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The emergence of variational quantum applications has led to the development of automatic differentiation

techniques in quantum computing. Existing work has formulated differentiable quantum programming with

bounded loops, providing a framework for scalable gradient calculation by quantummeans for training quan-

tum variational applications. However, promising parameterized quantum applications, e.g., quantum walk
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with unbounded loops, including a newly designed differentiation rule, code transformation, and their cor-

rectness proof. Technically, we introduce a randomized estimator for derivatives to deal with the infinite

sum in the differentiation of unbounded loops, whose applicability in classical and probabilistic program-

ming is also discussed. We implement our framework with Python and Q# and demonstrate a reasonable

sample efficiency. Through extensive case studies, we showcase an exciting application of our framework in
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1 INTRODUCTION

Inspired by the advantage of neural networks with program features (e.g., controls) over the plain
ones [26, 27], the notion of differentiable programming has been introduced [1, 7, 25, 66] as a
new programming paradigm, where programs become parameterized and differentiable, and has
recently stimulated active investigation (e.g., References [34, 47, 48, 60]). Specifically, many efforts
have been devoted to the development of automatic differentiation (e.g., References [20, 28]) for
various program constructs.

Quantum programming is one specific type of programming that would benefit from the study
of automatic differentiation. With the availability of the 50∼100-qubit machines, near-term Noisy

Intermediate-Scale Quantum (NISQ) machines [56] have become the major platform for quan-
tum applications. Parameterized (or variational) quantum circuits, introduced as a quantum ma-
chine learning model with remarkable expressive power [10], are one compelling candidate of
NISQ applications, including examples such as variational quantum eigensolver (VQE) [36, 54],
quantum neural networks [9, 19, 24], to the quantum approximate optimization algorithm

(QAOA) [22, 23, 32]. Similar to classical machine learning, gradient-based methods are employed
to train the loss functions, which, however, now depend on the read-outs of quantum computation.
Thus, the “quantum” gradient calculation has a similar complexity of simulating quantum circuits,
which is infeasible for classical computation.

Automatic differentiation (AD) on quantum programs, which would enable the ability of
computing quantum gradients efficiently by quantum computation, is thus critical for the scalabil-
ity of variational quantum applications. However, it is a priori unclear whether the AD technique
could extend to the quantum setting at all due to a few fundamental differences between quan-
tum and classical. First, an appropriate formulation of the differentiation in quantum computing
is important, because the outcomes of quantum programs are quantum states rather than classical
variables. Second, the quantum no-cloning theorem [71] prohibits the duplication of intermediate
states in quantum programs, which prohibits the natural extension of the classical forward-mode
and reverse-mode differentiation [1] to quantum.
Fortunately, a series of recent research on analytical formulas of “quantum” gradients [9, 24,

31, 49, 59] has helped (partially) overcome these difficulties and thus enabled AD on quantum
circuits, which has already been adopted in major quantummachine learning platforms, including
Tensorflow Quantum [16] and PennyLane [12].

Zhu et al. [77] provide the first rigorous formalization of the AD technique for quantum pro-
grams with bounded loops beyond quantum circuits. They also leveraged their framework in the
training of a VQC instance with controls, which has superior performance than normal VQCs for
certain machine learning tasks.

Quantum Applications with Unbounded Loops. Most existing AD results in quantum com-
puting have been focusing on applications of variational quantum circuits (or their variants) for
a few designated tasks, which misses the opportunity to investigate more sophisticated quantum
algorithms. For example, parameterized quantum programs with unbounded loops can describe a
rich family of quantum algorithms with a few unspecified parameters, which could be trained to
help quantum programs meet the runtime requirement, e.g., achieving quantum speedup in the ex-
amples of quantum walk [3] and amplitude amplification [15] or generating desired unitaries that
are unknown beforehand in the example of the repeat-until-success unitary implementation [14].
Analytical derivation of these parameters, if ever possible, would likely require domain knowledge
of the underlying problem and is usually done in a case-by-case fashion. Instance-driven gradient-
based search of these parameters is a promising alternative, which is only possible with the AD
technique for unbounded loops.
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Let us dive into a simple example based on amplitude amplification (AA). A direct adoption
of the textbook AAwould be written as a for-loop with a given number of iterations. However, this
number of iterations is often hard to determine beforehand, which makes it desirable to write the
algorithm as a while-loop (i.e., an unbounded loop) and let the program decide when to terminate.
To that end, a framework with while-loops and parameterized weak measurements has been

introduced [4, 50] as the parameterized AA program in Figure 1, where parameter θ controls the
coupling strength between the search variable q and the measure variable r . The choice of θ is crit-
ical in achieving quantum speedups. While an analytical solution of θ exists for certain quantum
speedup [4], its optimal choice that minimizes the expected runtime is still unknown.

Fig. 1. Parameterized AA.

As shown in our case study, gradient-based methods in differ-
entiable quantum programming could automatically identify a
better choice of θ than existing literature [4, 50] without domain
knowledge about the AA algorithm, the promise of which also
extends to parameterized quantum random walks and repeat-
until-success unitary implementation. This provides a strong
motivation to develop the AD technique for unbounded quantum
loops. However, there is no general AD solution for unbounded
loops even in classical (imperative) programs [55], which ques-
tions the feasibility of our goal.
Indeed, as we elaborate on in Section 3, unbounded loops introduce serious challenges in AD for

classical, probabilistic, and quantum programs. Moreover, unique features of quantum programs,
such as the no-cloning theorem and the branching induced by measurements, further restrict the
available AD techniques for quantum programs with unbounded loops.
Contributions. We overcome these challenges and develop a differentiable quantum program-
ming framework for unbounded loops, with the following contributions:

— A formulation of parameterized quantumwhile-language with unbounded loops and a new
parameterized unitary operation called the density operator exponentiation e−itσ of any
density operator σ that allows the inclusion of more unitary gates. (Section 4)

— A sufficient condition (i.e., finite-dimensional program state space) for the differentiability
of quantum programs with unbounded loops (Theorem 4.5). We also exhibit an example
of non-differentiable infinite-dimensional quantum programs (Example 4.6) to demonstrate
the difference between finite and infinite dimensional quantum programs for differentiation.
(Section 4)

— An AD scheme for quantum programs with unbounded loops with two components:
(1) Differentiation on a Single-Occurrence of Parameter (DSOP) for quantum circuits
with respect to a parameter with a single occurrence; and (2) Extension to Unbounded

Loops (EUL) for unbounded loops based on any DSOP. We contribute a new DSOP tech-
nique, called the commutator-form rule inspired by Reference [44] for general e−iθH , with a
more general applicability.1 We also develop the code transformation and establish its cor-
rectness (Theorem 5.4). (Section 5)

— Implementation of our AD scheme with Python and Q# and discussion of its relevant sample
efficiency, in which we provide an upper bound that matches the one of Zhu et al. [77] when
there is no unbounded loop. (Section 6)

— Extensive case study on the gradient-based approach for automatically identifying unknown
parameters in quantum algorithm design, which includes the parameterized AA algorithm,

1It removes the limitation of the parameter-shift rule that is only applicable when H has at most two distinct eigenvalues.
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Table 1. A Summary of Notation Used in This Article

Sets, Spaces States Operators, Operations

H ,Hq Hilbert space |ψ 〉, |0〉, |1〉, |+〉, |−〉 pure state
U ,V , e−iθσ ,

H ,X ,Y ,Z ,X ⊗ X unitary

L (H )
linear operators
ofH ρ,σ , |ψ 〉〈ψ | density operator

M, {Mm }, {|0〉〈0|, |1〉〈1|}
O =

∑
m λm |ψm〉〈ψm |

measurement
observable

D (H )
partial density
operators ofH ρ with tr(ρ) ≤ 1

partial density
operator E : ρ �→ ∑

j EjρE
†
j superoperator

quantum walk with parameterized shift operator on 2D grids, and unitary implementation
with parameterized repeat-until-success algorithms. (Section 7)

Related Work. There is a rich literature on differentiation rules of quantum circuits [5, 35, 39, 42,
49, 59, 65, 68]. These researches focus on how to use quantum hardware to derive the derivative of
the expectation function of a parametrized quantum circuit. For Pauli rotationsU (θ ) = e−iθΔ/2,Δ =
X ,Y ,Z , Li et al. [42] and Mitarai et al. [49] first proposed a formula that only needs to run the
initial circuit twice with different parameters to find the derivative. Then, Schuld et al. [59] named
this formula the “parameter-shift rule” and expanded it to a general case of U (θ ) = e−iθH with
Hamiltonian H having at most two distinct eigenvalues. Recently, independent developments of
variants of the parameter-shift rules (general parameter-shift rules) [35, 39, 68] were proposed for
general Hamiltonian H . Their works can be traced back to an observation that the expectation
function of a PQC with a single parameter is a finite Fourier series [65]. Our commutator-form
rule, which is applicable to e−iθH for general H , is based on a very different technique and has a
simple form compared to general parameter-shift rules.
Most existing AD techniques in quantum computing [12, 16, 21, 38, 46, 51] work with sim-

ple languages describing quantum circuits without any control flow. Some of these results, e.g.,
Yao.jl [46], also apply classical AD techniques to classical programs that simulate quantum cir-
cuits, which is, unfortunately, not scalable for real quantum applications.
The only exception and also the closest work to ours is Reference [77], which proposed differen-

tiable quantum programming with bounded loops beyond quantum circuits. Although the syntax
in Reference [77] supports general parameterized gates, its code transformation only supports
Pauli rotation gates based on a variant of the parameter-shift rule. To handle AD of bounded quan-
tum loops, Zhu et al. [77] used a finite collection of quantum programs and added up their outputs
for the derivative. As elaborated on in Section 3, one cannot extend this approach to a collection of
unbounded sizes like unbounded loops in this article. The correctness and feasibility of this article
to deal with infinite summation caused by unbounded loops is the main difficulty, which Zhu et al.
[77] did not encounter. Moreover, the efficiency of this article is comparable to Reference [77] in
the bounded-loop setting. Thus, this article strictly improves Reference [77].

2 QUANTUM PRELIMINARIES

In this section, we recall some basic knowledge of quantum computing and provide a summary
of notation in Table 1. The reader can consult the standard textbook [52, Chapter 2, 4] for more
details.

2.1 States and Hilbert Spaces

The state space of an isolated quantum system is represented by a complex Hilbert space. We use
the Dirac notation |ψ 〉 to denote a (column) vector in a Hilbert space. The (vector dual) Hermitian
conjugate of |ψ 〉 is (a row vector) denoted by 〈ψ |. The inner product of |ψ 〉 and |ϕ〉 is denoted by
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〈ϕ |ψ 〉, considered as a shorthand for 〈ϕ |( |ψ 〉). The norm of a vector |ψ 〉 is defined as ��|ψ 〉�� = √
〈ψ |ψ 〉.

A unit vector is referred to as a pure state.

Example 2.1 (Qubit System). The state space of a quantum bit (qubit) is a 2-dimensional Hilbert
spaceH2 = C

2 with |0〉 = ( 1
0

)
and |1〉 = ( 0

1

)
being the computational basis. A pure state |ψ 〉 ∈ H2

can be expressed as

|ψ 〉 = α |0〉 + β |1〉 with |α |2 + ��β ��2 = 1.

There are also two states of the qubit system that often appear: |+〉 = 1√
2
( |0〉+ |1〉), |−〉 = 1√

2
( |0〉−

|1〉). They also form a basis ofH2.

A (linear) operator is a linear mapping between Hilbert spaces, and the set of all operators from
H toH′ is denoted by L (H ,H ′). Specifically, an operatorA ∈ L (H ,H ) is said to be an operator
onH and write A ∈ L (H ). We often write IH for the identity operator onH .

The Hermitian conjugate (adjoint) of an operator A is denoted by A†. An operator A on H
is Hermitian if A† = A. An operator A on H is positive semidefinite if for all vectors |ψ 〉 ∈ H ,
〈ψ |A|ψ 〉 ≥ 0. The Löwner order 
 is defined as A 
 B if B −A is positive semidefinite. The trace of
an operator A onH is defined as tr(A) =

∑
j 〈ψj |A|ψj 〉, with {|ψj 〉} an orthonormal basis ofH .

Example 2.2 (Outer Product). The outer product of two states |ψ 〉, |ϕ〉 ∈ H , denoted by |ψ 〉〈ϕ |, is
an operator onH defined as ( |ψ 〉〈ϕ |) ( |φ〉) = |ψ 〉 · (〈ϕ |φ〉) = 〈ϕ |φ〉|ψ 〉 for any |φ〉 ∈ H . In particular,
the trace of |ψ 〉〈ϕ | is∑
j

〈ψj |( |ψ 〉〈ϕ |) |ψj 〉 =
∑
j

〈ψj |ψ 〉〈ϕ |ψj 〉 =
∑
j

〈ϕ |ψj 〉〈ψj |ψ 〉 = 〈ϕ |
(∑

j

|ψj 〉〈ψj |
)
|ψ 〉 = 〈ϕ |IH |ψ 〉 = 〈ϕ |ψ 〉.

For example, the operator |0〉〈−| maps |1〉 to 〈−|1〉|0〉 = − 1√
2
|0〉 and tr( |0〉〈−|) = 〈−|0〉 = 1√

2
, which

can be illustrated in matrix multiplication as

|0〉〈−|( |1〉) =
((
1
0

)
·
(

1√
2

− 1√
2

))
·
(
0
1

)
= − 1

√
2

(
1
0

)
= − 1

√
2
|0〉,

tr( |0〉〈−|) = tr

((
1
0

)
·
(

1√
2

− 1√
2

))
=

1
√
2
.

When the state of a quantum system is not completely known, people may think of it as amixed

state (ensemble of pure state) {(pj , |ψj 〉)} meaning that it is at |ψj 〉 with probability pj . A density

operator for this system is defined as ρ =
∑

j pj |ψj 〉〈ψj |. Formally, a density operator ρ on a Hilbert
space H is a positive semidefinite operator with tr(ρ) = 1. Moreover, a partial density operator ρ
on H is defined as a positive semidefinite operator with tr(ρ) ≤ 1. We use D (H ) to denote the
set of partial density operators onH .

2.2 Quantum Operations

Unitary Transformations. An operator U on a Hilbert space H is a unitary transformation if
U †U = UU † = IH . A unitary transformationU describes the evolution from any pure state |ψ 〉 to
U |ψ 〉. For mixed states, this evolution is reformulated as from any mixed state ρ to U ρU †.

Example 2.3 (Common Single-qubit Unitaries). Common single-qubit unitary operators include
H (Hadamard gate) and X ,Y ,Z (Pauli gates). Their matrix representation with respect to basis
{|0〉, |1〉} are:

H =
1
√
2

(
1 1
1 −1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.
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The H gate can transform the computational basis {|0〉, |1〉} and the basis {|+〉, |−〉} into each
other as H |0〉 = |+〉,H |1〉 = |−〉 and H |+〉 = |0〉,H |−〉 = |1〉. In addition, we can write H in the
form of outer products as H = |+〉〈0| + |−〉〈1| = |0〉〈+| + |1〉〈−|. The X gate acts as a “Not” gate,
exchanging |0〉 and |1〉, i.e., X |0〉 = |1〉,X |1〉 = |0〉; thus, we can write it in the form of outer
products asX = |1〉〈0|+ |0〉〈1|. Similarly, we can also write Y = i |1〉〈0| − i |0〉〈1|,Z = |0〉〈0| − |1〉〈1|.

Measurements and Observables. Ameasurement on a system with a state spaceH is described

by a collection {Mm } ofmeasurement operators onH with the completeness equation:
∑
m M†

mMm =

IH .When performing a measurement {Mm } on a pure state |ψ 〉 and a mixed state ρ, the outcome of

indexm occurs with probabilityp (m) = 〈ψ |M†
mMm |ψ 〉 andp (m) = tr(MmρM†

m ), the corresponding

state of the system after the measurement is |ψm〉 = Mm |ψ 〉/
√
p (m) and ρm = MmρM†

m/p (m),
respectively. In the context of mixed states, if we do not know the outcome of the measurement,

the state of the system after the measurement can be described by
∑
m p (m)ρm =

∑
m MmρM†

m .
A projective measurement is often described by an observable, M , a Hermitian operator on H .

The spectral decomposition of M =
∑
mmPm corresponds to a quantum measurement {Pm } with

measurement outcome m for each Pm . The average value of this measurement performed on a
state |ψ 〉 is 〈ψ |M |ψ 〉. The value 〈ψ |M |ψ 〉 is often written as 〈M〉 and called the expectation of M .
For a mixed state ρ, the expectation ofM is tr(Mρ).

Example 2.4 (Pauli Measurements). The Pauli gates X ,Y ,Z are also Hermitian and therefore
are observables. For example, X admits a spectral decomposition X = |+〉〈+| − |−〉〈−|, then it
describes the measurement M = {M1 = |+〉〈+|,M−1 = |−〉〈−|}. For a mixed state ρ = 1

4 |0〉〈0| +
3
4 |1〉〈1|, the measurement M will result in the state |+〉〈+|ρ |+〉〈+|/ tr( |+〉〈+|ρ |+〉〈+|) = |+〉〈+|
with probability tr( |+〉〈+|ρ |+〉〈+|) = 1

2 and the state |−〉〈−| with probability 1
2 . Moreover, the

measurement outcome will be 1 with probability 1
2 and −1 with probability

1
2 , thus the expectation

of the measurement outcome is 0 = 1
2 −

1
2 = tr( |+〉〈+|ρ) − tr( |−〉〈−|ρ) = tr(Xρ).

General Quantum Operations. A superoperator is a linear mapping between L (H ) and L (H ′).
For mixed states, unitary transformations andmeasurements can be described by a general form of
completely positive and trace-non-increasing superoperators, which has the Kraus representation:∑

j Ej (·)E†j with Ej ∈ L (H ,H ′) and
∑

j E
†
j Ej 
 IH [69]. The Schrödinger-Heisenberg dual of a

superoperator E with the Kraus representation E (·) = ∑
j Ej (·)E†j is E∗ (·) =

∑
j E

†
j (·)Ej .

2.3 Composite Systems and Tensor Products

The tensor product of two vectors |ψ1〉 and |ψ2〉 is denoted by |ψ1〉⊗|ψ2〉, which is sometimeswritten
as |ψ1〉|ψ2〉 or even |ψ1ψ2〉 for short. The tensor product of two Hilbert spacesH1 andH2 is denoted
byH1 ⊗ H2. For any linear operator A1 ∈ L (H1) and A2 ∈ L (H2), their tensor product operator
A1 ⊗A2 ∈ L (H1 ⊗H2) is defined by linear extensions ofA1 ⊗A2 ( |ψ1〉 ⊗ |ψ2〉) = (A1 |ψ1〉) ⊗ (A2 |ψ2〉)
for any |ψ1〉 ∈ H1, |ψ2〉 ∈ H2.

The state space of a composite quantum system is the tensor product of its components’ state
spaces, e.g., if a system with two components in state |ψ1〉 ∈ H1 and state |ψ2〉 ∈ H2, respectively,
then the joint state of the composite system is |ψ1〉 ⊗ |ψ2〉 ∈ H1 ⊗H2. For mixed states, if a system
with two components in the state ρ1 ∈ D (H1) and the state ρ2 ∈ D (H2), respectively, then the
joint state of the composite system is ρ1 ⊗ ρ2 ∈ D (H1 ⊗ H2).
For two Hilbert spacesH1,H2 and any operator A ∈ L (H1 ⊗ H2), the partial trace over space

H2 of A is trH2
(A) =

∑
j (IH1

⊗ 〈ψj |)A(IH1
⊗ |ψj 〉) ∈ L (H1), where {|ψj 〉} is an orthonormal basis

of H2 and we often write tr2 for trH2
if there is no ambiguity. The notion of partial trace can

be used to describe sub-systems of a composite quantum system. Suppose we have a composite
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Fig. 2. Four while-loop programs to demonstrate unbounded loops in quantum programs.

system with two components q1 and q2, whose state spaces are H1 and H2, respectively, and the
whole state of the composite system is ρ ∈ D (H1 ⊗ H2), then the state of component system q1
is a reduced density operator defined as tr2 (ρ).

Example 2.5 (n-qubit System). The state space of n-qubit system is H = (C2)⊗n � C2
n
, which

is the tensor product of n copies of the state space of single qubit, with {|x〉 | x ∈ {0, 1}n } being
the computational basis. Thus, an n-qubit pure state |ψ 〉 can be expressed as

∑
x ∈{0,1}n αx |x〉 with∑

x ∈{0,1}n |αx |2 = 1. For example, an important 2-qubit state is the Bell state |β00〉 = 1√
2
( |00〉+|11〉) ∈

C
2 ⊗ C2. This state embodies quantum entanglement, because it cannot be written as |ψ1〉 ⊗ |ψ2〉

for any |ψ1〉, |ψ2〉 ∈ C2.

3 CHALLENGES AND OUR KEY IDEAS

Let us revisit classical, probabilistic, and quantum programs as shown in Figure 2 with one un-
bounded loop to understand their features, differences, and corresponding difficulties in differ-
entiation. We assume some simple quantum terminology and refer readers to a more detailed
preliminary in Section 4.
While-loop, an important construct making an imperative programming language Turing-

complete, may cause an arbitrary number of loops or infinite loops (not terminated). In classical

(deterministic) programs, such as Figure 2(a), the variable r is assigned with an integer k . When
k ≥ 0, the while-loop will execute the loop body k times and terminate, and when k < 0, the
while-loop will execute the loop body for infinitely many times and not terminate. Nevertheless,
due to the deterministic nature of classical programs, for fixed inputs, there is one and only one

path of the program execution.
However, there may be an infinite number of execution paths in a quantum program or proba-

bilistic program. In Figure 2(b), the command r � 0 ⊕0.5 1 assigns 0 to variable r with probability
0.5 or 1 to r with probability 0.5 otherwise. Thus, the probability of the probabilistic program
in Figure 2(b) executing the loop body k , k ≥ 0, times is 0.5k+1, which means this program has
an infinite number of execution paths. Similarly, the quantum program in Figure 2(c) also has an
infinite number of execution paths. Let us see the execution of the program in Figure 2(c):

(1) First, r is assigned with state |−〉 = ( |0〉 − |1〉)/
√
2.

(2) Second, in the measurement of the while-loop, state |−〉 is measured with {M0 = |0〉〈0|,M1 =

|1〉〈1|}. The measurement outcome will be 0 with probability 〈−|M0 |−〉 = 0.5 and 1 with

probability 〈−|M1 |−〉 = 0.5. When the outcome is 0, the program will terminate; when the
outcome is 1, the measured state of r will become |1〉, and the program will enter the loop
body (3).

(3) In the loop body, applied with H , the state of r becomes |−〉 = H |1〉 = 1√
2
( |0〉 − |1〉), then the

program goes back to the measurement of the while-loop (2).
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Table 2. Comparisons among Classical, Probabilistic, andQuantum Programs

Classical Probabilistic Quantum

# of Execution Paths one possibly infinitely many possibly infinitely many

Distribution over Paths none explicit by sampling implicit by measurement

Usability of Chain Rule yes yes no

Differentiability almost everywhere [48]

almost everywhere
for every path [47],
sufficient conditions

for bounded loops [40]

sufficient condition
for unbounded loops,

Theorem 4.5

From (2) above, we can see that the program will terminate with probability 0.5 or continue the
while-loop with probability 0.5 at each entry of the while-loop. Therefore, the probability of this
program executing loop body (r � H [r ]) for k , k ≥ 0, times is 0.5k+1, which means this program
has an infinite number of execution paths. Note that the probability 0.5 is implicitly implied by
the measurement outcome of the quantum program, as the quantum no-cloning theorem prevents
us from accurately tracking the intermediate states of the quantum programs. However, in prob-
abilistic programs, such probabilities are explicitly given by the sampling primitives. (Even if the
sampled distribution depends on some parameters, e.g., Gaussian distribution N (μ,σ ) with μ,σ
generated at runtime, we can still know the specific distribution of the sample by recording the
values of these parameters at runtime.)

Another important difference worth highlighting between classical (deterministic or probabilis-
tic) programs and quantum ones is the quantum no-cloning theorem that prohibits the use of the
Chain-rule-based forward/reverse differentiation in the quantum setting. For example, consider a
simple classical program u � д(x );y � f (u). The final value of y is f (д(x )). According to the

Chain rule, the derivative of y with respect to x is
dy
d x =

dy
du ·

du
d x =

d f
du (д(x )) ·

dд
d x (x ). The classical

forward-AD with dual number (e.g., Reference [7]) will introduce a intermediate variable v̂ (the
intermediate derivative of this variable with respect to x ) for each variablev and lift each function

h to ĥ : (v, v̂ ) �→ (h(v ), dhdv (v ) · v̂ ), which follows the Chain rule. Then, we obtain a new program

(u, û) � д̂(x , 1); (y, ŷ) � f̂ (u, û), from which we can compute that ŷ =
d f
du (u)û =

d f
du (д(x ))

dд
d x (x ).

Thus, this new program achieves AD. For each lifted function ĥ, the input v is fed not only h
but also dh

dv , in which an implicit copy of v is made. However, the quantum no-cloning theo-

rem only allows v to be fed into h or dh
dv if we think of them as “quantum.” As a result, AD

techniques in quantum are somewhat separate from those commonly studied in the classical AD
literature.
Finally, consider a bounded-loop quantum program in Figure 2(d), which is investigated in Refer-

ence [77]. The number k > 0 in while(k ) limits the iteration times of the loop body up to k , which
results that the program in Figure 2(d) has at most k + 1 and hence a finite number of execution
paths.
We summarize these comparisons in Table 2. As we will see, dealing with infinitely many ex-

ecution paths is one major difficulty in differentiation over unbounded loops, either probabilistic
or quantum. The unusability of the Chain rule further complicates the quantum case.

3.1 Differentiability of Unbounded Quantum Loops

The differentiability of unbounded quantum loops should be the first question to address, as it is
already quite non-trivial in establishing so in classical and probabilistic functional programs.
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Fig. 3. Running example to demonstrate our AD scheme. Every time the program runs to a statement, e.g.,

q � e−iθ |+〉〈+ |[q] here, that contains θ , it will first enter a block of EUL to decide whether to continue P (θ )
or to do a differentiation operation by DSOP then continue P (θ ). 0⊕p 1 is a probabilistic choice that outputs
0 with probability p and 1 with probability 1 − p for any 0 ≤ p ≤ 1, and f (n) = μ (n)/(1 − ∑n−1

j=1 μ (j )) is

determined by the distribution μ mentioned in Section 3.2.

In classical programs, conditionals often lead to piecewise-defined functions and non-
differentiable points, which are discontinuous or have different left and right derivatives [8]. Even
if the function defined by a program is differentiable, syntactic discontinuity can make AD fail.2 To
resolve the issue of conditionals, Abadi and Plotkin [1] adopted the “partial conditionals,” which
ignores the boundary case, and proved the correctness of AD on conditionals and recursion. Mazza
and Pagani [48] characterized the set of “stable points,” the intuition behind which is the point that
has an open neighborhood with the same execution trace (“execution path”). They proved that AD
is almost everywhere correct under the mild hypothesis. However, these arguments are developed
for one execution path in classical programs.
The case of probabilistic programs resembles quantum programs a lot due to possibly infinitely

many execution paths. Whether probabilistic programs would lead to non-differentiable densities
at some non-measure-zero set has been an important open question in the field [72]. Recently,
Mak et al. [47] considered higher-order probabilistic programming with recursion and proved
that a probabilistic program’s density is almost everywhere differentiable under mild hypothesis.
However, it only tells us the differentiability of any trace of sampled values during execution,
which implies a fixed execution path.

Recall the program in Figure 2(c), on which we add a command with parameter θ into the loop
body as our running example in Figure 3. The transition graph for each line of program P (θ )
in Figure 3(a) is shown in Figure 3(b), where the behavior of P (θ ) is the same as in Figure 2(c):
P (θ ) will terminate (goto line 5) with probability 0.5 or continue the while-loop (goto line 3) with
probability 0.5 at each entry (line 2) of the while-loop. The probability of P (θ ) executing k times

2Consider the program presented in References [1, 48]:

SillyId ≡ λxR .if x = 0 then 0 else x .

We can see that �SillyId� (x ) = x , thus �SillyId� has a constant derivative of 1. However, general AD would produce the

wrong answer 0 at the point x = 0.
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q � e−iθ |+〉〈+ |[q] is 0.5k+1. Consider operations related to variable q, P (θ ) induces a semantic func-
tion like

fk (θ ) =
�
q � e−iθ |+〉〈+ |[q]

�k
=

�
q � e−iθ |+〉〈+ |[q]

�
◦ · · · ◦

�
q � e−iθ |+〉〈+ |[q]

�
︸���������������������������������������������������������︷︷���������������������������������������������������������︸

k−1 times function composite

with probability 0.5k+1, k ≥ 0. The differentiability of fk (θ ) is generally easily obtainable, while
the differentiability of its expectation F (θ ) =

∑∞
k=0 fk (θ )/2

k+1 is unclear. For this problem of ex-
pectation, two conditions are proposed in the probabilistic programming [40]:

—Differentiability of expectation (infinite summation):

F (θ ) =
∑
k

ν (θ ,k ) fk (θ ) is differentiable on R. (Condition A1)

— Exchangeability between differentiation and infinite summation:

for all θ ∈ R, ∂θ
∑
k

ν (θ ,k ) fk (θ ) =
∑
k

∂θ
(
ν (θ ,k ) fk (θ )

)
, (Condition A2)

where ν (θ , ·) is a probability distribution over index k . Condition A1 states the premise of AD:
We would not talk about AD if the function induced by the program was not differentiable.
Condition A2 states that the differential operation on every trace (∂θ (ν (θ ,k ) fk (θ )), which reflects
the underlying AD implementation) can be collected into the differential operation on the total
program (∂θ

∑
k ν (θ ,k ) fk (θ )). To the best of our knowledge, no research has yet investigated what

kind of probabilistic programs or quantum programs with unbounded loops meet Condition A1
and Condition A2.

Our Solution. Fortunately, we identify finite-dimensional state space, which is met by all existing
quantum applications, as a sufficient condition to satisfy Condition A1 and Condition A2. Techni-
cally, under this condition, the probability that an unbounded quantum loop iterates k times has
an exponential decay on k (Lemma 5.3). The cornerstone behind this lemma is the compactness of

finite-dimensional Hilbert spaces. As in our running example, fk (θ ) =
�
q � e−iθ |+〉〈+ |[q]

�k
, which

corresponds to loop k times, appears with probability 0.5k+1. Let дθ denote
�
q � e−iθ |+〉〈+ |[q]

�
,

the differential of fk (θ ) is a summation of differentiation at every occurrence of θ , i.e., ∂θ fk (θ ) =∑k
j=1 (дθ )

j−1 ◦ (∂θдθ ) ◦ (дθ )k−j , then
∞∑
k=0

∂θ

(
fk (θ )

2k+1

)
=

∞∑
k=0

1

2k+1

k∑
j=1

(дθ )
j−1 ◦ (∂θдθ ) ◦ (дθ )k−j (3.1)

is uniformly convergent as 1
2k+1

∑k
j=1 (дθ )

j−1◦ (∂θдθ )◦ (дθ )k−j ∈ O ( k
2k+1

). This uniform convergence

implies both Condition A1 and Condition A2.
Conversely, through Weierstrass’ non-differentiable function S (x ) =

∑∞
k=0 a

n sin(bnx ) [33, The-
orem 1.31], we can construct a counterexample (Example 4.6) that is nowhere differentiable on
R for quantum loops with infinite-dimensional space. Specifically, Example 4.6 has two nested

loops that induces fk (θ ) =
�
q � e−iθ |+〉〈+ |[q]

�2k
with probability 0.5k+1. The differential of fk (θ )

becomes ∂θ fk (θ ) =
∑2k

j=1 (дθ )
j−1 ◦ (∂θдθ ) ◦ (дθ )

2k−j , then this summation of 2k terms makes∑∞
k=0

1
2k+1
∂θ fk (θ ) =

∑∞
k=0

1
2k+1

∑2k

j=1 (дθ )
j−1 ◦ (∂θдθ ) ◦ (дθ )

2k−j divergent everywhere. Note that

the probability 0.5k+1 comes from the outer loop, and the exponent 2k comes from the inner loop.
For the latter to happen, the inner loop, like Example 4.6, needs to have an infinite-dimensional
register to record the information of k , which goes to positive infinite. This non-differentiable
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counterexample can also be represented by the expectation of a probabilistic program (see
Example 4.6).

3.2 Execution Paths with Infinitely Many Parameter Occurrences

As we saw in Figure 3, loops lead to repeated execution of loop body, which means a parameter

can appear many times at a single execution path, e.g., the function fk (θ ) =
�
q � e−iθ |+〉〈+ |[q]

�k
introduced in Section 3.1 has k occurrences of θ . These execution paths refer to quantum circuits

with a parameter appearing multiple times. In the case of bounded quantum loops, the total number
of execution paths is finite, and the multiplicity of parameter occurrences on each path is also
bounded. Therefore, Zhu et al. [77] proposed additive quantum programs to represent a (finite)
collection of quantum programs that compute partial derivatives of all occurrences. Conceivably,
this approach does not extend to the infinite (and unbounded) case.

Our Solution.According to Section 3.1, the differential of F (θ ) =
∑∞

k=0 fk (θ )/2
k+1 should be equal

to

∞∑
k=0

∂θ fk (θ )

2k+1
=

∞∑
k=0

k∑
j=1

1

2k+1
(дθ )

j−1◦ (∂θдθ )◦ (дθ )k−j =
∞∑
j=1

∞∑
k=1

1

2k+1
(дθ )

j−1◦ (∂θдθ )◦ (дθ )k−j . (3.2)

Here, the second equality, i.e., the commutativity of the summation indexes j,k, is guaranteed by
uniform convergence, as we mentioned for Equation (3.1). We rewrite Equation (3.2), as

∑∞
j=1 aj

with aj =
∑∞

k=1
1

2k+1
(дθ )

j−1 ◦ (∂θдθ ) ◦ (дθ )
k−j is the corresponding summation term for all ex-

ecution paths with differentiation on jth position. With the infeasibility of the Chain rule, the
existing quantum AD technique can only handle aj one-by-one, the cost of which will depend on
the number of terms in Equation (3.2) that will be unbounded in our case.

Inspired by the importance sampling in statistics [61], we construct a random variable X such
that

Pr(X = aj/μ (j )) = μ (j ),∀j ∈ Z+
to estimate the infinite sum

∑∞
j aj , where μ is a probability distribution on Z+. By construction,

the expectation of X is
∑∞

j=1 aj . Let us now focus on Figure 3(c), where the role of EUL commands,
written with probabilistic pseudocode, is to generate the distribution μ as the original program
runs and to attribute this probabilistic distribution to DSOP commands (differentiation operations
that induce aj ) in the execution order. Precisely, the variable qc records the number of loops until
q2 = 0. Together with the probabilistic choice q2 � 0 ⊕f (qc ) 1 (see definition in Figure 3’s caption),
the probability of qc = j, q2 = 0 and q1 = 1, which means DSOP commands (a differentiation
operation) are executed, and one term of aj is evaluated, is μ (j ) when fixing an execution path of
P (θ ) with loops’ numbern > j. Therefore, we associate the probability μ (j )with aj in the execution
order. Then, the desired random variable X is natural to construct.
However, for the estimation efficiency of X ’s expectation, the variance of X should also be

bounded. To that end, we identify a sufficient condition for the distribution μ : Z+ → [0, 1] as

lim
n→∞

n

√
μ (n) = 1, (converging-rate condition)

which would imply the correctness of our code-transformation (Theorem 5.4) and its efficiency
(Theorem 6.2). Another implicit but critical property of our construction of random variable X
in Figure 3(c) is its independence of the underlying execution path. It allows us to apply a simple
and uniform code transformation while keeping all existing quantum branches that lead to all
execution paths.
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Applicability to classical and probabilistic programs with unbounded loops?

Ignoring the issue of differentiability, our idea of constructing random variables to sample partial
derivatives can be applied to classical and probabilistic unbounded loops. However, it would be less
efficient, because partial derivatives can be collected and forward/backward-propagated along the
execution path by the Chain rule in the classical setting, which is not leveraged by our scheme.
Consider the example in Figure 4 where we show how EUL is applied to a probabilistic program.

Denote the expectation of variable y after executing P (θ ) in Figure 4(a) as E (θ ) =
∑∞

j=1 j sin(θ ) ·
0.5j = 2 sin(θ ). Its derivative is E ′(θ ) = 2 cos(θ ). Since this program P (θ ) only uses a simple
sampling primitive r � 0 ⊕0.5 1,

3 we can directly apply the classical forward-AD with a dual
number (e.g., Reference [7]) as in Figure 4(b). Then, the expectation of ŷ (dual number of y) after
executing the program in Figure 4(b) is

∑∞
j=1 j cos(θ ) · 0.5j = 2 cos(θ ) = E ′(θ ).

As a comparison, the rewriting of our EUL to the probabilistic program P (θ ) becomes Fig-
ure 4(c). With the probabilistic choice 0 ⊕f (qc ) 1 and a variable qc to count the occurrences
of θ , the probability of the program executes command (*) and the output of qc = j ≥ 1 is
μ (j ) · 0.5j−1 if the output of qc is j ≥ 1. Then, the probability of ŷ = cos(θ ),qc = j after ex-
ecuting the program in Figure 4(c) is μ (j ) · 0.5j−1. We can construct a random variable X with
respect to ŷ and qc satisfies that Pr(X = ŷ/μ (j )) ≡ Pr(ŷ = cos(θ ),qc = j ) = μ (j ) · 0.5j−1.
Hence, the expectation of X is

∑∞
j=1 cos(θ )/μ (j ) · μ (j ) · 0.5j−1 =

∑∞
j=1 cos(θ ) · 0.5j−1 = 2 cos(θ ),

which is consistent with the above E ′(θ ). The major difference between Figures 4(b) and 4(c) is
that Figure 4(b) can execute the command (∗) multiple times, while Figure 4(c) only executes (∗)
once.

4 PARAMETERIZED QUANTUM WHILE-PROGRAMS

In this article, we expand a parameterized extension [77] of quantum while-language [73] to in-
clude unbounded loops.

4.1 Syntax

Let us first define the syntax of our programming language. Similar to References [73, 77], we
assume a countably infinite set qVar of quantum variables and use the symbols q,q′,q0,q1, . . . ∈
qVar as metavariables ranging over them. Each quantum variable q ∈ qVar has a type of Hilbert
space Hq as its state space. A quantum register q̄ = q1,q2, . . . ,qn is a finite sequence of distinct

quantum variables, and its state space isHq̄ =
⊗n

j=1Hqj .

Definition 4.1 (Syntax). A k-parameterized quantum while-program with parameter θ ∈ Rk is
generated by the syntax:

P (θ ) � skip | q � |0〉 | q̄ � U [q̄] | q̄ � e−iθσ [q̄] |
P1 (θ ); P2 (θ ) | if (�m ·M[q̄] =m → Pm (θ )) fi |
whileM[q̄] = 1 do P (θ ) od.

3For general probabilistic programs, sampling primitives that depend on the variable being differentiated, as well as the

guards of conditionals that depend on the variable being differentiated, can make the probability distribution of the execu-

tion paths related to the variable. In such cases, we have to consider the “derivative” of the probability distribution of the

execution paths. Recently, Lew et al. [41] resolve this problem for an expressive and higher-order probabilistic program-

ming language (without general recursion) by equipping each sampling primitive with a built-in derivative estimation

procedure. For quantum programs, the denotational semantics defined in Section 4.2 encode the probability of execution

paths into density operators, thus, we do not need to treat the probability of execution paths separately.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 19. Pub. date: November 2023.



Differentiable Quantum Programming with Unbounded Loops 19:13

Fig. 4. A probabilistic program P (θ ) with forward-AD and our EUL-based AD applied, where 0 ⊕p 1 is a

probabilistic choice that outputs 0 with probability p and 1 with probability 1 − p for any 0 ≤ p ≤ 1, f (n) =
μ (n)/(1 −∑n−1

j=1 μ (j )) is determined by the distribution μ mentioned in Section 3.2.

Explanation of the Syntax. Statement skip does nothing and terminates immediately. Initial-
ization statement q � |0〉 sets the quantum variable q to |0〉. Unitary transformation statement
q̄ � U [q̄] means perform a unitary U on the quantum register q̄. Statement q̄ � e−iθσ [q̄] gives
a special parameterized form of unitary—density operator simulation—with σ a density operator
and θ selected from θ . Sequential composition P1 (θ ); P2 (θ ) means first executes P1 (θ ), and when
P1 (θ ) terminates, it executes P2 (θ ). Quantum case statement if (�m · M[q̄] = m → Pm (θ )) fi,
where �m indicates case branching by the value ofm, means performs a measurementM = {Mm }
on q̄ and then a subprogram Pm (θ ) will be performed upon the outcomem of the measurement.
In quantum loop statement whileM[q̄] = 1 do P (θ ) od, a binary measurement M = {M0,M1} is
performed; if the measurement outcome is 0, then the program terminates; otherwise, the pro-
gram executes the loop body P (θ ) and continues the loop, potentially for an arbitrary number of
rounds.

Remark 4.2. We provide some remarks on the above syntax.

—We add a statement q̄ � σ as a more general initialization that sets the state of the quan-
tum register q̄ to be a representable density operator σ , where the “representable” means
the density operator can be generated by a short parameterized quantum while-program P
without parameters and while-loop statement.

—We use q̄ � e−iθσ [q̄] to describe a generally parameterized unitary applied on q̄. For any uni-
taryU , there is a Hermitian operator H such thatU = e−iH and for any Hermitian operator
H , e−iH (the quantum simulation of Hamiltonian H ) is also a unitary. The parameterization
we have chosen, i.e., density operator simulation (e−iθσ ), can also express general Hamilton-
ian simulation.4

4For any e−iθH , we define a density operator σH = (H − μI )/ tr(H − μI ), where μ is the ground eigenvalue of H ,

I the identity, and H � μI . Then, e−iθH is the same as e−iθ
′σH , where θ ′ = tr(H − μI )θ , since e−iθH ρe iθH =

e−i (tr(H−μI )θ )σH ρe i (tr(H−μI )θ )σH , ∀ρ .
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—Our parameterization allows expressing many commonly used parameterized quantum
gates, such as Pauli rotation gates and two-qubit coupling gates, which are universal and
can be reliably implemented in near-term quantum machines.5

4.2 Denotational Semantics

Following the semantics of quantum while-programs [73], the denotational semantics of parame-
terized quantum while-programs can be defined.

Definition 4.3 (Structural Representation of Denotational Semantics [73]). LetHall denote the ten-
sor product of the state spaces of all quantum variables and ρ ∈ D (Hall ) indicate the (global) state
of quantum variables. The denotational semantics of a parameterized quantum while-program
P (θ ) is a superoperator �P (θ )� : D (Hall ) → D (Hall ) inductively defined as:

— �skip� (ρ) = ρ;
— �q � |0〉� (ρ) = ∑

n |0〉q〈n |ρ |n〉q〈0|;
— �q̄ � U [q̄]� (ρ) = U ρU †;
—

�
q̄ � e−iθσ [q̄]

�
(ρ) = e−iθσ ρeiθσ ;

— �P1 (θ ); P2 (θ )� (ρ) = �P2 (θ )� (�P1 (θ )� (ρ));
— �if (�m ·M[q̄] =m → Pm (θ )) fi� (ρ) = ∑

m �Pm (θ )� (Em (ρ));
— �whileM[q̄] = 1 do P (θ ) od� (ρ) = ⊔∞

n=0

∑n
k=0 E0 ◦ (�P (θ )� ◦ E1)

k (ρ),

where {|n〉q } is an orthonormal basis of state space Hq of variable q, Em : ρ �→ MmρM†
m are

defined for each measurement M = {Mm } in P (θ ), and
⊔

stands for the least upper bound in the
CPO of partial density operators with the Löwner order 
 (see Reference [73, Lemma 3.3.2]).

For a quantum program P , we define var (P ) to be the set of quantum variables q ∈ qVar
appearing in a program P , and let HP =

⊗
q∈var (p )Hq . When dealing with the semantics of a

program P (θ ), we only consider the states onHP (θ ) , that is, using ρ ∈ HP (θ ) to represent a product
state ρ ⊗ ρ0 ∈ D (Hall ), where ρ0 ∈ D (HqV ar \var (P (θ )) ). When the dimension of HP (θ ) is finite,
we have that D (HP (θ ) ) is a compact set, thus

�whileM[q̄] = 1 do P (θ ) od� (ρ) = ∞∑
k=0

E0 ◦ (�P (θ )� ◦ E1)
k (ρ). (4.1)

Note further that a semantic mapping �P (θ )� : D (Hall ) → D (Hall ) defined on D (Hall ) can be
used as a mapping on the set of linear operators L (Hall ) by linear extension.

4.3 Expectation Functions and Differentiability

The output of a quantum program is often regarded as the expectation of an observable obtained
by measurements after its execution. We define the expectation functions to capture the output of
quantum programs, which is similar to the observable semantics introduced by Reference [77].

Definition 4.4 (Expectation Function). For a parameterized quantum while-program P (θ ) with
parameter θ ∈ Rk , an initial state ρ ∈ D (Hall ), and an observable O on Hall , the expectation
function f : Rk → R ∪ {±∞} that maps the parameter θ to the output expectation is defined by

f (θ ) = tr(O �P (θ )� (ρ)). (4.2)

5Single-qubit Pauli rotation gates are given in the following form RΔ(θ ) := exp( −iθ2 Δ), Δ ∈ {X , Y , Z }. One can also extend
Pauli rotations to multiple qubits. For example, consider two-qubit coupling gates {RΔ⊗Δ := exp( −iθ2 Δ ⊗ Δ) }Δ∈{X ,Y ,Z } .
Note that these two-qubit gates can generate entanglement between two qubits. Combined with single-qubit rotations,

they form a universal gate set for quantum computation.
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For any 1 ≤ j ≤ k , the partial derivatives
∂f
∂θ j

of expectation function f with respect to parameter

θ j can be defined in the standard way. Their existence in the finite-dimensional case is guaranteed
by the following:

Theorem 4.5 (Differentiability). For a parameterized quantum while-program P (θ ) with pa-

rameter θ = (θ1,θ2, . . . ,θk ) ∈ Rk , an initial state ρ ∈ D (Hall ), and an observable O on Hall , if

HP (θ ) is finite-dimensional, then
∂f
∂θi

exists.

Proof. This is a corollary of Theorem 5.4, which states that
∂f
∂θi

can be represented by the

expectation function of another quantum program, its differential program ∂
∂θi

(P (θ )), with respect
to an observable Od ⊗ O . Since the Od ⊗ O in Theorem 5.4 is bounded, the expectation function

of ∂
∂θi

(P (θ )) with respect to any θ , observable Od ⊗ O , and any input state ρ is well-defined, we

have that
∂f
∂θi

is well-defined and hence exists. �

As shown in the following example, however, it is possible that the expectation function f is
non-differentiable whenHP (θ ) is an infinite-dimensional space.

Example 4.6 (Non-differentiable Infinite-dimensional Quantum Program). Let q, r be two qubits
with state space Hq = Hr = span{|0〉, |1〉}, t1, t2 be quantum variables with state space H∞ =
{∑∞

n=−∞ αn |n〉 : αn ∈ C,
∑

n |αn |2 < ∞}, and θ ∈ R be a parameter. Consider the following parame-
terized quantum program P (θ ):

P (θ ) ≡ q � |0〉; t1 � |0〉; C (θ ) ≡ q � 0; t1 � 0;

whileM[q] = 1 do while q � 1 do

t1 � R[t1]; t1 � t1 + 1;

where:

—M = {M0 = |1〉〈1|,M1 = |0〉〈0|} is the measurement on qubit q in the computational basis;
— R =

∑
j |j + 1〉〈j | is the right-translation operator on t1; and

— EX =
∑

2j=k |jk〉〈jk | ⊗X +
∑

2j�k |jk〉〈jk | ⊗ I is a unitary that performs X operation on q if t1
and t2 is in state |j〉 and |k〉, respectively, and k = 2j for any j,k ∈ Z.

For an initial state ρ = |0〉q〈0| ⊗ |0〉r 〈0| ⊗ |0〉t1〈0| ⊗ |0〉t2〈0| and an observable O = 2|ψ 〉r 〈ψ | with
|ψ 〉 = ( |0〉 − i |1〉)/

√
2, a calculation using Equation (4.1) yields the expectation function of P (θ ):

f (θ ) =
∞∑
k=1

1

2k
tr
(
2|ψ 〉r 〈ψ |e−i2

kθ |+〉r 〈+ | |0〉r 〈0|ei2
kθ |+〉r 〈+ |

)
=

∞∑
k=1

1 + sin(2kθ )

2k
= 1 +

∞∑
k=1

1

2k
sin(2kθ ),

which is well-defined. However, f is non-differentiable everywhere due to Weierstrass’s non-
differentiable function [33, Theorem 1.31]: The function S (x ) =

∑∞
n=0 a

n sin(bnx ) converges
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Fig. 5. Introduce the commutator with a similar circuit.

uniformly on R, which implies S is continuous on R, but nowhere differentiable for any 0 < a <
1,ab ≥ 1.

The probabilistic programC (θ ) is a counterpart of P (θ ) for illustration, whereq � 0⊕ 1
2
1 assigns

0 to q with probability 1
2 and 1 to q otherwise. The boxed commands assigns sin(2t1θ )+1 to r , thus,

we can see that the expectation of variable r after runs C (θ ) is also f (θ ) and non-differentiable
everywhere.

5 AUTOMATIC DIFFERENTIATION FOR UNBOUNDED QUANTUM LOOPS

In this section, we develop the AD technique for parameterized quantumwhile-programs to over-
come the major difficulty of finding analytical derivatives of unbounded loops.

5.1 Differentiation on a Single-occurrence of Parameter

Our first contribution is a new DSOP technique, called the commutator-form rule. Li et al. [42]
and Mitarai et al. [49] first proposed a derivative formula for Pauli rotations, which is named by
Schuld et al. [59] as the “parameter-shift rule” to handle the case of U (θ ) = e−iθH with H having
at most two distinct eigenvalues.
Our commutator-form rule is designed to be applicable to e−iθH for generalH . Technically, it was

inspired by a few existingworks [9, 44, 49] that leverage the commutator form for various purposes.
We also note some recent independent developments [35, 39, 68] of variants of the parameter-shift
rules to handle more general e−iθH . However, our rule is based on a very different technique, which
could be of independent interest by itself. Precisely,

Lemma 5.1. LetH1,H2,H3 be Hilbert spaces and E1 : D (H1)→ D (H2),E2 : D (H2) → D (H3)
be superoperators. For any Hermitian operator H onH2 and θ ∈ R, we define EH,θ (ρ) = e−iθH ρeiθH

for all ρ ∈ D (H2). Then, for any density operator ρ onH1:

d

dθ
(E2 ◦ EH,θ ◦ E1 (ρ)) = E2 ◦ EH,θ (−i[H ,E1 (ρ)]),

where commutator [·, ·] is defined as follows: [A,B] = AB − BA for any operators A and B.

Proof. See Appendix D.2. �

Commutator-form Rule. The way of introducing commutators is visualized in Figure 5. We
define

f (θ ) = tr(OE2 (e
−iθσE1 (ρ)e

iθσ )) (5.1)

as the expectation function in Figure 5(a) and

д(θ ;α ) = tr(OE2 (e
−iθσe−iαSE1 (ρ) ⊗ σeiαSeiθσ )) (5.2)
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Fig. 6. Code transformation rules with respect to parameter θ . The blue part of (∗) refers to the EUL part

of Figure 3, where q1,q2 are two qubit variables, qc is a quantum variable with state space Hc = span{|n〉 :
n ∈ Z}, Mq1,q2 = {M0 = |00〉〈00|,M1 = |01〉〈01|, M2 = |10〉〈10| + |11〉〈11|}, C =

∑∞
j=0 |j + 1〉〈j | is the right-

translation operator, GP =
∑∞
j=1 |j〉〈j | ⊗ Ry (2 arcsin(

√
bj )) and bj = μ (j )/(1 − ∑j−1

k=1
μ (k )), AS = |0〉〈0| ⊗

e−i
π
4 Sq̄, q̄′ + |1〉〈1| ⊗ ei

π
4 Sq̄, q̄′ and Sq̄,q̄′ is the SWAP operator betweenHq̄ andHq̄′ .

as the expectation function in Figure 5(b), where S is the SWAP operator.6 With Lemma 5.1, we
have

d

dθ
f (θ ) = tr

(
OE2

(
e−iθσ (−i[σ ⊗ I ,E1 (ρ)])e

iθσ
))
.

Inspired by the trick of applying unitary transformation e−iθ ρ of any density operator ρ in quan-
tum principal component analysis [44], we find that for any α ∈ (0, π2 ):

(commutator-form rule)
d

dθ
f (θ ) =

1

sin(2α )
(д(θ ;α ) − д(θ ;−α )) . (5.3)

5.2 Code Transformation for Unbounded Loops

Our AD scheme (Figure 3) could leverage any DSOP technique (both the commutator-form rule
and the parameter-shift rule). We illustrate the code-transformation based on the commutator-
form rule and leave the details based on the parameter-shift rule in Appendix B.

Definition 5.2 (Code Transformation). For a parameterized quantum while-program P (θ ) with
parameter θ ∈ Rk , its differential programwith respect to θ is defined as a parameterized quantum

while-program ∂
∂θ (P (θ )):

∂

∂θ
(P (θ )) ≡ Dinit;Tθ (P (θ )),

with Dinit defined as follows and Tθ ,C,GP given in Figure 6,

Dinit ≡ q1 � |0〉;q2 � |0〉;qc � |0〉;qc � C[qc ];qc ,q2 � GP[qc ,q2].

The code transformationTθ in Figure 6 only acts non-trivially for unitary transformation state-
ments that contain the parameter θ , that is, inserting a measurement statement (the blue part of
rule (∗) in Figure 6) before a parameterized unitary transformation q̄ � e−iθσ [q̄]. This measure-
ment statement corresponds to the EUL commands of our AD scheme in Figure 3.

6The SWAP operator S on a space H ⊗ H is defined as S ( |a〉 ⊗ |b〉) = |b〉 ⊗ |a〉 for any |a〉, |b〉 ∈ H that swaps the

states of two systems.
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To establish the correctness of our code transformation, we develop the following lemma about
finite-dimensional quantum programs in light of Example 4.6:

Lemma 5.3. Consider a quantum loop P ≡ whileM[q̄] = 1 do Q od. Assume that the state space

HP is finite-dimensional. We define superoperators Ei : D (HP ) → D (HP ) by Ei (ρ) = MiρM
†
i ,

i = 0, 1 and E : D (HP ) → D (HP ) by E (ρ) = �Q� (ρ). Then, for any ϵ ∈ (0, 1), there exists

N = Nϵ > 0 such that ∀n ∈ N,∀ρ ∈ D (HP ),

tr(E0 ◦ (E ◦ E1)
n (ρ)) ≤ ϵ �

n
N � tr(ρ).

Proof. See Appendix D.1. �

The above lemma ensures the probability that the finite-dimensional program runs out of the
loop has an exponential decay on the number of loop iterations. This observation leads to an
exponential decay of partial derivatives for corresponding occurrences of the parameter, which in
turn guarantees the existence of the derivative and the validity of exchanging the order between
the infinite summation and the derivation.

Theorem 5.4 (Correctness of Code Transformation). Given a parameterized quantum

while-program P (θ ) with parameter θ ∈ Rk and finite-dimensional state space HP (θ ) , an observ-

able O, and an input state ρ. Let f (θ ) be the expectation function of P (θ ) with respect to ρ and O .
Then, the partial derivative of f with respect to θ is

∂

∂θ
f (θ ) = tr

(
(Od ⊗ O )

�
∂

∂θ
(P (θ ))

	
(ρ)

)
, (5.4)

the expectation function of ∂
∂θ (P (θ )) with respect to θ , observable Od ⊗ O and input state ρ with

Od =
∑∞

j=1
2

μ (j ) |j〉〈j | ⊗ |1〉〈1| ⊗ Z is an observable onHqc ⊗ Hq1 ⊗ Hq2 .

Outline of the Proof. We can take Figure 3 as an example to briefly illustrate the outline of
the proof, while the full details are deferred to Appendix D.4.

(1) Since our AD is performed by inserting commands, the execution branches of P (θ )’s differ-
ential program in Figure 3(c) are the same as P (θ ) in Figure 3(a). Thus, we consider each
execution path of P (θ ).

(2) For a fixed execution path of P (θ ), its derivative has the form ∂θ fk (θ ) ≡ 1
2k+1

∑k
j=1 (дθ )

j−1 ◦
(∂θдθ ) ◦ (дθ )

k−j . The ∂θ fk (θ ) corresponds to perform k times differentiation operations in
different occurrences of θ . For the same branch of the fixed execution path, P (θ )’s differen-
tial program can also perform the same k times differentiation operations with probability
μ (1), . . . , μ (k ). Then, P (θ )’s differential program can produce ∂θ fk (θ ) by estimation of ex-
pectation.

(3) Finally, one adds up all the ∂θ fk (θ ) that are produced by P (θ )’s differential program with
respect to P (θ )’s execution paths:

∑∞
k=1 ∂θ fk (θ ), and prove it is uniformly convergent, the

main challenging of the proof that relies on the finite-dimensional condition, and equal to
f (θ )’s derivative.

�

6 IMPLEMENTATION AND SAMPLE COMPLEXITY

In this section, we discuss the implementation of our AD scheme and analyze its efficiency in terms
of sample complexity, the number of required samples to estimate gradients.
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6.1 Implementation in a Hybrid Style

In the previous section, we have constructed the code transformation for AD in a pure quantum
fashion so differential programs can be written in the same syntax as the original one. But this
approach introduces three additional quantum variables on top of the original program, which
requires additional quantum resources. Since the cost of quantum hardware implementation is
still very high, to make our ADmore practical, we need to find ways to reduce additional quantum
resources. Fortunately, our construction Tθ in Figure 6 guarantees that no entanglement will be
created between q1,q2,qc and other quantum variables in the differential program, which means
that there is only classical correlation rather than quantum correlation (see Reference [??, Section
VI. Bipartite Entanglement]) between q1,q2,qc and other quantum variables. Moreover, qc will
always be in its basis states {|n〉 : n ∈ Z} and q1,q2 are two qubit variables. Therefore, q1,q2,qc
can be separated from the differential program and simulated efficiently by a classical computer.
As a result, our AD can be implemented in languages that support both quantum and classical
operations, which refers to hybrid quantum-classical programming.
There are a few candidates of high-level quantum programming languages that support hy-

brid quantum-classical programming with classical control flow, e.g., Microsoft’s Q# [62] and ETH
Zürich’s Silq [13]. Since Q# provides a Python package qsharp that enables simulation of Q#
programs from regular Python programs, we choose Python and Q# to implement a parser that
transforms parameterized quantum while-programs (with a restricted set of unitaries) to Q# and
implement AD to generate Q# codes for evaluating gradients.
Our current implementation supports parameterized Pauli rotations and controlled Pauli rota-

tions as follows:{
RΔ(θ ) = e−i

θ
2 Δ, e−i

θ
2 |1〉〈1 | ⊗Δ,RΔ⊗Δ(θ ) = e−i

θ
2 Δ⊗Δ : Δ = X ,Y ,Z ;θ ∈ θ

}
.

The Pauli rotations and controlled Pauli rotations are internally replaced with their corresponding

density operator form, e.g., unitary e−i
θ
2 X ⊗X is replaced by e−i (2θ )

X⊗X+I
4 with (X ⊗ X + I )/4, a

density operator, then we can apply our technique of AD to it and get the derivative with a
scale 2.

6.2 Variance and Sample Complexity

Our main theorem (Theorem 5.4) asserts that the desired partial derivative can be expressed by the

expectation of observableOd ⊗O with respect to state
�

∂
∂θ (P (θ ))

�
(ρ), which we denote 〈Od ⊗O〉

for simplicity. We denote the sample complexity as the number of repetitions to estimate 〈Od ⊗O〉
to a given precision δ . To estimate the sample complexity, we consider the variance of observable
Od ⊗ O : Var(Od ⊗ O ) = 〈(Od ⊗ O − 〈Od ⊗ O〉)2〉 = 〈O2

d
⊗ O2〉 − 〈Od ⊗ O〉2.

Inspired by the “Occurrence Count for θ” in Reference [77], we introduce two technical notions,
i.e., the “Running Count for θ” in program P (θ ), denoted RCθ (P (θ )), as the number of occurrences
of θ in P (θ ), and the “Loop Count” in P (θ ), denoted LC (P (θ )), as the number of while-loop state-
ments in P (θ ), for upper bounding 〈O2

d
⊗ O2〉. For formal definitions of RCθ (P (θ )) and LC (P (θ )),

please refer to Appendix A. We also need a terminating condition of parameterized programs to
upper bound 〈O2

d
⊗ O2〉.

Definition 6.1 (Almost Sure Termination [73]). A parameterized quantum while-program P (θ )
terminates almost surely at θ if tr(�P (θ )� (ρ)) = tr(ρ) for any ρ ∈ D (HP (θ ) ).

Theorem 6.2. In the same setting as in Theorem 5.4 and distribution μ : Z+ → [0, 1] satisfies
converging-rate condition, if all thewhile-statements (subprograms) in P (θ ) terminate almost surely,
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then 〈O2
d
⊗ O2〉 is bounded. Additionally, if the distribution μ : Z+ → [0, 1] satisfies

μ (n) ∝ 1

n ln1+s (n + e )
with constant s ∈ (0, 1], (6.1)

then we have 〈
O2
d ⊗ O2

〉
∈ O

(
M2

1 ln
1+s (M1 + e ) +M

3+s
1 M2+s

2 C (M2)
)

withM1 = RCθ (P (θ )),M2 = LC (P (θ )), and C (M2) is a non-zero function ofM2.

Proof. See Appendix A. �

Comparison with Zhu et al. [77]. In the case of no unbounded loops in Reference [77], we have
M2 = 0 and the bound given in Theorem 6.2 becomes O (M2

1 ln
1+s (M1 + e )), which implies the

sample complexity O (M2
1 ln

1+s (M1 + e )/δ
2) by Chebyshev’s Inequality. This is comparable to the

sample complexity O (m2/δ 2) estimated in Reference [77], wherem ≈ RCθ (P (θ )) = M1, as all of
the loops considered there are bounded and thus can be unfolded to nested conditional statements.

Empirical Estimation of the Sample Bound. The bound in Theorem 6.2 could, however, be
loose in practice, which would cost unnecessary samples. To resolve this issue, we develop an
empirical estimation of the sample bound, which usually leads to tighter bounds in our case studies.
Our key idea is that one can empirically estimate 〈O2

d
⊗O2〉 by sampling as we did for 〈Od ⊗O〉 to

get a better empirical bound than analytical ones. To that end, one can apply a similar technique in
Theorem 6.2 to bound 〈O4

d
⊗O4〉 and hence the number of samples required to estimate 〈O2

d
⊗O2〉.

However, at this time, we can tolerate a much larger additive error δ , since 〈O2
d
⊗ O2〉 could be

large itself, which makes 1/δ 2 in Chebyshev’s Inequality scale nicely.

7 CASE STUDIES

In this section, we present the case studies to demonstrate the feasibility of our framework, in-
cluding parameterized amplitude amplification, quantum walk-based search algorithm, and repeat-

until-success unitary implementation. The chosen case studies, all of which contain unbounded
quantum loops, are non-trivial and realistic examples from quantum literature. We do not choose
typical variational algorithms, e.g., QAOA [22], VQE [54], or some variants studied in the previ-
ous work of differentiable quantum programming [77], since they do not contain unbounded loops.
Similarly, because there is no realistic example yet of nested loops, as existing quantum algorithms
are far less than classical, we do not artificially construct experiments for nested loops. However,
our proposed commutator-form rule provides a more concise form than the parameter-shift rule
for general Hamiltonian (e.g., Hamiltonian in QAOA [32]) and our inductively defined code trans-
formation can handle nested loops.

Experiment Workflow. For experiments, our framework provides a unified principled way to
identify suitable parameters of parameterized quantumwhile-programs automatically as follows:
Given: A parameterized quantum while-program P (θ ),θ ∈ Rk ,k ≥ 1, a quantum state ρ as
program’s input, and an observable O defined onHP (θ ) .
Workflow:

(1) Use the implemented parser in Section 6.1 to convert the program P (θ ) to Q# functions

that can sample the value and the partial derivatives of expectation function f (θ ) =
tr(O �P (θ )� (ρ)), which is the objective function to optimize.

(2) Use the empirical estimation of the sample bound developed in Section 6.2 to estimate the
number of samples needed for sampling the partial derivatives of f (θ ).
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Fig. 7. Parameterized AA used in the experiment.

(3) Use a gradient-based optimizer (in our experiments, we choose Adam optimizer [37], as
it is widely used; some other optimizers are also suitable, e.g., AdamW [45]) to maxi-

mize/minimize f (θ ), where the initial value of parameters θ0 is usually randomly given and
the gradient of f (θ ) is estimated by the Q# functions (all run on the simulator provided by
Q#) in (1) with the number of samples estimated in (2).

In all experiments, the distribution μ in code transformation for AD is chosen as the distribution
in Equation (6.1) with s = 0.25. Our experiments are performed on a desktop computerwith Intel(R)
Core(TM) i7-9700 CPU @ 3.00 GHz × 8 Processors and 16 GB RAM.

7.1 Parameterized Amplitude Amplification

Amplitude amplification (AA) [15] is a generalization of Grover’s quantum search algo-
rithm [29]. It employs an oracle unitary A, where A|0〉 = ∑

x αx |x〉 (i.e., a superposition of all
elements of a finite set), as well as the inverse A† of A. Suppose the probability of obtaining target
elements is p when performing measurement {Mx = |x〉〈x |} on state A|0〉. AA can find a target
element by using O (1/

√
p) calls of A and A†.

An AA algorithm needs to run a specific number of a rotation operator without any intermediate
measurement. Otherwise, the quantum speedup of oracle calls over classical algorithms may be
lost. A novel idea, called the critically damped quantum search [50], challenged this phenomenon.
It implemented a while-loop variant of Grover’s algorithm with a damping value, which has a
critical value that divides between the quantumO (1/

√
p) and classicalO (1/p) search regimes. This

critically damped quantum search can also be elegantly reformulated in a general framework that
uses the while-loop primitive with a notion of κ-measurement [4]. With this framework for while-
loop, the key issue is to find an appropriate value of κ to achieve the quantum speedup.
As the first case study, we show that our framework can be used to obtain a better parameter

in the example of parameterized AA as in Figure 1 to not only obtain quantum speedup but also
make fewer oracle calls than those given in the existing literature [4, 50] analytically by hand.

Parameterized AA Program. Consider the parameterized AA in a single-qubit system. Given
p ∈ (0, 1), suppose we have a single qubit unitary A such that A|0〉 =

√
1 − p |0〉 + √p |1〉, and

its inverse A†. State |1〉 is our target state. The details of parameterized AA program are listed
in Figure 7, where we put the overview of parameterized AA and its instance P1 (θ ) used in this
experiment together.
In Figure 7(b), q, r are qubit variables, measurement M = {M0 = |1〉〈1|,M1 = |0〉〈0|}, and

σ |1〉〈1 | ⊗Y = ( |1〉〈1| ⊗ Y + I ⊗ I )/4. The variable r together with the unitary e−iθσ |1〉〈1|⊗Y and mea-

surementM forms a θ
4 -measurement in Reference [4]. To count the calls of A and A† (the running

number of loops), we introduce a block of “count loops” that does not affect the behavior of param-
eterized AA, where t is a quantum variable in the space Hp = span{|0〉, . . . , |4�1/√p�〉}, unitary
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Table 3. Experiment Results on Parameterized AA

Ours B C
p 〈4O1〉 Var(4O1) 〈4O1〉 Var(4O1) 〈4O1〉 Var(4O1)

1/102 0.6499 0.1184 1.6884 1.6480 0.6773 0.1872

1/152 0.6733 0.1232 1.7404 1.6336 0.7018 0.1872

1/202 0.6885 0.1216 1.7541 1.6752 0.7182 0.1904

1/252 0.6926 0.1200 1.7622 1.7504 0.7245 0.1936

1/302 0.6934 0.1152 1.7742 1.6624 0.7253 0.2112

The smaller 〈4O1〉, the better query complexity.

N =
∑4 �1/√p �−1

n=0 |n+1〉t 〈n |+ |0〉t 〈4�1/
√
p� |, and measurementM ′ = {M ′

0 =
∑4 �1/√p �−1

n=0 |n〉t 〈n |,M ′
1 =

I −M ′
0}. With the conditional statement of measurementM ′, the variable t will remain unchanged

once it reaches the state |4�1/√p�〉.
The program’s input can be arbitrary, since there are variables’ initialization in Figure 7(b). The

observable we choose is O1 =
√
p

4

∑4 �1/√p �
n=1 n |n〉t 〈n |, which expresses the running number of loop

iterations and represents the total oracle calls.7 The scale
√
p/4 is used to normalize the output

of O1. We expect the oracle calls to be as few as possible, thus our target is to identify θ so the

expectation of the running time (O1) of parameterized AA in Figure 7(b) is minimized.
We summarize below the needed configuration in the experiment workflow.

Given: Parameterized AA program P1 (θ ), arbitrary input state ρ, and observable O1.
Workflow: In (2), samples’ number: 5/

√
p × 103. In (3), Adam’s setting: β1 = 0.9, β2 = 0.999,α =

0.1; initial parameter: θ = 4 arccos((1 − 2
√
p (1 − p))/(1 + 2

√
p (1 − p))) (analytical but

sub-optimal value from Reference [50]); Goal: minimize the expectation function of
observable O1.

For the number of samples, a numerical calculation based on a finer version of Theorem 6.2
provides 799.72 as the bound of 〈O2

d
⊗ O2

1〉 with p = 1/100. However, applying our empirical

estimation, the actual value of 〈O2
d
⊗ O2

1〉 would be bounded by 44.26 when p = 1/100, which

leads to the current 5/
√
p × 103 bound (= 5 × 104 when p = 1/100) with additive error δ = 0.1 by

Chebyshev’s Inequality. Please refer to details in Appendix C.

Results.We choosep = 1/102, 1/152, . . . , 1/302 to run this experiment. In Table 3, we list the value
of 〈4O1〉 = 4〈O1〉, which expresses the (approximate) ratio of the number of loops to 1/

√
p, that

we find in this experiment (see the column “Ours”), as well as those in previous works [4] (see
the column “B”), and Reference [50] (see the column “C”) for the probability p specified in each
row. For each p, a better result (both smaller 〈4O1〉 and smaller variance Var(4O1) that implies less
fluctuation around the expectation) is found by our experiment. Recall that both B and C results
are based on analytical forms developed by domain experts.
Since our goal is to minimize the expectation of O1, we find that the experimental results con-

firm our framework’s feasibility and validate the experiment workflow for automatically getting
suitable parameters.

7.2 Quantum Walk with Parameterized Shift Operator

Quantum walk (QW) algorithms [2, 17, 64, 70], which share some similarities with Grover’s
algorithm, are vibrant in the area of quantum algorithms. In the context of the grid search, Benioff

7This is only an approximation of the total running time, since the state of t will always be |4 �1/√p �〉 after 4 �1/√p � loop
iterations. But this does not matter, because the running number of loop iterations is concentrated below 1/

√
p .
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[11] observed that the standard Grover’s search algorithm needs Ω(N ) steps to find a marked

vertex in an
√
N ×

√
N grid. Quantum walk with a natural (“moving”) shift operator Sm , which

keeps the direction (also called the coin) after every move, also takes at least Ω(N ) steps to find a
marked vertex in this grid [3].

Sf : |⇐,x ,y〉 → |⇒,x − 1,y〉 Sm : |⇐,x ,y〉 → |⇐,x − 1,y〉
|⇒,x ,y〉 → |⇐,x + 1,y〉 |⇒,x ,y〉 → |⇒,x + 1,y〉
|⇑,x ,y〉 → |⇓,x ,y + 1〉 |⇑,x ,y〉 → |⇑,x ,y + 1〉
|⇓,x ,y〉 → |⇑,x ,y − 1〉 |⇓,x ,y〉 → |⇓,x ,y − 1〉

They resolved this issue by introducing another shift operator Sf , which can be interpreted as

changing direction after every move, and the quantumwalk associated with Sf takesO (
√
N logN )

steps to find a marked vertex in this grid.
We can see that designing a shift operator, the direction (coin) transformation, is important for

the performance of the quantum walk. It motivates us to parameterize the shift operator and use
our framework to determine a good shift operator.

Parameterized QW Program. The quantum walk search algorithm in Reference [3] first initial-
izes the coin variable and position variable in the uniform superposition and applies the marked
quantum walk operator for several times (here, we apply it twice), then measure the position vari-
able to check if the measured vertex is the marked one. We parameterize the shift operator and
write it as follows:

P2 (θ1,θ2) ≡ t � |0〉;
whileM[qx ,qy] = 1 do

cx � |0〉; cy � |0〉;qx � |0〉;qy � |0〉;
cx � H [cx ]; cy � H [cy];qx ,qy � H̃ [qx ,qy];

cx , cy ,qx ,qy � C[cx , cy ,qx ,qy]; cx , cy ,qx ,qy � S (θ1,θ2)[cx , cy ,qx ,qy];

cx , cy ,qx ,qy � C[cx , cy ,qx ,qy]; cx , cy ,qx ,qy � S (θ1,θ2)[cx , cy ,qx ,qy];

if (M ′[t] = 0→ A[t] � = 1→ skip) fi od,

(7.1)

where cx and cy are two qubit variables for coin, indicating the directions⇐,⇒ and ⇑, ⇓, respec-
tively. qx ,qy are two variables with spaceH√

N = {|0〉, . . . , |
√
N − 1〉}, indicating the position. The

variable t is a variable with spaceH√
N , for counting the running times of loops. H̃ is a Hadamard-

like unitary to create uniform superposition on qx ,qy , which is composited by local operations

that only allow transition on adjacent position, e.g., |x ,y〉 and |x −1 mod
√
N ,y〉.C is the marking

coin operator in Reference [3] and S (θ1,θ2) = e−iθ2 |+〉cy 〈+ |e−iθ1 |+〉cx 〈+ |Sm is the parameterized shift
operator, which can be implemented by a subprogram as follows:

cx , cy ,qx ,qy � Sm[cx , cy ,qx ,qy]; cx � e−iθ1 |+〉cx 〈+ |[cx ]; cy � e−iθ2 |+〉cy 〈+ |[cy].

In particular, we have S (0, 0) = Sm and S (π ,π ) = Sf .A =
∑√

N−1
n=0 |n+ 1〉〈n |+ |0〉〈

√
N | adds t by 1 in

every loop and measurementM ′ checks the value of t byM ′ = {M ′
0 =

∑√
N−1

n=0 |n〉t 〈n |,M ′
1 = I −M ′

0}.
In this experiment, we choose N = 16, and the grid is {(i, j ) : 0 ≤ i, j ≤ 3}. The loop mea-

surement M is {M0 = |3〉qx 〈3| ⊗ |3〉qy 〈3|,M1 = I − M0} with (3, 3) being the marked vertex for
convenience. The input state can be arbitrary, since all variables in P2 (θ1,θ2) will be initialized.

The observable we choose isO2 =
1√
N

∑√
N

n=1 n |n〉t 〈n |, which expresses the running number of loop
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Fig. 8. MSE distance with respect to the iteration steps in optimizing P2 (θ1,θ2). Differently colored lines

represent 21 experiments with randomly initialized parameters (θ1,θ2).

Fig. 9. RUS design circuit to implement unitary V [14].

iterations as the O1 in Section 7.1. Our target is to identify shift operator S (θ ∗1 ,θ
∗
2 ) that minimizes

the expectation function of observable O2 with P2 (θ1,θ2).
We summarize below the needed configuration in the experiment workflow.

Given: Parameterized QW program P2 (θ1,θ2), arbitrary input state ρ, and observable O2.
Workflow: In (2), samples’ number: 2 × 104 empirically chosen with details in Appendix C. In

(3), Adam’s setting: β1 = 0.9, β2 = 0.999,α = 0.1; initial parameter: θ1,θ2 are randomly
initialized in 2π × [0.1, 0.9] to avoid certain extreme cases when (θ1,θ2) is close to (0, 0);
Goal: minimize the expectation function of observable O2.

Results. During the optimizing process, we recorded theMean-Squared-Error (MSE) distance8

of parameters (θ1,θ2) from (π ,π ), which is shown in Figure 8. Each colored line in Figure 8 rep-
resents an independent optimization with different initial parameters. In particular, the initial pa-
rameters of the red line in Figure 8 are manually set to (0.2π , 0.2π ) to be far away from (π ,π ). All
independent training optimizing threads converge to the shift operator S (π ,π ) = Sf after 60 steps,
which recovers the operator Sf by human design [3], automatically in our experiment.

7.3 Repeat-until-success Unitary Implementation

In this subsection, we demonstrate that our framework can learn realizable instances of repeat-
until-success (RUS) circuits. RUS depicts a design pattern, repeating an operation until getting
the desired result, which has been widely used in quantum circuit design [14, 43, 53, 67]. A general
layout of RUS circuits [14] is shown in Figure 9, where the dashed part is always applied if the
measurement outcome is undesirable. Notice thatWj in Figure 9 is designed to restore the state of
the system to |0〉|ψ 〉 based on the measurement outcome, as only one copy of |ψ 〉 is provided. The
RUS circuits have been shown to achieve a better (expected) depth over ancilla-free techniques for
single-qubit unitary decomposition [14, 53].

Parameterized RUS Program. Consider the program:

P3 (θ1,θ2,θ3) ≡ r � |0〉;q, r � U [q, r ];

whileM[r ] = 1 do q �W (θ1,θ2,θ3)[q]; r � |0〉;q, r � U [q, r ]; od,
(7.2)

8MSE distance between (θ1, θ2) and (π , π ) is 1
2 ((θ1 − π )2 + (θ2 − π )2).

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 19. Pub. date: November 2023.



Differentiable Quantum Programming with Unbounded Loops 19:25

where q is a qubit variable and r is an ancilla qubit variable, measurementM = {M0 = |0〉r 〈0|,M1 =

|1〉r 〈1|}.We are providedwith a unitaryU that will induce the desired operation onq if the outcome
of performing measurement M after execution of r � |0〉;q, r � U [q, r ] is 0, otherwise, we need
a recovery operationW (θ1,θ2,θ3) = e−iθ1 |0〉q 〈0 |e−iθ2 |+〉q 〈+ |e−iθ3 |0〉q 〈0 | , a fully parameterized single-
qubit unitary (Z -X decomposition in Reference [52]) that can be implemented by a subprogram as
follows,

q � e−iθ3 |0〉q 〈0 |[q];q � e−iθ2 |+〉q 〈+ |[q];q � e−iθ1 |0〉q 〈0 |[q],

to restore the state of q and repeat the whole process until obtaining the outcome 0.
In this experiment, the unitaryU in program P3 (θ1,θ2,θ3) is chosen as ( |0〉r 〈0| ⊗ V1 + |1〉r 〈1| ⊗

V2) (H ⊗ I ) with randomly generated single-qubit unitaries V1 and V2. Our target is to identify

suitable parameters θ ∗1 ,θ
∗
2 ,θ

∗
3 such that program P3 (θ

∗
1 ,θ

∗
2 ,θ

∗
3 ) acts as the same as the unitary V1 for

an information-complete basis

{|ψ1〉 = |0〉, |ψ2〉 = |1〉, |ψ3〉 = |+〉 = ( |0〉 + |1〉)/
√
2, |ψ4〉 = |Y+〉 = ( |0〉 + i |1〉)/

√
2}

of variable q. That is, for any 1 ≤ j ≤ 4,
�
P3 (θ

∗
1 ,θ

∗
2 ,θ

∗
3 )

�
( |ψj 〉q〈ψj |) = V1 |ψj 〉q〈ψj |V †

1 , which is

equivalent to tr
(
V1 |ψj 〉q〈ψj |V †

1

�
P3 (θ

∗
1 ,θ

∗
2 ,θ

∗
3 )

�
( |ψj 〉q〈ψj |)

)
= 1. Therefore, we choose four pairs

of input states and observable (ρ j = |ψj 〉q〈ψj |,O3, j = V1 |ψj 〉q〈ψj |V †
1 ), 1 ≤ j ≤ 4 and denote the

expectation function of program P3 (θ1,θ2,θ3) with respect to input state ρ j and observableO3, j as
fj (θ1,θ2,θ3) for 1 ≤ j ≤ 4. To optimize the four functions fj , 1 ≤ j ≤ 4 simultaneously close to 1,

we introduce a MSE loss function l (θ1,θ2,θ3) =
1
4

∑4
j=1 ( fj (θ1,θ2,θ3) − 1)2 to be minimized in the

experiment workflow.
We summarize below the needed configuration in the experiment workflow.

Given: Parameterized RUS program P3 (θ1,θ2,θ3) and four pairs of input state and observable
(ρ j ,O3, j ), 1 ≤ j ≤ 4.

Workflow: In (2), samples’ number: 4.7 × 104 empirically chosen with details in Appendix C. In
(3), Adam’s setting: β1 = 0.9, β2 = 0.999,α = 0.2; initial parameter: θ1,θ2 are randomly
initialized; goal: minimize the MSE loss function l (θ1,θ2,θ3).

Results.We did 10 independent optimizations. In each optimization,V1 andV2 are randomly gen-
erated. With the iteration steps less than 60, the MSE loss l can be reduced to 0.0001, which implies
fj is greater than 0.98 for all j. Because {|ψj 〉q〈ψj |}4j=1 forms a complete basis of D (Hq ), we can
conclude that the program P3 produces an approximate operation of V1 that we want in each op-
timization. Therefore, the experimental result confirms our framework’s feasibility and validates
the experiment workflow for automatically getting suitable parameters.

8 CONCLUSION

In this article, we have studied the AD of quantum programs with unbounded loops. We find a suf-
ficient condition—finite-dimensional state spaces—for quantum programs’ differentiability. This
sufficient condition is reasonable and terse in practical applications. Under this condition, we build
a source-level code transformation with correctness proof to achieve AD for quantum programs.
For the effectiveness of our approach, we give a result of sample complexity that is comparable
to previous work of bounded loops. We also implement our AD and demonstrate the feasibility
of our AD by three examples: parameterized amplitude amplification, quantum walk-based search
algorithm, and repeat-until-success unitary implementation.
Our research enables the automatic optimization of complex quantum programs without requir-

ing manual derivation. We hope that it will provide a deeper understanding of differentiable quan-
tum programming, provide a theoretical basis for the development of quantum machine learning
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software frameworks, and expect to use it to discover new quantum algorithms, especially with
unbounded loops.

APPENDICES

A PRACTICAL VARIANCE BOUND FOR DIFFERENTIAL PROGRAMS

In this section, we give fine bounds of 〈O2
d
⊗O2〉 and 〈O4

d
⊗O4〉 that are used in our case studies for

estimating the number of samples. Before that, we give the formal definitions of the two previous
notions, RCθ (P (θ )) and LC (P (θ )).

Definition A.1. The “Running Count for θ” in P (θ ), denoted RCθ (P (θ )), is defined inductively
on the program structure:

— RCθ (P (θ )) = 0 for P (θ ) ≡ skip, q � |0〉 or q̄ � U [q̄].
— If P (θ ) ≡ q̄ � e−iθ

′σ [q̄], then RCθ (P (θ )) = 1 when θ ′ is θ ; otherwise, RCθ (P (θ )) = 0.
— If P (θ ) ≡ P1 (θ ); P2 (θ ), then RCθ (P (θ )) = RCθ (P1 (θ )) + RCθ (P2 (θ )).
— If P (θ ) ≡ if (�m ·M[q̄] =m → Pm (θ )) fi, then RCθ (P (θ )) = maxm RCθ (Pm (θ )).
— If P (θ ) ≡ whileM[q̄] = 1 do Q (θ ) od, then RCθ (P (θ )) = RCθ (Q (θ )).

Definition A.2. The “Loop Count” in P (θ ), denoted LC (P (θ )), is defined by induction on the
program structure as follows:

— LC (P (θ )) = 0 for P (θ ) ≡ skip, q � |0〉, q̄ � U [q̄] or q̄ � e−iθ
′σ [q̄].

— If P (θ ) ≡ P1 (θ ); P2 (θ ), then LC (P (θ )) = LC (P1 (θ )) + LC (P2 (θ )).
— If P (θ ) ≡ if (�m ·M[q̄] =m → Pm (θ )) fi, then LC (P (θ )) =

∑
m LC (Pm (θ )).

— If P (θ ) ≡ whileM[q̄] = 1 do Q (θ ) od, then LC (P (θ )) = LC (Q (θ )) + 1.

Theorem A.3. In the same setting as in Theorem 5.4, for a fixed θ , if all the while-statements

(subprograms) in P (θ ) terminate almost surely, then the expectation of O2
d
⊗ O2:

〈
O2
d ⊗ O2

〉
= tr

(
O2
d ⊗ O2

�
∂

∂θ
(P (θ ))

	
(ρ)

)
is upper-bounded by

M2��
	4S (M1) +

∞∑
k=1

(
(M2 + (k − 1) (kM2−1 − 1)+)S

(
(k + 1)M2M1 − 1

) (
2ϵ �

k−1
Nϵ

� + 2ϵ �
k−1
Nϵ

�−1
))
�
�,
(A.1)

where

—M is the largest eigenvalue of |O |;
—M1 = RCθ (P (θ )),M2 = LC (P (θ ));
— μ is the distribution we adopted in code transformation rules and satisfies converging-rate con-

dition;

— S (n) ≡ ∑n
j=1 1/μ (j ) for every n ≥ 1; (x )+ ≡ max{0,x };

— ϵ ∈ (0, 1) and Nϵ is the largest number of N in Lemma 5.3 that is applied to all M2 loop

statements in P (θ ).

Proof. See Appendix D.5. �

The converging-rate condition ensures

lim
n→∞

n
√
S (n) = 1.
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Thus, the infinite summation terms in Equation (A.1) have exponential damping factor ϵ
1
Nϵ < 1,

then the summation is convergent. To give a clear sense of this bound, we can derive a corollary
when we use the distribution mentioned in Equation (6.1).

Corollary A.4. In the same setting as in Theorem A.3, let the distribution μ be

μ (j ) =
1

c (s )j ln1+s (j + e )
,

where c (s ) =
∑∞

j=1 1/(j )/ ln
1+s (j + e ) < ∞, s ∈ (0, 1]. We have the expectation of O2

d
⊗ O2 is upper-

bounded by

M2��
	4T (M1) +

∞∑
k=1

(
(M2 + (k − 1) (kM2−1 − 1)+)T

(
(k + 1)M2M1 − 1

) (
2ϵ �

k−1
Nϵ

� + 2ϵ �
k−1
Nϵ

�−1
))
�
�,
(A.2)

where T (n) = c (s )
2 x2 ln1+s (x + e ) is an upper bound of S (n) by integral.

With T (n) substituted, Corollary A.4 implies

〈O2
d ⊗ O2〉 ≤ 2M2c (s )

(
M2

1 ln
1+s (M1 + e ) +M

3+s
1 M2+s

2

∞∑
k=1

(k + 1)3M2+1ϵ
k−1
Nϵ

−2
)
.

The infinite summation
∑∞

k=1 (k + 1)
3M2+1ϵ

k−1
Nϵ

−2 is related to Eulerian polynomials [6] and can be
easily bounded by

(3M2 + 1)!

ϵ2+
1
Nϵ (1 − ϵ

1
Nϵ )3M2+2

.

Thus, we get the bound for 〈O2
d
⊗ O2〉 that implies Theorem 6.2:

2M2c (s ) �	M
2
1 ln

1+s (M1 + e ) +
M3+s

1 M2+s
2 ((3M2 + 1)!)

ϵ2+
1
Nϵ (1 − ϵ

1
Nϵ )3M2+2



� .

For bound of 〈O4
d
⊗ O4〉, we have a theorem similar to Theorem A.3.

Theorem A.5. In the same setting as in Theorem 5.4, for a fixed θ , if all the while-statements

(subprograms) in P (θ ) terminate almost surely, then the expectation of O4
d
⊗ O4:〈

O4
d ⊗ O4

〉
= tr

(
O4
d ⊗ O4

�
∂

∂θ
(P (θ ))

	
(ρ)

)
is upper-bounded by

4M2��
	4S

′(M1) +
∞∑
k=1

(
(M2 + (k − 1) (kM2−1 − 1)+)S

′
(
(k + 1)M2M1 − 1

) (
2ϵ �

k−1
Nϵ

� + 2ϵ �
k−1
Nϵ

�−1
))
�
�,
(A.3)

where

—M is the largest eigenvalue of |O |;
—M1 = RCθ (P (θ )),M2 = LC (P (θ ));
— μ is the distribution we adopted in code transformation rules and satisfies converging-rate con-

dition;

— S ′(n) ≡ ∑n
j=1 1/μ

3 (j ) for every n ≥ 1; (x )+ ≡ max{0,x };
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— ϵ ∈ (0, 1) and Nϵ is the largest number of N in Lemma 5.3 that is applied to all M2 loop

statements in P (θ ).

Proof. The Proof is similar to Theorem A.3. �

When unbounded loops exist (i.e., M2 > 0), the bound given in Theorem A.3 will depend on
the number N of iterations in Lemma 5.3. We provide the following variant of Lemma 5.3 for a
practically more approachable calculation, which, in particular, has been used in determining the
number of samples in our case studies:

Lemma A.6. Consider a quantum loop P ≡ whileM[q̄] = 1 do Q od with fixed parameters

(omitted) and a finite dimension of HP ; we define superoperators Ei : D (HP ) → D (HP ) by

Ei (ρ) = MiρM
†
i , i = 0, 1 and E : D (HP ) → D (HP ) by E (ρ) = �Q� (ρ). Assume that the Kraus

representation of E ◦ E1 is
∑

j Ej (·)E†j . We write E =
∑

j Ej ⊗ E∗j . If E can be diagonalized, and there

exists ϵ < 1 such that the module of E’s eigenvalues is either equal to 1 or less than ϵ , then for

∀n ∈ N,∀ρ ∈ D (HP ),

tr(E0 ◦ (E ◦ E1)
n (ρ)) ≤ ϵn tr(ρ).

Proof. This lemma can be proved using the techniques developed in Reference [75, Section 5],
where it was proved that the module of all E’s eigenvalues is less than or equal to 1. We omit the
details here. �

B AUTOMATIC DIFFERENTIATION BASED ON PARAMETER-SHIFT RULE

Parameter-shift Rule. Away for differentiation of Hamiltonian simulation e−iθH withH having
at most two distinct eigenvalues, called the parameter-shift rule, was given in References [49, 59].
For those Hamiltonians with more than two distinct eigenvalues, the differentiation can be ob-
tained via LCU (Linear Combination of Unitaries) [18]. We also note some recent independent
developments [35, 39, 68] of variants of the parameter-shift rules to handle more general e−iθH .
But here, for the sake of convenience, we still only use the previous parameter-shift rule, which is
adopted in Zhu et al. [77]’s work on differentiable quantum programming.
Let us consider a simple example: the expectation function f (θ ) = tr(Oe−iθX ρeiθX ). We can

check that

d

dθ
f (θ ) = f

(
θ +

π

4

)
− f

(
θ − π

4

)
.

More generally, if the Hamiltonian H has only two eigenvalues ±r , r > 0 and

f (θ ) = tr(Oe−iθH ρeiθH ),

then

d

dθ
f (θ ) = r

(
f
(
θ +

π

4r

)
− f

(
θ − π

4r

))
.

Although this form looks like a finite difference, it does express the exact derivative of f rather than
an approximate value. Therefore, the derivative can be obtained by shifting a single gate parameter.
It is worth mentioning that the same differentiation was effectively achieved in Reference [77]
using one extra ancilla as the control qubit to create a superposition of two quantum circuits.
The parameter-shift rule can be used as an alternative to the commutator form rule in

the DSOP part of Figure 3. Furthermore, we can construct code transformation rules for AD
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Fig. 10. Code transformation rules for Tθ , where Mq1,q2 = {M0 = |00〉〈00|,M1 = |01〉〈01|, M2 = |10〉〈10| +
|11〉〈11|}, C = ∑∞

j=0 |j + 1〉〈j | is the right-translation operator, GP =
∑∞
j=1 |j〉〈j | ⊗ Ry (2 arcsin(

√
bj )) and

bj = μ (j )/(1 −∑j−1
k=1

μ (j )).

based on the parameter-shift rule, as we did based on the commutator form rule in the main
body.

AD by Code Transformations.We only considered the parameterized forms used by Reference
[77]. That is, our parameterized unitaryU (θ ) is chosen from Pauli rotations{

Rσ (θ ) = e−i
θ
2 σ ,Rσ ⊗σ (θ ) = e−i

θ
2 σ ⊗σ : σ = X ,Y ,Z ;θ ∈ θ

}
. (B.1)

We construct a code transformation operation Tθ in Figure 10, where

C−U (θ ) = |0〉A〈0| ⊗ U (0) + |1〉A〈1| ⊗ U (π )

(see Reference [77] for more detail of the definition of C−U ), withU (θ ) being in the form of Pauli
rotations and A an ancilla quantum variable. Then, we have the following theorem:

Theorem B.1. Given a quantum program P (θ ) that is parameterized by Pauli rotations in

Equation (B.1), an initial state ρ, an observable O onHP (θ ) of a finite dimension. Let

∂

∂θ
(P (θ )) ≡ q1 � |0〉;q2 � |0〉;qc � |0〉;A � |0〉;qc � C[qc ];qc ,q2 � GP[qc ,q2];Tθ (P (θ )).

Then,

∂

∂θ
(tr(O �P (θ )� (ρ))) = tr

(
ZA ⊗ Oc ⊗ O

�
∂

∂θ
(P (θ ))

	
(ρ)

)
,

where ZA = |0〉A〈0| − |1〉A〈1|, and

Oc =

∞∑
j=1

1

μ (j )
|j〉〈j | ⊗ |1〉〈1|

is an observable onHqc ⊗ Hq1 .

Proof. The proof is similar to that of Theorem 5.4. The only difference is that in this proof, for
every computation path π and the subset Aπ we mentioned in the proof of Theorem 5.4, let Eη
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denote the superoperator of η for any path η; then, we need the following result:

∂

∂θ
(tr(OEπ (ρ))) = tr

��
	ZA ⊗ Oc ⊗ O

∑
η∈Aπ

Eη (ρ)
�� ,
which is guaranteed by the soundness theorem in Reference [77] (Theorem 6.2 therein). �

Given that all parameterized quantum programs with bounded loops considered in Reference
[77] are defined in the setting of Pauli rotations, the above theorem (together with code transfor-
mation Tθ ) strictly improves the corresponding result of Reference [77] with unbound loops.

C NUMBER OF SAMPLES IN CASE STUDIES

In this section, we elaborate on how to determine the number of samples for estimating the expec-
tation function of differential programs in case studies. Our analysis mainly relies on the bound of
〈O2

d
⊗O2〉 and 〈O4

d
⊗O4〉 in Appendix A. Although the variance bound we proved in Theorem A.3

matches the one of Zhu et al. [77] when there is no unbounded loop, it is still not scalable in prac-
tical applications. In the following analysis of case studies, the actual value of 〈O2

d
⊗ O2〉 is much

less than the bound we prove.

C.1 Parameterized Amplitude Amplification

It is a bit troublesome to directly estimate the variance bound of P1 (θ ). We need an auxiliary
program:

Q (θ ) ≡ q � |0〉; r � |0〉;q � A[q];

whileM[r ] = 1 do

q � Z [q];q � A†[q];q � Z [q];q � A[q];

q, r � e−iθσ |1〉〈1|⊗Y [q, r ]

od

ThisQ (θ ) does not contain the quantum variable t in the program P1 (θ ), but its behavior is similar

to P1 (θ ). Its differential program
∂
∂θ (Q (θ )) is also similar to ∂

∂θ (P1 (θ )). Consider the observable

Õ1 = I for programQ (θ ), we can conclude that the expectation 〈O2
d
⊗O2

1〉 of
∂
∂θ (P1 (θ )) is less than

the expectation 〈O2
d
⊗ Õ2

1〉 of
∂
∂θ (Q (θ )):

(1) Observable O1 for P1 (θ ) yields the result that is equal to or less than 1 and observable Õ1

forQ (θ ) leads to the result 1, which indicates that the output ofQ (θ ) is always greater then
P1 (θ ).

(2) Since the differential program keeps the same structure as the original program, the above

result also holds for program ∂
∂θ (Q (θ )) with observable O2

d
⊗ Õ2

1 and program ∂
∂θ (P1 (θ ))

with observable O2
d
⊗ O2

1 if they have executed the same branches.

Therefore, the expectation 〈O2
d
⊗ O2

1〉 of
∂
∂θ (P1 (θ )) is less than the expectation 〈O2

d
⊗ Õ2

1〉 of
∂
∂θ (Q (θ )).
The TheoremA.3with the fact thatQ (θ )meets the conditions of LemmaA.6 can give us an upper

bound of 〈O2
d
⊗Õ2

1〉. When p = 1/100 and θ = 4 arccos((1−2
√
p (1 − p))/(1+2

√
p (1 − p))) = 3.3568,

we numerically calculate the ϵ for Q (θ ) in Lemma A.6 as 0.6681. With M = 1,M1 = 1,M2 = 1 in
Theorem A.3, we obtain 799.72 as an upper bound of 〈O2

d
⊗ Õ2

1〉. However, the bound for 〈O4
d
⊗ Õ4

1〉
in Theorem A.5 can also be numerically calculated as 1.013 × 107. By Chebyshev’s Inequality, we
use 1.013 × 107/302/0.1 ≈ 1 × 105 samples to sample 〈O2

d
⊗ O2

1〉 ≈ 14.26 in an error of 30 with
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failure probability less than 10%. Thus, we can use 30 + 14.26 = 44.26 as the actual value of
〈O2

d
⊗ O2

1〉. This 44.26 is much less than 799.72. By Chebyshev’s Inequality, to estimate 〈Od ⊗ O1〉
in precision δ = 0.1 with failure probability less than c = 10%, the number of samples we need is
less than Var(Od ⊗O1)/(δ

2c ) ≤ 4.426× 104. In this experiment, we use 5/
√
p × 103 (= 5× 104 when

p = 1/100) samples for each p.

C.2 Quantum Walk with Parameterized Shift Operator

To estimate the number of samples for P2 (θ1,θ2), we need another similar program as follows:

Q (θ1,θ2) ≡ t � |0〉;whileM[qx ,qy] = 1 do

cx � |0〉; cy � |0〉;qx � |0〉;qy � |0〉;
cx � H [cx ]; cy � H [cy];qx ,qy � H̃ [qx ,qy];

cx , cy ,qx ,qy � C[cx , cy ,qx ,qy]; cx , cy ,qx ,qy � S (θ1,θ2)[cx , cy ,qx ,qy];

cx , cy ,qx ,qy � C[cx , cy ,qx ,qy]; cx , cy ,qx ,qy � Sm[cx , cy ,qx ,qy];

if (M ′[t] = 0→ A[t]� = 1→ skip) fi od.

The second shift operator inQ (θ1,θ2) is not parameterized. But its behavior is the same as P (θ1,θ2).
Thus, we only need to estimate the number of samples for Q (θ1,θ2). When (θ1,θ2) = (π ,π ), we
can numerically calculate the ϵ for Q (θ1,θ2) in Lemma A.6 is less than 0.76. With M = 1,M1 =

1,M2 = 1 in Theorem A.3, we obtain 2, 230.86 as an upper bound of variance. The bound for
〈O4

d
⊗ O4〉 in Theorem A.5 is 8.14 × 107. Then, we use 8.14 × 107/202/0.1 ≈ 2 × 105 samples to

sample 〈O2
d
⊗ O2〉 ≈ 104.23 in an error of 20 with failure probability less than 10%. Thus, we can

use 104.23 + 20 = 124.23 as the actual value of 〈O2
d
⊗ O2

2〉. By Chebyshev’s Inequality, to estimate
〈Od ⊗ O2〉 in precision δ = 0.1 with failure probability less than c = 10%, the number of samples
we need is less than 1.24 × 105.

However, this number of samples is large for us, as the simulation of P2 (θ1,θ2) takes a lot of time
in Q#. In this experiment, we choose 2×104 as the number of samples. Our experiment shows that
this number of samples is already good for training. This phenomenon has been studied in the
optimization of PQCs (VQCs): Sweke et al. [63] found that even using single measurement out-
comes for estimation of expectation values is sufficient in optimization algorithms, which results
in a form of stochastic gradient descent optimization [57].

C.3 Repeat-until-success Unitary Implementation

It is easy to see that P3 (θ1,θ2,θ3) satisfies the conditions of Lemma A.6 with ϵ = 0.5. With M =
1,M1 = 1,M2 = 1 for each parameter, the variance bound in Theorem A.3 is 243.19. While the
estimated value of 〈O2

d
⊗ O2〉 is 15.298.

The partial derivative of l (θ1,θ2,θ3) with respect to θ1 is

∂l

∂θ1
=

1

2

4∑
j=1

(Ej − 1)
∂Ej

∂θ1
.

Suppose Ej and ∂Ej/∂θ1 are estimated in precision δ1 and δ2, respectively. Then, ∂l/∂θ1 is in
precision

1

2

4∑
j=1

(
|Ej − 1|δ2 +

�����
∂Ej

∂θ1

�����δ1 + δ1δ2
)
=

��
	
1

2

4∑
j=1

|Ej − 1|
��δ2 +
��
	
1

2

4∑
j=1

�����
∂Ej

∂θ1

�����

�
�δ1 + 2δ1δ2

≡ Aδ1 + Bδ2 + 2δ1δ2.
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To limit it in 0.1, we can choose δ1 ∼ 0.01/B,δ2 ∼ 0.09/A. Then, assume that during most of the
training process, A ≤ 1

2 × 4× 0.3 = 0.6, we have δ2 ≤ 0.15. By Chebyshev’s Inequality, to estimate
∂Ej/∂θ1 in precision δ = 0.15 with failure probability less than c = 1%, the number of samples we
need is less than 4.72×104. With this number of samples, the probability of all ∂Ej/∂θ1, j = 1, 2, 3, 4
are estimated in 0.15 is greater than 0.994 = 92.2%.

D DETAILED PROOFS

D.1 Proof of Lemma 5.3

Before giving proof details of Lemma 5.3, we need some lemmas and definitions. For those who
want a more detailed understanding of this subsection, you can refer to quantum graph theory
and quantum Markov chains [30, 73, 76].
With the same notations of Lemma 5.3, we first list other needed notations:

— G = E ◦ E1.
— σ = limn→∞

1
n

∑n
k=0 G

n (IHP
), where IHP

is the identify operator onHP . The existence of σ

is easily obtained; moreover, limn→∞
1
n

∑n
k=0 G

n is also a superoperator [69].

—Y = {|ψ 〉 ∈ HP | 〈ψ |σ |ψ 〉 = 0
}
, X = supp(σ ) ≡ Y⊥.

— PX denotes the projector onto a space X , IHP
denotes the identify operator onHP .

— The notation |ψ 〉 ∈ H for any Hilbert space H assumes ��|ψ 〉�� = 〈ψ |ψ 〉 = 1 if there is no
special remark.

Lemma D.1 (Modified from Reference [76, Theorem 1]).

— ∀|ψ 〉 � 0 ∈ X.∀n ∈ N. tr(PXGn ( |ψ 〉〈ψ |)) = 〈ψ |ψ 〉 = 1.
— ∀n ∈ N.(G∗)n (PX ) � PX .

Proof. Both of these propositions are trivial if X is Zero space. Thus, in the following, we
assume X is not Zero space, which means σ � 0:

— According to Reference [52, P. 105], for any |ψ 〉 ∈ X = supp(σ ), there exist λ > 0 and
μ ∈ D (X) such that σ = λ |ψ 〉〈ψ | + μ, then

tr(σ ) = tr(PXσ ) = tr(PXG (σ )) = · · · = tr(PXGn (σ ))

= λ tr(PXGn ( |ψ 〉〈ψ |)) + tr(PXGn (μ ))

≤ λ tr( |ψ 〉〈ψ |) + tr(μ ) = tr(σ ).

Because λ > 0, we conclude that

tr(PXGn ( |ψ 〉〈ψ |)) = 〈ψ |ψ 〉 = 1.

—The above statement tells that for any |ψ 〉 ∈ X and any n ∈ N
1 = tr(PXGn ( |ψ 〉〈ψ |)) = 〈ψ |(G∗)n (PX ) |ψ 〉

together with IHP
� (G∗)n (IHP

) � (G∗)n (PX ), which means ��(G∗)n (PX ) |ψ 〉�� ≤ 1, we have

∀|ψ 〉 ∈ X.∀n ∈ N.|ψ 〉 = (G∗)n (PX ) |ψ 〉.

Now, for any |α〉 = x |ψ 〉 + y |φ〉 ∈ HP , where |ψ 〉 ∈ X, |φ〉 ∈ Y, |x |2 + ��y��2 = 1, we have

〈α |((G∗)n (PX ) − PX ) |α〉 ≥ x̄y〈ψ |(G∗)n (PX ) |φ〉 + xȳ〈φ |(G∗)n (PX ) |ψ 〉
= x̄y〈ψ |φ〉 + xȳ〈φ |ψ 〉 = 0.

Thus, (G∗)n (PX ) � PX for all n ∈ N.
�
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Lemma D.2.

— ∀ϵ ∈ (0, 1),∃N > 0,∀|ψ 〉 ∈ HP ,∀n > N ,

tr(PYGn ( |ψ 〉〈ψ |)) < ϵ .

— ∀ϵ ∈ (0, 1).∃N > 0.(G∗)N (PY ) 
 ϵPY .
Proof.

— For any |ψ 〉 ∈ HP , we first prove that

lim
n→∞

tr(PYGn ( |ψ 〉〈ψ |)) = 0.

With G∗ (PX ) � pX in Lemma D.1 and G∗ (PX + PY ) = G∗ (IHP
) 
 IHP

= PX + PY by
the definition of G, we have G∗ (PY ) 
 PY , which means tr(PYGn ( |ψ 〉〈ψ |)) ≥ 0 is non-
increasing with n → ∞, then there exists a ≥ 0 such that

lim
n→∞

tr(PYGn ( |ψ 〉〈ψ |)) = a.

Therefore,

0 = tr(PYσ ) = tr �	PY lim
n→∞

1

n

n∑
k=0

Gk (IHP
)
�

= lim
n→∞

1

n

n∑
k=0

tr(PYGk (IHP
− |ψ 〉〈ψ |)) + lim

n→∞

1

n

n∑
k=0

tr(PYGn ( |ψ 〉〈ψ |))

≥ lim
n→∞

1

n

n∑
k=0

tr(PYGn ( |ψ 〉〈ψ |))

= lim
n→∞

tr(PYGn ( |ψ 〉〈ψ |))

= a ≥ 0,

which results a = 0. We define a series of continuous functions fn ,n ∈ N onA = {|ψ 〉 | |ψ 〉 ∈
HP },

fn ( |ψ 〉) = tr(PYGn ( |ψ 〉〈ψ |)).
We have that fn is monotonically decreasing and convergent to 0. Besides, HP is finite-
dimensional, then A is a compact set (unit sphere). By Dini’s Theorem [58, Theorem 7.13],
fn is uniform convergent to 0, which is

∀ϵ > 0.∃N > 0.∀|ψ 〉 ∈ A.∀n > N . ��fn ( |ψ 〉)�� < ϵ .

Therefore, ∀ϵ ∈ (0, 1),∃N > 0,∀|ψ 〉 ∈ HP ,∀n > N ,

tr(PYGn ( |ψ 〉〈ψ |)) < ϵ .

—According to the above, for any ϵ ∈ (0, 1), there exists N0 > 0 such that ∀|φ〉 ∈ Y ⊆ HP and
N = N0 + 1, we have

tr(PYGN ( |φ〉〈φ |)) ≤ ϵ,

which is
〈φ |(G∗)N (PY ) |φ〉 ≤ ϵ .

Consider any |ψ 〉 ∈ X, in the proof of Lemma D.1, we already know that

1 = tr(PXGn ( |ψ 〉〈ψ |)) ≤ tr((PX + PY )Gn ( |ψ 〉〈ψ |)) ≤ 1.

As the same in the proof of Lemma D.1, we also have

|ψ 〉 = (G∗)N (PX ) |ψ 〉 = (G∗)N (PX + PY ) |ψ 〉.
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Thus, for any |ψ 〉 ∈ X, (G∗)N (PY ) |ψ 〉 = 0|ψ 〉 (zero vector).
Now, consider any |α〉 = a |ψ 〉 + b |φ〉 ∈ HP , where |ψ 〉 ∈ X, |φ〉 ∈ Y, |a |2 + |b |2 = 1, we have

〈α |((G∗)N (PY ) − ϵPY ) |α〉 = aā〈ψ |(G∗)N (PY ) |ψ 〉 + bb̄〈φ |(G∗)N (PY ) |φ〉 − ϵbb̄

+ āb〈ψ |(G∗)N (PY ) |φ〉 + ab̄〈φ |(G∗)N (PY ) |ψ 〉
= bb̄〈φ |(G∗)N (PY ) |φ〉 − ϵbb̄

≤ ϵbb̄ − ϵbb̄ = 0.

Then, (G∗)N (PY ) 
 ϵPY . We finally conclude that

∀ϵ ∈ (0, 1).∃N > 0.(G∗)N (PY ) 
 ϵPY .
�

Proof of Lemma 5.3. From Lemma D.1, we have (G∗) (PX ) � PX , which is

E∗1 ◦ E∗ (PX ) � PX

with IHP
� E∗ (IHP

) � E∗ (PX ), it results E∗1 (IHP
) � PX . Since

E∗0 (IHP
) + E∗1 (IHP

) = IHP
= PX + PY ,

we have

E∗0 (IHP
) 
 PY .

By Lemma D.2, for any ϵ ∈ (0, 1), there exists N > 0 such that (G∗)N (PY ) 
 ϵPY . Therefore, for
any n ∈ N, any ρ ∈ D (HP ), we have

tr(E0 ◦ (E ◦ E1)
n (ρ)) = tr((G∗)n (E∗0 (IHP

))ρ)

≤ tr((G∗)n (PY )ρ)

= tr((G∗) �
n
N �∗N+(n−� nN �∗N ) (PY )ρ)

≤ ϵ �
n
N � tr(PYρ)

≤ ϵ �
n
N � tr(ρ).

�

D.2 Proof of Lemma 5.1

Proof.

d

dθ
(E2 ◦ EH,θ ◦ E1 (ρ)) =

d

dθ

(
E2

(
e−iθHE1 (ρ)e

iθH
))

= E2

(
−iHe−iθHE1 (ρ)e

iθH + e−iθHE1 (ρ)e
iθH (iH )

)
= E2

(
e−iθH (−iHE1 (ρ))e

iθH + e−iθH (E1 (ρ) (iH ))eiθH
)

= E2 ◦ EH,θ (−iHE1 (ρ) + iE1 (ρ)H )

= E2 ◦ EH,θ (−i[H ,E1 (ρ)]).

�
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D.3 Proof of Commutator-form Rule

The following lemma modified from qPCA (quantum principal component analysis) [44]
helps incorporate commutators into the semantics of parameterized quantum programs:

LemmaD.3 (Modified from Reference [44]). LetH1, H2, H3 be Hilbert spaces with dim(H2) =
dim(H3), S a SWAP operator on H2 ⊗ H3, ρ ∈ D (H1 ⊗ H2), σ ∈ D (H3), and parameter α ∈ R.
Then,

tr3 (e
−iαSρ ⊗ σeiαS ) = cos(α )2ρ + sin(α )2 tr2 (ρ) ⊗ σ − i cos(α ) sin(α )[[σ ]2, ρ], (D.1)

where [σ ]2 denotes the operator I1 ⊗ σ onH1 ⊗H2 with I1 being the identity operator onH1, and trj
denotes the partial trace onHj .

Proof.

tr3 (e
−iαSρ ⊗ σeiαS )

= tr3 ((cos(α )I − i sin(α )S )ρ ⊗ σ (cos(α )I + i sin(α )S ))

= tr3

(
cos(α )2ρ ⊗ σ + sin(α )2Sρ ⊗ σS + i cos(α ) sin(α )ρ ⊗ σS − i cos(α ) sin(α )Sρ ⊗ σ

)
= cos(α )2ρ + sin(α )2 tr2 (ρ) ⊗ σ + i cos(α ) sin(α )ρ[σ ]2 − i cos(α ) sin(α )[σ ]2ρ

= cos(α )2ρ + sin(α )2 tr2 (ρ) ⊗ σ − i cos(α ) sin(α )[[σ ]2, ρ].

�

With Lemma D.3, the д(θ ;α ) in Equation (5.2) can be rewritten as

д(θ ;α ) = cos(α )2 tr
(
OE2

(
e−iθσE1 (ρ)e

iθσ
))
+ cos(α )2 tr

(
OE2

(
e−iθσ (σ ⊗ tr1 (E1 (ρ)))e

iθσ
))

+ cos(α ) sin(α ) tr
(
OE2

(
e−iθσ (−i[σ ⊗ I ,E1 (ρ)])e

iθσ
))
,

where tr1 (E1 (ρ)) is partial trace of E1 (ρ) over the space of e
−iθσ acts. Thus,

д(θ ;α ) − д(θ ;−α ) = 2 cos(α ) sin(α ) tr
(
OE2

(
e−iθσ (−i[σ ⊗ I ,E1 (ρ)])e

iθσ
))
= sin(2α )

d

dθ
f (θ ).

D.4 Proof of Theorem 5.4

To prove Theorem 5.4, we need the Super-operator-valued Transition Systems [74], which provide
us with a convenient way for modeling the control flow of quantum programs. In there, we use a
modified version.

Definition D.4 (Modified Super-operator-valued Transition Systems). A modified super-

operator-valued transition system (mSVTS) is a 5-tuple S = 〈H ,L, l0,T , ρ0〉, where:
—H is a Hilbert space called the state space;
— L is a finite set of locations;
— l0 ∈ L is the initial location;
— T is a set of transitions. Each transition τ ∈ T is a triple τ = 〈l , l ′,E〉, often written as

τ = l
E→ l ′, where l , l ′ ∈ L are pre- and post-locations of τ , respectively, and E is a super-

operator inH . It is required that∑{����E∗ (IH ) : l
E→ l ′ ∈ T

����
}

 IH (D.2)

for each l ∈ L, where IH is the identify operator onH and E∗ is the Schrödinger-Heisenberg
dual of E.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 19. Pub. date: November 2023.



19:36 W. Fang et al.

— ρ0 is an initial state at l0.

For any path π = l1
E1→ l2

E2→ · · ·
En−1→ ln in the mSVTS graph, we write l1

π
⇒ ln and use Eπ to

denote the composition of the super-operator along the path, i.e., Eπ = En−1 ◦ · · · ◦ E2 ◦ E1. If the

transition l
E→ l ′ in T has superoperator E simply defined by an operator E, i.e., E (ρ) = EρE† for

all density operator ρ inH , then we will write l
E→ l ′ for l

E→ l ′.

Lemma D.5. Let A be a set of paths in S = 〈H ,L, l0,T , ρ0〉. All paths in A have a same initial

location and each path π ∈ A is not a prefix of others in A, then for any ρ ∈ D (H ),∑
π ∈A

tr(Eπ (ρ)) ≤ tr(ρ).

Proof. We first assume that A is finite and prove it by induction through the size of |A|.

— |A| = 1. A has only one element π . We write π = π = l1
E1→ l2

E2→ · · ·
En−1→ ln , then by

Formula (D.2), for any ρ ∈ D (H ),

tr(Eπ (ρ)) = tr(En−1 ◦ · · · ◦ E2 ◦ E1 (ρ))

= tr(E∗n−1 (IH ) · En−2 ◦ · · · ◦ E2 ◦ E1 (ρ))

≤ tr(En−2 ◦ · · · ◦ E2 ◦ E1 (ρ))

· · ·
≤ tr(ρ).

If |A| = 0, then
∑
π ∈ A tr(Eπ (ρ)) = 0 ≤ tr(ρ).

— Suppose when |A| ≤ n,n ≥ 1, we have that for any ρ ∈ D (H ),∑
π ∈A

tr(Eπ (ρ)) ≤ tr(ρ).

Then, consider |A| = n + 1, we choose a path π = l1
E1→ l2

E2→ · · ·
En−1→ ln ∈ A and let

πj = lj
Ej→ lj+1, 1 ≤ j ≤ n − 1, then π = π1π2 · · · πn−1. For convenience, we use π0 to denote

an empty path. Then, for this π , we define

B = {j : 0 ≤ j ≤ n − 1,∀π ∈ A.∃π ′.s .t .π = π0π1π2 · · · πjπ ′}.

B must contain 0, thus B is not empty. As each path in A is not a prefix of others in A, we
have that n − 1 � B. Let j0 = maxB, then j0 < n − 1. Consider all the transitions in T with
lj0 as pre-location:

τ1 = lj0
G1→ l ′1,τ2 = lj0

G2→ l ′2, . . . ,τn′ = lj0
Gn′→ l ′n′ .

It is followed that ∀π ′ ∈ A, π ′ must have a prefix π0π1 · · · πj0τk with 1 ≤ k ≤ n′, otherwise
π ′ = π0π1 · · · πj0 (if j0 > 0, then π ′ � π0; if j0 = 0, then this π ′ does not exist), it is a prefix
for all paths in A, which is a contradiction. Therefore,

A =
n′⋃
k=1

Ck

with

Ck ≡ {π ′ ∈ A : ∃π .′′s .t .π ′ = π0π1 · · · πj0τkπ ′′},
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for 1 ≤ k ≤ n′, and each path in Ck is not a prefix of of others in Ck . We claim that |Ck | ≤
n, otherwise there exists Ck0 = A, then π0π1 · · · πj0τk0 is a prefix for all paths in A, this
contradicts the definition of j0, because in that case j0 + 1 ∈ B. Then, define

Dk ≡ {π ′′ : π0π1 · · · πj0τkπ ′′ ∈ Ck }, 1 ≤ k ≤ n′,

we have that for any 1 ≤ k ≤ n′, all paths in Dk have same initial location and each path
π ′′ ∈ Dk is not a prefix of others in Dk and |Dk | = |Ck | ≤ n. By inductive hypothesis, for
any ρ ∈ D (H ), ∑

π ′′ ∈Dk

tr(Eπ ′′ (ρ)) ≤ tr(ρ), 1 ≤ k ≤ n′. (D.3)

Finally, for any ρ ∈ D (H ),

∑
π ′ ∈A

tr(Eπ (ρ)) =
n′∑
k=1

∑
π ′ ∈Ck

tr (Eπ (ρ))

=

n′∑
k=1

∑
π ′′ ∈Dk

tr
(
Eπ0π1 · · ·πj0τkπ ′′ (ρ)

)

=

n′∑
k=1

∑
π ′′ ∈Dk

tr
(
Eπ ′′

(
Eπ0π1 · · ·πj0τk (ρ)

))

≤
n′∑
k=1

tr
(
Eπ0π1 · · ·πj0τk (ρ)

)
(by Inequality (D.3))

=

n′∑
k=1

tr
(
Eτk

(
Eπ0π1 · · ·πj0 (ρ)

))

=

n′∑
k=1

tr
(
Gk

(
Eπ0π1 · · ·πj0 (ρ)

))
≤ tr

(
Eπ0π1 · · ·πj0 (ρ)

)
(by Formula (D.2))

≤ tr(ρ). (as the same proof of |A| = 1)

Thus, when |A| is finite, we prove this proposition. Because of the order-preserving property of
limitation, when |A| = ∞, we also have the same result. �

Definition D.6 (Computation Path of mSVTS). A path π = l0
E1→ m1

E2→ · · ·
En→ mn in S =

〈H ,L, l0,T , ρ0〉 is a computation path if for any τ in T , mn is not a pre-location of τ . And we
write ΠS be the set of computation paths, which is

ΠS = {π is a path in S | l0
π
⇒ l ∧ ∀τ ∈ T , l is not a pre-location of τ }.

Moreover, we use Π(n)
S to denote the set of length ≤ n (transits ≤ n steps) paths in ΠS .

As similar in Reference [74], the control flow graph of a quantum program can be represented
by an mSVTS. For every parameterized quantum while -program P (θ ), we define an mSVTS

SP (θ ) = 〈HP (θ ),L, l
P (θ )
in ,T , ρ〉 in the state Hilbert spaceHP (θ ) of P (θ ) by induction on the program

structure of P (θ ), where ρ is an input state of P (θ ). This transition system has two designated lo-
cations lPin , l

P
out , with the former being the initial location and the latter being the exit location. We

only need to consider definitions of L and T .
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— P (θ ) ≡ skip. SP (θ ) has only two locations lP (θ )in , l
P (θ )
out and a single transition lP (θ )in

I→ lP (θ )out .

— P (θ ) ≡ q � |0〉. Let {|n〉q } be the basis of Hq , then SPθ has two locations lP (θ )in , l
P (θ )
out and a

single transition lP (θ )in

Eq
→ lP (θ )out , where Eq (ρ) =

∑
n |0〉q〈n |ρ |n〉q〈0|.

— P (θ ) ≡ q̄ � σ .9 Write σ in spectral decomposition, σ =
∑

n λn |ψn〉q̄〈ψn |, λn ≥ 0 (there,

we include eigenvalues of 0), then SPθ has two locations lP (θ )in , l
P (θ )
out and a single transition

lP (θ )in

Eq̄,σ
→ lP (θ )out , where

Eq̄,σ (ρ) =
∑
m,n

(
√
λm |ψm〉q̄〈ψn |)ρ (

√
λm |ψn〉q̄〈ψm |).

— P (θ ) ≡ q̄ � U [q̄]. SP (θ ) has two locations lP (θ )in , l
P (θ )
out and a single transition lP (θ )in

[U ]q̄
→ lP (θ )out .

— P (θ ) ≡ q̄ � e−iθσ [q̄]. SP (θ ) has two locations l
P (θ )
in , l

P (θ )
out and a single transition lP (θ )in

[e−iθσ ]q̄
→

lP (θ )out .
— P (θ ) ≡ P1 (θ ); P2 (θ ). SupposeSP1 (θ ) ,SP2 (θ ) are the control flow graphs of subprograms P1 (θ ),

P2 (θ ), respectively. Then, SP (θ ) in constructed as follows: We identify lP1 (θ )out = lP2 (θ )in and

concatenate SP1 (θ ) , SP2 (θ ) . We further set lP1 (θ )in = lP (θ )in , lP2 (θ )out = l
P (θ )
out .

— P (θ ) ≡ if (�m · M[q̄] = m → Pm (θ )) fi. Suppose that SPm (θ ) is the control flow graph of
subprogram Pm (θ ) for everym. Then, SP (θ ) is constructed as follows: We put all SPm (θ ) ’s

together and add a new location lP (θ )in and a transition lP (θ )in

[Mm ]q̄
→ lPm (θ )

in for every m. We

further set lPm (θ )
out = lP (θ )out for allm.

— P (θ ) ≡ whileM[q̄] = 1 do Q (θ ) od. We construct SP (θ ) from the control flow graph SQ (θ )

of subprogram Q (θ ) as follows: We add two new locations lP (θ )in , lP (θ )out and two transitions

lP (θ )in

[M0][̄q]
→ lP (θ )out , lP (θ )in

[M1]q̄
→ l

Q (θ )
in . We further identify l

Q (θ )
out = l

P (θ )
in .

There, we use the subscript [U ]q̄ for unitaryU and quantum variables q̄ to indicate thatU acts
on the Hilbert spaceHq̄ .

Theorem D.7. For a parameterized quantum while-program P (θ ) with an initial state ρ and its

mSVTS SP (θ ) , we have

�P (θ )� (ρ) = ∑
π ∈ΠSP (θ )

Eπ (ρ) ≡
∞⊔
n=1

∑
π ∈Π

S (n )
P (θ )

Eπ (ρ).

Proof. We prove it by induction through the program structure.

— P (θ ) ≡ skip. We have ΠSP (θ )
= {lP (θ )in

I→ lP (θ )out }, then∑
π ∈ΠSP (θ )

Eπ (ρ) = I ρI = ρ = �skip� (ρ).
— P (θ ) ≡ q � |0〉. We have ΠSP (θ )

= {lP (θ )in

Eq
→ lP (θ )out }, then∑

π ∈ΠSP (θ )

Eπ (ρ) = Eq (ρ) =
∑
n

|0〉q〈n |ρ |n〉q〈0| = �q � |0〉� (ρ).
9Although this statement is not contained in the syntax, we use it for convenience, as we have said in Remark 4.2.
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— P (θ ) ≡ q̄ � σ . We have ΠSP (θ )
= {lP (θ )in

Eq̄,σ
→ lP (θ )out }, then∑

π ∈ΠSP (θ )

Eπ (ρ) = Eq̄,σ (ρ) =
∑
m,n

(
√
λm |ψm〉q̄〈ψn |)ρ (

√
λm |ψn〉q̄〈ψm |).

In the Remark 4.2, the statement q̄ � σ aims to set the state ρ to trq̄ (ρ) ⊗ σ , which should
be �q̄ � σ� (ρ). We can check that for any ρ∑

m,n

(
√
λm |ψm〉q̄〈ψn |)ρ (

√
λm |ψn〉q̄〈ψm |) = trq̄ (ρ) ⊗ σ .

Thus, ∑
π ∈ΠSP (θ )

Eπ (ρ) = �q̄ � σ� (ρ).
— P (θ ) ≡ q̄ � U [q̄]. We have ΠSP (θ )

= {lP (θ )in

[U ]q̄
→ lP (θ )out }, then∑

π ∈ΠSP (θ )

Eπ (ρ) = [U ]q̄ρ[U
†]q̄ = �q̄ � U [q̄]� (ρ).

— P (θ ) ≡ q̄ � e−iθσ [q̄]. We have ΠSP (θ )
= {lP (θ )in

[e−iθσ ]q̄
→ lP (θ )out }, then∑

π ∈ΠSP (θ )

Eπ (ρ) = [e−iθσ ]q̄ρ[e
iθσ ]q̄ =

�
q̄ � e−iθσ [q̄]

�
(ρ).

— P (θ ) ≡ P1 (θ ); P2 (θ ). For any π1 ∈ ΠSP1 (θ ) , π2 ∈ ΠSP2 (θ ) , we can write

π1 = l
P1 (θ )
in

EP1 (θ )1→ lP1 (θ )1

EP1 (θ )2→ · · ·
EP1 (θ )m→ lP1 (θ )out

π2 = l
P2 (θ )
in

EP2 (θ )1→ lP2 (θ )1

EP2 (θ )2→ · · ·
EP2 (θ )n→ lP2 (θ )out ,

then, from our construction

π = lP (θ )in

EP1 (θ )1→ lP1 (θ )1

EP1 (θ )2→ · · ·
EP1 (θ )m→ lP1 (θ )out

EP2 (θ )1→ lP2 (θ )1

EP2 (θ )2→ · · ·
EP2 (θ )n→ lP (θ )out ∈ ΠSP (θ )

.

For convenience, we write π = π1π2, then

{π1π2 | π1 ∈ ΠSP1 (θ ) ,π2 ∈ ΠSP2 (θ ) } ⊆ ΠSP (θ )
.

However, for any π ∈ ΠSP (θ )
, write

π = lP (θ )in

EP (θ )
1→ lP (θ )1

EP (θ )
2→ · · ·

EP (θ )
m→ lP (θ )out .

From the construction, we have that lP (θ )in = lP1 (θ )in , lP (θ )out = lP2 (θ )out . Then, we can define k

to be the first index such that lP (θ )
k

is in SP1 (θ ) and lP (θ )
k+1

is in SP2 (θ ) . Moreover, for any

location l � lP1 (θ )out in SP1 (θ ) , its post-location is still in SP1 (θ ) , then we have lP (θ )
k
= lP1 (θ )out . By

construction, lP2 (θ )in = lP1 (θ )out = l
P (θ )
k

and for any location l in in SP2 (θ ) , its post-location is still

in SP2 (θ ) , thus for all j ≥ k + 1, lP (θ )j is in SP2 (θ ) . Then,

π1 = l
P (θ )
in

EP (θ )
1→ lP (θ )1

EP (θ )
2→ · · ·

EP (θ )
k→ lP (θ )

k
∈ ΠSP1 (θ )

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 19. Pub. date: November 2023.



19:40 W. Fang et al.

π2 = l
P (θ )
k

EP (θ )
k+1→ lP (θ )

k+1

EP (θ )
k+1→ · · ·

EP (θ )
k→ lP (θ )m ∈ ΠSP2 (θ ) ,

therefore,

{π1π2 | π1 ∈ ΠSP1 (θ ) ,π2 ∈ ΠSP2 (θ ) } ⊇ ΠSP (θ )
.

Because all Eπ (ρ) are positive semidefinite, we consider the partial summation, for any
n,m ≥ 1:

∑
π ∈Π(n )

SP (θ )

Eπ (ρ) 

∑

π ∈Π(n )
SP2 (θ )

∑
π ∈Π(n )

SP1 (θ )

Eπ1π2 (ρ) =
∑

π ∈Π(n )
SP2 (θ )

Eπ2
�����
	

∑
π ∈Π(n )

SP1 (θ )

Eπ1 (ρ)

����
�

(D.4)

∑
π ∈Π(m+n )

SP (θ )

Eπ (ρ) �
∑

π ∈Π(m )
SP2 (θ )

∑
π ∈Π(n )

SP1 (θ )

Eπ1π2 (ρ) =
∑

π ∈Π(m )
SP2 (θ )

Eπ2
�����
	

∑
π ∈Π(n )

SP1 (θ )

Eπ1 (ρ)

����
�
. (D.5)

By the inductive hypothesis, for any σ :∑
π ∈ΠSP1 (θ )

Eπ (σ ) = �P1 (θ )� (σ )
∑

π ∈ΠSP2 (θ )

Eπ (σ ) = �P2 (θ )� (σ ).
Therefore, in Equation (D.4), we have

∑
π ∈Π(n )

SP (θ )

Eπ (ρ) 

∑

π ∈Π(n )
SP2 (θ )

Eπ2
�����
	

∑
π ∈Π(n )

SP1 (θ )

Eπ1 (ρ)

����
�



∑

π ∈Π(n )
SP2 (θ )

Eπ2 (�P1 (θ )� (ρ))

 �P2 (θ )� (�P1 (θ )� (ρ))
= �P1 (θ ); P2 (θ )� (ρ)

and, in Equation (D.5), let n → ∞, we have for anym ≥ 1:∑
π ∈ΠSP (θ )

Eπ (ρ) �
∑

π ∈Π(m )
SP2 (θ )

Eπ2 (�P1 (θ )� (ρ))
then, letm → ∞, we get∑

π ∈ΠSP (θ )

Eπ (ρ) � �P2 (θ )� (�P1 (θ )� (ρ)) = �P1 (θ ); P2 (θ )� (ρ).
Thus,

∑
π ∈ΠSP (θ )

Eπ (ρ) = �P1 (θ ); P2 (θ )� (ρ).
— P (θ ) ≡ if (�m ·M[q̄] =m → Pm (θ )) fi. Let πm = l

P (θ )
in

[Mm ]q̄
→ lPm (θ )

in , then

ΠSP (θ )
=
⋃
m

{πmπ | π ∈ ΠSPm (θ )
},
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therefore, ∑
π ∈ΠSP (θ )

Eπ (ρ) =
∑
m

∑
π ∈ΠSPm (θ )

Eπmπ (ρ)

=
∑
m

∑
π ∈ΠSPm (θ )

Eπ (Eπm (ρ))

=
∑
m

∑
π ∈ΠSPm (θ )

Eπ ([Mm]q̄ρ[M
†
m]q̄ )

=
∑
m

�Pm (θ )� ([Mm]q̄ρ[M
†
m]q̄ )

= �if (�m ·M[q̄] =m → Pm (θ )) fi� (ρ).
In there, the second-to-last equality is provided by the inductive hypothesis.

— P (θ ) ≡ whileM[q̄] = 1 do Q (θ ) od. Let π0 = lP (θ )in

[M0][̄q]
→ lP (θ )out , π1 = lP (θ )in

[M1]q̄
→ l

Q (θ )
in . As

same before, we can obtain that any path in ΠSP (θ )
has the form η0 or π1η1π1η2 · · · π1ηnπ0,

ηj ∈ SQ (θ ), j = 1, 2, . . . ,n, which is

ΠSP (θ )
={π0} ∪

{
π1η1π1η2 · · · π1ηnπ0 | (n ∈ N+) ∧ (∀1 ≤ j ≤ n.ηj ∈ ΠSQ (θ )

)
}
,

then, for anym,n,nj ≥ 1, j = 1, 2, . . . ,m:

Π(mn)
SP (θ )

⊆ {π0} ∪
{
π1η1π1η2 · · · π1ηkπ0 | (k ∈ N+,k ≤ mn) ∧ (∀1 ≤ l ≤ k .ηl ∈ Π(mn)

SQ (θ )
)
}

Π
((
∑m
j=1 nj )+m+1)

SP (θ )
⊇ {π0} ∪

{
π1η1π1η2 · · · π1ηkπ0 | (k ∈ N+,k ≤ m) ∧ (∀1 ≤ l ≤ k .ηl ∈ Π(nl )

SQ (θ )
)
}

Thus, ∑
π ∈Π(mn )

SP (θ )

Eπ (ρ)


 Eπ0 (ρ) +
mn∑
k=1

∑
η1,η2, ...ηk ∈Π(mn )

SQ (θ )

Eπ1η1π1η2 · · ·π1ηkπ0 (ρ)

= Eπ0 (ρ) +
mn∑
k=1

Eπ0
�����
	

∑
ηk ∈Π(mn )

SQ (θ )

Eηk ◦ Eπ1
�����
	
· · ·

�����
	

∑
η1∈Π(mn )

SQ (θ )

Eη1 ◦ Eπ1 (ρ)

����
�
· · ·


����
�

����
�


 Eπ0 (ρ) +
mn∑
k=1

Eπ0
�����
	

∑
ηk ∈ΠSQ (θ )

Eηk ◦ Eπ1
�����
	
· · ·

���
	

∑
η1∈ΠSQ (θ )

Eη1 ◦ Eπ1 (ρ)

��
�
· · ·


����
�

����
�

= Eπ0 (ρ) +
mn∑
k=1

Eπ0
(�Q (θ )� ◦ Eπ1 )k (ρ) (by inductive hypothesis)


 �whileM[q̄] = 1 do Q (θ ) od� (ρ) (D.6)
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and ∑
π ∈Π

((
∑m
j=1

nj )+m+1)

SP (θ )

Eπ (ρ)

� Eπ0 (ρ) +
m∑
k=1

∑
ηk ∈Π

(nk )

SQ (θ )

· · ·
∑

η1∈Π
(n1 )

SQ (θ )

Eπ1η1π1η2 · · ·π1ηkπ0 (ρ)

= Eπ0 (ρ) +
m∑
k=1

Eπ0
�����
	

∑
ηk ∈Π

(nk )

SQ (θ )

Eηk ◦ Eπ1
�����
	
· · ·

�����
	

∑
η1∈Π

(n1 )

SQ (θ )

Eη1 ◦ Eπ1 (ρ)

����
�
· · ·


����
�

����
�
.

Use the inductive hypothesis and let n1 → ∞, we have∑
π ∈ΠSP (θ )

Eπ (ρ)

� Eπ0 (ρ) +
m∑
k=1

Eπ0
�����
	

∑
ηk ∈Π

(nk )

SQ (θ )

Eηk ◦ Eπ1
�����
	
· · ·

�����
	

∑
η2∈Π

(n2 )

SQ (θ )

Eη1 ◦ Eπ1 (�Q (θ )� ◦ Eπ1 (ρ))
����
�
· · ·


����
�

����
�

as the same, let n2 → ∞, . . . ,nm → ∞ in order, we get∑
π ∈ΠSP (θ )

Eπ (ρ) � Eπ0 (ρ) +
m∑
k=1

Eπ0
(�Q (θ )� ◦ Eπ1 )k (ρ),

then letm → ∞, ∑
π ∈ΠSP (θ )

Eπ (ρ) � �whileM[q̄] = 1 do Q (θ ) od� (ρ).
Back to the Formula (D.6), letm → ∞, we have∑

π ∈ΠSP (θ )

Eπ (ρ) 
 �whileM[q̄] = 1 do Q (θ ) od� (ρ).
Therefore, ∑

π ∈ΠSP (θ )

Eπ (ρ) = �whileM[q̄] = 1 do Q (θ ) od� (ρ).
�

Figure 11 shows the mSVTS for q̄ � e−iθσ [q̄] and the mSVTS for Tθ (q̄ � e−iθσ [q̄]). With this,

we can construct an mSVTS for ∂
∂θ (P (θ )) by only modifying the mSVTS of P (θ ).

LemmaD.8. LetSP (θ ) be the control-flow graph of a parameterized quantumwhile-program P (θ ).

We can modify SP (θ ) to be the control-flow graph of Q (θ ) ≡ ∂
∂θ (P (θ )) = Dinit;Tθ (P (θ )) as follows:

(1) For Dinit: We add 4 locations l
Q
in , l

Q
1 , l

Q
2 , l

Q
3 , l

Q
4 and five transitions l

Q
in

Eq1→ l
Q
1 , l

Q
1

Eq2→ l
Q
2 , l

Q
2

Eqc→

l
Q
3 , l

Q
3

[C]qc→ l
Q
4 , l

Q
4

[GP ]qc ,q2→ lP (θ )in .
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Fig. 11. Example of mSVTS for parameterized quantum while-program.

(2) For Tθ (P (θ )): As shown in Figure 11, for every transition a
[e−iθσ ]q̄
→ b with a parameter symbol

θ in SP (θ ) , we add 8 locations: la,b, j , 2 ≤ j ≤ 9 and replace the transition a
e−iθσ→ b by 11

transitions: a
[M1]q1,q2→ la,b,4, la,b,4

[X ]q1→ la,b,5, la,b,5
Eq̄′,σ
→ la,b,6, la,b,6

E
q2,

I
2→ la,b,7, la,b,7

[AS]q2, q̄, q̄′→

la,b,3, a
[M2]q1,q2→ la,b,2, la,b,2

I→ la,b,3, a
[M0]q1,q2→ la,b,8, la,b,8

[C]qc→ la,b,9, la,b,9
[GP ]qc ,q2→ la,b,3,

la,b,3
[e−iθσ ]q̄
→ b.

Then, we get an mSVTS SQ (θ ) , we have that SQ (θ ) represents the control-flow graph of Q (θ ).

Proof. By definition, the control-flow graph ofQ (θ ) = Dinit;Tθ (P (θ )) can be constructed from
SDinit and STθ (P (θ )) . In (1), it is obvious that (1) constructs the control-flow graph of the program
Dinit. We next prove that in (2), it produces a control-flow graph for Tθ (P (θ )). We prove this by
induction through the program structure of P (θ ).

— P (θ ) ≡ skip, or q � |0〉, or q̄ � U [q̄], or q̄ � e−iθ
′σ [q̄] (the symbol θ ′ � θ ). By definition

of Tθ , Tθ (P (θ )) = P (θ ) and we also see that P (θ ) does not contain statement using θ , then
SP (θ ) has no transition that contains θ . Thus, in (2), we do not change the SP (θ ) . We have
that it is still SP (θ ) .

— P (θ ) ≡ q̄ � e−iθσ [q̄]. In (2), our construction comes from the Figure 11; we can check that
the outcome represents the control-flow graph of Tθ (q̄ � e−iθσ [q̄]).

— P (θ ) ≡ P1 (θ ); P2 (θ ). Using

Tθ (P1 (θ ); P2 (θ )) = Tθ (P1 (θ ));Tθ (P2 (θ ))

and the inductive hypothesis on P1 (θ ) and P2 (θ ), the replacements in (2) are carried inter-
nally in P1 (θ ) and P2 (θ ), then concatenate them. This procedure is what we do in the defini-
tion of the control-flow graph with mSVTS. Thus, the outcome represents the control-flow
graph of Tθ (P (θ )).

— P (θ ) ≡ if (�m · M[q̄] = m → Pm (θ )) fi. We have Tθ (if (�m · M[q̄] = m → Pm (θ )) fi) =
if (�m · M[q̄] = m → Tθ (Pm (θ ))) fi and the inductive hypothesis on Pm (θ ). Then, the rest
is as same as above.

— P (θ ) ≡ whileM[q̄] = 1 do P ′(θ ) od. We have that
Tθ (whileM[q̄] = 1 do P ′(θ ) od) = while M[q̄] = 1 do Tθ (P

′(θ )) and the inductive hypoth-
esis on P ′(θ ). Then, the rest is as same as above.
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Therefore, we get SDinit and STθ (P (θ )) . Since SDinit has the exit location l
P (θ )
in and STθ (P (θ )) has the

same location lP (θ )in as the initial location, we have that SQ (θ ) represents the control-flow graph of
∂
∂θ (P (θ )). �

As the same settings in Lemma D.8, let ηDinit = l
Q
in

Eq1→ l
Q
1

Eq2→ l
Q
2

Eqc→ l
Q
3

[C]qc→ l
Q
4

[GP ]qc ,q2→ lP (θ )in

and for every transition a
[e−iθσ ]q̄
→ b with parameter symbol θ in SP (θ ) , we write

ηa,b,0 = a
[M0]q1,q2→ la,b,8

[C]qc→ la,b,9
[GP ]qc ,q2→ la,b,3

[e−iθσ ]q̄
→ b

ηa,b,1 = a
[M1]q1,q2→ la,b,4

[X ]q1→ la,b,5
Eq̄′,σ
→ la,b,6

E
q2,

I
2→ la,b,7

[AS]q2, q̄, q̄′→ la,b,3
[e−iθσ ]q̄
→ b

ηa,b,2 = a
[M2]q1,q2→ la,b,2

I→ la,b,3
[e−iθσ ]q̄
→ b .

For each π ∈ ΠSP (θ )
with π = lP (θ )in

E1→m1
E2→m2

E3→ · · ·
En→mn and 1 ≤ i1 < i2 < · · · < ik ≤ n such

that Ei j = [e−iθσij ] ¯qij
for j = 1, 2, . . . ,k (which is that the path π has k times occurrences of the

parameter symbol θ ), we write πj =mj−1
Ej→mj for 1 ≤ j ≤ n (m0 = l

P (θ )
in ) and then define

Aπ

≡
{
ηdinitπ1 · · · πi1−1μi1πi1+1 · · · πik−1μikπik+1 · · · πn | μi j ∈ {ηmij −1,mij ,0

,ηmij −1,mij ,1
,ηmij −1,mij ,2

}
}
.

(D.7)
In there, the setAπ is obtained by replacing each πi j , which contains parameter symbol θ , with one
of ηmij −1,mij ,0

, ηmij −1,mij ,1
, ηmij −1,mij ,2

and adding ηdinit to the front of π . We have the following

lemma:

Lemma D.9. As the same settings in Lemma D.8, and Aπ ,π ∈ ΠSP (θ )
defined above, we have

ΠSQ (θ )
=

⋃
π ∈ΠSP (θ )

Aπ . (D.8)

Proof. By constructions of SQ (θ ) and Aπ , Formula (D.8) is easy to see. �

Lemma D.10. As the same settings in Lemma D.8, for any observable O onHP (θ ) , the same Od in

Theorem 5.4 and π ∈ ΠSP (θ )
with π = lP (θ )in

E1→m1
E2→m2

E3→ · · ·
En→mn and 1 ≤ i1 < i2 < · · · < ik ≤

n such that Ei j = [e−iθσij ] ¯qij
for j = 1, 2, . . . ,k , we have

tr
��
	Od ⊗ O

∑
η∈Aπ

Eη (ρ)
�� =
k∑
j=1

(
tr
(
OEπij πij +1 · · ·πn (−i[[σi j ]q̄ij ,Eπ1 · · ·πij −1 (ρ)])

))
, (D.9)

where [σi j ]q̄ij denotes the operator σi j that acts on the Hilbert spaceHq̄ij
.
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Proof. We only need to consider the state inHqc ⊗ Hq1 ⊗ Hq2 ⊗ HP (θ ) .∑
η∈Aπ

Eη (ρ)

=
∑

j=1,2, . . .,k
μij

∈{ηmij −1,mij
,0,ηmij −1,mij

,1,ηmij −1,mij
,2 }

(
Eηdinit π1 · · ·πi1−1μi1πi1+1 · · ·πik −1μik πik +1 · · ·πn (ρ)

)

=
∑

j=1,2, . . .,k
μij

∈{ηmij −1,mij
,0,ηmij −1,mij

,1,ηmij −1,mij
,2 }

(
Eπi1+1 · · ·πik −1μik πik +1 · · ·πn (Eηdinit π1 · · ·πi1−1μi1 (ρ))

)

=
∑

j=2, . . .,k
μij

∈{ηmij −1,mij
,0,ηmij −1,mij

,1,ηmij −1,mij
,2 }

(
Eπi1+1 · · ·πik −1μik πik +1 · · ·πn

( 2∑
h1=0

Eηmi1−1,mi1
,h1

(Eηdinit π1 · · ·πi1−1 (ρ))
))
.

Let |ψj 〉 = Ry (2 arcsin(
√
bj )) |0〉, bj = μ (j )/(1 −∑j−1

k=1
μ (k )), then with Lemma D.3 and definition of

Eηdinit π1 · · ·πi1−1 , we have
2∑

h1=0

Eηmi1−1,mi1
,h1

(Eηdinit π1 · · ·πi1−1 (ρ))

=

2∑
h1=0

Eηmi1−1,mi1
,h1

(
|1〉c 〈1| ⊗ |0〉1〈0| ⊗ |ψ1〉2〈ψ1 | ⊗ Eπ1 · · ·πi1−1 (ρ)

)

= �	
∞∑
l=2

μ (l )
� |2〉c 〈2| ⊗ |0〉1〈0| ⊗ |ψ2〉2〈ψ2 | ⊗ Eπ1 · · ·πi1 (ρ)

+
μ (1)

2
|1〉c 〈1| ⊗ |1〉1〈1|

⊗
(
|0〉2〈0| ⊗

(
cos

(π
4

)2
Eπ1 · · ·πi1 (ρ) + sin

(π
4

)2
Eπi1 (trq̄i1 (Eπ1 · · ·πi1−1 (ρ)) ⊗ σi1 )

+
1

2
sin

(π
2

)
Eπi1 (−i[[σi1 ]q̄i1 ,Eπ1 · · ·πi1−1 (ρ)])

)
|1〉2〈1| ⊗

(
cos

(
−π
4

)2
Eπ1 · · ·πi1 (ρ) + sin

(
−π
4

)2
Eπi1 (trq̄i1 (Eπ1 · · ·πi1−1 (ρ)) ⊗ σi1 )

+
1

2
sin

(
−π
2

)
Eπi1 (−i[[σi1 ]q̄i1 ,Eπ1 · · ·πi1−1 (ρ)])

))
.

We find that in the second term q1 is in |1〉〈1|, then in the later execution, it will never go intoM1

orM2, thus,

2∑
h2=0

2∑
h1=0

Eηmi2−1,mi2
,h2

(
Eπi1+1 · · ·πi2−1 (Eηmi1−1,mi1

,h1
(Eηdinit π1 · · ·πi1−1 (ρ)))

)

= �	
∞∑
l=3

μ (l )
� |3〉c 〈3| ⊗ |0〉1〈0| ⊗ |ψ3〉2〈ψ3 | ⊗ Eπ1 · · ·πi2 (ρ)

+
μ (2)

2
|2〉c 〈2| ⊗ |1〉1〈1|

⊗
(
|0〉2〈0| ⊗

(
cos

(π
4

)2
Eπ1 · · ·πi2 (ρ) + sin

(π
4

)2
Eπi2 (trq̄i2 (Eπ1 · · ·πi2−1 (ρ)) ⊗ σi2 )
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+
1

2
sin

(π
2

)
Eπi2 (−i[[σi2 ]q̄i2 ,Eπ1 · · ·πi2−1 (ρ)])

)
|1〉2〈1| ⊗

(
cos

(
−π
4

)2
Eπ1 · · ·πi2 (ρ) + sin

(
−π
4

)2
Eπi2 (trq̄i2 (Eπ1 · · ·πi2−1 (ρ)) ⊗ σi2 )

+
1

2
sin

(
−π
2

)
Eπi2 (−i[[σi2 ]q̄i2 ,Eπ1 · · ·πi2−1 (ρ)])

))

+
μ (1)

2
|1〉c 〈1| ⊗ |1〉1〈1|

⊗
(
|0〉2〈0| ⊗

(
cos

(π
4

)2
Eπ1 · · ·πi1 (ρ) + sin

(π
4

)2
Eπi1 (trq̄i1 (Eπ1 · · ·πi1−1 (ρ)) ⊗ σi1 )

+
1

2
sin

(π
2

)
Eπi1 (−i[[σi1 ]q̄i1 ,Eπ1 · · ·πi1−1 (ρ)])

)
|1〉2〈1| ⊗

(
cos

(
−π
4

)2
Eπ1 · · ·πi1 (ρ) + sin

(
−π
4

)2
Eπi1 (trq̄i1 (Eπ1 · · ·πi1−1 (ρ)) ⊗ σi1 )

+
1

2
sin

(
−π
2

)
Eπi1 (−i[[σi1 ]q̄i1 ,Eπ1 · · ·πi1−1 (ρ)])

))
step-by-step,∑

η∈Aπ

Eη (ρ) = �	
∞∑

l=k+1

μ (l )
� |k + 1〉c 〈k + 1| ⊗ |0〉1〈0| ⊗ |ψk+1〉2〈ψk+1 | ⊗ Eπ (ρ)

+

k∑
j=1

(
μ (j )

2
|j〉c 〈j | ⊗ |1〉1〈1|

⊗
(
|0〉2〈0| ⊗

(
1

2
Eπ (ρ) +

1

2
Eπij πij +1 · · ·πn (trq̄ij (Eπ1 · · ·πij −1 (ρ)) ⊗ σi j )

+
1

2
Eπij πij +1 · · ·πn (−i[[σi j ]q̄ij ,Eπ1 · · ·πij −1 (ρ)])

)
|1〉2〈1| ⊗

(
1

2
Eπ (ρ) +

1

2
Eπij πij +1 · · ·πn (trq̄ij (Eπ1 · · ·πij −1 (ρ)) ⊗ σi j )

− 1

2
Eπij πij +1 · · ·πn (−i[[σi j ]q̄ij ,Eπ1 · · ·πij −1 (ρ)])

)))
.

With Od =
∑∞

j=1
2

μ (j ) |j〉〈j | ⊗ |1〉〈1| ⊗ Z , an observable onHqc ⊗ Hq1 ⊗ Hq2 , we have

tr
��
	Od ⊗ O

∑
η∈Aπ

Eη (ρ)
�� =
k∑
j=1

(
tr
(
OEπij πij +1 · · ·πn (−i[[σi j ]q̄ij ,Eπ1 · · ·πij −1 (ρ)])

))
.

�

We already know that�
∂

∂θ
(P (θ ))

	
(ρ) =

∑
π ∈ΠSQ (θ )

Eπ (ρ) =
∑

π ∈ΠSP (θ )

∑
η∈Aπ

Eη (ρ),

then,

tr

(
Od ⊗ O

�
∂

∂θ
(P (θ ))

	
(ρ)

)
=

∑
π ∈ΠSP (θ )

tr
��
	Od ⊗ O

∑
η∈Aπ

Eη (ρ)
�� . (D.10)

We should carefully consider the convergence of the above summation.
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Lemma D.11. As the same settings in Theorem 5.4 and Lemma D.8, we fix θ = θ ∗, for x ∈ R, n ∈ N,
let

hn (x ) =
∑

π ∈Π(n )
SP (θ ∗[θ �→x ])

tr
��
	Od ⊗ O

∑
η∈Aπ

Eη (ρ)
�� ,
then, limn→∞ hn (x ) exists, which is exactly

tr

(
Od ⊗ O

�
∂

∂θ
(P (θ ∗[θ �→ x]))

	
(ρ)

)
and hn (x ) is uniform convergent on any close interval.

Proof. Let M be the largest eigenvalue of |O |. For any π ∈ ΠSP (θ )
with π = lP (θ )in

E1→ m1
E2→

m2
E3→ · · ·

En→mn , if symbol θ does not appear in π , then

�������
tr
��
	Od ⊗ O

∑
η∈Aπ

Eη (ρ)
��
�������
= 0.

Otherwise, there exist 1 ≤ i1 < i2 < · · · < ik ≤ n such that Ei j = [e−iθσij ] ¯qij
for j = 1, 2, . . . ,k ,

then by Lemma D.10, we have

tr
��
	Od ⊗ O

∑
η∈Aπ

Eη (ρ)
�� =
k∑
j=1

(
tr
(
OEπij πij +1 · · ·πn (−i[[σi j ]q̄ij ,Eπ1 · · ·πij −1 (ρ)])

))
,

then,

�������
tr
��
	Od ⊗ O

∑
η∈Aπ

Eη (ρ)
��
�������
≤

k∑
j=1

���tr(OEπij πij +1 · · ·πn (−i[[σi j ]q̄ij ,Eπ1 · · ·πij−1 (ρ)])) ���
≤

k∑
j=1

M ���tr(Eπij πij+1 · · ·πn (−i[[σi j ]q̄ij ,Eπ1 · · ·πij −1 (ρ)])) ���
≤

k∑
j=1

2M tr
(
Eπij πij +1 · · ·πn (Eπ1 · · ·πij−1 (ρ))

)

=

k∑
j=1

2M tr(Eπ (ρ)) = 2kM tr(Eπ (ρ)).

Thus, for any π ∈ ΠSP (θ )
with length n,

�������
tr
��
	Od ⊗ O

∑
η∈Aπ

Eη (ρ)
��
�������
≤ 2nM tr(Eπ (ρ)). (D.11)

Let M1 be the size of transition set of SP (θ ) , M2 be the number of occurrences of while state-
ments in P (θ ), which means that P (θ ) contains following subprograms:

Pj (θ ) ≡ whileM (j )[q̄j ] = 1 do Q j (θ ) od, j = 1, . . . ,M2.
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These Pj (θ ) can be nested within each other. In there, we assumeM2 ≥ 1, otherwise P (θ ) does not
contain while statement, then the conclusion is trivial. By Lemma 5.3, we fix θ and choose ϵ = 1

2 ,
then for theseM2 subprograms, there exist N1, . . . ,NM2 such that

∀n ≥ 0,∀ρ ∈ HP (θ ), 1 ≤ j ≤ M2,

tr(E (j )
0 ◦ (�Q j (θ )� ◦ E (j )

1 )n (ρ)) ≤
(
1

2

) � n
Nj

�
tr(ρ).

Let N = maxj=1, ...,M2 Nj , then

∀n ≥ 0,∀ρ ∈ HP (θ ), 1 ≤ j ≤ M2,

tr(E (j )
0 ◦ (�Q j (θ )� ◦ E (j )

1 )n (ρ)) ≤
(
1

2

) � nN �
tr(ρ).

(D.12)

For anyn ≥ 2, we consider π ∈ Π((n+1)M2M1−1)
SP (θ )

\Π(nM2M1−1)
SP (θ )

, the length of π is at leastnM2M1, then

π has at least nM2M1/M1 = nM2 locations in SP (θ ) repeatedly appear, which is caused by while

statements. Then, π has at least nM2 times runs into the loop bodies of these Pj (θ ), j = 1, . . . ,M2.
Let a({P1 (θ ), . . . , PM2 (θ )}) denote the possible maximum times of π runs into the loop bodies

of these Pj (θ ), j = 1, . . . ,M2 on the condition that π only continuously runs into the loop
body of each Pj (θ ) with no more than n − 1 times. We can assume that P1 (θ ) is the first while

statement to appear in P (θ ) and it contains 0 ≤ t ≤ M2 − 1 while statement Pj1 (θ ), . . . , Pjt (θ ),
2 ≤ j1 ≤ · · · ≤ jt ≤ M2, then

a({P1 (θ ), . . . , PM2 (θ )})
≤ (n − 1)︸�︷︷�︸

for P1 (θ )

+ (n − 1)a({Pj1 (θ ), . . . , Pjt (θ )})︸���������������������������������︷︷���������������������������������︸
for those while statements in the loop body of P1 (θ )

+ a({P2 (θ ), . . . , PM2 (θ )} \ {Pj1 (θ ), . . . , Pjt (θ )})︸������������������������������������������������������︷︷������������������������������������������������������︸
for those while statements not in the loop body of P1 (θ )

≤ (n − 1) + na({P2 (θ ), . . . , PM2 (θ )})
· · ·

≤
M2−1∑
j=0

(n − 1)nj = nM2 − 1 < nM2 .

This contradicts that π has at least nM2 times runs into the loop body of these Pj (θ ), j = 1, . . . ,M2.

Therefore, for any π ∈ Π((n+1)M2M1−1)
SP (θ )

\ Π(nM2M1−1)
SP (θ )

, there exists 1 ≤ j0 ≤ M2 such that π continu-

ously runs into the loop body of Pj0 (θ ) with more than n − 1 times, which is π can be written as

π = π1η1μ1η1μ2 · · ·η1μtη0π2

with η1 = l
Pj0 (θ )
in

E (j0 )
1→ l

Q j0 (θ )
in , η0 = l

Pj0 (θ )
in

E (j0 )
0→ l

Pj0 (θ )
out , μ j ∈ ΠSQj0 (θ )

, 1 ≤ j ≤ t , t ≥ n.

We define the following set for each 1 ≤ j ≤ M2, n ≥ 2 and 0 ≤ m ≤ (n + 1)M2M1 − 1:

A(n,m)
j ≡

{
π ∈ Π((n+1)M2M1−1)

SP (θ )
\ Π(nM2M1−1)

SP (θ )
: π = π1η1μ1η1μ2 · · ·η1μnη0π2,

η1 = l
Pj (θ )
in

E (j )
1→ l

Q j (θ )
in ,η0 = l

Pj (θ )
in

E (j )
0→ l

Pj (θ )
out , μk ∈ ΠSQj (θ ) , 1 ≤ k ≤ n,

π1 containsm times η1,π2 may contain η1

}
,
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then,

Π((n+1)M2M1−1)
SP (θ )

\ Π(nM2M1−1)
SP (θ )

=

M2⋃
j=1

(
∪n

M2M1−1
m=0 A(n,m)

j

)
.

For each A(n,m)
j , we define

B (n,m)
j ≡

{
π1η1 : π1η1μ1η1μ2 · · ·η1μnη0π2 ∈ A(n,m)

j ,

η1 = l
Pj (θ )
in

E (j )
1→ l

Q j (θ )
in ,η0 = l

Pj (θ )
in

E (j )
0→ l

Pj (θ )
out , μk ∈ ΠSQj (θ ) , 1 ≤ k ≤ n,

π1 containsm times η1,π2 may contain η1

}
,

C (n,m)
j ≡

{
μ1, μ2, . . . , μn : π1η1μ1η1μ2 · · ·η1μnη0π2 ∈ A(n,m)

j ,

η1 = l
Pj (θ )
in

E (j )
1→ l

Q j (θ )
in ,η0 = l

Pj (θ )
in

E (j )
0→ l

Pj (θ )
out , μk ∈ ΠSQj (θ ) , 1 ≤ k ≤ n,

π1containsm times η1,π2 may contain η1

}
,

D (n,m)
j ≡

{
π2 : π1η1μ1η1μ2 · · ·η1μnη0π2 ∈ A(n,m)

j ,

η1 = l
Pj (θ )
in

E (j )
1→ l

Q j (θ )
in ,η0 = l

Pj (θ )
in

E (j )
0→ l

Pj (θ )
out , μk ∈ ΠSQj (θ ) , 1 ≤ k ≤ n,

π1 containsm times η1,π2 may contain η1

}
.

B (n,m)
i ,C (n,m)

i ,D (n,m)
i are all finite, and we have,

A(n,m)
j ⊆ E (n,m)

i ≡
{
π1η1μ1η1μ2 · · ·η1μnη0π2 : π1η1 ∈ B (n,m)

i ,π2 ∈ D (n,m)
i , μk ∈ C (n,m)

i , 1 ≤ k ≤ n
}
,

C (n,m)
j ⊆ ΠSQj (θ ) .

By Theorem D.7, for any ρ ∈ D (HP (θ ) ), 1 ≤ j ≤ M2,∑
μ ∈C (n,m )

j

Eμ (ρ) 

∑

μ ∈ΠSQj (θ )

Eμ (ρ) = �Q j (θ )� (ρ). (D.13)

As regards to B (n,m)
j , any π ,π ′ ∈ B (n,m)

j ,π � π ′, we have π = π1η1,π
′ = π ′1η1 and π1,π

′
1 contains

m times of η1, then π and π ′ are not prefixes to each other (otherwise π = π ′). Then, B (n,m)
j

satisfies the condition of Lemma D.5, so we have that for any ρ ∈ D (HP (θ ) ),∑
π ∈B (n,m )

j

tr(Eπ (ρ)) ≤ tr(ρ), 1 ≤ j ≤ M2. (D.14)

For any π ,π ′ ∈ D (n,m)
j ,π � π ′, π , and π ′ have lP (θ )out as last location, which has no post-location,

then π ,π ′ are not prefix of each other. D (n,m)
j also satisfies the conditions of Lemma D.5, then for
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any ρ ∈ D (HP (θ ) ), ∑
π ∈D (n,m )

j

tr(Eπ (ρ)) ≤ tr(ρ), 1 ≤ j ≤ M2. (D.15)

With Formula (D.13), for any ρ ∈ D (HP (θ ) ) and any 1 ≤ j ≤ M2, we have∑
π ∈A(n,m )

j

Eπ (ρ) 

∑

π ∈E (n,m )
i

Eπ (ρ)

=
∑

π1η1μ1η1μ2 · · ·η1μnη0π2∈E (n,m )
i

(
Eπ1η1μ1η1μ2 · · ·η1μnη0π2 (ρ)

)

=
∑

π1η1μ1η1μ2 · · ·η1μnη0π2∈E (n,m )
i

(
Eπ2 ◦ Eη0 ◦ Eμn ◦ Eη1 ◦ · · · ◦ Eμ1 ◦ Eη1 ◦ Eπ1 (ρ)

)

=
����
	

∑
π2∈D (n,m )

j

Eπ2

���
�
◦ Eη0 ◦

����
	

∑
μn ∈C (n,m )

j

Eμn


���
�
◦ Eη1 ◦ · · · ◦

����
	

∑
μ1∈C (n,m )

j

Eμ1


���
�
◦
����
	

∑
π1η1∈B (n,m )

j

Eπ1η1

���
�
(ρ)



����
	

∑
π2∈D (n,m )

j

Eπ2

���
�
◦ Eη0 ◦ �Q j (θ )� ◦ Eη1 ◦ · · · ◦ �Q j (θ )�︸��������������������������������︷︷��������������������������������︸

n times �Q j (θ )�
◦
����
	

∑
π1η1∈B (n,m )

j

Eπ1η1

���
�
(ρ)

=
����
	

∑
π2∈D (n,m )

j

Eπ2

���
�
◦ Eη0 ◦

(�Q j (θ )� ◦ Eη1 )n−1 ◦ �Q j (θ )� ◦ ����
	

∑
π1η1∈B (n,m )

j

Eπ1η1

���
�
(ρ),

thus, ∑
π ∈A(n,m )

j

tr (Eπ (ρ))

≤ tr
����
	
����
	

∑
π2∈D (n,m )

j

Eπ2

���
�
◦ Eη0 ◦

(�Q j (θ )� ◦ Eη1 )n−1 ◦ �Q j (θ )� ◦ ����
	

∑
π1η1∈B (n,m )

j

Eπ1η1

���
�
(ρ)


���
�

≤ tr
����
	
Eη0 ◦

(�Q j (θ )� ◦ Eη1 )n−1 ◦ �Q j (θ )� ◦ ����
	

∑
π1η1∈B (n,m )

j

Eπ1η1

���
�
(ρ)


���
�

(by Formula (D.15))

≤
(
1

2

) � n−1N �
tr
����
	
�Q j (θ )� ◦ ����

	
∑

π1η1∈B (n,m )
j

Eπ1η1

���
�
(ρ)


���
�

(by Formula (D.12))

≤
(
1

2

) � n−1N �
tr
����
	

∑
π1η1∈B (n,m )

j

Eπ1η1 (ρ)

���
�

≤
(
1

2

) � n−1N �
tr(ρ). (by Formula (D.14))
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Then,

∑
π ∈Π((n+1)M2M1−1)

SP (θ )
\Π(nM2M1−1)

SP (θ )

tr(Eπ (ρ)) ≤
M2∑
j=1

(n+1)M2M1−1∑
m=0

∑
π ∈A(n,m )

j

tr(Eπ (ρ))

≤ M1M2 (n + 1)
M2

(
1

2

) � n−1N �
tr(ρ).

(D.16)

With Formula (D.11), we have for any ρ ∈ D (HP (θ ) ),

∑
π ∈Π((n+1)M2M1−1)

SP (θ )
\Π(nM2M1−1)

SP (θ )

�������
tr
��
	Od ⊗ O

∑
η∈Aπ

Eη (ρ)
��
�������

≤
∑

π ∈Π((n+1)M2M1−1)
SP (θ )

\Π(nM2M1−1)
SP (θ )

2
(
(n + 1)M2M1 − 1

)
M tr(Eπ (ρ))

≤ 2
(
(n + 1)M2M1 − 1

)
MM1M2 (n + 1)

M2

(
1

2

) � n−1N �
tr(ρ)

≤ 4
(
(n + 1)M2M1 − 1

)
MM1M2 (n + 1)

M2

(
1

2

) n−1
N

tr(ρ).

As the N is dependent on θ , we can obtain that for any θ , there exists Nθ > 0 such that for any
ρ ∈ D (HP (θ ) ) and n ≥ 2,

∑
π ∈Π((n+1)M2M1−1)

SP (θ )
\Π(nM2M1−1)

SP (θ )

�������
tr
��
	Od ⊗ O

∑
η∈Aπ

Eη (ρ)
��
�������

≤ 4
(
(n + 1)M2M1 − 1

)
MM1M2 (n + 1)

M2

(
1

2

) n−1
Nθ

tr(ρ),

then, it is easy to see that for any x , there exists Nx > 0 such that for any ρ ∈ D (HP (θ ) ) and n ≥ 2,

Hn (x ) ≡
∑

π ∈Π((n+1)M2M1−1)
SP (θ ∗[θ �→x ])

\Π(nM2M1−1)
SP (θ ∗[θ �→x ])

�������
tr
��
	Od ⊗ O

∑
η∈Aπ

Eη (ρ)
��
�������

≤ 4
(
(n + 1)M2M1 − 1

)
MM1M2 (n + 1)

M2

(
1

2

) n−1
Nx

tr(ρ).

With

lim
n→∞

n

√
4
(
(n + 1)M2M1 − 1

)
MM1M2 (n + 1)M2

(
1

2

) n−1
Nx

=

(
1

2

) 1
Nx

< 1,

we have that for any x ∈ R, ∑∞
n=1Hn (x ) is convergent. Since each term of Hn (x ) is non-negative,

Hn (x ),n ∈ N is a monotone sequence of continuous functions, then by Dini’s Theorem [58,
Theorem 7.13], Hn (x ) is uniform convergent on any close interval.
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Now, for any n ≥ 3 and any x ∈ R, we have

���hnM2M1−1 (x )
��� =

����������
∑

π ∈Π(nM2M1−1)
SP (θ ∗[θ �→x ])

tr
��
	Od ⊗ O

∑
η∈Aπ

Eη (ρ)
��

����������
≤

∑
π ∈Π(nM2M1−1)

SP (θ ∗[θ �→x ])

�������
tr
��
	Od ⊗ O

∑
η∈Aπ

Eη (ρ)
��
�������

=
∑

π ∈Π(2M2M1−1)
SP (θ ∗[θ �→x ])

�������
tr
��
	Od ⊗ O

∑
η∈Aπ

Eη (ρ)
��
�������

+

n−1∑
k=2

∑
π ∈Π((k+1)M2M1−1)

SP (θ ∗[θ �→x ])
\Π(kM2M1−1)

SP (θ ∗[θ �→x ])

�������
tr
��
	Od ⊗ O

∑
η∈Aπ

Eη (ρ)
��
�������

=
∑

π ∈Π(2M2M1−1)
SP (θ ∗[θ �→x ])

�������
tr
��
	Od ⊗ O

∑
η∈Aπ

Eη (ρ)
��
�������
+

n−1∑
k=2

Hk (x ).

Because Hn (x ) is uniform convergent on any close interval, then hn (x ) is uniform convergent on
any close interval. We can also check that

lim
n→∞

hn (x ) = lim
n→∞

∑
π ∈Π(n )

SP (θ ∗[θ �→x ])

tr
��
	Od ⊗ O

∑
η∈Aπ

Eη (ρ)
��
=

∑
π ∈ΠSP (θ ∗[θ �→x ])

tr
��
	Od ⊗ O

∑
η∈Aπ

Eη (ρ)
��
= tr

(
Od ⊗ O

�
∂

∂θ
(P (θ ∗[θ �→ x]))

	
(ρ)

)
. (by Equation (D.10))

�

Proof of Theorem 5.4. As the same settings in Lemma D.8, for each π ∈ ΠP (θ ) , we define

fπ (θ ) = tr(OEπ (ρ))

дπ (θ ) =
∑
η∈Aπ

tr(Od ⊗ OEη (ρ)).

With Lemma D.10, we assume π = lP (θ )in

E1→m1
E2→m2

E3→ · · ·
En→mn and 1 ≤ i1 < i2 < · · · < ik ≤ n

such that Ei j = [e−iθσij ] ¯qij
for j = 1, 2, . . . ,k , then

дπ (θ ) =
k∑
j=1

(
tr
(
OEπij · · ·πn (−i[[σi j ]q̄ij ,Eπ1 · · ·πij −1 (ρ)])

))
.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 19. Pub. date: November 2023.



Differentiable Quantum Programming with Unbounded Loops 19:53

With Lemma 5.1, we have

∂

∂θ j
( fπ (θ )) = tr

(
OEπij · · ·πn (−i[[σi j ]q̄ij ,Eπ1 · · ·πij−1 (ρ)])

)
for j = 1, 2, . . . ,k (which is considered as the jth occurrence of θ ), then

∂

∂θ
( fπ (θ )) =

k∑
j=1

tr
(
OEπij · · ·πn (−i[[σi j ]q̄ij ,Eπ1 · · ·πij −1 (ρ)])

)
.

Thus,

∂

∂θ
( fπ (θ )) = дπ (θ ). (D.17)

For n ≥ 1, let

fn (θ ) =
∑

π ∈Π(n )
SP (θ )

fπ (θ )

дn (θ ) =
∑

π ∈Π(n )
SP (θ )

дπ (θ )

we have

lim
n→∞

fn (θ ) = f (θ )

lim
n→∞

дn (θ ) = д(θ ).

The correctness and existence of the second equation are guaranteed by Lemma D.11. By Equa-
tion (D.17), we can easily check that for any n ≥ 1,

∂

∂θ
fn (θ ) = дn (θ ).

With Lemma D.11, дn (θ ) is uniform convergent on a close interval [θ −ϵ,θ +ϵ] for any α ∈ R and

any ϵ > 0, which means ∂
∂θ ( fn (θ )) is uniform convergent on [θ − ϵ,θ + ϵ], then

lim
n→∞

∂

∂θ
fn (θ ) =

∂

∂θ
( lim
n→∞

fn (θ )).

Thus,

∂

∂θ
f (θ ) =

∂

∂θ

(
lim
n→∞

fn (θ )
)
= lim

n→∞

∂

∂θ
fn (θ ) = lim

n→∞
дn (θ ) = д(θ ).

�

D.5 Proof of Theorem A.3

The proof is based on Appendix D.4. To obtain a more accurate estimation, we define the set

Γ(n)
θ

⊆ ΠSP (θ )
for a given parameter symbol θ and n ∈ N:

Γ(n)
θ

≡ {π ∈ ΠSP (θ )
: θ appears k times on path π and 0 ≤ k ≤ n}.

For the set Γ(n)
θ

, we have a lemma similar to Lemma D.10.
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Lemma D.12. For any π ∈ Γ(n)
θ

\ Γ(0)
θ
,n ≥ 1, π can be written as π = lP (θ )in

E1→ l1
E2→ l2

E3→ · · ·
Em→ lm

with 1 ≤ i1 < · · · < ik ≤ m, 1 ≤ k ≤ n such that Ei j = [e−iθσij ] ¯qij
for j = 1, . . . ,k . These

Ei j , 1 ≤ j ≤ k correspond to k times occurrences of θ . Then, for any observable O , we have

tr
��
	O

2
d ⊗ O2

∑
η∈Aπ

Eη (ρ)
�� =
k∑
j=1

(
2

μ (j )

(
tr(O2Eπ (ρ)) + tr

(
O2Eπij πij +1 · · ·πn (trq̄ij (Eπ1 · · ·πij −1 (ρ)) ⊗ σi j )

)))
.

Proof. The proof is similar to the proof of Lemma D.10. �

We also need another lemma that is similar to Lemma 5.3.

Lemma D.13. Consider a quantum loop P ≡ whileM[q̄] = 1 do Q odwith fixed parameters (omit-

ted). Assume that the state spaceHP is finite-dimensional and P terminates almost surely. We define

superoperators Ei : D (HP ) → D (HP ) by Ei (ρ) = MiρM
†
i , i = 0, 1 and E : D (HP ) → D (HP ) by

E (ρ) = �Q� (ρ). Then, for any ϵ ∈ (0, 1), there exists N = Nϵ > 0 such that ∀n ∈ N,∀ρ ∈ D (HP ),

tr((E ◦ E1)
n (ρ)) ≤ ϵ �

n
N � tr(ρ).

Proof. Because P terminates almost surely, we have that the operator PY in Appendix D.1 is
an identify operator PY = I . By Lemma D.2, for any ϵ ∈ (0, 1), there exists N > 0 such that
(G∗)N (PY ) 
 ϵPY , which is

(G∗)N (I ) 
 ϵI .

Therefore, for any n ∈ N, any ρ ∈ D (HP ), we have

tr((E ◦ E1)
n (ρ)) = tr((G∗)n (I )ρ) ≤ tr(ϵ �

n
N �I ρ) = ϵ �

n
N � tr(ρ).

�

We then follow the previous proof of Lemma D.11.

Proof of Theorem A.3. With the Lemma D.12 and a similar proof of Inequality (D.11), we have

that for any π ∈ Γ(n)
θ

,

�������
tr
��
	O

2 ⊗ O2
c

∑
η∈Aπ

Eη (ρ)
��
�������
≤

kπ∑
j=1

(
2

μ (j )

(
M2 tr(Eπ (ρ)) +M2 tr

(
Eπij πij +1 · · ·πn (σπij )

)))

=

kπ∑
j=1

(
2M2

μ (j )
tr(Eπ (ρ)) +

2M2

μ (j )
tr(Eπij πij +1 · · ·πn (σπij ))

)
, (D.18)

whereM is the largest eigenvalue of |O |, kπ is the k in Lemma D.12 and

σπij ≡ trq̄ij (Eπ1 · · ·πij−1 (ρ)) ⊗ σi j .

Let M2 = LC (P (θ )). For convenience, we assume M2 ≥ 1 temporarily. According to the defini-
tion of LC (in Definite A.2), P (θ ) containsM2 subprograms of while statements:

Pj (θ ) ≡ whileM (j )[q̄j ] = 1 do Q j (θ ) od, j = 1, . . . ,M2.

With Lemma 5.3, for any ϵ ∈ (0, 1), there exists Nϵ ≥ 1 that satisfies the following formula similar
to Formula (D.12):

∀n ≥ 0,∀ρ ∈ HP (θ ), 1 ≤ j ≤ M2,

tr(E (j )
0 ◦ (�Q j (θ )� ◦ E (j )

1 )n (ρ)) ≤ ϵ �
n
Nϵ

� tr(ρ).
(D.19)

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 19. Pub. date: November 2023.



Differentiable Quantum Programming with Unbounded Loops 19:55

Let M1 = RCθ (P (θ )) ≥ 1. For any n ≥ 1, we consider π ∈ Γ((n+1)
M2M1−1)

θ
\ Γ(n

M2M1−1)
θ

, the

parameter symbol θ appears on π at least nM2M1 times, then π has at least nM2M1/M1 = nM2

locations of parameter symbol θ repeatedly appear, which is caused bywhile statements. Then, π
has at least nM2 times running into into the loop bodies of above Pj (θ ), j = 1, . . . ,M2. By the same
discussion in the proof of Lemma D.11, there exists 1 ≤ j0 ≤ M2 such that π continuously runs
into the loop body of Pj0 (θ ) with more than n − 1 times.
With the help of Formula (D.19) and Lemma D.5, we can also obtain an inequality similar to

Inequality (D.16) in the same way of the proof of Lemma D.11 (note: we can get a tighter bound
by limiting 0 ≤ m ≤ l (kj ) for every 1 ≤ j ≤ M2, where kj is the depth of subprogram P (θ )j nested
with otherM2 − 1 subprograms mentioned before and when k ≥ 2, l (k ) = (n− 1)2nk−2, l (1) = 1),10

∑
π ∈Γ((n+1)

M2M1−1)
θ

\Γ(n
M2M1−1)

θ

tr(Eπ (ρ)) ≤
M2∑
j=1

(l (kj ) + 1)ϵ
� n−1Nϵ

� tr(ρ)

≤
M2∑
j=1

(l (j ) + 1)ϵ �
n−1
Nϵ

� tr(ρ)

≤ (M2 + (n − 1) (nM2−1 − 1))ϵ �
n−1
Nϵ

� tr(ρ)

≤ (M2 + (n − 1) (nM2−1 − 1)+)ϵ
� n−1Nϵ

� tr(ρ),

(D.20)

where (x )+ = max{0,x }. This inequality also holds forM2 = 0, because ifM2 = 0, then

Γ((n+1)
M2M1−1)

θ
\ Γ(n

M2M1−1)
θ

= Γ((n+1)
0M1−1)

θ
\ Γ(n

0M1−1)
θ

= Γ(M1−1)
θ

\ Γ(M1−1)
θ

is an empty set and P (θ ) does not contain while statement, then ΠSP (θ )
= Γ(M1 )

θ
.

With Inequality (D.18) and Inequality (D.20), we have that for n ≥ 1,

∑
π ∈Γ((n+1)

M2M1−1)
θ

�������
tr
��
	O

2
d ⊗ O

∑
η∈Aπ

Eη (ρ)
��
�������

≤
∑

π ∈Γ((n+1)
M2M1−1)

θ

kπ∑
j=1

2M2

μ (j )
tr(Eπ (ρ)) +

∑
π ∈Γ((n+1)

M2M1−1)
θ

kπ∑
j=1

2M2

μ (j )
tr(Eπij πij +1 · · ·πn (σπij ))

≡ Term-A + Term-B.

For Term-A:∑
π ∈Γ((n+1)

M2M1−1)
θ

kπ∑
j=1

2M2

μ (j )
tr(Eπ (ρ))

≤ ��
	

∑
π ∈Γ(1

M2M1 )

θ

kπ∑
j=1

2M2

μ (j )
tr(Eπ (ρ))
�� +

��
	

n∑
k=1

∑
π ∈Γ((k+1)

M2M1−1)
θ

\Γ((k )
M2M1−1)

θ

kπ∑
j=1

2M2

μ (j )
tr(Eπ (ρ))
��

10In the proof of Lemma D.11, we define the set A
(n,m )
j for 0 ≤ m ≤ (n + 1)M2M1 − 1. However, we can prove that for

anym > l (kj ) and any π ∈ An,mj , there exists j′ such that kj′ < kj and π ∈ An,m
′

j′ andm′ ≤ l (kj′ ) by induction on kj .

Thus, we only need consider those sets A
(n,m )
j with 0 ≤ m ≤ l (kj ).
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≤ ��
	
M1∑
j=1

∑
π ∈Γ(M1 )

θ

2M2

μ (j )
tr(Eπ (ρ))
�� +

��
	

n∑
k=1

(k+1)M2M1−1∑
j=1

∑
π ∈Γ((k+1)

M2M1−1)
θ

\Γ((k )
M2M1−1)

θ

2M2

μ (j )
tr(Eπ (ρ))
��

≤ ��
	
M1∑
j=1

2M2

μ (j )
tr(ρ)
�� +

��
	

n∑
k=1

(k+1)M2M1−1∑
j=1

2M2

μ (j )
(M2 + (k − 1) (kM2−1 − 1)+)ϵ

� k−1Nϵ
� tr(ρ)
��

(By Inequality (D.20))

≤ 2M2

(
S (M1) +

n∑
k=1

(
(M2 + (k − 1) (kM2−1 − 1)+)S

(
(k + 1)M2M1 − 1

)
ϵ �

k−1
Nϵ

�
))

tr(ρ),

where S (n) =
∑n

j=1
1

μ (j ) .

For Term-B:

∑
π ∈Γ((n+1)

M2M1−1)
θ

kπ∑
j=1

2M2

μ (j )
tr(Eπij πij +1 · · ·πn (σπij ))

=
��
	

∑
π ∈Γ(M1 )

θ

kπ∑
j=1

2M2

μ (j )
tr(Eπij πij+1 · · ·πn (σπij ))


�
�

+
��
	

n∑
k=1

∑
π ∈Γ((k+1)

M2M1−1)
θ

\Γ((k )
M2M1−1)

θ

kπ∑
j=1

2M2

μ (j )
tr(Eπij πij +1 · · ·πn (σπij ))


�
�

≡ Term-C + Term-D.

For Term-C , we consider all the σπij = trq̄ij (Eπ1 · · ·πij −1 (ρ)) ⊗ σi j that have same Eπ1 · · ·πij −1 (ρ), let

Ej =
{
π1 · · · πi j−1 : ∃η s.t. π = π1 · · · πi j−1η ∈ Γ(M1 )

θ

}
for every 1 ≤ j ≤ M1 and

Fπ1 · · ·πij−1 =
{
π ∈ Γ(M1 )

θ
: ∃η s.t. π = π1 · · · πi j−1η

}
then,

∑
π ∈Γ(M1 )

θ

kπ∑
j=1

2M2

μ (j )
tr(Eπij πij +1 · · ·πn (σπij ))

=

M1∑
j=1

∑
π1 · · ·πij −1∈Ej

∑
π ∈Fπ1 ···πij −1

2M2

μ (j )
tr(Eπij πij +1 · · ·πn (σπij ))

≤
M1∑
j=1

∑
π1 · · ·πij −1∈Ej

2M2

μ (j )
tr(σπij ) (apply Lemma D.5 to Fπ1 · · ·πij−1 )

=

M1∑
j=1

∑
π1 · · ·πij −1∈Ej

2M2

μ (j )
tr(trq̄ij (Eπ1 · · ·πij−1 (ρ)) ⊗ σi j )
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=

M1∑
j=1

∑
π1 · · ·πij−1∈Ej

2M2

μ (j )
tr(Eπ1 · · ·πij −1 (ρ))

≤
M1∑
j=1

2M2

μ (j )
tr(ρ) (apply Lemma D.5 to Ej )

= 2M2S (M1) tr(ρ).

For Term-D, we have already known that any

π ∈ Γ((k+1)
M2M1−1)

θ
\ Γ((k )

M2M1−1)
θ

must continuously runs into a loop body Pk (θ ), 1 ≤ k ≤ M2 at least n times. For any π above,
Eπij πij +1 · · ·πn (σπij ) is

Eπij πij +1 · · ·πn (trq̄ij (Eπ1 · · ·πij−1 (ρ)) ⊗ σi j ).

For any 1 ≤ j ≤ ((k + 1)M2M1 − 1), the location πi j will only split successive runs of the loop body

at most once, thus, we can get a scale ϵ
n−1
Nϵ

−1 to replace ϵ �
n−1
Nϵ

� in Inequality (D.20) by Lemma 5.3
and Lemma D.13: ∑

π ∈Γ((k+1)
M2M1−1)

θ
\Γ(k

M2M1−1)
θ

tr(ρπ , j )

≤ (M2 + (k − 1) (kM2−1 − 1)+)ϵ
n−1
Nϵ

−1 tr(ρ),

(D.21)

where ρπ , j = Eπij πij +1 · · ·πn (σπij ) if π has jth occurrence of θ , or equal to Eπ if π has no jth

occurrence of θ .
Thus,

∑
π ∈Γ((k+1)

M2M1−1)
θ

\Γ((k )
M2M1−1)

θ

kπ∑
j=1

2M2

μ (j )
tr(Eπij πij+1 · · ·πn (σπij ))

=
∑

π ∈Γ((k+1)
M2M1−1)

θ
\Γ((k )

M2M1−1)
θ

kπ∑
j=1

2M2

μ (j )
tr(ρπ , j )

≤
∑

π ∈Γ((k+1)
M2M1−1)

θ
\Γ((k )

M2M1−1)
θ

((k+1)M2M1−1)∑
j=1

2M2

μ (j )
tr(ρπ , j )

=

((k+1)M2M1−1)∑
j=1

∑
π ∈Γ((k+1)

M2M1−1)
θ

\Γ((k )
M2M1−1)

θ

2M2

μ (j )
tr(ρπ , j )

≤
((k+1)M2M1−1)∑

j=1

2M2

μ (j )
(M2 + (k − 1) (kM2−1 − 1)+)ϵ

� k−1Nϵ
�−1 tr(ρ) (by Inequality (D.21))

= 2M2 (M2 + (k − 1) (kM2−1 − 1)+)S
(
(k + 1)M2M1 − 1

)
ϵ �

k−1
Nϵ

�−1 tr(ρ).
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Then, Term-D can be bounded as follows:

��
	

n∑
k=1

∑
π ∈Γ((k+1)

M2M1−1)
θ

\Γ((k )
M2M1−1)

θ

kπ∑
j=1

2M2

μ (j )
tr(Eπij πij +1 · · ·πn (σπij ))


�
�

≤ 2M2
n∑

k=1

(
(M2 + (k − 1) (kM2−1 − 1)+)S

(
(k + 1)M2M1 − 1

)
ϵ �

k−1
Nϵ

�−1
)
tr(ρ).

Therefore, Term-B is bounded as follows:∑
π ∈Γ((n+1)

M2M1−1)
θ

kπ∑
j=1

2M2

μ (j )
tr(Eπij πij+1 · · ·πn (σπij ))

≤ 2M2

(
S (M1) +

n∑
k=1

(
(M2 + (k − 1) (kM2−1 − 1)+)S

(
(k + 1)M2M1 − 1

)
ϵ �

k−1
Nϵ

�−1
))

tr(ρ).

Finally, we have the following inequality:

∑
π ∈Γ((n+1)

M2M1−1)
θ

�������
tr
��
	O

2
d ⊗ O

∑
η∈Aπ

Eη (ρ)
��
�������

≤ M2��
	4S (M1) +

n∑
k=1

(
(M2 + (k − 1) (kM2−1 − 1)+)

· S
(
(k + 1)M2M1 − 1

)
(2ϵ �

k−1
Nϵ

� + 2ϵ �
k−1
Nϵ

�−1)

)
�
� tr(ρ)

(D.22)

that holds for any n ≥ 1 andM1,M2 ≥ 0.

By the definition of Γ(n)
θ

, we have

ΠSP (θ )
=

∞⋃
n=1

Γ(n)
θ
.

WhenM2 ≥ 1, we also have

ΠSP (θ )
=

∞⋃
n=1

Γ(n
M2M1−1)

θ
.

With ∀n ≥ 1, Γ(n)
θ

⊆ Γ(n+1)
θ

and Inequality (D.22), we have

��������
∑

π ∈ΠSP (θ )

tr
��
	O

2
d ⊗ O2
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Eη (ρ)
��
��������
=

���������
∑

π ∈⋃∞
n=1 Γ

(nM2M1 )

θ

tr
��
	O

2
d ⊗ O2

∑
η∈Aπ

Eη (ρ)
��
���������

≤
∑

π ∈⋃∞
n=1 Γ

(nM2M1 )

θ

�������
tr
��
	O

2
d ⊗ O2

∑
η∈Aπ

Eη (ρ)
��
�������

≤ lim
n→∞

∑
π ∈Γ(n

M2M1 )

θ

�������
tr
��
	O

2
d ⊗ O2

∑
η∈Aπ

Eη (ρ)
��
�������
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= lim
n→∞

M2��
	4S (M1) +

n∑
k=1

(
(M2 + (k − 1) (kM2−1 − 1)+)

· S
(
(k + 1)M2M1 − 1

)
(2ϵ �

k−1
Nϵ

� + 2ϵ �
k−1
Nϵ

�−1)

)
�
� tr(ρ)

= M2��
	4S (M1) +

∞∑
k=1

(
(M2 + (k − 1) (kM2−1 − 1)+)

· S
(
(k + 1)M2M1 − 1

)
(2ϵ �

k−1
Nϵ

� + 2ϵ �
k−1
Nϵ

�−1)

)
�
�.

(by tr(ρ) ≤ 1)

WhenM2 = 0, we already know ΠSP (θ )
= Γ(M1 )

θ
, then the above inequality also holds.

An equation similar to Equation (D.10) is

〈O2
d ⊗ O2〉 = tr

(
O2 ⊗ O2

c

�
∂

∂α
θ (P (θ ))

	
(ρ)

)
=

∑
π ∈ΠSP (θ )

tr
��
	O

2
d ⊗ O2

∑
η∈Aπ

Eη (ρ)
�� .
Thus, we finally obtain the following inequality:

〈O2
d ⊗ O2〉

≤ M2��
	4S (M1) +

∞∑
k=1

(
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(
(k + 1)M2M1 − 1

) (
2ϵ �

k−1
Nϵ
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�−1
))
�
�.
�
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