SimuQ. Most systems can be programmed
within 20 lines, showing the user-friendliness of programming quantum systems in SimuQ.

For each target quantum system, we compile it on the platforms supported by SimuQ using their
most capable devices in the possible future. The compilation time is averaged over 5 runs on a
laptop with Intel Core i7-8705G CPU. SimuQ compiler reports no solution (No sol.) in several cases
due to complicated interactions beyond the hardware capability of QuEra devices and the limited
connectivity of IBM devices. Limited connectivity on large IBM devices also complicates the site
layout search, making a case exceed a pre-set compilation time limit of 3600 seconds, which is
marked as a time out.

Pulse schedule duration for IBM devices using SimuQ and Qiskit to compile is reported. On
average, Qiskit’s default compilation passes generate 29.3 times longer pulse schedules than the

2TonQ devices do not support reporting pulse schedule duration.
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Table 3. A benchmark of quantum simulation problems. We program and compile the models in SimuQ to
obtain pulse schedules for QuEra and IBM devices and quantum circuits for lonQ devices. We record the
compilation time (comp. time), the pulse duration (P.D.), and the 2-qubit gate count for the generated circuits.
No. sol. represents cases where the SimuQ compiler reports no solution because of hardware constraints, such
as limited interactions of QuEra devices and machine topology for IBM devices. Time out is reported when
the compilation takes more than an hour, which happens in the search for a 64-qubit cycle on IBM devices.

System LoC #of | QuEra IBM IonQ
name sites | Comp. | Comp. | P.D. (us) | P.D. (us) | Comp. # of
time (s) | time (s) | SimuQ Qiskit | time (s) | 2q-gate

6 0.177 0.224 2.06 8.69 0.155 20

ising chain | 13 32 39.3 54.6 3.24 39.2 47.2 124
- 64 663 257 3.15 81.2 680 252

96 2298 1086 3.26 450 3568 380

6 0.585 No. sol. 0.13 24

ising cycle 13 12 3.47 1.49 2.05 37.8 1.37 48
- 32 114 483 3.35 144 53.8 128

64 3454 Time out 907 256

heis_chain 15 32 No. sol. 143 10.1 119 138 372

qaoa_cycle | 19 12 | No. sol. 0.503 0.83 37.6 1.5 36
ghd 16 16 | No. sol. No. sol. 66.3 480
mis chain 99 12 5.45 19.1 18.9 94 25.2 440
- 24 53.1 328 18.9 162 278 920
mis_grid 99 16 28.4 No. sol. 85.4 960
- 25 141 No. sol. 489 1600

kitaev 13 [ 18 4.67 156 | 212 | 212 8.74 68

schwinger | 18 10 | No. sol. No. sol. 1.09 28
o3nlom 19 30 | No. sol. No. sol. 71.7 588

SimuQ compiler over cases successfully compiled. We also report the number of partially entangling
Mpglmer-Serenson gates when compiling on IonQ’s devices to indicate the total duration.

6 CONCLUSION AND FUTURE DIRECTIONS

The domain-specific language SimuQ described in this paper is the first framework to consider
quantum simulation and compilation to multiple platforms of analog quantum simulators. We
propose HML for front-end users to program their target quantum systems intuitively. We also
design abstract analog instruction sets to depict the programmability of analog quantum simulators
and the AAIS-SL to program them. Furthermore, the SimuQ compiler is the first compiler to generate
pulse schedules of analog quantum simulators for desired quantum simulation.

Since this is the first feasibility demonstration of programming analog quantum simulators, there
is much optimization space for our compiler. First, since different devices have different properties
crucial to the compiler’s efficiency, we can develop compilation passes specifically for each platform.
Second, this paper employs a brute-force search with heuristics to find a site layout where more
pruning techniques are desired. Third, The hand-crafted mixed-binary equation solver can also be
optimized according to the structure of the problem. Furthermore, with a better understanding of
hardware, we can design more powerful AAISs. Lastly, we can add more compilation techniques
like [Clinton et al. 2021] to synthesize product Haimltonians not appearing directly in the given
AAIS with a combination of instruction executions.
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