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1 INTRODUCTION

Inspired by the advantage of neural networks with program features (e.g., controls) over the plain
ones [26, 27], the notion of differentiable programming has been introduced [1, 7, 25, 66] as a
new programming paradigm, where programs become parameterized and differentiable, and has
recently stimulated active investigation (e.g., References [34, 47, 48, 60]). Specifically, many efforts
have been devoted to the development of automatic differentiation (e.g., References [20, 28]) for
various program constructs.

Quantum programming is one specific type of programming that would benefit from the study
of automatic differentiation. With the availability of the 50~100-qubit machines, near-term Noisy
Intermediate-Scale Quantum (NISQ) machines [56] have become the major platform for quan-
tum applications. Parameterized (or variational) quantum circuits, introduced as a quantum ma-
chine learning model with remarkable expressive power [10], are one compelling candidate of
NISQ applications, including examples such as variational quantum eigensolver (VQE) [36, 54],
quantum neural networks [9, 19, 24], to the quantum approximate optimization algorithm
(QAOA) [22, 23, 32]. Similar to classical machine learning, gradient-based methods are employed
to train the loss functions, which, however, now depend on the read-outs of quantum computation.
Thus, the “quantum” gradient calculation has a similar complexity of simulating quantum circuits,
which is infeasible for classical computation.

Automatic differentiation (AD) on quantum programs, which would enable the ability of
computing quantum gradients efficiently by quantum computation, is thus critical for the scalabil-
ity of variational quantum applications. However, it is a priori unclear whether the AD technique
could extend to the quantum setting at all due to a few fundamental differences between quan-
tum and classical. First, an appropriate formulation of the differentiation in quantum computing
is important, because the outcomes of quantum programs are quantum states rather than classical
variables. Second, the quantum no-cloning theorem [71] prohibits the duplication of intermediate
states in quantum programs, which prohibits the natural extension of the classical forward-mode
and reverse-mode differentiation [1] to quantum.

Fortunately, a series of recent research on analytical formulas of “quantum” gradients [9, 24,
31, 49, 59] has helped (partially) overcome these difficulties and thus enabled AD on quantum
circuits, which has already been adopted in major quantum machine learning platforms, including
Tensorflow Quantum [16] and PennyLane [12].

Zhu et al. [77] provide the first rigorous formalization of the AD technique for quantum pro-
grams with bounded loops beyond quantum circuits. They also leveraged their framework in the
training of a VQC instance with controls, which has superior performance than normal VQCs for
certain machine learning tasks.

Quantum Applications with Unbounded Loops. Most existing AD results in quantum com-
puting have been focusing on applications of variational quantum circuits (or their variants) for
a few designated tasks, which misses the opportunity to investigate more sophisticated quantum
algorithms. For example, parameterized quantum programs with unbounded loops can describe a
rich family of quantum algorithms with a few unspecified parameters, which could be trained to
help quantum programs meet the runtime requirement, e.g., achieving quantum speedup in the ex-
amples of quantum walk [3] and amplitude amplification [15] or generating desired unitaries that
are unknown beforehand in the example of the repeat-until-success unitary implementation [14].
Analytical derivation of these parameters, if ever possible, would likely require domain knowledge
of the underlying problem and is usually done in a case-by-case fashion. Instance-driven gradient-
based search of these parameters is a promising alternative, which is only possible with the AD
technique for unbounded loops.
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Let us dive into a simple example based on amplitude amplification (AA). A direct adoption
of the textbook AA would be written as a for-loop with a given number of iterations. However, this
number of iterations is often hard to determine beforehand, which makes it desirable to write the
algorithm as a while-loop (i.e., an unbounded loop) and let the program decide when to terminate.

To that end, a framework with while-loops and parameterized weak measurements has been
introduced [4, 50] as the parameterized AA program in Figure 1, where parameter 6 controls the
coupling strength between the search variable q and the measure variable r. The choice of @ is crit-
ical in achieving quantum speedups. While an analytical solution of € exists for certain quantum
speedup [4], its optimal choice that minimizes the expected runtime is still unknown.

As shown in our case study, gradient-based methods in differ-
entiable quantum programming could automatically identify a while M[r] = 1 do
better choice of 0 than existing literature [4, 50] without domain
knowledge about the AA algorithm, the promise of which also
extends to parameterized quantum random walks and repeat-
until-success unitary implementation. This provides a strong od
motivation to develop the AD technique for unbounded quantum
loops. However, there is no general AD solution for unbounded
loops even in classical (imperative) programs [55], which ques-
tions the feasibility of our goal.

Indeed, as we elaborate on in Section 3, unbounded loops introduce serious challenges in AD for
classical, probabilistic, and quantum programs. Moreover, unique features of quantum programs,
such as the no-cloning theorem and the branching induced by measurements, further restrict the
available AD techniques for quantum programs with unbounded loops.

Contributions. We overcome these challenges and develop a differentiable quantum program-
ming framework for unbounded loops, with the following contributions:

q = GroverRotation[q];

g, = Couplingy[q, r]

Fig. 1. Parameterized AA.

— A formulation of parameterized quantum while-language with unbounded loops and a new
parameterized unitary operation called the density operator exponentiation e **° of any
density operator o that allows the inclusion of more unitary gates. (Section 4)

— A sufficient condition (i.e., finite-dimensional program state space) for the differentiability
of quantum programs with unbounded loops (Theorem 4.5). We also exhibit an example
of non-differentiable infinite-dimensional quantum programs (Example 4.6) to demonstrate
the difference between finite and infinite dimensional quantum programs for differentiation.
(Section 4)

—An AD scheme for quantum programs with unbounded loops with two components:
(1) Differentiation on a Single-Occurrence of Parameter (DSOP) for quantum circuits
with respect to a parameter with a single occurrence; and (2) Extension to Unbounded
Loops (EUL) for unbounded loops based on any DSOP. We contribute a new DSOP tech-
nique, called the commutator-form rule inspired by Reference [44] for general e~ with a
more general applicability.! We also develop the code transformation and establish its cor-
rectness (Theorem 5.4). (Section 5)

— Implementation of our AD scheme with Python and Q# and discussion of its relevant sample
efficiency, in which we provide an upper bound that matches the one of Zhu et al. [77] when
there is no unbounded loop. (Section 6)

— Extensive case study on the gradient-based approach for automatically identifying unknown
parameters in quantum algorithm design, which includes the parameterized AA algorithm,

1t removes the limitation of the parameter-shift rule that is only applicable when H has at most two distinct eigenvalues.
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Table 1. A Summary of Notation Used in This Article

Sets, Spaces States Operators, Operations

—ifo
H,H, Hilbert space [),10), 1), |+),|-) pure state H, g: ‘;,’;,X é) X unitary

M, {M,,},{]0){0],[1){1]} measurement
O =Y Aml¥m)¥m|  observable

partial density . partial density . ot
D(H) operators of H P with tr(p) < 1 operator &:p X, EpE; superoperator

L(H) })i;l;:a{r operators p, o, Y)Yl density operator

quantum walk with parameterized shift operator on 2D grids, and unitary implementation
with parameterized repeat-until-success algorithms. (Section 7)

Related Work. There is a rich literature on differentiation rules of quantum circuits [5, 35, 39, 42,
49, 59, 65, 68]. These researches focus on how to use quantum hardware to derive the derivative of
the expectation function of a parametrized quantum circuit. For Pauli rotations U(6) = e "94/2 A =
X,Y,Z, Li et al. [42] and Mitarai et al. [49] first proposed a formula that only needs to run the
initial circuit twice with different parameters to find the derivative. Then, Schuld et al. [59] named
this formula the “parameter-shift rule” and expanded it to a general case of U(f) = e **H with
Hamiltonian H having at most two distinct eigenvalues. Recently, independent developments of
variants of the parameter-shift rules (general parameter-shift rules) [35, 39, 68] were proposed for
general Hamiltonian H. Their works can be traced back to an observation that the expectation
function of a PQC with a single parameter is a finite Fourier series [65]. Our commutator-form
rule, which is applicable to e '’ for general H, is based on a very different technique and has a
simple form compared to general parameter-shift rules.

Most existing AD techniques in quantum computing [12, 16, 21, 38, 46, 51] work with sim-
ple languages describing quantum circuits without any control flow. Some of these results, e.g.,
Yao. jl [46], also apply classical AD techniques to classical programs that simulate quantum cir-
cuits, which is, unfortunately, not scalable for real quantum applications.

The only exception and also the closest work to ours is Reference [77], which proposed differen-
tiable quantum programming with bounded loops beyond quantum circuits. Although the syntax
in Reference [77] supports general parameterized gates, its code transformation only supports
Pauli rotation gates based on a variant of the parameter-shift rule. To handle AD of bounded quan-
tum loops, Zhu et al. [77] used a finite collection of quantum programs and added up their outputs
for the derivative. As elaborated on in Section 3, one cannot extend this approach to a collection of
unbounded sizes like unbounded loops in this article. The correctness and feasibility of this article
to deal with infinite summation caused by unbounded loops is the main difficulty, which Zhu et al.
[77] did not encounter. Moreover, the efficiency of this article is comparable to Reference [77] in
the bounded-loop setting. Thus, this article strictly improves Reference [77].

2 QUANTUM PRELIMINARIES

In this section, we recall some basic knowledge of quantum computing and provide a summary
of notation in Table 1. The reader can consult the standard textbook [52, Chapter 2, 4] for more
details.

2.1 States and Hilbert Spaces

The state space of an isolated quantum system is represented by a complex Hilbert space. We use
the Dirac notation |i/) to denote a (column) vector in a Hilbert space. The (vector dual) Hermitian
conjugate of |/) is (a row vector) denoted by (/|. The inner product of |/) and |¢) is denoted by
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(plY), considered as a shorthand for (¢|(|/)). The norm of a vector |¢/) is defined as |||/)|| = V(¢ |¥).
A unit vector is referred to as a pure state.

Example 2.1 (Qubit System). The state space of a quantum bit (qubit) is a 2-dimensional Hilbert
space H, = C? with [0) = (}) and |1) = () being the computational basis. A pure state |}/) € H,
can be expressed as

) = al0) + BI1) with |af* + [ = 1.
There are also two states of the qubit system that often appear: [+) = % (Joy+11)), |-y = %(lo) -
[1)). They also form a basis of H,.

A (linear) operator is a linear mapping between Hilbert spaces, and the set of all operators from
H to H’ is denoted by L(H, H’). Specifically, an operator A € L(H,H) is said to be an operator
on H and write A € L(H). We often write Iy, for the identity operator on H.

The Hermitian conjugate (adjoint) of an operator A is denoted by A". An operator A on H
is Hermitian if A" = A. An operator A on H is positive semidefinite if for all vectors |¢) € H,
(Y|Alg) > 0. The Lowner order C is defined as A C B if B — A is positive semidefinite. The trace of
an operator A on H is defined as tr(A) = 3 (¢;|Al¢/;), with {|/;)} an orthonormal basis of .

Example 2.2 (Outer Product). The outer product of two states |i/), |¢) € H, denoted by |/)(J|, is

an operator on H defined as ([){@])(l¢)) = ) - (plo)) = (Ple)|¥) for any |¢) € H. In particular,
the trace of |/)(¢] is

DD = Y INBI) = DGl = G S Wil ) = @lIlyy = @I
J J J J

For example, the operator [0){—| maps |1) to (—|1)|0) = —%|0) and tr(|0)(—]) = (—]0) = %, which

can be illustrated in matrix multiplication as

0)-1(11)) = ((é) (% —%)) : (?) - (é) =50
tr(j0)(-1) = tr((é) (% —%)) - %

When the state of a quantum system is not completely known, people may think of it as a mixed
state (ensemble of pure state) {(pj, |1/;))} meaning that it is at [/;) with probability p;. A density
operator for this system is defined as p = 3’; p;|1/;)(y/;|. Formally, a density operator p on a Hilbert
space H is a positive semidefinite operator with tr(p) = 1. Moreover, a partial density operator p
on H is defined as a positive semidefinite operator with tr(p) < 1. We use D(H) to denote the
set of partial density operators on H.

2.2 Quantum Operations

Unitary Transformations. An operator U on a Hilbert space H is a unitary transformation if
U'U = UUT = Iy. A unitary transformation U describes the evolution from any pure state |/) to
Uly). For mixed states, this evolution is reformulated as from any mixed state p to UpU".

Example 2.3 (Common Single-qubit Unitaries). Common single-qubit unitary operators include
H (Hadamard gate) and X, Y, Z (Pauli gates). Their matrix representation with respect to basis

{10), |1)} are:
11 1 0 1 0 —i 1 0
S I B R I A B
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19:6 W. Fang et al.

The H gate can transform the computational basis {|0),|1)} and the basis {|+),|-)} into each
other as H|0) = |+), H|1) = |-) and H|+) = |0), H|-) = |1). In addition, we can write H in the
form of outer products as H = [+)(0]| + [=)(1| = [0){+] + [1){—|. The X gate acts as a “Not” gate,
exchanging [0) and [1), i.e.,, X]|0) = [1),X]|1) = |0); thus, we can write it in the form of outer
products as X = [1)¢0] +|0)(1]. Similarly, we can also write Y = i|1){0] —i]|0)(1], Z = 0){0] — |1)(1].

Measurements and Observables. A measurement on a system with a state space H is described
by a collection {M,,} of measurement operators on H with the completeness equation: ), , MMy, =
I3(. When performing a measurement {M,,} on a pure state |i/) and a mixed state p, the outcome of
index m occurs with probability p(m) = ((ﬁIM;Mmhp) and p(m) = tr(MmpMj'n), the corresponding
state of the system after the measurement is |/,,) = Mp|¥)/+/p(m) and p,, = Mmprn/p(m),
respectively. In the context of mixed states, if we do not know the outcome of the measurement,
the state of the system after the measurement can be described by Y, p(m)pm = X Mm pM;rn.

A projective measurement is often described by an observable, M, a Hermitian operator on H.
The spectral decomposition of M = }},, mP,, corresponds to a quantum measurement {P,,} with
measurement outcome m for each P,,. The average value of this measurement performed on a
state i) is (¢/|M|y). The value (Y|M|y) is often written as (M) and called the expectation of M.
For a mixed state p, the expectation of M is tr(Mp).

Example 2.4 (Pauli Measurements). The Pauli gates X,Y,Z are also Hermitian and therefore
are observables. For example, X admits a spectral decomposition X = [+){(+| — |-){—|, then it
describes the measurement M = {M; = [+){+|,M_; = |-){—|}. For a mixed state p = iIO)(OI +
%|1)<1|, the measurement M will result in the state |+)(+|p|+){(+|/ tr(|+){+|p|+){+]) = [+){+]
with probability tr(|+){(+|p|+){+]) = % and the state |—)(—| with probability % Moreover, the
measurement outcome will be 1 with probability % and —1 with probability 1, thus the expectation

of the measurement outcome is 0 = % - % = tr(|+)(+|p) — tr(|-){—|p) = tr(Xp).

General Quantum Operations. A superoperator is a linear mapping between L(H) and L(H").
For mixed states, unitary transformations and measurements can be described by a general form of
completely positive and trace-non-increasing superoperators, which has the Kraus representation:
2 EJ()E]T with E; € L(H,H’) and }; E;Ej C Ig [69]. The Schrodinger-Heisenberg dual of a

superoperator & with the Kraus representation &(-) = ; Ej(-)E;f is&"(") =% E;(~)Ej.

2.3 Composite Systems and Tensor Products

The tensor product of two vectors |/, ) and |/2) is denoted by |/1)®|i)2), which is sometimes written
as |Y1)|2) or even |12 for short. The tensor product of two Hilbert spaces H; and H. is denoted
by H; ® H,. For any linear operator A; € L(H;) and A, € L(H>), their tensor product operator
A1 ®A; € L(H; ®H,) is defined by linear extensions of A1 ® Ay (Y1) ® |2)) = (A1lY1)) ® (Azli))
for any |¢1) € Hi, |¥2) € H,.

The state space of a composite quantum system is the tensor product of its components’ state
spaces, e.g., if a system with two components in state |i/;) € H; and state |i),) € Ha, respectively,
then the joint state of the composite system is [i/1) ® |/2) € H; ® H,. For mixed states, if a system
with two components in the state p; € D(H;) and the state p, € D(Hy), respectively, then the
joint state of the composite system is p; ® p; € D(H; @ Hy).

For two Hilbert spaces H;, H, and any operator A € L(H; ® H,), the partial trace over space
Hy of Ais treg, (A) = X (I, ® (Y1) A(Ix, ® ;) € L(H1), where {|/;)} is an orthonormal basis
of H;, and we often write tr, for tregy, if there is no ambiguity. The notion of partial trace can
be used to describe sub-systems of a composite quantum system. Suppose we have a composite
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r=k; ri=0®51; ri=(lo) - [1))/V2; r=(10y - 1)/V2;
while r # 0 do while r # 0 do while M[r] # 0 do while(k)M[r] #0do
r=r—1 r=0aps1 r:=H|r] r:=HJr]
od od od od
(a) Classical. (b) Probabilistic. (c) Quantum. (d) Quantum, bounded.

Fig. 2. Four while-loop programs to demonstrate unbounded loops in quantum programs.

system with two components ¢; and gz, whose state spaces are H; and Hs, respectively, and the
whole state of the composite system is p € D(H; ® Hy), then the state of component system g,
is a reduced density operator defined as try(p).

Example 2.5 (n-qubit System). The state space of n-qubit system is H = (C?)®" = C?", which
is the tensor product of n copies of the state space of single qubit, with {|x) | x € {0,1}"} being
the computational basis. Thus, an n-qubit pure state |/) can be expressed as }’ co,1}» @x|x) With
Dixefo1n lox |* = 1. For example, an important 2-qubit state is the Bell state |y} = %(IOOH [11)) €

C? ® C?. This state embodies quantum entanglement, because it cannot be written as [1) ® |y)
for any [y), |y) € C2.

3 CHALLENGES AND OUR KEY IDEAS

Let us revisit classical, probabilistic, and quantum programs as shown in Figure 2 with one un-
bounded loop to understand their features, differences, and corresponding difficulties in differ-
entiation. We assume some simple quantum terminology and refer readers to a more detailed
preliminary in Section 4.

While-loop, an important construct making an imperative programming language Turing-
complete, may cause an arbitrary number of loops or infinite loops (not terminated). In classical
(deterministic) programs, such as Figure 2(a), the variable r is assigned with an integer k. When
k > 0, the while-loop will execute the loop body k times and terminate, and when k < 0, the
while-loop will execute the loop body for infinitely many times and not terminate. Nevertheless,
due to the deterministic nature of classical programs, for fixed inputs, there is one and only one
path of the program execution.

However, there may be an infinite number of execution paths in a quantum program or proba-
bilistic program. In Figure 2(b), the command r := 0 @ 5 1 assigns 0 to variable r with probability
0.5 or 1 to r with probability 0.5 otherwise. Thus, the probability of the probabilistic program
in Figure 2(b) executing the loop body k, k > 0, times is 0.5%*!, which means this program has
an infinite number of execution paths. Similarly, the quantum program in Figure 2(c) also has an
infinite number of execution paths. Let us see the execution of the program in Figure 2(c):

(1) First, r is assigned with state |-) = (|0) — 11))/V2.

(2) Second, in the measurement of the while-loop, state |—) is measured with {M, = [0)(0], M; =
[1)(1]}. The measurement outcome will be 0 with probability (—|My|-) = 0.5 and 1 with
probability (—|M;|-) = 0.5. When the outcome is 0, the program will terminate; when the
outcome is 1, the measured state of r will become [1), and the program will enter the loop
body (3).

(3) In the loop body, applied with H, the state of r becomes |-) = H|1) = %(IO) —|1)), then the
program goes back to the measurement of the while-loop (2).
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Table 2. Comparisons among Classical, Probabilistic, and Quantum Programs

Classical Probabilistic Quantum
# of Execution Paths one possibly infinitely many possibly infinitely many
Distribution over Paths none explicit by sampling implicit by measurement
Usability of Chain Rule yes yes no

almost everywhere

for every path [47],

sufficient conditions
for bounded loops [40]

sufficient condition
for unbounded loops,
Theorem 4.5

Differentiability almost everywhere [48]

From (2) above, we can see that the program will terminate with probability 0.5 or continue the
while-loop with probability 0.5 at each entry of the while-loop. Therefore, the probability of this
program executing loop body (r := H[r]) for k, k > 0, times is 0.55*!, which means this program
has an infinite number of execution paths. Note that the probability 0.5 is implicitly implied by
the measurement outcome of the quantum program, as the quantum no-cloning theorem prevents
us from accurately tracking the intermediate states of the quantum programs. However, in prob-
abilistic programs, such probabilities are explicitly given by the sampling primitives. (Even if the
sampled distribution depends on some parameters, e.g., Gaussian distribution N (y, o) with y, o
generated at runtime, we can still know the specific distribution of the sample by recording the
values of these parameters at runtime.)

Another important difference worth highlighting between classical (deterministic or probabilis-
tic) programs and quantum ones is the quantum no-cloning theorem that prohibits the use of the
Chain-rule-based forward/reverse differentiation in the quantum setting. For example, consider a
simple classical program u = ¢g(x);y = f(u). The final value of y is f(g(x)). According to the
Chain rule, the derivative of y with respect to x is g—z = j—z . g—; = %(g(x)) . g—Z(x). The classical
forward-AD with dual number (e.g., Reference [7]) will introduce a intermediate variable ¥ (the
intermediate derivative of this variable with respect to x) for each variable v and lift each function

htoh: (v,9) > (h(v), %(v) - 0), which follows the Chain rule. Then, we obtain a new program

(u,) = §(x,1); (y,9) = f(u, @), from which we can compute that § = 3L (w)a = 5L (g(x)) $ (x).
Thus, this new program achieves AD. For each lifted function h, the input v is fed not only h

but also %, in which an implicit copy of v is made. However, the quantum no-cloning theo-

rem only allows v to be fed into h or % if we think of them as “quantum.” As a result, AD
techniques in quantum are somewhat separate from those commonly studied in the classical AD
literature.

Finally, consider a bounded-loop quantum program in Figure 2(d), which is investigated in Refer-
ence [77]. The number k > 0 in while(®) limits the iteration times of the loop body up to k, which
results that the program in Figure 2(d) has at most k + 1 and hence a finite number of execution
paths.

We summarize these comparisons in Table 2. As we will see, dealing with infinitely many ex-
ecution paths is one major difficulty in differentiation over unbounded loops, either probabilistic
or quantum. The unusability of the Chain rule further complicates the quantum case.

3.1 Differentiability of Unbounded Quantum Loops

The differentiability of unbounded quantum loops should be the first question to address, as it is
already quite non-trivial in establishing so in classical and probabilistic functional programs.
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1= (10) - [1))/V2;q = |o); (@ =00 = 0go = Dk~ .

2 while M[r] # 0do Vi !
— _ C = . 1
3 r=Hrls —-__ r=(10) ~[1)/Vag =10y 1
A 0l el g ! while M[r] #0do EUL commands)
q-=e q . 1
| AD by inserting commands r=H[rl; !
5 od e e e e e e s e e e e e e e e e e e e e == > L2
if g =0thenq; =087y L;
(a) Original program P(0). if go = 0 then q; = 1;
orob =05 DSOP commands
roo = 0.
prob =05 else gc =qc+11i
q = e 0 [q] else skip fi;
0]+ (+
q=e" lq]
@ ®
od
(b) A transition graph for P(9). (c) P(0)’s differential program.

Fig. 3. Running example to demonstrate our AD scheme. Every time the program runs to a statement, e.g.,
q = e~ 191 g] here, that contains 6, it will first enter a block of EUL to decide whether to continue P(6)
or to do a differentiation operation by DSOP then continue P(6). 0@, 1 is a probabilistic choice that outputs
0 with probability p and 1 with probability 1 — p for any 0 < p < 1, and f(n) = p(n)/(1 — Z}:ll,u(j)) is
determined by the distribution ; mentioned in Section 3.2.

In classical programs, conditionals often lead to piecewise-defined functions and non-
differentiable points, which are discontinuous or have different left and right derivatives [8]. Even
if the function defined by a program is differentiable, syntactic discontinuity can make AD fail.? To
resolve the issue of conditionals, Abadi and Plotkin [1] adopted the “partial conditionals,” which
ignores the boundary case, and proved the correctness of AD on conditionals and recursion. Mazza
and Pagani [48] characterized the set of “stable points,” the intuition behind which is the point that
has an open neighborhood with the same execution trace (“execution path”). They proved that AD
is almost everywhere correct under the mild hypothesis. However, these arguments are developed
for one execution path in classical programs.

The case of probabilistic programs resembles quantum programs a lot due to possibly infinitely
many execution paths. Whether probabilistic programs would lead to non-differentiable densities
at some non-measure-zero set has been an important open question in the field [72]. Recently,
Mak et al. [47] considered higher-order probabilistic programming with recursion and proved
that a probabilistic program’s density is almost everywhere differentiable under mild hypothesis.
However, it only tells us the differentiability of any trace of sampled values during execution,
which implies a fixed execution path.

Recall the program in Figure 2(c), on which we add a command with parameter 0 into the loop
body as our running example in Figure 3. The transition graph for each line of program P(0)
in Figure 3(a) is shown in Figure 3(b), where the behavior of P(0) is the same as in Figure 2(c):
P(8) will terminate (goto line 5) with probability 0.5 or continue the while-loop (goto line 3) with
probability 0.5 at each entry (line 2) of the while-loop. The probability of P(0) executing k times

2Consider the program presented in References [1, 48]:
Sillyld = Ax®.if x = 0 then 0 else x.

We can see that [Sillyld] (x) = x, thus [Sillyld] has a constant derivative of 1. However, general AD would produce the
wrong answer 0 at the point x = 0.
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q = e 101)¢*I[¢] is 0.5K*1. Consider operations related to variable g, P(8) induces a semantic func-
tion like

5@ = [g = e o0ig] = g = g o0 g = e 0]

k—1 times function composite

with probability 0.5¥*1, k > 0. The differentiability of fi(6) is generally easily obtainable, while
the differentiability of its expectation F(0) = X7 | fi(0)/ 2K+1 is unclear. For this problem of ex-
pectation, two conditions are proposed in the probabilistic programming [40]:

— Differentiability of expectation (infinite summation):

F(0) = Z v(0, k) fi (0) is differentiable on R. (Condition A1)
k
— Exchangeability between differentiation and infinite summation:
for all 0 € R, 9y Z v(0,k) fie(0) = Z 3o (v(0. k) £i.(0)). (Condition A2)
k k

where v(6,-) is a probability distribution over index k. Condition A1 states the premise of AD:
We would not talk about AD if the function induced by the program was not differentiable.
Condition A2 states that the differential operation on every trace (9g (v(0, k) fr.(6)), which reflects
the underlying AD implementation) can be collected into the differential operation on the total
program (Jg Y x v(0, k) fi (0)). To the best of our knowledge, no research has yet investigated what
kind of probabilistic programs or quantum programs with unbounded loops meet Condition A1
and Condition A2.

Our Solution. Fortunately, we identify finite-dimensional state space, which is met by all existing
quantum applications, as a sufficient condition to satisfy Condition A1 and Condition A2. Techni-
cally, under this condition, the probability that an unbounded quantum loop iterates k times has
an exponential decay on k (Lemma 5.3). The cornerstone behind this lemma is the compactness of
finite-dimensional Hilbert spaces. As in our running example, f;(0) = [[q i= e 10 [q]]] k, which
corresponds to loop k times, appears with probability 0.5*1. Let gg denote [q := e7¢"*I[q]],
the differential of f;.(0) is a summation of differentiation at every occurrence of 6, i.e., dg fx.(0) =
X_1(90)"™" © (B9gs) © (g9o)*, then
k

0 > ‘ .
2% (J;kk(“)) ) kZ 7 2G0) ™ 2 (Bogo) o (90)" (3.1)
=0

0
k=0 Jj=1

is uniformly convergent as 2;‘:1 (90) 10 (8ag9) o (g9)* 7 € O( 5 k) This uniform convergence

implies both Condition A1 and Condition A2.

Conversely, through Weierstrass’ non-differentiable function S(x) = ;" a” sin(b"x) [33, The-
orem 1.31], we can construct a counterexample (Example 4.6) that is nowhere differentiable on
R for quantum loops with infinite-dimensional space. Specifically, Example 4.6 has two nested

) k

loops that induces fi(6) = [q := e”g‘*)”‘[q]]]2 with probability 0.5%*1. The differential of f; (6)

becomes 8y fi.(0) = Jz.il(gg)j’1 o (dyge) o (gg)zk’j, then this summation of 2% terms makes
oo (o) k j— —j .

Yo 7700 fk(0) = X5 5 2i=1(90) 7" 0 (9pge) © (go)*"~ divergent everywhere. Note that

the probability 0.5¥*! comes from the outer loop, and the exponent 2% comes from the inner loop.

For the latter to happen, the inner loop, like Example 4.6, needs to have an infinite-dimensional
register to record the information of k, which goes to positive infinite. This non-differentiable
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counterexample can also be represented by the expectation of a probabilistic program (see
Example 4.6).

3.2 Execution Paths with Infinitely Many Parameter Occurrences
As we saw in Figure 3, loops lead to repeated execution of loop body, which means a parameter
. . . . i k
can appear many times at a single execution path, e.g., the function f;.(0) = [[q i= eI [q]ﬂ
introduced in Section 3.1 has k occurrences of 0. These execution paths refer to quantum circuits
with a parameter appearing multiple times. In the case of bounded quantum loops, the total number
of execution paths is finite, and the multiplicity of parameter occurrences on each path is also
bounded. Therefore, Zhu et al. [77] proposed additive quantum programs to represent a (finite)
collection of quantum programs that compute partial derivatives of all occurrences. Conceivably,
this approach does not extend to the infinite (and unbounded) case.

Our Solution. According to Section 3.1, the differential of F(6) = X", fx(6)/ 2k+1 should be equal
to

S G0fi0) _ShN L N S AT k—j
D = 2 2 e @0V 0@0g0)0(90) T = ) D e (90) ™ 0 (B0go)o (90) . (32)
k=0 k=0 j=1 j=1 k=1

Here, the second equality, i.e., the commutativity of the summation indexes j, k, is guaranteed by
uniform convergence, as we mentioned for Equation (3.1). We rewrite Equation (3.2), as Z;‘;l aj
with a; = 37 75 (90) " © (Jege) © (go)*~7 is the corresponding summation term for all ex-
ecution paths with differentiation on jth position. With the infeasibility of the Chain rule, the
existing quantum AD technique can only handle a; one-by-one, the cost of which will depend on
the number of terms in Equation (3.2) that will be unbounded in our case.

Inspired by the importance sampling in statistics [61], we construct a random variable X such
that

Pr(X = a/(j)) = p(i),Vj € Zs

to estimate the infinite sum },7° a;, where y is a probability distribution on Z,. By construction,
the expectation of X is 2;11 a;. Let us now focus on Figure 3(c), where the role of EUL commands,
written with probabilistic pseudocode, is to generate the distribution y as the original program
runs and to attribute this probabilistic distribution to DSOP commands (differentiation operations
that induce a;) in the execution order. Precisely, the variable g. records the number of loops until
g2 = 0. Together with the probabilistic choice g, := 0 ®(q,) 1 (see definition in Figure 3’s caption),
the probability of g. = j, g2 = 0 and q; = 1, which means DSOP commands (a differentiation
operation) are executed, and one term of g; is evaluated, is ;(j) when fixing an execution path of
P(0) with loops’ number n > j. Therefore, we associate the probability (j) with a; in the execution
order. Then, the desired random variable X is natural to construct.

However, for the estimation efficiency of X’s expectation, the variance of X should also be
bounded. To that end, we identify a sufficient condition for the distribution y : Z, — [0,1] as

nh_x)lgo Jp(n) =1, (converging-rate condition)
which would imply the correctness of our code-transformation (Theorem 5.4) and its efficiency
(Theorem 6.2). Another implicit but critical property of our construction of random variable X
in Figure 3(c) is its independence of the underlying execution path. It allows us to apply a simple
and uniform code transformation while keeping all existing quantum branches that lead to all
execution paths.
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Applicability to classical and probabilistic programs with unbounded loops?

Ignoring the issue of differentiability, our idea of constructing random variables to sample partial
derivatives can be applied to classical and probabilistic unbounded loops. However, it would be less
efficient, because partial derivatives can be collected and forward/backward-propagated along the
execution path by the Chain rule in the classical setting, which is not leveraged by our scheme.

Consider the example in Figure 4 where we show how EUL is applied to a probabilistic program.
Denote the expectation of variable y after executing P(6) in Figure 4(a) as E(0) = Z;‘;l Jjsin(0) -
0.5 = 2sin(@). Its derivative is E’(6) = 2cos(6). Since this program P(6) only uses a simple
sampling primitive r = 0 @5 1, we can directly apply the classical forward-AD with a dual
number (e.g., Reference [7]) as in Figure 4(b). Then, the expectation of § (dual number of y) after
executing the program in Figure 4(b) is 3,72, j cos(0) - 0.5 = 2cos(8) = E’(0).

As a comparison, the rewriting of our EUL to the probabilistic program P(6) becomes Fig-
ure 4(c). With the probabilistic choice 0 @) 1 and a variable g. to count the occurrences
of 0, the probability of the program executes command (*) and the output of g, = j > 1is
u(j) - 0.571 if the output of g, is j > 1. Then, the probability of § = cos(6),q. = j after ex-
ecuting the program in Figure 4(c) is u(j) - 0.571. We can construct a random variable X with
respect to § and q. satisfies that Pr(X = §/u(j)) = Pr(§ = cos(f),q. = j) = p(j) - 0.57%
Hence, the expectation of X is Y32, cos(8)/u(j) - u(j) - 0.5 = 352, cos(6) - 0.5~ = 2cos(6),
which is consistent with the above E’(6). The major difference between Figures 4(b) and 4(c) is
that Figure 4(b) can execute the command () multiple times, while Figure 4(c) only executes (x)
once.

4 PARAMETERIZED QUANTUM WHILE-PROGRAMS

In this article, we expand a parameterized extension [77] of quantum while-language [73] to in-
clude unbounded loops.

4.1 Syntax

Let us first define the syntax of our programming language. Similar to References [73, 77], we
assume a countably infinite set gV ar of quantum variables and use the symbols q,q’, g0, q1, - . - €
qV ar as metavariables ranging over them. Each quantum variable g € gV ar has a type of Hilbert
space H, as its state space. A quantum register § = g1, ¢z, - . ., gy is a finite sequence of distinct
quantum variables, and its state space is Hg = ®7=1 Hy,-

Definition 4.1 (Syntax). A k-parameterized quantum while-program with parameter 8 € R is
generated by the syntax:

P(6) == skip | ¢ = 0) | g = Ulq] | g = ¢*7[q] |
Py(0): P2(0) | if (Om - M[q] = m — P, (6)) i |
while M[g] = 1 do P(6) od.

3For general probabilistic programs, sampling primitives that depend on the variable being differentiated, as well as the
guards of conditionals that depend on the variable being differentiated, can make the probability distribution of the execu-
tion paths related to the variable. In such cases, we have to consider the “derivative” of the probability distribution of the
execution paths. Recently, Lew et al. [41] resolve this problem for an expressive and higher-order probabilistic program-
ming language (without general recursion) by equipping each sampling primitive with a built-in derivative estimation
procedure. For quantum programs, the denotational semantics defined in Section 4.2 encode the probability of execution
paths into density operators, thus, we do not need to treat the probability of execution paths separately.
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r = O,y =0; (ql = 0§q2 = O;qc = l;j( ________ s
while r = 0 do o~ oo [
- in(0): rr=00y7:=00  EUL commands
y =y +sin(0); while r = 0 do .
r=08s51 ¥
od if g1 = 0 then

92 = 0O¢(q,) 1;
if g2 = 0 then q; = 1;

(y,g =y +sin(0), § + cos(0) - 1)—— (%)

(a) Original program P(0).

r,7:=0,0;y,7 :=0,0;

while r = 0 do elsegc == qc+11fi
(y,y =y +sin(6), § + cos(0) - 1;) else (y,g =y +sin(0), § + cos(6) - 0) fi;
r=0&p51 r =051

od od

(b) Forward-AD, dual number. (¢) EUL with only one dual number initialized.

Fig. 4. A probabilistic program P(¢) with forward-AD and our EUL-based AD applied, where 0 ®, 1 is a
probabilistic choice that outputs 0 with probability p and 1 with probability 1 —p forany 0 < p < 1, f(n) =
u(n)/(1 - Z;‘:_ll 11(j)) is determined by the distribution ; mentioned in Section 3.2.

Explanation of the Syntax. Statement skip does nothing and terminates immediately. Initial-
ization statement g := |0) sets the quantum variable g to |0). Unitary transformation statement
G = U[q] means perform a unitary U on the quantum register §. Statement G := e"'??[g] gives
a special parameterized form of unitary—density operator simulation—with ¢ a density operator
and 0 selected from 6. Sequential composition P;(0); P,(0) means first executes P;(0), and when
P;(0) terminates, it executes P,(0). Quantum case statement if (Om - M[q] = m — P,(0)) fi,
where Om indicates case branching by the value of m, means performs a measurement M = {M,}
on ¢ and then a subprogram P,,(6) will be performed upon the outcome m of the measurement.
In quantum loop statement while M[G] = 1 do P(0) od, a binary measurement M = {M,, M;} is
performed; if the measurement outcome is 0, then the program terminates; otherwise, the pro-
gram executes the loop body P(0) and continues the loop, potentially for an arbitrary number of
rounds.

Remark 4.2. We provide some remarks on the above syntax.

— We add a statement G := o as a more general initialization that sets the state of the quan-
tum register ¢ to be a representable density operator o, where the “representable” means
the density operator can be generated by a short parameterized quantum while-program P
without parameters and while-loop statement.
— We use § = e 99[] to describe a generally parameterized unitary applied on §. For any uni-
tary U, there is a Hermitian operator H such that U = e~*¥ and for any Hermitian operator
H, e~ (the quantum simulation of Hamiltonian H) is also a unitary. The parameterization
we have chosen, i.e., density operator simulation (¢~*%?), can also express general Hamilton-
ian simulation.*
For any e !?H we define a density operator oy = (H — pl)/ tr(H — pI), where y is the ground eigenvalue of H,

I the identity, and H # uI. Then, e *?H s the same as e™199H where 0 = tr(H — pl)6, since e 10H pei0H —
e—i(tr(H—,uI)G)O'H pei(tr(H—/jI)H)O'H’ Vp.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 19. Pub. date: November 2023.



19:14 W. Fang et al.

— Our parameterization allows expressing many commonly used parameterized quantum
gates, such as Pauli rotation gates and two-qubit coupling gates, which are universal and
can be reliably implemented in near-term quantum machines.’

4.2 Denotational Semantics

Following the semantics of quantum while-programs [73], the denotational semantics of parame-
terized quantum while-programs can be defined.

Definition 4.3 (Structural Representation of Denotational Semantics [73]). Let H,j; denote the ten-
sor product of the state spaces of all quantum variables and p € D (H;;) indicate the (global) state
of quantum variables. The denotational semantics of a parameterized quantum while-program
P(0) is a superoperator [P(0)] : D(Ha) = D(Hyay) inductively defined as:

— [skip] (p) = p;

—lg = 10](p) = Zn|0>q§n|P|n>q<0|;

—[g=Ulgl] (p) =UpU";

_ [[q = e—zBa[q]ﬂ (p) — e—z@apezea;

— [P1(0); P2(0)] (p) = [P2(O)] ([P1(0)] (p));

— [if (Om - M[q] = m — Pn(0)) fi] (p) = X1 [Pm(0)] (Em(p));

— [while M[g] = 1do P(8) od] (p) = LIy Xp_, Eo © ([P(O)] o &k (p),

where {|n)4} is an orthonormal basis of state space H, of variable g, &, : p MmpMJLn are
defined for each measurement M = {M,,} in P(@), and | | stands for the least upper bound in the
CPO of partial density operators with the Lowner order C (see Reference [73, Lemma 3.3.2]).

For a quantum program P, we define var(P) to be the set of quantum variables ¢ € qVar
appearing in a program P, and let Hp = (X) qevar(p) Hy. When dealing with the semantics of a
program P(6), we only consider the states on Hp(g), that is, using p € Hp(g) to represent a product
state p ® pg € D(Hair), where py € D(Hgv ar\var(p(0)))- When the dimension of Hp g is finite,
we have that D (Hp(g)) is a compact set, thus

[while M[g] = 1do P(9) od] (o) = > &x o ([P(O)] o &) (p). (1)
k=0
Note further that a semantic mapping [P(0)] : D(Hai) — D(Hyyy) defined on D(Hyy;) can be

used as a mapping on the set of linear operators L (H,;;) by linear extension.

4.3 Expectation Functions and Differentiability

The output of a quantum program is often regarded as the expectation of an observable obtained
by measurements after its execution. We define the expectation functions to capture the output of
quantum programs, which is similar to the observable semantics introduced by Reference [77].

Definition 4.4 (Expectation Function). For a parameterized quantum while-program P(0) with
parameter @ € RF, an initial state p € D(Hy;;), and an observable O on H,y;, the expectation
function f : RF — R U {+0o} that maps the parameter 6 to the output expectation is defined by

f(0) = (O [P(O)] (p))- (4.2)

SSingle-qubit Pauli rotation gates are given in the following form Ry (0) := exp( # A), A € {X, Y, Z}.One can also extend
Pauli rotations to multiple qubits. For example, consider two-qubit coupling gates {Raga := exp(#A ® A)Jaeix, v, z)-
Note that these two-qubit gates can generate entanglement between two qubits. Combined with single-qubit rotations,
they form a universal gate set for quantum computation.
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Forany1 < j < k, the partial derivatives g—éj of expectation function f with respect to parameter

0; can be defined in the standard way. Their existence in the finite-dimensional case is guaranteed
by the following:

THEOREM 4.5 (DIFFERENTIABILITY). For a parameterized quantum while-program P(0) with pa-
rameter @ = (01,0,, ...,0r) € RK, an initial state p € D(Hyy1), and an observable O on H,y, if
Hp(e) is finite-dimensional, then g—gi exists.

Proor. This is a corollary of Theorem 5.4, which states that g—éf,i can be represented by the

expectation function of another quantum program, its differential program % (P(0)), with respect
to an observable Oy ® O. Since the Oy ® O in Theorem 5.4 is bounded, the expectation function
of 57 o 70; (P(0)) with respect to any 6, observable Oy ® O, and any input state p is well-defined, we

have that f is well-defined and hence exists. O

As shown in the following example, however, it is possible that the expectation function f is
non-differentiable when Hpg) is an infinite-dimensional space.

Example 4.6 (Non-differentiable Infinite-dimensional Quantum Program). Let g, r be two qubits
with state space H, = H, = span{|0),|1)}, t;,t, be quantum variables with state space Ho =
(Do nlny ta, € C, Y, loty|* < oo}, and 6 € R be a parameter. Consider the following parame-
terized quantum program P(0):

P(0) = q :=10);t1 = |0); C(0) = q:=0;t; = 0;
while M[q] = 1 do while g # 1 do
t1 = R[t1]; ty =t +1;

ri=0);ty = |0); — |r=tLn=0
while M[q] = 1do = |whilet, # £ do
ri=e Mg = Rl S Fimr ety =ty 1
t,t2,q = EX[t1, t2,q] E od;
od; - r=sin(r*6) +1;
q:=Hl[ql; q=08 1
od od

where:

— M = {M, = [1)(1], M; = [0)(0]} is the measurement on qubit q in the computational basis;
— R = };1j + 1){j| is the right-translation operator on t;; and
—EX = Yoi—rljk) Gkl ® X + 30i 2k |jk)(jk| ® I is a unitary that performs X operation on q if t;
and t, is in state |j) and |k), respectively, and k = 2/ for any j, k € Z.
For an initial state p = [0)4(0] ® |0),(0] ® [0);,{0| ® |0);,(0| and an observable O = 2|¢/),(y/| with
[Py = (10) —i|1))/ V2, a calculation using Equation (4.1) yields the expectation function of P(6):

1 _ : 1 + sin( 2’“9 = 1
fO)= 3 e e DR kz S = e ) sin
=1 -1 =1

which is well-defined. However, f is non-differentiable everywhere due to Weierstrass’s non-
differentiable function [33, Theorem 1.31]: The function S(x) = > _,a" sin(b"x) converges
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— 1 e !
—ifo —ifo
y o -

(a) (b)

Fig. 5. Introduce the commutator with a similar circuit.

uniformly on R, which implies S is continuous on R, but nowhere differentiable for any 0 < a <
1,ab > 1.

The probabilistic program C(6) is a counterpart of P(0) for illustration, where g := 0@ 11 assigns
0 to g with probability 3 and 1 to g otherwise. The boxed commands assigns sin(26) +1 to r, thus,
we can see that the expectation of variable r after runs C(0) is also f(0) and non-differentiable
everywhere.

5 AUTOMATIC DIFFERENTIATION FOR UNBOUNDED QUANTUM LOOPS

In this section, we develop the AD technique for parameterized quantum while-programs to over-
come the major difficulty of finding analytical derivatives of unbounded loops.

5.1 Differentiation on a Single-occurrence of Parameter

Our first contribution is a new DSOP technique, called the commutator-form rule. Li et al. [42]
and Mitarai et al. [49] first proposed a derivative formula for Pauli rotations, which is named by
Schuld et al. [59] as the “parameter-shift rule” to handle the case of U(0) = e~ with H having
at most two distinct eigenvalues.

Our commutator-form rule is designed to be applicable to e~ for general H. Technically, it was
inspired by a few existing works [9, 44, 49] that leverage the commutator form for various purposes.
We also note some recent independent developments [35, 39, 68] of variants of the parameter-shift
rules to handle more general e %" However, our rule is based on a very different technique, which
could be of independent interest by itself. Precisely,

LEMMA 5.1. Let Hi, Hy, Hs be Hilbert spaces and E; : D(H,) = D(Hz), Ez : D(Hz) — D(Hs)
be superoperators. For any Hermitian operator H on Hy and 0 € R, we define Eg g(p) = e 11 pel0H

forall p € D(H,). Then, for any density operator p on H;:
d
@(82 0 En,g 0 Ei1(p)) = Ez 0 Epo(—i[H, E1(p)]),
where commutator [-, -] is defined as follows: [A, B] = AB — BA for any operators A and B.
Proor. See Appendix D.2. |

Commutator-form Rule. The way of introducing commutators is visualized in Figure 5. We
define

f(0) = tr(0&3(e7"77 E1(p)e'”?)) (5.1)

as the expectation function in Figure 5(a) and

g9(0; ) = tr(08,(e797 71958, (p) ® ce'*5ei?7)) (5.2)
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Ty (skip) = skip To(q =10)) = q = |0) To(q =Ulq]) =q =U[q]
To(g:=e[g)=q=e"0[g] (¢ #0)
To(P1(0); P2(0)) = To(P1(0)); Tp(P2(0))
T, (if (Qm - M[G] = m — P (8)) fi) = if (@m - M[q] = m — Ty(Pm(9))) fi
Ty (while M[g] = 1 do P(0) od) = while M[g] = 1 do Ty(P(0)) od

(%) Tg(q = €7 199[q]) = if (Mgy.q,[q1.92) =0 = qc = Clgc]; qe. g2 = GPlge, 2]
O=1-q1:=X[q1];q2 = %;q’ =0

v

92,4:q = AS[q2,3,q']
0 =2 — skip) fi;g = e 1% [q]

Fig. 6. Code transformation rules with respect to parameter 6. The blue part of (x) refers to the EUL part
of Figure 3, where g1, g2 are two qubit variables, g. is a quantum variable with state space H,. = spanf{|n) :
n € Z}, Mg,,q, = {Mo = 100)00], My = [01)¢01], M2 = [10)(10] + [11)(11]}, C = Z;';Olj + 1)(j| is the right-
translation operator, GP = Z}'illj)(jl ® Ry(2 arcsin(\/b_j)) and b; = pu(j)/(1 - Z;c_:ll u(k)), AS = 10)(0| ®
e 1554 1+ 1)1 ® ¢! 7924 and Sg,q is the SWAP operator between Hg and Hy'.

as the expectation function in Figure 5(b), where S is the SWAP operator.® With Lemma 5.1, we
have

dief(e) =tr (082 (e_'p”(—i[a oL Sl(p)])eieg)) '

Inspired by the trick of applying unitary transformation e~'%7 of any density operator p in quan-
tum principal component analysis [44], we find that for any a € (0, 7):

(0) = —— (g(0: ) — g(6: ~a) . (53)

sin(2a)

tator-fi 1 —
(commutator-form rule) T
5.2 Code Transformation for Unbounded Loops

Our AD scheme (Figure 3) could leverage any DSOP technique (both the commutator-form rule
and the parameter-shift rule). We illustrate the code-transformation based on the commutator-
form rule and leave the details based on the parameter-shift rule in Appendix B.

Definition 5.2 (Code Transformation). For a parameterized quantum while-program P(0) with
parameter @ € R, its differential program with respect to 6 is defined as a parameterized quantum
while-program %(P(O)):

0
%(P(e)) = Dinit; Ty (P(0)),
with Dinit defined as follows and Ty, C, GP given in Figure 6,
Dinit = g1 = [0); g2 = [0); e = [0);gc = Clgcl: gc- g2 = GP[ge. g2]-

The code transformation Ty in Figure 6 only acts non-trivially for unitary transformation state-
ments that contain the parameter 6, that is, inserting a measurement statement (the blue part of
rule () in Figure 6) before a parameterized unitary transformation g := e *°?[g]. This measure-
ment statement corresponds to the EUL commands of our AD scheme in Figure 3.

®The SWAP operator S on a space H ® H is defined as S(|a) ® |b)) = |b) ® |a) for any |a), |b) € H that swaps the
states of two systems.
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To establish the correctness of our code transformation, we develop the following lemma about
finite-dimensional quantum programs in light of Example 4.6:

LEMMA 5.3. Consider a quantum loop P = while M[q] = 1 do Q od. Assume that the state space
Hp is finite-dimensional. We define superoperators &; : D(Hp) — D(Hp) by Ei(p) = MipMj',
i =0,1and & : D(Hp) — D(Hp) by E(p) = [Q] (p). Then, for any € € (0,1), there exists
N = N > 0 such thatVn € N,Yp € D(Hp),

tr(Ey o (& 0 E1)"(p)) < e N tr(p).
PRrROOF. See Appendix D.1. O

The above lemma ensures the probability that the finite-dimensional program runs out of the
loop has an exponential decay on the number of loop iterations. This observation leads to an
exponential decay of partial derivatives for corresponding occurrences of the parameter, which in
turn guarantees the existence of the derivative and the validity of exchanging the order between
the infinite summation and the derivation.

THEOREM 5.4 (CORRECTNESS OF CODE TRANSFORMATION). Given a parameterized quantum
while-program P(6) with parameter @ € R¥ and finite-dimensional state space Hpg), an observ-
able O, and an input state p. Let f(0) be the expectation function of P(0) with respect to p and O.
Then, the partial derivative of f with respect to 0 is

20 =te(©i00) | Zwon] ). 64

the expectation function of%(P(G)) with respect to 6, observable Oy ® O and input state p with
04 = 3%, ﬁm(ﬂ ® [1)(1| ® Z is an observable on Hy, ® Hy, ® Hy,.

OuTLINE OF THE PROOF. We can take Figure 3 as an example to briefly illustrate the outline of
the proof, while the full details are deferred to Appendix D.4.

(1) Since our AD is performed by inserting commands, the execution branches of P(0)’s differ-
ential program in Figure 3(c) are the same as P(0) in Figure 3(a). Thus, we consider each
execution path of P(6).

(2) For a fixed execution path of P(0), its derivative has the form dy fi. (0) = 21% Z;‘zl(gg)j_l °
(99gs) © (g9)*~7. The dy fi (9) corresponds to perform k times differentiation operations in
different occurrences of 0. For the same branch of the fixed execution path, P(6)’s differen-
tial program can also perform the same k times differentiation operations with probability
u(1), ..., u(k). Then, P(0)’s differential program can produce dg fi(6) by estimation of ex-
pectation.

(3) Finally, one adds up all the dg f(0) that are produced by P(0)’s differential program with
respect to P(6)’s execution paths: 377 | g fi(0), and prove it is uniformly convergent, the
main challenging of the proof that relies on the finite-dimensional condition, and equal to
f(0)’s derivative.

6 IMPLEMENTATION AND SAMPLE COMPLEXITY

In this section, we discuss the implementation of our AD scheme and analyze its efficiency in terms
of sample complexity, the number of required samples to estimate gradients.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 19. Pub. date: November 2023.



Differentiable Quantum Programming with Unbounded Loops 19:19

6.1 Implementation in a Hybrid Style

In the previous section, we have constructed the code transformation for AD in a pure quantum
fashion so differential programs can be written in the same syntax as the original one. But this
approach introduces three additional quantum variables on top of the original program, which
requires additional quantum resources. Since the cost of quantum hardware implementation is
still very high, to make our AD more practical, we need to find ways to reduce additional quantum
resources. Fortunately, our construction Ty in Figure 6 guarantees that no entanglement will be
created between ¢, g2, ¢ and other quantum variables in the differential program, which means
that there is only classical correlation rather than quantum correlation (see Reference [??, Section
VL Bipartite Entanglement]) between ¢y, q2, . and other quantum variables. Moreover, g, will
always be in its basis states {|n) : n € Z} and ¢, g, are two qubit variables. Therefore, q1, g2, q.
can be separated from the differential program and simulated efficiently by a classical computer.
As a result, our AD can be implemented in languages that support both quantum and classical
operations, which refers to hybrid quantum-classical programming.

There are a few candidates of high-level quantum programming languages that support hy-
brid quantum-classical programming with classical control flow, e.g., Microsoft’s Q# [62] and ETH
Zirich’s Silq [13]. Since Q# provides a Python package gsharp that enables simulation of Q#
programs from regular Python programs, we choose Python and Q# to implement a parser that
transforms parameterized quantum while-programs (with a restricted set of unitaries) to Q# and
implement AD to generate Q# codes for evaluating gradients.

Our current implementation supports parameterized Pauli rotations and controlled Pauli rota-
tions as follows:

{RA(Q) — e—i%A’e—lg|1>(1\®A’RA®A(9) — e—i%A@A AN=X.,Y,Z:0 € 9} )

The Pauli rotations and controlled Pauli rotations are internally replaced with their corresponding
density operator form, e.g., unitary e iEXeX g replaced by =) ™ with (X ® X + )/4, a
density operator, then we can apply our technique of AD to it and get the derivative with a

scale 2.

6.2 Variance and Sample Complexity

Our main theorem (Theorem 5.4) asserts that the desired partial derivative can be expressed by the
expectation of observable O; ® O with respect to state [[% (P(O))]] (p), which we denote (O4 ® O)
for simplicity. We denote the sample complexity as the number of repetitions to estimate (O ® O)
to a given precision §. To estimate the sample complexity, we consider the variance of observable
04 ® 0: Var(0g ® 0) = ((0g ® 0 = (0g ® 0))*) = (0% ® 0%) = (04 ® O)°.

Inspired by the “Occurrence Count for 6” in Reference [77], we introduce two technical notions,
i.e., the “Running Count for 0” in program P(0), denoted RCy(P(0)), as the number of occurrences
of 0 in P(6), and the “Loop Count” in P(0), denoted LC(P(6)), as the number of while-loop state-
ments in P(@), for upper bounding (Olzi ® 0?). For formal definitions of RCg(P(6)) and LC(P(6)),
please refer to Appendix A. We also need a terminating condition of parameterized programs to
upper bound (0% ® O%).

Definition 6.1 (Almost Sure Termination [73]). A parameterized quantum while-program P(0)
terminates almost surely at 0 if tr([P(0)] (p)) = tr(p) for any p € D(Hp(p)).

THEOREM 6.2. In the same setting as in Theorem 5.4 and distribution i : Z, — [0, 1] satisfies
converging-rate condition, if all the while-statements (subprograms) in P(0) terminate almost surely,
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then (0% ® O?) is bounded. Additionally, if the distribution i : Z, — [0,1] satisfies
1

m with constant s € (0, 1], (61)

p(n) o

then we have
(02®0%) € O (MZIn'** (M, + €) + MI**ME*C(M,))
with My = RCy(P(0)), M, = LC(P(0)), and C(M,) is a non-zero function of M,.

ProoOF. See Appendix A. |

Comparison with Zhu et al. [77]. In the case of no unbounded loops in Reference [77], we have
M; = 0 and the bound given in Theorem 6.2 becomes O(Ml2 In'**(M; + e)), which implies the
sample complexity O(M? In'**(M; + e)/8?) by Chebyshev’s Inequality. This is comparable to the
sample complexity O(m?/5%) estimated in Reference [77], where m ~ RCq(P(8)) = Mj, as all of
the loops considered there are bounded and thus can be unfolded to nested conditional statements.

Empirical Estimation of the Sample Bound. The bound in Theorem 6.2 could, however, be
loose in practice, which would cost unnecessary samples. To resolve this issue, we develop an
empirical estimation of the sample bound, which usually leads to tighter bounds in our case studies.

Our key idea is that one can empirically estimate (O(Zi ®0?) by sampling as we did for (O, ®O) to
get a better empirical bound than analytical ones. To that end, one can apply a similar technique in
Theorem 6.2 to bound (0% ® O*) and hence the number of samples required to estimate (0% ® 0%).
However, at this time, we can tolerate a much larger additive error §, since (O{Zi ® 0?) could be
large itself, which makes 1/6% in Chebyshev’s Inequality scale nicely.

7 CASE STUDIES

In this section, we present the case studies to demonstrate the feasibility of our framework, in-
cluding parameterized amplitude amplification, quantum walk-based search algorithm, and repeat-
until-success unitary implementation. The chosen case studies, all of which contain unbounded
quantum loops, are non-trivial and realistic examples from quantum literature. We do not choose
typical variational algorithms, e.g., QAOA [22], VQE [54], or some variants studied in the previ-
ous work of differentiable quantum programming [77], since they do not contain unbounded loops.
Similarly, because there is no realistic example yet of nested loops, as existing quantum algorithms
are far less than classical, we do not artificially construct experiments for nested loops. However,
our proposed commutator-form rule provides a more concise form than the parameter-shift rule
for general Hamiltonian (e.g., Hamiltonian in QAOA [32]) and our inductively defined code trans-
formation can handle nested loops.

Experiment Workflow. For experiments, our framework provides a unified principled way to
identify suitable parameters of parameterized quantum while-programs automatically as follows:
Given: A parameterized quantum while-program P(0),0 € RF k > 1, a quantum state p as
program’s input, and an observable O defined on Hpg).

Workflow:

(1) Use the implemented parser in Section 6.1 to convert the program P(0) to Q# functions
that can sample the value and the partial derivatives of expectation function f(0) =
tr(O [P(0)] (p)), which is the objective function to optimize.

(2) Use the empirical estimation of the sample bound developed in Section 6.2 to estimate the
number of samples needed for sampling the partial derivatives of f(8).
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q = 10);r ==10);t :=10);q := Alq];

while M[r] = 1 do while M[r] =1 do
q = GroverRotation[q]; q = Zlql;q = ATlql;q = Zlql; q = Alg];
g, r := Couplingy[q, r] q.r = e~ 09w aey [q r];
if (M’[t] =0— N[t] O=1— skip)fi
od od
(a) Overview of parameterized AA in Fig. 1. (b) Specific instance of parameterized AA: P;(6).

Fig. 7. Parameterized AA used in the experiment.

(3) Use a gradient-based optimizer (in our experiments, we choose Adam optimizer [37], as
it is widely used; some other optimizers are also suitable, e.g., AdamW [45]) to maxi-
mize/minimize f(0), where the initial value of parameters 6, is usually randomly given and
the gradient of f(0) is estimated by the Q# functions (all run on the simulator provided by
Q#) in (1) with the number of samples estimated in (2).

In all experiments, the distribution y in code transformation for AD is chosen as the distribution
in Equation (6.1) with s = 0.25. Our experiments are performed on a desktop computer with Intel(R)
Core(TM) i7-9700 CPU @ 3.00 GHz X 8 Processors and 16 GB RAM.

7.1 Parameterized Amplitude Amplification

Amplitude amplification (AA) [15] is a generalization of Grover’s quantum search algo-
rithm [29]. It employs an oracle unitary A, where A|0) = Y, ax|x) (i.e., a superposition of all
elements of a finite set), as well as the inverse A" of A. Suppose the probability of obtaining target
elements is p when performing measurement {M, = [x){(x|} on state A|0). AA can find a target
element by using O(1/+/p) calls of A and A'.

An AA algorithm needs to run a specific number of a rotation operator without any intermediate
measurement. Otherwise, the quantum speedup of oracle calls over classical algorithms may be
lost. A novel idea, called the critically damped quantum search [50], challenged this phenomenon.
It implemented a while-loop variant of Grover’s algorithm with a damping value, which has a
critical value that divides between the quantum O(1/+/p) and classical O(1/p) search regimes. This
critically damped quantum search can also be elegantly reformulated in a general framework that
uses the while-loop primitive with a notion of k-measurement [4]. With this framework for while-
loop, the key issue is to find an appropriate value of k to achieve the quantum speedup.

As the first case study, we show that our framework can be used to obtain a better parameter
in the example of parameterized AA as in Figure 1 to not only obtain quantum speedup but also
make fewer oracle calls than those given in the existing literature [4, 50] analytically by hand.

Parameterized AA Program. Consider the parameterized AA in a single-qubit system. Given
p € (0,1), suppose we have a single qubit unitary A such that A|0) = 1 —p[0) + /p|1), and
its inverse A'. State |1) is our target state. The details of parameterized AA program are listed
in Figure 7, where we put the overview of parameterized AA and its instance P;(6) used in this
experiment together.

In Figure 7(b), q,r are qubit variables, measurement M = {M, = [1){1],M; = [0)(0]}, and
onaley = (|11){1] ® Y + I ® I)/4. The variable r together with the unitary e~i99maiey and mea-
surement M forms a %—measurement in Reference [4]. To count the calls of A and A (the running
number of loops), we introduce a block of “count loops” that does not affect the behavior of param-

eterized AA, where t is a quantum variable in the space H,, = span{|0),...,[4[1/4/p])}, unitary
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Table 3. Experiment Results on Parameterized AA

Ours B C
p (40y) Var(401) (40,) Var(401) (40,) Var(40l)
1/10>  0.6499 0.1184 1.6884 1.6480 0.6773 0.1872
1/15%  0.6733 0.1232 1.7404 1.6336 0.7018 0.1872
1/20°  0.6885 0.1216 1.7541 1.6752 0.7182 0.1904
1/25%  0.6926 0.1200 1.7622 1.7504 0.7245 0.1936
1/302 0.6934 0.1152 1.7742 1.6624 0.7253 0.2112
The smaller (40 ), the better query complexity.

N = XAV 1) (nl +10),¢4L1/4/p) |, and measurement M’ = (M], = X2/ P10y o) My =
I—M;}. With the conditional statement of measurement M’, the variable ¢ will remain unchanged
once it reaches the state [4[1/+/p]).

The program’s input can be arbitrary, since there are variables’ initialization in Figure 7(b). The

observable we choose is O; = \/TF Zitzll/@J n|ny;(n|, which expresses the running number of loop

iterations and represents the total oracle calls.” The scale 4/p/4 is used to normalize the output
of O;. We expect the oracle calls to be as few as possible, thus our target is to identify 6 so the
expectation of the running time (O1) of parameterized AA in Figure 7(b) is minimized.

We summarize below the needed configuration in the experiment workflow.

Given: Parameterized AA program P; (), arbitrary input state p, and observable O;.

Workflow: In (2), samples’ number: 5/+/p x 10%. In (3), Adam’s setting: f; = 0.9, f = 0.999, a =
0.1; initial parameter: € = 4arccos((1 — 24/p(1—p))/(1 + 24/p(1 —p))) (analytical but
sub-optimal value from Reference [50]); Goal: minimize the expectation function of
observable O;.

For the number of samples, a numerical calculation based on a finer version of Theorem 6.2
provides 799.72 as the bound of (0% ® Of) with p = 1/100. However, applying our empirical
estimation, the actual value of (O; ® Of) would be bounded by 44.26 when p = 1/100, which
leads to the current 5/4/p X 10% bound (= 5 X 10* when p = 1/100) with additive error § = 0.1 by
Chebyshev’s Inequality. Please refer to details in Appendix C.

Results. We choose p = 1/10%,1/152,. . .,1/30? to run this experiment. In Table 3, we list the value
of (40;) = 4(O;), which expresses the (approximate) ratio of the number of loops to 1/4/p, that
we find in this experiment (see the column “Ours”), as well as those in previous works [4] (see
the column “B”), and Reference [50] (see the column “C”) for the probability p specified in each
row. For each p, a better result (both smaller (40;) and smaller variance Var(40,) that implies less
fluctuation around the expectation) is found by our experiment. Recall that both B and C results
are based on analytical forms developed by domain experts.

Since our goal is to minimize the expectation of O;, we find that the experimental results con-
firm our framework’s feasibility and validate the experiment workflow for automatically getting
suitable parameters.

7.2  Quantum Walk with Parameterized Shift Operator

Quantum walk (QW) algorithms [2, 17, 64, 70], which share some similarities with Grover’s
algorithm, are vibrant in the area of quantum algorithms. In the context of the grid search, Benioff

"This is only an approximation of the total running time, since the state of ¢ will always be [4[1/ Vpl) after 4]1/+/p] loop
iterations. But this does not matter, because the running number of loop iterations is concentrated below 1/+/p.
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[11] observed that the standard Grover’s search algorithm needs Q(N) steps to find a marked
vertex in an VN X VN grid. Quantum walk with a natural (“moving”) shift operator S,,, which
keeps the direction (also called the coin) after every move, also takes at least Q(N) steps to find a
marked vertex in this grid [3].

Spilexy) = =, x—1,y) SmileExy) = & x-1,y)
[=,x,y) = |<,x+ 1,y) =, x,y) = [=,x+ 1L, y)
Mx,y) = Uxy+1) Mx,y) = IMxy+1)
U, x,y) = Ix,y—1) U, x,y) = U, x,y - 1)

They resolved this issue by introducing another shift operator S, which can be interpreted as

changing direction after every move, and the quantum walk associated with Sy takes O(WNlogN)
steps to find a marked vertex in this grid.

We can see that designing a shift operator, the direction (coin) transformation, is important for
the performance of the quantum walk. It motivates us to parameterize the shift operator and use
our framework to determine a good shift operator.

Parameterized QW Program. The quantum walk search algorithm in Reference [3] first initial-
izes the coin variable and position variable in the uniform superposition and applies the marked
quantum walk operator for several times (here, we apply it twice), then measure the position vari-
able to check if the measured vertex is the marked one. We parameterize the shift operator and
write it as follows:
Py(61,0;) =t = |0);
while M[q,,q,] = 1do

cx = [0);¢y = 10);qx = [0); qy = |0);

Cx = H[cx];cy = H[cy];qx» qQy = I:I[Qx» Qy]Q (7.1)

Cx, Cys qx qy = C[cx, cys qxs qy]; Cxs Cy, qx qy = 5(61, 92)[CXs Cya qx> qy];

Cx, Cy> qx,qy ‘= C[Cx, Cy,QGx; qy]; Cx, Cy> Qx> qy ‘= 5(91, 92)[cxs Cy, Gx; qy];

if (M'[t]=0— A[t] O=1— skip) fi od,

where ¢, and ¢, are two qubit variables for coin, indicating the directions <, = and 1, |}, respec-
tively. qx, gy are two variables with space H, 5 = {|0),.. ., [VN — 1)}, indicating the position. The
variable t is a variable with space H 5, for counting the running times of loops. H is a Hadamard-
like unitary to create uniform superposition on gy, gy, which is composited by local operations
that only allow transition on adjacent position, e.g., |x, y) and [x — 1 mod VN, y). C is the marking
coin operator in Reference [3] and S(0;, 6;) = e 10210y (Flmibil e (Hlg i the parameterized shift
operator, which can be implemented by a subprogram as follows:

. . —-i6 ¢ . R 17) c
Cxs Cys Gxs Gy = SmlCxsCy> @ Qylicx =€ 1+ x<+|[cx],cy = e 101H) y<+|[cy].

In particular, we have 5(0,0) = S, and S(r, 7) = Sp. A = Zg_1|n+ 1)¢(n| +|0)(VN]| adds ¢ by 1in

every loop and measurement M’ checks the value of t by M" = (M| = Zg_l [n)e(nl, M = 1-Mg}.

In this experiment, we choose N = 16, and the grid is {(i,j) : 0 < i,j < 3}. The loop mea-
surement M is {My = [3)4, (3] ® [3)4,(3[, M1 = I — My} with (3,3) being the marked vertex for
convenience. The input state can be arbitrary, since all variables in P,(6;, 0;) will be initialized.

The observable we choose is Oy = ‘/Lﬁ Zg n|ny;(n|, which expresses the running number of loop
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The MSE distance of (6, 6,) from (1, )
T T T T T T T T T

L L L L L L
0 20 40 60 80 100
Iteration steps

Fig. 8. MSE distance with respect to the iteration steps in optimizing P2(61, 62). Differently colored lines
represent 21 experiments with randomly initialized parameters (61, 62).

0=

1)

Fig. 9. RUS design circuit to implement unitary V [14].

iterations as the O; in Section 7.1. Our target is to identify shift operator S(0;, 0;) that minimizes
the expectation function of observable O, with P;(6;, 65).
We summarize below the needed configuration in the experiment workflow.

Given: Parameterized QW program P, (0, 6), arbitrary input state p, and observable O,.

Workflow: In (2), samples’ number: 2 X 10* empirically chosen with details in Appendix C. In
(3), Adam’s setting: f; = 0.9,5; = 0.999,a = 0.1; initial parameter: 6, 0, are randomly
initialized in 27 X [0.1,0.9] to avoid certain extreme cases when (6, 6;) is close to (0, 0);
Goal: minimize the expectation function of observable O,.

Results. During the optimizing process, we recorded the Mean-Squared-Error (MSE) distance®
of parameters (60, ;) from (7, ), which is shown in Figure 8. Each colored line in Figure 8 rep-
resents an independent optimization with different initial parameters. In particular, the initial pa-
rameters of the red line in Figure 8 are manually set to (0.2, 0.27) to be far away from (7, 7). All
independent training optimizing threads converge to the shift operator S(x, ) = S after 60 steps,
which recovers the operator Sy by human design [3], automatically in our experiment.

7.3 Repeat-until-success Unitary Implementation

In this subsection, we demonstrate that our framework can learn realizable instances of repeat-
until-success (RUS) circuits. RUS depicts a design pattern, repeating an operation until getting
the desired result, which has been widely used in quantum circuit design [14, 43, 53, 67]. A general
layout of RUS circuits [14] is shown in Figure 9, where the dashed part is always applied if the
measurement outcome is undesirable. Notice that W; in Figure 9 is designed to restore the state of
the system to |0)|/) based on the measurement outcome, as only one copy of |{) is provided. The
RUS circuits have been shown to achieve a better (expected) depth over ancilla-free techniques for
single-qubit unitary decomposition [14, 53].

Parameterized RUS Program. Consider the program:
P3(01,02,0) = r = 10);q,r := Ulg.r];

while M[r] = 1 do g := W61, 0, 05)[qlsr = 10):q.7 = Ulqur]; od, 2

8MSE distance between (6;, 6,) and (7, ) is %((91 — )2 + (6, — m)?).
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where q is a qubit variable and r is an ancilla qubit variable, measurement M = {M, = |0),(0|, M; =
|1),(1]}. We are provided with a unitary U that will induce the desired operation on q if the outcome
of performing measurement M after execution of r := [0); q,r := Ul[q, r] is 0, otherwise, we need
a recovery operation W (6, 0, 05) = e~'01104(01g=i0:1)q(+1=16:10)4 01 5 fy]ly parameterized single-
qubit unitary (Z-X decomposition in Reference [52]) that can be implemented by a subprogram as
follows,

—i05(0)4(0] [

—i92|+>q<+|[ —i91|0>q(0\[

qi=e qliq=e qliq=e ql.
to restore the state of q and repeat the whole process until obtaining the outcome 0.
In this experiment, the unitary U in program P;(6;, 6, 65) is chosen as (|0),(0] ® V; + |1),(1| ®
V2)(H ® I) with randomly generated single-qubit unitaries V; and V. Our target is to identify

suitable parameters 07, 05, 05 such that program P3(9;‘, 05, 93) acts as the same as the unitary V; for
an information-complete basis

{gny = 10), 12) = 11D, 1ys) = [+) = (10) + [1))/V2, I} = |Y2) = (10) +il1))/V2}

of variable q. That is, for any 1 < j < 4, [[P3(9*, 9;,0;)ﬂ (I gil) = %Itﬁj)q(t//leT, which is
equivalent to tr (Vllt,bj)q((ﬁlelT [[Pg(@f, 05, 9;‘)]] (|1//j>q(z//j|)) = 1. Therefore, we choose four pairs

of input states and observable (p; = [{;)¢(¥;l, O3,; = Vl|lﬁj>q<lﬁj|V;),1 < j £ 4 and denote the
expectation function of program Ps(6;, 05, 03) with respect to input state p; and observable Os ; as
£j(61,0,,05) for 1 < j < 4. To optimize the four functions fj,1 < j < 4 simultaneously close to 1,
we introduce a MSE loss function [(6;, 05, 05) = 4—11 Z?:I(fj(Ql, 0,,65) — 1)? to be minimized in the
experiment workflow.

We summarize below the needed configuration in the experiment workflow.

Given: Parameterized RUS program P;(0;, 02, 05) and four pairs of input state and observable
(pj,Og,j),l S] < 4.

Workflow: In (2), samples’ number: 4.7 x 10* empirically chosen with details in Appendix C. In
(3), Adam’s setting: f; = 0.9, = 0.999,a = 0.2; initial parameter: 6y, 0, are randomly
initialized; goal: minimize the MSE loss function [(0y, 05, 63).

Results. We did 10 independent optimizations. In each optimization, V; and V, are randomly gen-
erated. With the iteration steps less than 60, the MSE loss I can be reduced to 0.0001, which implies
fj is greater than 0.98 for all j. Because {|¢j)q<¢j|}}‘=l forms a complete basis of D(H,), we can
conclude that the program P; produces an approximate operation of V; that we want in each op-
timization. Therefore, the experimental result confirms our framework’s feasibility and validates
the experiment workflow for automatically getting suitable parameters.

8 CONCLUSION

In this article, we have studied the AD of quantum programs with unbounded loops. We find a suf-
ficient condition—finite-dimensional state spaces—for quantum programs’ differentiability. This
sufficient condition is reasonable and terse in practical applications. Under this condition, we build
a source-level code transformation with correctness proof to achieve AD for quantum programs.
For the effectiveness of our approach, we give a result of sample complexity that is comparable
to previous work of bounded loops. We also implement our AD and demonstrate the feasibility
of our AD by three examples: parameterized amplitude amplification, quantum walk-based search
algorithm, and repeat-until-success unitary implementation.

Our research enables the automatic optimization of complex quantum programs without requir-
ing manual derivation. We hope that it will provide a deeper understanding of differentiable quan-
tum programming, provide a theoretical basis for the development of quantum machine learning
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software frameworks, and expect to use it to discover new quantum algorithms, especially with
unbounded loops.

APPENDICES
A PRACTICAL VARIANCE BOUND FOR DIFFERENTIAL PROGRAMS
In this section, we give fine bounds of (0% ® 0%) and (O} ® O*) that are used in our case studies for

estimating the number of samples. Before that, we give the formal definitions of the two previous
notions, RCy(P(0)) and LC(P(0)).

Definition A.1. The “Running Count for 6” in P(0), denoted RCy(P(0)), is defined inductively
on the program structure:

— RCy(P(0)) = 0 for P(0) = skip, g := |0) or g :== U[q].

—IfPO)=q:= e‘iel"[q], then RCy(P(0)) = 1 when 6’ is 0; otherwise, RCy(P(0)) = 0.
—If P(9) = P;(0); P,(0), then RCy(P(0)) = RCy(P;(0)) + RCq(P,(0)).

—If P(6) = if (om - M[G] = m — P,,(0)) fi, then RCy(P(0)) = max,, RCy(P,(6)).

—If P(0) = while M[g] = 1 do Q(0) od, then RCy(P(0)) = RCy(Q(0)).

Definition A.2. The “Loop Count” in P(6), denoted LC(P(0)), is defined by induction on the
program structure as follows:
— LC(P(B)) = 0 for P(0) = skip, ¢ := [0, § := U[q] or G := e”"?[q].
—If P(0) = P1(0); P,(0), then LC(P(0)) = LC(P1(0)) + LC(P2(0)).
—1If P(0) = if (om - M[G] = m — P, (0)) fi, then LC(P(0)) = 3.,,, LC(P1,(0)).
—If P(0) = while M[g] = 1 do Q(0) od, then LC(P(6)) = LC(Q(0)) + 1.

THEOREM A.3. In the same setting as in Theorem 5.4, for a fixed 0, if all the while-statements
(subprograms) in P(0) terminate almost surely, then the expectation ofOlzi ® 0%

(000" =tr (o; ®0° H%(P(O))ﬂ (p))

is upper-bounded by

M2(4S(M1) + Z((M2 + (k- 1D)EM1 - 1),)8 ((k + )M, - 1) (zeL’fv—’SJ + 2eLkN—£J1)) i
k=
1 (A1)

where

— M is the largest eigenvalue of |O|;

—M; = RCy(P(0)), My = LC(P(0));

— 1 is the distribution we adopted in code transformation rules and satisfies converging-rate con-
dition;

—S(n) = ;1:1 1/p(j) for everyn > 1; (x); = max{0, x};

—e € (0,1) and N¢ is the largest number of N in Lemma 5.3 that is applied to all M, loop
statements in P(6).

Proor. See Appendix D.5. ]

The converging-rate condition ensures
lim /S(n) =1.

n—oo
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1
Thus, the infinite summation terms in Equation (A.1) have exponential damping factor eNe < 1,
then the summation is convergent. To give a clear sense of this bound, we can derive a corollary
when we use the distribution mentioned in Equation (6.1).

COROLLARY A.4. In the same setting as in Theorem A.3, let the distribution u be
_ 1
H) = c(s)jInt* (G +e)’

where c(s) = X372, 1/(j)/In'*(j + e) < co,s € (0,1]. We have the expectation ofOfl ® O? is upper-
bounded by

M2(4T(M1) + Z((M2 + (k= DM 1) )T ((k+ DMeMy - 1) (zeL?v—’!J + 26%—;“)) ,

k=1

(A.2)
where T(n) = @xz In'**(x + e) is an upper bound of S(n) by integral.
With T(n) substituted, Corollary A.4 implies
(058 0% < 2M2c(s)(Mf In'*s (M + e) + MITSME*S Z(k + 1)31"fz+lekw—?‘2).
k=1
The infinite summation ;> (k + 1)3MZ+1611<‘1_;1_2 is related to Eulerian polynomials [6] and can be
easily bounded by
(3M2 + 1)'

€2+Nf (1- eNf)3Mz+2 '

Thus, we get the bound for (0% ® O°) that implies Theorem 6.2:

M3+ MZ*S((3My + 1)!
2M?c(s) (Mflnl+s(M1+e)+ My (GM; ))>.

62+Nf (1- eNf)3Mz+2
For bound of (O; ® 0%), we have a theorem similar to Theorem A.3.

THEOREM A.5. In the same setting as in Theorem 5.4, for a fixed 0, if all the while-statements
(subprograms) in P(0) terminate almost surely, then the expectation ofO; ® O*:

(0j@0") =tr (o; ®0* ﬂ%(P(G))ﬂ (p))

is upper-bounded by

Ms

((M2 + (k= 1) (KM —1),)s” ((k + 1)Mepp; — 1) (zetfv—‘ﬁi + zet’fv—‘:J—l)) i

>~
1l

4M2(4S’(M1) +
1 (A3)

where

— M is the largest eigenvalue of |O|;

—M; = RCy(P(0)), My = LC(P(0));

— 1 is the distribution we adopted in code transformation rules and satisfies converging-rate con-
dition;

—5'(n) = }’:1 1/p2(j) for everyn > 1; (x); = max{0, x};
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—e € (0,1) and N¢ is the largest number of N in Lemma 5.3 that is applied to all M, loop
statements in P(6).

Proor. The Proof is similar to Theorem A.3. |

When unbounded loops exist (i.e., My > 0), the bound given in Theorem A.3 will depend on
the number N of iterations in Lemma 5.3. We provide the following variant of Lemma 5.3 for a
practically more approachable calculation, which, in particular, has been used in determining the
number of samples in our case studies:

LEMMA A.6. Consider a quantum loop P = while M[q] = 1do Q od with fixed parameters
(omitted) and a finite dimension of Hp; we define superoperators &; : D(Hp) — D(Hp) by
Eilp) = M,-pMj, i=0,1and & : D(Hp) = D(Hp) by E(p) = [O] (p). Assume that the Kraus
representation of & o &y is }; EJ()EJT We write E = 3; E; ® E;. If E can be diagonalized, and there
exists € < 1 such that the module of E’s eigenvalues is either equal to 1 or less than €, then for
Vn e N,Yp € D(Hp),

(& 0 (&0 &))" (p)) < € tr(p).

Proor. This lemma can be proved using the techniques developed in Reference [75, Section 5],
where it was proved that the module of all E’s eigenvalues is less than or equal to 1. We omit the
details here. O

B AUTOMATIC DIFFERENTIATION BASED ON PARAMETER-SHIFT RULE
Parameter-shift Rule. A way for differentiation of Hamiltonian simulation e *°F with H having
at most two distinct eigenvalues, called the parameter-shift rule, was given in References [49, 59].
For those Hamiltonians with more than two distinct eigenvalues, the differentiation can be ob-
tained via LCU (Linear Combination of Unitaries) [18]. We also note some recent independent
developments [35, 39, 68] of variants of the parameter-shift rules to handle more general e 794,
But here, for the sake of convenience, we still only use the previous parameter-shift rule, which is
adopted in Zhu et al. [77]’s work on differentiable quantum programming.

Let us consider a simple example: the expectation function f(0) = tr(Oe™9Xp
check that

¢%X). We can

/=1 (0+5)-1(0-3)

More generally, if the Hamiltonian H has only two eigenvalues +r, r > 0 and
£(6) = tr(0e™ "M pet®™),
then

d 7 7T

@@=l g)-rlo-3))
Although this form looks like a finite difference, it does express the exact derivative of f rather than
an approximate value. Therefore, the derivative can be obtained by shifting a single gate parameter.
It is worth mentioning that the same differentiation was effectively achieved in Reference [77]
using one extra ancilla as the control qubit to create a superposition of two quantum circuits.

The parameter-shift rule can be used as an alternative to the commutator form rule in

the DSOP part of Figure 3. Furthermore, we can construct code transformation rules for AD
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Ty (skip) = skip
Ty(q = 0)) = q = [0)
To(q=Ulql) =q="Ulq]

To(g:=U(@)[g) =q=U0)[g (0" #6)

Ty(P1(0); P2(0)) = To(P1(0)); Tg(P2(0))

Ty(if (Om - M[G] = m — Pp(0)) fi) = if (Om - M[§] = m — Ty(Pp(0))) fi

Ty(while M[g] = 1 do P(0) od) = while M[q] = 1 do Ty(P(6)) od
(%) Ty(q = U(0)[q]) = if (Mg,,q,[91.92] =0 — gc = Clqcl; gc, 2 = GPl4c. q2]
O0=1-q1 =X[q1];A = H[A];

A q=C_U(O)[Aq];A = H[A]
—iea[

O=2— skip) fi;g:=e ql.

Fig. 10. Code transformation rules for Ty, where Mg, 4, = {Mo = [00)€00], M1 = [01){01], Mz = [10){10] +
[11)¢11]}, C = Z;’;Olj + 1)(j| is the right-translation operator, GP = Z;‘;ﬂj)(ﬂ ® Ry(2 arcsin(\/b_j)) and

by = 1)/ (1= I, 1))

based on the parameter-shift rule, as we did based on the commutator form rule in the main
body.

AD by Code Transformations. We only considered the parameterized forms used by Reference
[77]. That is, our parameterized unitary U (@) is chosen from Pauli rotations

{RU(G) = e 87 Roe(0) = ¢85 o = XY, Z:0 e} . (B.1)
We construct a code transformation operation Ty in Figure 10, where
C_U(0) =10)a0]l ® U(0) + [1)a(1]| ® U(rr)

(see Reference [77] for more detail of the definition of C_U), with U(0) being in the form of Pauli
rotations and A an ancilla quantum variable. Then, we have the following theorem:

THEOREM B.1. Given a quantum program P(0) that is parameterized by Pauli rotations in
Equation (B.1), an initial state p, an observable O on Hpg) of a finite dimension. Let

%(P((?)) =q; = 0);q2 = 10);qc = [0); A :=10);qc = Clqcl; qc, g2 = GP[qc, q21; To (P(0)).
Then,
0 O |P(O = 4 O O 9 P(0
%(tr( [P( )]](p)))—tr( A®0; ® H%( ( ))H (p)),

where Z, = |0)a{0| — [1)a{1]|, and

1
O, = — NGl ® 11)(1]
JZ::‘ 1G)
is an observable on Hy, ® H, .

Proor. The proof is similar to that of Theorem 5.4. The only difference is that in this proof, for
every computation path 7 and the subset A, we mentioned in the proof of Theorem 5.4, let &,
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denote the superoperator of 5 for any path #; then, we need the following result:

08, (p) = r (ZA ©0.80 ) 6,7<p>),

neEAy

which is guaranteed by the soundness theorem in Reference [77] (Theorem 6.2 therein). O

Given that all parameterized quantum programs with bounded loops considered in Reference
[77] are defined in the setting of Pauli rotations, the above theorem (together with code transfor-
mation Tp) strictly improves the corresponding result of Reference [77] with unbound loops.

C NUMBER OF SAMPLES IN CASE STUDIES

In this section, we elaborate on how to determine the number of samples for estimating the expec-
tation function of differential programs in case studies. Our analysis mainly relies on the bound of
(0% ®0?%) and (O} ® 0*) in Appendix A. Although the variance bound we proved in Theorem A.3
matches the one of Zhu et al. [77] when there is no unbounded loop, it is still not scalable in prac-
tical applications. In the following analysis of case studies, the actual value of (O; ® 0?) is much
less than the bound we prove.

C.1 Parameterized Amplitude Amplification
It is a bit troublesome to directly estimate the variance bound of P;(0). We need an auxiliary
program:
Q(0) = q = 10);r :=|0);q = Alq];
while M[r] = 1 do

q = Zlql:q = A'[q):q = Z[q):q = Alg);
q,r = e_i95\1><1|®Y [q’ r]
od

This Q(0) does not contain the quantum variable ¢ in the program P; (), but its behavior is similar
to P1(0). Its differential program %(Q(@)) is also similar to %(Pl(e)). Consider the observable
0, = I for program Q(#), we can conclude that the expectation <O¢21 ® Of) of %(Pl(e)) is less than
the expectation (0% ® 0?) of %(Q(G)):

(1) Observable O; for P;(0) yields the result that is equal to or less than 1 and observable O;
for Q(0) leads to the result 1, which indicates that the output of Q(#) is always greater then
P1(6).

(2) Since the differential program keeps the same structure as the original program, the above
result also holds for program %(Q(Q)) with observable O{Zj ® O? and program %(Pl(e))
with observable 0121 ® O? if they have executed the same branches.

Therefore, the expectation (O‘Zi ® Of) of 6—‘39(P1(9)) is less than the expectation (Og ® ONf) of

%7(0(0)).

aeThe Theorem A.3 with the fact that Q(6) meets the conditions of Lemma A.6 can give us an upper
bound of(O(zi ®(5f). When p = 1/100 and 6 = 4 arccos((1—-2+/p(1 — p))/(1+2+/p(1 — p))) = 3.3568,
we numerically calculate the € for Q(0) in Lemma A.6 as 0.6681. With M = 1,M; = 1,M; = 1in
Theorem A.3, we obtain 799.72 as an upper bound of(OZ ® ONf) However, the bound for (O:; ® (3‘1‘)
in Theorem A.5 can also be numerically calculated as 1.013 x 10”. By Chebyshev’s Inequality, we
use 1.013 x 107/30%/0.1 ~ 1 x 10° samples to sample (O3 ® OF) ~ 14.26 in an error of 30 with

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 19. Pub. date: November 2023.



Differentiable Quantum Programming with Unbounded Loops 19:31

failure probability less than 10%. Thus, we can use 30 + 14.26 = 44.26 as the actual value of
(0% ® O}). This 44.26 is much less than 799.72. By Chebyshev’s Inequality, to estimate (Og ® Oy)
in precision § = 0.1 with failure probability less than ¢ = 10%, the number of samples we need is
less than Var(O4 ® O1)/(5%c) < 4.426 X 10*. In this experiment, we use 5//p X 10* (= 5 x 10* when
p = 1/100) samples for each p.

C.2 Quantum Walk with Parameterized Shift Operator

To estimate the number of samples for P,(6;, 62), we need another similar program as follows:
0(6,,0;) =t := |0); while M[qy,q,] = 1do
cx = [0);¢y = 10);9x = [0);qy = [0);
ex = Hlexliey = Heyl:gx. gy = Hlgr. 4y );
Cx» Cy» Gxs Gy = Clexs Cys Gxs Gy i Cxs Cys Gxs @y = S(01, 02)[cxs ys G Gyl

CxsCy>qdx-qy = C[Cx, Cys Qx> qy];cx’ CysQqx>qy = Sm[CX7 Cy,>Qx, qy]§
if (M'[t] =0 — A[t]o =1 — skip) fi od.

The second shift operator in Q(0;, 6;) is not parameterized. But its behavior is the same as P(6, 0;).
Thus, we only need to estimate the number of samples for Q(6;, 0,). When (604, 6,) = (r, ), we
can numerically calculate the e for Q(6;, 6;) in Lemma A.6 is less than 0.76. With M = 1, M; =
1,M; = 1 in Theorem A.3, we obtain 2,230.86 as an upper bound of variance. The bound for
(0% ® 0*) in Theorem A.5 is 8.14 x 10”. Then, we use 8.14 X 107/20?/0.1 ~ 2 x 10° samples to
sample <O(Zi ® O%) ~ 104.23 in an error of 20 with failure probability less than 10%. Thus, we can
use 104.23 + 20 = 124.23 as the actual value of (OZ ® OZ%). By Chebyshev’s Inequality, to estimate
(04 ® O,) in precision 6 = 0.1 with failure probability less than ¢ = 10%, the number of samples
we need is less than 1.24 x 10°.

However, this number of samples is large for us, as the simulation of P,(0;, 6,) takes a lot of time
in Q#. In this experiment, we choose 2 x 10* as the number of samples. Our experiment shows that
this number of samples is already good for training. This phenomenon has been studied in the
optimization of PQCs (VQCs): Sweke et al. [63] found that even using single measurement out-
comes for estimation of expectation values is sufficient in optimization algorithms, which results
in a form of stochastic gradient descent optimization [57].

C.3 Repeat-until-success Unitary Implementation

It is easy to see that P3(0y, 05, 03) satisfies the conditions of Lemma A.6 with € = 0.5. With M =
1,M; = 1, M, = 1 for each parameter, the variance bound in Theorem A.3 is 243.19. While the
estimated value of (0% ® 0%) is 15.298.

The partial derivative of [(0;, 6, 65) with respect to 6, is

al 1 E;
— = - M(E -1
90, 2 ]Z:;( i~ 1) 90,
Suppose E; and JE;/d0, are estimated in precision §; and &, respectively. Then, 61/90; is in

precision

4

4
1 1
51+5152): 5 E |Ej—1| Oy + E E
Jj=1

Jj=1

OE;

. Ej 5y + 26,6
0, 80, ||t e

1 0
EZ('Ej_1|52+ F)

Jj=1

= A51 + B52 + 25152.
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To limit it in 0.1, we can choose §; ~ 0.01/B, 5, ~ 0.09/A. Then, assume that during most of the
training process, A < % %X 4x0.3 = 0.6, we have §, < 0.15. By Chebyshev’s Inequality, to estimate
OE;/00; in precision § = 0.15 with failure probability less than ¢ = 1%, the number of samples we
need is less than 4.72 x 10*. With this number of samples, the probability of all 0E;/00,,j =1,2,3,4
are estimated in 0.15 is greater than 0.99* = 92.2%.

D DETAILED PROOFS
D.1 Proof of Lemma 5.3

Before giving proof details of Lemma 5.3, we need some lemmas and definitions. For those who
want a more detailed understanding of this subsection, you can refer to quantum graph theory
and quantum Markov chains [30, 73, 76].

With the same notations of Lemma 5.3, we first list other needed notations:

—G=8606&.

—o0 =lim, e % Yoo G" (Iy,), where Iy, is the identify operator on Hp. The existence of &
is easily obtained; moreover, lim,_,« % Yp—o G" is also a superoperator [69].

— Y = {Iy) € Hp | (Yloly) = 0}, X = supp(c) = Y.

— Px denotes the projector onto a space X, Iy, denotes the identify operator on Hp.

— The notation |¢/) € H for any Hilbert space H assumes |||)|| = (¢|¢) = 1 if there is no
special remark.

LEMMA D.1 (MODIFIED FROM REFERENCE [76, THEOREM 1]).

—VYY)#0e€ XVne N.tr(PxG" (YY) = Wly) = 1.
—Vn € N.(G*)"(Px) 2 Px.

Proor. Both of these propositions are trivial if X is Zero space. Thus, in the following, we
assume X is not Zero space, which means o # 0:

— According to Reference [52, P. 105], for any |¢/) € X = supp(o), there exist A > 0 and
u € D(X) such that o = Al )| + p, then

tr(o) = tr(Pxo) = tr(PxG(0)) = - - - = tr(PxG" (0))
= Atr(PxG" (1Y) Y1) + tr(PxG" (1))
< Ate([Y) @) + tr(p) = tr(o).
Because 1 > 0, we conclude that
tr(PxG"(IY)W1) = Wly) = 1.
— The above statement tells that for any |¢) € X and any n € N
1 = t(PxG" ()W) = WG PRI
together with Iy, 2 (G*)"(Ix,) 2 (G*)"(Px), which means |[(G*)" (Px)|{)|| < 1, we have
Vi) € X.Vn e N.|y) = (G")" (Px)|¥)).
Now, for any |a) = x|i/) + y|p) € Hp, where |¢) € X, |p) € Y, |x|* + |y|2 =1, we have
(@l((G)"(Px) - Px)la) > Ty(W1(G")" (Px)lg) + xiol(G)" (PIY)
= xy(le) + xyloly) = 0.
Thus, (G*)"(Px) 2 Px foralln € N.
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LEMmMmA D.2.
—Ve € (0,1),AN > 0,VY|¢) € Hp,¥Yn > N,
tr(PyG" (1Y )Y1)) <e.

—Ve € (0,1).3N > 0.(G")N(Py) C ePy.
Proor.

— For any ) € Hp, we first prove that
lim tr(PyG" (Y)1) = 0.

With G*(Px) 3 px in Lemma D.1 and G*(Px + Py) = G"(Iy,) E Iy, = Px + Py by
the definition of G, we have G*(Py) C Py, which means tr(PyG"(|¢){¢/])) > 0 is non-
increasing with n — oo, then there exists a > 0 such that

lim tr(PyG" ()W) = a
Therefore,

1 n
0 = tr(Pyo) tr(Py lim — ngaﬂp))
n—oo pn
k=0

n

lim — 3 tr(PyG* gy — WD) + lim = > tr(Py G (Y)(91)
n—oo n n—oo n =

k=0

\%

n—oo

lim tr(PyG" (19 )¥D)

=a >0,

lim — 3" e(Py 6" (19)91)
k=0

which results a = 0. We define a series of continuous functions f,,,n e Non A= {|y) | |{) €
Hp},
fu(l)) = tr(Py G" (1Y) Y1))-

We have that f, is monotonically decreasing and convergent to 0. Besides, Hp is finite-
dimensional, then A is a compact set (unit sphere). By Dini’s Theorem [58, Theorem 7.13],
fn is uniform convergent to 0, which is

Ye > 0.AN > 0.Y|y) € AVn > N.|f(I¥))] < e.
Therefore, Ye € (0,1), AN > 0,VY|y) € Hp,Vn > N,

tr(PyG"(IY)Y1) <e.
— According to the above, for any € € (0, 1), there exists Ny > 0 such that V|p) € Y/ C Hp and
N = N, + 1, we have
(PyG" (lp)(D) <e.
which is
PlGHN (Py)lg) < e.
Consider any |¢/) € X, in the proof of Lemma D.1, we already know that
1=tuPxG"(1Y)W1) < tr((Px + Py)G" (IY)Y1) < 1.

As the same in the proof of Lemma D.1, we also have

) = (G )N (Px)Y) = (G)N (Px + Py)ly).
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Thus, for any [¢/) € X, (G*)N (Py)|¥) = 0]) (zero vector).
Now, consider any |&) = a|y/) + b|p) € Hp, where |¢) € X, |¢) € Y, |a|* + |b|* = 1, we have

(@|((G")N (Py) — ePy)la) = aay (G )N (Py) Yy + bb{p|(G*)N (Py)lp) — ebb
+ab(y (G (Py)lp) + ablol(G)N (Py)I¥)
= bb(p|(G")N (Py)lp) — ebb
< ebb—€ebb=0.

Then, (G*)N (Py) C ePy. We finally conclude that

Ve € (0,1).3N > 0.(G")N(Py) C ePy.

PROOF OF LEMMA 5.3. From Lemma D.1, we have (G*)(Px) 2 Px, which is
E] o &"(Px) 2 Px
with Iy, 3 E*(Igq,) 3 E*(Px), it results & (I, ) 2 Px. Since
EoI34p) + E1(Ip) = Iyqp = Px + Py,
we have
83 (I(Hp) C Py.
By Lemma D.2, for any € € (0, 1), there exists N > 0 such that (G*)N (Py) E ePy. Therefore, for
any n € N, any p € D(Hp), we have
tr(&o 0 (&0 81)"(p)) = tr((G")" (&g (Ix))P)

tr((G")" (Py)p)
tr((g") VIO Py ) )
<elwl tr(Pyp)

IA

< GL%Jtr(p).

O
D.2 Proof of Lemma 5.1
ProoOF.
i(g 0&x0&E1(p)) = i (8 (e—ieHS ( )eiQH))
qp €2 © ©H.0 °©1 p do \©2 1(p
=&, (_iHe—iBHsl(p)eiaH + e—i@Hgl(p)eiQH(iH))
— 82 (e—iGH(_ngl(p))eiGH + e—i@H(Sl(p)(iH))eiGH)
=&, 0 8p,0(-iHE(p) + iE1(p)H)
=&y 08p,0(-i[H, E1(p)])-
O
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D.3 Proof of Commutator-form Rule

The following lemma modified from qPCA (quantum principal component analysis) [44]
helps incorporate commutators into the semantics of parameterized quantum programs:

LEmMMA D.3 (MODIFIED FROM REFERENCE [44]). Let H;, H,, H; be Hilbert spaces with dim(H,) =
dim(Hs), S a SWAP operator on Hy ® Hs, p € D(H; @ Hy), o € D(Hs), and parameter a € R.
Then,

—iaS

trs(e pPo oel%S) = cos(a)?p + sin(a)? try(p) ® o — i cos(a) sin(a)[[o ]2, p], (D.1)

where [o], denotes the operatorI; ® o on Hy ® H; with I; being the identity operator on Hy, and tr;
denotes the partial trace on H;.

Proor.
tr3(efioc5p ® O_eisz)
=trs((cos(a)I — isin(a)S)p ® o(cos(a)I + isin(a)S))

=trg (cos(a)zp ® o + sin(a)’Sp ® 6S + i cos(a) sin(ar)p ® oS — i cos(a) sin(a)Sp ® 0)

cos(a)?p + sin(a)? try(p) ® o + i cos(a) sin(a) p[c]; — i cos(a) sin(a)[o]2p

(
cos(a)?p + sin(a)? try(p) ® o — i cos(a) sin(a)[[c]2, p].

With Lemma D.3, the ¢g(6; @) in Equation (5.2) can be rewritten as
g(0; @) =cos(ar)? tr (082 (e_ig"(cjl(p)eie")) + cos(a)® tr (082 (e—l""’((7 ® trl((gl(p)))eiea))
+ cos(a) sin(a) tr (082 (e‘ie"(—i[a ® 1, 81(p)])ei9")) ,

where tr; (& (p)) is partial trace of &;(p) over the space of e 7 acts. Thus,
) . d
9(0;@) - g(0; ~a) = 2 cos(a) sin(@) tr (08, (7% (~ilo ® 1, E1(p)])e'7 ) ) = sin(2a) 7 £(6).

D.4 Proof of Theorem 5.4

To prove Theorem 5.4, we need the Super-operator-valued Transition Systems [74], which provide
us with a convenient way for modeling the control flow of quantum programs. In there, we use a
modified version.

Definition D.4 (Modified Super-operator-valued Transition Systems). A modified super-
operator-valued transition system (mSVTS) is a 5-tuple S = (H, L, lp, T, po), where:

— H is a Hilbert space called the state space;

— L is a finite set of locations;

— Iy € L is the initial location;

— 7 is a set of transitions. Each transition 7 € 7 is a triple 7 = (I,1’, &), often written as

&
7 =1 — ', where I,]’ € L are pre- and post-locations of 7, respectively, and & is a super-
operator in H. It is required that

D ﬂa*(zﬂ) 157 e Tl} C Iy (D.2)

for each [ € L, where Iy, is the identify operator on H and & is the Schrédinger-Heisenberg
dual of &.
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— po is an initial state at I;.

& & En-
For any path 7 = [; 3 Iy 3.0 I, in the mSVTS graph, we write [ 5 I, and use &, to

denote the composition of the super-operator along the path,ie., &, = E,-1 0 0E; 0 &;. If the
&
transition | — I’ in 7~ has superoperator & simply defined by an operator E, i.e., &(p) = EpE' for

all density operator p in H, then we will write [ Srtr1 S

LemMma D.5. Let A be a set of paths in S = (H,L,ly, T, po). All paths in A have a same initial
location and each path m € A is not a prefix of others in A, then for any p € D(H),

2, r(Ex(p) < tr(p).

TEA

Proor. We first assume that A is finite and prove it by induction through the size of |A|.

& & En-
—|A|] = 1. A has only one element 7. We write 7 = 7 = [; S35 1, then by

Formula (D.2), for any p € D(H),
tr(Ex(p)) = ti(Ens 0+ 0 & 0 E:(p))
=tr(&,_1(Iy) - Ep—pg 0 -+ 0E 0 8E1(p))
Str(Epg 0083 081(p))

< tr(p).
If |[A| = 0, then ), 7 € Atr(E,(p)) =0 < tr(p).
— Suppose when |A| < n,n > 1, we have that for any p € D(H),

2. (€ (p)) < tr(p).

TeA

& & En-
Then, consider |A| = n + 1, we choose a path 7 = [ 3 Iy 3.0 [, € A and let

8.
mi=1; = lis1,1 <j<n-1,thenr = mm,---m,_;1. For convenience, we use 7, to denote
an empty path. Then, for this 7z, we define

B={j:0<j<n-1VYreAdrn's.t.w = mmm,--- mjn'}.

B must contain 0, thus B is not empty. As each path in A is not a prefix of others in A, we
have that n — 1 ¢ B. Let j, = max B, then j, < n — 1. Consider all the transitions in 7~ with
I;, as pre-location:

G, G ., Gw ,
T1=lj0—>ll,T2=ljo—>lz,...,Tn/=lj _>ln"

It is followed that V7’ € A, 7" must have a prefix mym; - - - 7j, 7 with 1 < k < n’, otherwise
' = mym - - 7wy, (if jo > 0, then " # my; if jo = 0, then this 7’ does not exist), it is a prefix
for all paths in A, which is a contradiction. Therefore,

n/
A= U Ce
k=1
with

Cr={n"€eA:An"st.n’ = momy - - - mj, e’ },
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for 1 < k < n’, and each path in Cy is not a prefix of of others in Ci. We claim that |Cy| <
n, otherwise there exists Cy, = A, then mom - - ), 7k, is a prefix for all paths in A, this
contradicts the definition of jy, because in that case j, + 1 € B. Then, define

Dy ={n" :mm ---mjyn’’ € C}, 1<k <n,

we have that for any 1 < k < n’, all paths in Dy have same initial location and each path
7' € Dy is not a prefix of others in Dy and |Dg| = |Cx| < n. By inductive hypothesis, for
any p € D(H),
D t(Er(p) tr(p), 1<k <n. (D.3)
7" €Dy

Finally, for any p € D(H),

n

> (&x(p)) D, r(Exlp)

7' €A k=1 n'€Cy
o
= Z tr (87[07[1---11']-0 T " (P))
k=1 n" €Dy
o
= Z tr (871-" (8;[07{1---71']-0 Tk (P)))
k=1 n" €Dy
w
< >t (Erm ey (0)) (by Inequality (D.3))
=
nrl
= tr (ka (871077,'1"'7[]'0 (P)))
k=1
o
= Ztr (gk (Sm}m---njg (P)))
k=1
<tr (8”0”1 o (p)) (by Formula (D.2))
< tr(p). (as the same proof of |A| = 1)

Thus, when |A] is finite, we prove this proposition. Because of the order-preserving property of
limitation, when |A| = oo, we also have the same result. O
& & En .
Definition D.6 (Computation Path of mSVTS). Apath w = I[p, = my = --- 3 m, inS =
(H,L, 1y, T, po) is a computation path if for any 7 in 7, m,, is not a pre-location of 7. And we
write I1g be the set of computation paths, which is

IIsg = {risapathinS | Iy N 7,1 is not a pre-location of z}.
Moreover, we use Hfsn) to denote the set of length < n (transits < n steps) paths in IIs.

As similar in Reference [74], the control flow graph of a quantum program can be represented
by an mSVTS. For every parameterized quantum while -program P(0), we define an mSVTS
Sp) = (Hp(o), L, lf)n(a), T, p) in the state Hilbert space Hp(g) of P(0) by induction on the program
structure of P(0), where p is an input state of P(6). This transition system has two designated lo-
cations I” , 17 ,, with the former being the initial location and the latter being the exit location. We
only need to consider definitions of L and 7.
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— P(0) = skip. Sp(g) has only two locations lP(e) lflif and a single transition lp(g) — lpg)
—P(0) = q = |0). Let {In)q} be the basis of H, then Sp, has two locations lP(e) lou?) and a

po) € 21 lP(G) where Sq(P) = 2nl0)g(nlplny4(ol.

single transmonl ot >
—PO) = §g=o0. erte o in spectral decomposition, o = 3, An|¥n)g{¥nl,4n = 0 (there,
P(6) (P(6)

ou: and a single transition

we 1nclude eigenvalues of 0), then Sp, has two locations [,

lfn(o) - lp(o) where

Ea0(0) = Y (VEmlymdaWn o Amlm)gWml).

—P(0) = @ == U[q]. Sp(g) has two locations lp(e) lf,ﬁf and a single transition [, P(o) | lauf).

iHo‘] N

—P(0) = G = e"'99[q]. Sp(p) has two locations IP(Q) lféf) and a single transition lp(e !
Lout -

— P(0) = P1(0); P2(0). Suppose Sp, (9), Sp,(g) are the control flow graphs of subprograms P, (9),

P,(0), respectively. Then, Sp(g) in constructed as follows: We identify lPl(e) = lPZ(G) and

concatenate Sp, gy, Sp,(9). We further set lP’(e) = lP(e) lf;(te) = 1515?)-
—P(0) = if (om - M[g] = m — P,(0)) fi. Suppose that Sp,,(6) is the control flow graph of

subprogram P, (6) for every m. Then, Spg) is constructed as follows: We put all Sp,,(g)’s
. P(O) .. ) Mmla p ()
together and add a new location ;" and a transition [, — [ for every m. We

further set lszt(e) = lf,jf) for all m.
— P(0) = while M[g] = 1 do Q(0) od. We construct Sp(gy from the control flow graph Sy )

of subprogram Q(0) as follows: We add two new locations [, 9), lflif) and two transitions
[Mo]; [Mi]g
(PO T PO 1PO) T4 190 We further identify 12©) = 1©)

There, we use the subscript [U]; for unitary U and quantum variables g to indicate that U acts
on the Hilbert space Hj.

TuEOREM D.7. For a parameterized quantum while-program P(0) with an initial state p and its
mSVTS Sp(g), we have

0

[POIP = D, &@=|| D, &b.

HEHSP(G) n=1 mell (n)
P(6)

Proor. We prove it by induction through the program structure.

— P(0) = skip. We have Ilg,, , = {lP(e) ! lP(e)} then

mn out
D1 &xlp) = Ipl = p = [skip] (p)
HEHSP(Q)
— P(0) = q := |0). We have I1s, , = {zfjf‘” =159} then
DL Exlp) = Eqlp) = D 10)g(nlplmig(0l = [q = 0)] (p)

ﬂGHsP(g)

9Alth0ugh this statement is not contained in the syntax, we use it for convenience, as we have said in Remark 4.2.
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n

D Enlp) =Eqolp) = }Q VAl Ym)qWnDp(Vam 1Y) gWal)-

”EHSP(Q)

—P(0) =G = 0. We have Ilg, , = {lp(e) - 1(1)3(0)} then

In the Remark 4.2, the statement g := o aims to set the state p to trg(p) ® o, which should
be [g := o] (p). We can check that for any p

D Nl ) g W) PN i m]) = trg(p) @ o

Thus,
> Exlp)=1a=0l(p)
HEHSP(Q)
—P(0) = g = U[q]. We have s = {lan(e) [—]> liﬁf)}, then
D Exlp) = W1gplU'] = [q = U] (p).
”EHSP(G)

. [ —i@:r],
—P(8) = G := 7197 [g]. We have spe = {lf(e) 51 lp(a)}, then

in out

D) Enlp) = [ gple®1g = [7:= (1] (o).

neHSP(G)

P(0) = P,(0); P,(0). For any ; € ILs;, (g 72 € sy, ), We can write

Py () £h© 0
_ lP1(9) N lP1(9) AN ZP1(9)
43! 1 out
P (6) P,(0) Py(6)
_ lP2<e> (o) G BT o)
2 1 out
then, from our construction
P1(6) Py (6) Py ()
lp(e) Lone S e pe)
T = 1 out
8:"2(9) le(e) 8;2(9) 852(8) lP(G) .
- 1 = 7 b € P(0)

For convenience, we write 7 = 7173, then
{mmy | M1 € HSpl(g)?ﬂ:Z € HSPZ(B)} c HSP(B)'
However, for any 7 € HSp(e)’ write

P(6) P(6)
L pe)

out *

PO
x = PO L e %

From the construction, we have that lp(a) 151(9), lféf) = lf;(te) Then, we can define k

to be the first index such that [, PO is in Sp,(9) and l is in Sp,(). Moreover, for any
P©) _ P1(0) By

location [ # [71(¢) ot

our N Sp,(g), its post-location is still in Spl(g), then we have [,

construction, lPZ(G) = [1(0) _ [P(O)

out and for any location [ in in Sp,(g), its post-location is still

in Sp,e), thus for all j > k + 1, ;" is in Sp,(). Then,

P(6) (9) SP(G)
P(e) L7 o) G2, T, )
k

T = l EHSPI(S)

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 19. Pub. date: November 2023.



19:40 W. Fang et al.

&P®) gP®) &P®)

_ o O o S O e
T2 = b k+1 m Sp,(0)°
therefore,

{”1”2 | T € HSPI(Q),HZ € HSPZ(Q)} 2 HSp(g)'

Because all &, (p) are positive semidefinite, we consider the partial summation, for any

n,m > 1:
DlEE D> D Ean = D Exn| DL Exlp) (D-4)
() (n) (n) (n) (n)
I I Il Il I
T Sp0) T Spy0) TSP 0) T Sp,00) T Sp 0

D, &I Y D Eamld = Y, Ex| Y, Ex|. (D3

(m+n) (m) (n) (m) (n)
elly ell ell ell ell
T Sp0) T Shy0) " Spy0) T Spy0) T 5p0)

By the inductive hypothesis, for any o:

Y, &xlo) =[P(O] (o)

”EHSPl(e)

D, Exlo) = [P(O)] (o).
ﬂEHSPZ(e)

Therefore, in Equation (D.4), we have

D& E D En| DL Enlp)

(n) nEH<") JrGH(")
Sp(o) Spy(6) Spy(0)
C D &L ([PO)] ()
(n)
Spy(0)
C [P2(0)] ([P1(8)] (p))

= [P1(6); P2(0)] (p)
and, in Equation (D.5), let n — co, we have for any m > 1:

D, &I Y, En(PO)] ()

rellg (m)
PO €ll
@ Spy(6)

then, let m — oo, we get

D1 Exp) 2[RO] ([P(O)] (p)) = [P1(0); Po(0)] (p)-

TL’EHSP(G)
Thus, £ rer,, Ex(p) = [P1(0): P2(O)] (p).
—P(9) = if (@m - M[q] = m — P,,(0)) fi. Let z,,, = [ @

Mspe = | Jimmm | 7 €Ts, ),

m

©
[Mn]q Pon(6)
ll.n , then
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therefore,

D&M= D Enualp)

”EHSP(G) m ”EHSPm(G)

=D D, ExlEnu(p)

m HGHSP ®)

=D D ExlMulgpIM}1g)

m ]TEHSP )
—Z[{P (O)] (IMm]gp[M],15)
— [if (am - M{q] = m — Po(®)) £ (o)
In there, the second-to-last equality is provided by the inductive hypothesis.

[Mo] [M1
— P(6) = while M[g] = 1do Q(8) od. Let iy = [7@ "5 [PO) 4 _ @ lQ“’) As

out > ’*1
same before, we can obtain that any path in HSp(e has the form ng or mnymn2 - - - WYL,

1j € So6),J = 1,2,...,n, which is

HSP(Q) ={7[0} U {7T1’717T1’72 cc e | (n € N+) A (VI S} < n’]] € HSQ(Q))}?

then, for any m,n,n; > 1,j =1,2,...,m:
gz:;)) C {m}u {7‘[1?]17'[1?72 cemnemo | (ke N k<mn)A(V1<I<kn € Hg";’:;))}
R S ) U e - mero | (k € NE k< m) A (V1 <1< kg € 10 )
Sp(e) = T - Soe)
Thus,
> Exlp)
(mn)
T HSP(G)
mn
C Enlp) + Z Z Smmminy--mmeno (P)
k=1 mo en‘s”Q‘z‘;)
=87ro(p)+zano Z ar]k 087r1 Z 8171 0871'1(/7)
k= (mn) (mn)
1 M <Msop) M <Ms o)
E8”0(10)"’Z:a’fo Z aﬂk 08”1 Z 8’71 087!1(/7)
k=1 Tk €ls ) e, g)
mn
= Ex(p) + Z Em ([QO)] 0 Ex)" (p) (by inductive hypothesis)
C [while M[q ] =1do Q(0) od] (p) (D.6)
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and
Er(p)
Hg}ijg; nj)+m+1)
2En(p) +Z 2
R

= Sm,(P) + 87[(]
k=1 - et

n €Il

Z Epp 0 Em |-

éQ<9>

Z 67f1']17f1f72"'7f1’7k7fn (p)

(n1)
So(e)

(n1)

ell
T5000)

Use the inductive hypothesis and let n; — oo, we have

Y, &)

”eHSP(e)

m
3 Ex(p) + Z Ex,

k=1 (ng)
ell
TS0

as the same, let ny, — oo, ...,

”EHSP(B)

then let m — oo,

> &x(p) 2 [while M[g] = 1do Q(6) od] (p).

HGHSP(G)

Z Epp 0 Em| - Z Ep o

(n2)

ell
725580(0)

Ny — 0 in order, we get

D &) 2ER (D) + ). Exy (10O)] 0 Ex)" (p),
k=1

Back to the Formula (D.6), let m — oo, we have

D" &x(p) C [while M[g] = 1do Q(6) od] (p).

HEHSP(G)

Therefore,

22 E,(p) = [while M[q] = 1 do Q(0

neHSP(e)

S 6 obnin|

) od] (p).

W. Fang et al.

En ([QO)] © Ex, () |-+

Figure 11 shows the mSVTS for g = ¢799[§] and the mSVTS for T(qG := 197 [g]). With this,

we can construct an mSVTS for -2 55 (P(0)) by only modifying the mSVTS of P(6).

LEmMMAD.8. Let Sp(g) be the control-flow graph of a parameterized quantum while -program P(0).
We can modify Spg) to be the control-flow graph of Q(6) = %(P(G)) = Dinit; Ty (P(6)) as follows:

(1) For Dinit: We add 4 locations llQ lQ lQ lQ lQ and five transztlonle
12,10 e jo jo 19ee o)

3273 474

_) llgJ llQ ‘I2 lQ lQ qo
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I5 lg
o—S45/ o—>e
[X]ql)’ ! qu% b
Iy T/ ’-\
lo I Ulwl]‘“’qz ; (ASlgy.q.q' ;
-i0o—3 0 2 i . 1
po/). ¢ ° e—I[Mz1qi,qy—>e I o—[a*’g‘f]q—)o
PO ® 012,c I3
[Mylqy.qs [GPlgc,qy
N b/
o—[Clgc—>¢
(a) mSVTS for q = e’iea[q] (b) mSVTS for Ty (g = e’ieo[q])
Fig. 11. Example of mSVTS for parameterized quantum while-program.
- o ey
(2) For Ty(P(0)): As shown in Figure 11, for every transitiona — b with a parameter symbol
e—i90‘
0 in Sp(g), we add 8 locations: 1, ;,2 < j < 9 and replace the transitiona — b by 11
. [Milgy,q, (Xlq 8q'.o 8‘72’% [AS)gy.q.q/
transitions: a - a,b,4> la,b,4 - la,b,s;la,b,s - la,b,é:la,b,ﬁ - la,b,7:la,b,7 i
[M:]qy.q, I [Molgy,q, [Clge [GPlgc.q,
la,b,3: a - a,b,2» la,b,Z - la,b,S: a - a,b,8> la,b,S - la,b,9: la,b,‘) - a,b,3>
[e*l'eJ g

la, b,3 — b

Then, we get an mSVTS Sg(g), we have that Sg(g) represents the control-flow graph of Q(6).

Proor. By definition, the control-flow graph of Q(6) = Dinit; Ty (P(0)) can be constructed from
Spinit and Sz, (p(g))- In (1), it is obvious that (1) constructs the control-flow graph of the program
Dinit. We next prove that in (2), it produces a control-flow graph for Ty(P(0)). We prove this by
induction through the program structure of P(0).

— P() = skip, or q := |0), or § := U[q], or G := e"*¥?[§] (the symbol 8’ # 6). By definition
of Ty, Tp(P(0)) = P(0) and we also see that P(8) does not contain statement using 6, then
Sp(p) has no transition that contains 6. Thus, in (2), we do not change the Sp(g). We have
that it is still Sp(g).

—P(0) = G = ¢799[§]. In (2), our construction comes from the Figure 11; we can check that
the outcome represents the control-flow graph of Ty(q = e 97 [g]).

— P(0) = P1(0); P,(0). Using

To(P1(0); P2(0)) = To(P1(0)); To(P2(0))

and the inductive hypothesis on P;(6) and P,(0), the replacements in (2) are carried inter-
nally in P;(0) and P,(6), then concatenate them. This procedure is what we do in the defini-
tion of the control-flow graph with mSVTS. Thus, the outcome represents the control-flow
graph of Ty (P(0)).

—P(0) = if (om - M[q] = m — P, (0)) fi. We have Ty(if (om - M[q] = m — P,(0)) fi) =
if (@m - M[q] = m — Tp(Pn(0))) fi and the inductive hypothesis on P,,(0). Then, the rest
is as same as above.

— P(0) = while M[q] = 1 do P’(0) od. We have that
Tp(while M[G] = 1 do P’(0) od) = while M[G] = 1do Typ(P’(0)) and the inductive hypoth-
esis on P’(0). Then, the rest is as same as above.
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Therefore, we get Spinit and S, (p(g)). Since Spinit has the exit location ll.};(g) and St,(p(g)) has the

same location lfn(e) as the initial location, we have that Sp(g) represents the control-flow graph of
1é)
59 (P(0)). i

& & Eqe (Clge [GPl4e.
As the same settings in Lemma D.8, let pinit = ll.Qn = llQ = lg = l3Q = lf A lf;(e)

[efiecr N

and for every transitiona — * b with parameter symbol 6 in Sp(g), we write

[Molgy.q9 [Clge [GPlgc.qz [eiigg]q
Na,b,0 = a - la,b,S - la,b,9 - la,b,3 - b
[A’Il]quqz [Xv]q1 Sq/,c Squ% [AS]%,;,,?/ [e—iHO']q
Na,b,1 = a - la,b,4 - la,b,S - la,b,é 4 la,b,7 4 a,b,3 - b
[M:]gy,q, [e7797]q

I
Na,b,2 = a - la,b,Z - la,b,3 - b.
. P &1 Er Es & . . .
For each 7 EHSP((,) Wlthﬂ'Zlin(e) Sm > my— - —myand1<i; <iy<---<ix <nsuch

that &;, = [e_ieg"i]q—i for j = 1,2,...,k (which is that the path 7 has k times occurrences of the

J

8.
parameter symbol 0), we write 7; = m;_4 > mjforl1<j<n(m= lf;(e)) and then define

Ax

= {Udinitﬂl T 1M i1 i1 Hig Wi +1°°* TTn | Hi; € {Umij_l,m,-j,Oa Um,-j_l,m,-j,l» Um,-j_l,mij,Z}}-

(D.7)
In there, the set A is obtained by replacing each ;;, which contains parameter symbol 6, with one
of Ny romiy 00 Mg yomi 5 Mg y,my .2 and adding n4ini; to the front of 7. We have the following
lemma:

LEMMA D.9. As the same settings in Lemma D.8, and A,, & € HSp(e) defined above, we have

Msoe = | ) Ar (D.3)
HEHSP(B)
ProoF. By constructions of Sp(gy and A, Formula (D.8) is easy to see. O

LEMMA D.10. As the same settings in Lemma D.8, for any observable O on Hpg), the same Oy in
& & & En
Theorem 5.4 and m € HSp(e) with m = lfn(e) 3 my =3 my 3.3 myandl <ip <ip<---<ip <

n such that Sij = [eiieg"f]q—l.j forj=1,2,....k, we have
k
(0480 Y &,(p)| = Y (t(08 myrooma (-ill03 i Eriomy, (D)) (D9)

NEAL j=1

where [Uij]qij denotes the operator o;; that acts on the Hilbert space 7—(qij.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 19. Pub. date: November 2023.



Differentiable Quantum Programming with Unbounded Loops 19:45

ProoF. We only need to consider the state in Hy, ® Hy, ® Hy, ® Hpg).

Z Ey(p)

neAy
= (S'Idinitﬂl“'”il—ll—lil Tip+1" i 1 iy Tig +1°""TTn (P))
j=12,...k
uije("mij—bmij~0’”mij—lvmijvl‘r’mij—lvmijvz)
= E (8”i1+1"'”ik—1#ik Tip+1"""TTn (aﬂdinitﬂl“‘ﬂil—lﬂil (P)))

Jj=1.2,....k
ﬂijE(’Imij_l,mij,()-'Iml-j_l,mij,lx'lmif_l,mi’.,ﬂ

2

= Z (8”i1+1"'7rik—1ﬂik7fik+l"'7Tn(Z Sﬂmil_l,mil,hl (Sndinilnl'””il—l (P))))

=2k hy=0
Hij {r/m,j_l,m,j,o Imi;_gsmi;1 ’Im,j_l,m,j,z)

Let [/;) = Ry(2 arcsm(\/_ )10), b; = p(j)/(1 - Z y(k)) then with Lemma D.3 and definition of

aﬂdinitﬂl'- Tip-1> we have
2
Z Snmil—lsmilwhl (Sﬂdiniﬂn STl -1 (P))
hi=0
2
- Z s oy (106U @ 101001 @ [Y)2 (1] @ Eyomy -, ()
=0

=<Z u(l)) 12)e(2] @ [0)140] @ [92)a(2] @ Ex,-r, (p)

+&Il> Al e |1 (1]

2

2
®(|0)2(0|®(cos(%) Enyom, (P) +sm( Ex,, (trg, (Emrmy 1 (p)) ® 1)

1 (
+ —sin
2

)
2 )&, (ill01 g Empomy ()
2

1211 ® (cos(~Z) €ryn, (0) + sm( 2 104, (Eryom () ©104)

+ % sin(—%)Sﬂi1 (=illow])gs, » Emvomi (P)])))

We find that in the second term g; is in |1)(1], then in the later execution, it will never go into M;
or M,, thus,

2 2
Z Z Sﬂmiz,l,miz,hz (8”i1+1“‘71'i2—1 (S’Imil,l,m,-l,hl (Sﬂdinitnl"'”il—l (P))))

2=0 h;=0

hy
(Z u(l)) 13)6(31 © [0)140] © [93)2(3] & Ex,-.my, (p)

1=3
)|2> 2le 1)1

® (|0>2<0| ® (cos(%)zam.,.% () + sm(%)zsmz (trg, Enpoomy (P)) ® 03,)
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+ 2 sin(2)&r, (-illo)a, Enyomy (01D

T\2 ) T\2
D201 ® (c05(~2 ) Ervrom, (0) +5in(~2 ) &, (115, Errvom (0)) ® 1)

1
+ > sin(=2 )&, (<illow gy Enveom (p)])))
e il

2

2
® (|0>2(0| ® (cos(%) Emyvomyy (p) + sm( 8,“1 trg, (& T (p) ®ai,)

1,(
+ —sin
2

)
%)Sﬂil(_i[[ail]‘?n’ w1 (P)] ))
2

[1)2(1]| ® (cos(—%)z&n...m1 (p) + sm( Z) i (trqi1 (8,,14“”1.171 (p)) ® o))

1 . T .
(-3 )6, (lloulg, By 01D
step-by-step,

D &l =( D /l(l))lk+1>c<k+ 11© 10)1(0] @ [Yice1)2(ir1| © Ex(p)

neA, I=k+1

+Z(—|J>c<]| ® [1):(1]

1
(|0>2<0| ® (585(p) + 58, mvroom (110, (Emyvomy 1 (9) © )

—_

4~y o il101 g, Ervemy - (0))

1
1] @ (56,,(,)) + e g, By 1 (0) 8 )

1
- Esﬂij”ij+1"'ﬂn (_i[[Uij]qij, 877:1~~~mj71 (P)]))))

With O, = Z] 1 ”O IJ)(]I ® |1)(1] ® Z, an observable on H,, ® H,y, ® H,,, we have

NEAL j=1

k
tr (od ®0 Z a,,(p)) = Z(tr(OSmjniﬁl...”n(—i[[oij]qij, Enyomiy (p)]))).

We already know that
0
ﬂ%w(e»ﬂ )= > &)= D D &
HGHSQ(O) HEHSP(Q) neA,
then,
0
u(oszo | Geon] )= 3w (od ©0 Y a,,(p>). 0.10)
mellsp nEAy
We should carefully consider the convergence of the above summation.
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LEMMA D.11. As the same settings in Theorem 5.4 and Lemma D.8, we fix @ = 0", forx e R,n € N,

let
NOEIEDY %m®ozamﬂ,

(n) neEA,

ell
T Sp(o*[0-x])

then, lim,_, hy,(x) exists, which is exactly

tr (Od ®0 ﬂ%(P(O*[G = XJ))H (P))

and hy,(x) is uniform convergent on any close interval.

& &
ProoF. Let M be the largest eigenvalue of |O|. For any 7 € ILg,, with = = lp(e) Sm S
& En
my = -+ =5 my, if symbol 0 does not appear in 7, then
tr|04®0 Z Ey(p)| =
nEA,
Otherwise, there exist 1 < i; < iy < --+ < i; < n such that Sij = [eiiea"f]q—ij forj=1,2,...,k,

then by Lemma D.10, we have

k
%w®028n) D (tr(08 ooy (=il Sy Ememy - (9D) )

NEA, Jj=1
then,
k
tr{Og ® O Z 817(/)) < Z|tr(08ﬂij7r,-j+1-~7rn(_i[[o'ij]qij,87r1~~~7r,-j_1(p)])))
€A Jj=1

k

< ZM|tr(8mj”ij+1"'ﬂn(_i[[aij]qij’ammmfl (P)])))
k
Z 2Mtr(8;rl Tijer ot (Ey . TTij— l(p)))

=1

2Mtr(E,(p)) = 2kM tr(E,(p)).

M=

~.
Il
—_

Thus, for any 7 € HSP(,;) with length n,

tr(Od ®0 ) 8,7(/)))

NEAr

< 2nM tr(Ex (p)). (D.11)

Let M be the size of transition set of Sp(g), M, be the number of occurrences of while state-
ments in P(0), which means that P(0) contains following subprograms:

P;(0) = while MY [§;] = 1do Q;(0) od, j=1,...,M,.
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These P;(0) can be nested within each other. In there, we assume M; > 1, otherwise P(6) does not
contain while statement, then the conclusion is trivial. By Lemma 5.3, we fix 6 and choose € = %,
then for these M, subprograms, there exist Ny, ..., Ny, such that

Vn>0,Yp e 7‘(p(9),1 <j<M,,

i : L+
(@& o (10,1 08V (o) < (5) 7 wlp).

Let N = maxj-y, . a, Nj, then

Vn>0,Yp € Wp(g),l <j<M,,

. . 1\ L2) (D.12)
(€ o (1O &M (p)) < (5) " tr(p).
Forany n > 2, we consider € Hfé:(:wz M;—1) \ng::)ﬁh—l)’ the length of 7 is at least n™2 M;, then

7 has at least n*2M;/M; = n™2 locations in Sp(g) repeatedly appear, which is caused by while
statements. Then, 7 has at least n2 times runs into the loop bodies of these P;(),j = 1,. .., M.

Let a({P1(0), . .., P, (0)}) denote the possible maximum times of 7 runs into the loop bodies
of these P;j(),j = 1,...,M;, on the condition that 7 only continuously runs into the loop
body of each P;(0) with no more than n — 1 times. We can assume that P;(6) is the first while
statement to appear in P(6) and it contains 0 < t < M, — 1 while statement P;,(0), ..., P;,(0),
2Sj1 < - Sjt SMz,thel’l

a({P1(0),...,Pr,(0)})

(n-1)+ (n=1)a({P;,(0),...,P;,(0)})

~——

for P1(6)  for those while statements in the loop body of P;(6)
+a({P2(0),. .., Par,(0)} \ {P},(0),...,P;,(0)})

for those while statements not in the loop body of P;(0)

(n - 1) + na({Pg(B), - ,P]HZ(Q)})

IA

IA

My—1
< Z (n—1)n/ =n™ -1 < nt,
Jj=0

A

This contradicts that 7 has at least n™? times runs into the loop body of these P;(6),j = 1,...,M,.
My af My pf
Therefore, for any 7 € Hfg(:(;) M- \I'IE;P(;M1 1), there exists 1 < j, < M, such that 7 continu-

ously runs into the loop body of P;, () with more than n — 1 times, which is 7 can be written as

=T pa e e o2
o) Uo)
. (9) € (0 -0y & (0
with = 005 120 o = 1700 00 e Mgy g1 <<tz n,

We define the following set for each 1 < j < Mp,n > 2and 0 < m < (n+ 1)Mz2M; — 1

.m) _ 1Mz My -1 Mo i1
Aﬁ-n ™ = {ﬂ € Hfg(::;)) 1) \Hg;(e) g = TN He - N1EnMo T2,

P;(6)

)
P;i(0) &1 10;(0)
rjz linj - laut Mk € HSQ]-(Q)’I <k<n,

[W)]
_ ] 1, P;(0) Eo
m =1 in

,’70=l~

s/ contains m times 73, 7, may contain m},
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then,
M,
((n+1)Mz Ay —1) (n“21\11 -1) _ U nM2 M -1 4(n,m)
HSP(,;) \II U= AJ. .
Jj=1

For each A;"’m), we define

B;n’m) = {ﬂ1f71 DTNz c N1 T2 € Aﬁ»n’m),

1—lP(9) ZQJ<9> _lP<e> 7 )

ot s Hk € HSQj(H)’l <k<n,

1 contains m times 1, 7, may contain 771},

CJ(."’m) = {,111,/12, cees fn TN e - MfalloTT2 € Aﬁ'n’m)’

in out

0
P;i(0 0 P;(9) €& P60
1 l ( ) ZQJ( )’ — l”i( ) _0> l J( ) Hk EHSQj(H),l < k < n,

micontains m times 71, 7, may contain r]l},

D;n’m) = {ﬂz ST A iHaTo 2 € Ayl’m),
o © ZQJw) _ 2 & o) .
in > oy Sk € HSQj(B)’l <k<n,

1 contains m times 1, 7, may contain 771}.

Bgn’m), an’m), Dl(."’m) are all finite, and we have,

Aj"’m) cE™™ = {ﬂ1’71,l11’71/12 Moy mmy € By € D™y e €1 <k < n},
(n,m)
Cj C HSQj(B)'

By Theorem D.7, for any p € D(Hpg)),1 < j < My,

D, &PE D 8. =[Q0] (). (D.13)

pecy™™ Hellso, 0

n,m n,m .
As regards to Bj(. ), any 7,1’ € BJ(. ),7r # ', we have 7 = mn, n" = n{n and my, ] contains

m times of 1y, then 7 and 7’ are not prefixes to each other (otherwise 7 = x’). Then, Bﬁn’m)
satisfies the condition of Lemma D.5, so we have that for any p € D(Hp(g)),

Z tr(Ex(p)) < tr(p), 1<j < M. (D.14)

neB(.""")

(n,m)

,om # ', m, and 7’ have [ P(®) as last location, which has no post-location,

For any =, " € D; out

(n,m)

then sz, 7’ are not preﬁx of each other. D also satisfies the conditions of Lemma D.5, then for
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any p € D(Hp(g)),
D, w(Ex(p) <tr(p). 1)< M.

(n,m)
71'€Dj

With Formula (D.13), for any p € D(Hp()) and any 1 < j < M, we have

D, &P ) &)
ﬂ'EAﬁ.n'm) n'EEi."‘m)
2.

T o €E

2

T He 1 1o T €E ™

8”1’71#1'71#2""71#71’70”2 (P))

o0&

Z 8111 °©

(n,m)
meC;

Y e |eene

pn€Cy™™

Mo

Ir

© &y 0 [Q;(0)] 0 &y, 00 [Q;(0)] o

(n,m) (n,
D; n times HQ]-(O)]] mEB;

m)

2

T EB](-"' ™

0 &y 0 ([0 0&y,)" o [0;(0)] o

thus,

A
—
=

2,

S Em |08 o (10®]08,)" o[Q;0)]

(n,m)
T EDJ.

En o (10,0 08y)" " o [Q;0)]

A
-+
=

8711'71 (P)

[0;(8)] o

Z 8”1’71

T EB;”’ ™)

2

mym B

87!1'71 (p)

IA

(n,m)
T EB}.

W. Fang et al.

(D.15)

(Sﬂz 0&Ep, 08,08y 0---08,, 08y, © Sm(P))

> & |0

T ij(_n, ™

Z 87[1'71 (,0)

87f1'71 (P),

87'[17]1 (P)

(by Formula (D.15))

(by Formula (D.12))

(by Formula (D.14))
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Then,
M, (n+1)M2M—1
)< ) tr(Ex(p))
H((n+1)/”21\11 1) H(n“zzul-n Jj=1 m=0 ,TEAY' »m) (D.16)

Sp(o) Sp(o)
a, (1)L
< MyMy(n +1) (E) tr(p).

With Formula (D.11), we have for any p € D(Hp(g)),

tr[0a®0 ) &(p)

((n+1)M2 Aty -1y, - (nM2 Aty -1) NEAL
I 1T,
TS po Sp(o)
< 2((n+1)MM; - 1) Mtx(E(p))
i H((n+1) B2 My -1) (M2 Ay -1)

Sp(o) Sp(o)

IA

1\ R
2((n+ )M, - 1) MMy My(n + 1) (5) ¥t (p)

1\ 5
<4 ((n+ )™M, — 1) MM, My(n + 1) (5) " te(p).

As the N is dependent on 6, we can obtain that for any 0, there exists Ny > 0 such that for any
pE D(?‘(P(g)) and n > 2,

tr|0g®0 Z Ey(p)
H((n+1) f2 Aty -1) H(n]”l]\[l 1) nEAy
Speo) Sp(o)

n—-1
, L1\ N
< 4((n+ 1M M; - 1) MM My(n + 1) (5) " (),

then, it is easy to see that for any x, there exists N, > 0 such that for any p € D(?‘(p(g)) andn > 2,

H,(x) = Z tr| Oy ® O Z Ey(p)
(n+1)M2 -1y (nM2 Ary-1) neA,
Spo*[0-x]) Sp(o*[0-x])

n-1

< 4((n+ )M M; - 1) MM My(n + 1) (%)N_" tr(p).

With

n-1 1

lim (/4 ((n + 1)MeM; — 1) MM My(n + 1)Me (%) M (l)N"

n—oo

<1,

we have that for any x € R, 3} H,(x) is convergent. Since each term of H,(x) is non-negative,
H,(x),n € N is a monotone sequence of continuous functions, then by Dini’s Theorem [58,
Theorem 7.13], H,(x) is uniform convergent on any close interval.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 19. Pub. date: November 2023.



19:52 W. Fang et al.

Now, for any n > 3 and any x € R, we have

@] = > {0480 Y E(p)
(nM2 pry 1) NEAy
Sp(e*[0-x])
< D |x[oae0 ) &)
(nM2 Ay -1) nEAr
Spo*[0-x])
- Z tr| 0y ® 0 Z Ey(p)
H(2“2/\11—1) nNEA,
Spo*[0-x])
n-1
+ Z tr|0;® 0 Z Ey(p)
k=2 H((kH)AIZAI]—l) H(kAIZMI—l) nEAx
Sp(e*[0-x]) Sp(*[0-x))
n—-1
= Z tr{04®0 Z Ey(p) +ZHk(x).
nerszMz“l-l) €A k=2
P(6*[0x])

Because H,,(x) is uniform convergent on any close interval, then A, (x) is uniform convergent on
any close interval. We can also check that

lim ho(x) = lim > tr[04®0 ) Eylp)

n—oo n—oo
b4 GHfSn) €A
P(0*[0-x])

> (0480 Y Eylp)

TS gx g €Az

=tr (Od ®0 ﬂ%(P(O* [0 — x]))ﬂ (p)) . (by Equation (D.10))

O

ProOF OF THEOREM 5.4. As the same settings in Lemma D.8, for each 7 € Ilp(g), we define
fr(0) =tr(O&E,(p))
9x(0) = > tr(04 ® 08y (p)).

nEA,
. P(6) €1 &, &3 & . . .
W1thLemmaD.10,weassumear:li( )—>m1—>m2—>~~~—>"mnand1§11 <ip<-+<ip<n

n

such that &;; = [e_iegif]q;j forj=1,2,...,k, then

k

92(0) = " (108 .z, (<1113 g Ervomy - (0)D) )

Jj=1
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With Lemma 5.1, we have
_6 (f(0)) = tr(OS,T. o, (i[[0i 6. s Emy oo (p)]))
(99] ij n j CIzj’ 1 ij-1

forj=1,2,...,k (which is considered as the jth occurrence of ), then
0 .
25 f=(0) = Z;tr(oam,....n,,<—z[[a,-,.]q,.,.,8mum,.,l P)))-
=
Thus,
2 (£(0)) = 9-(0) (D.17)
99 7\ = 951 '

Forn > 1, let

0= > £:(0)

(n)
ell
)

g®) = > gx(0)

(n)
ell
4 Sp(e)

we have

lim £,(6) = £(0)

lim 9,(6) = 9(0).

The correctness and existence of the second equation are guaranteed by Lemma D.11. By Equa-
tion (D.17), we can easily check that for any n > 1,

0
%fn(e) = gn(e)

With Lemma D.11, g, (0) is uniform convergent on a close interval [0 — ¢, 0 + €] for any & € R and
any € > 0, which means %(fn (0)) is uniform convergent on [0 — €, 6 + €], then

.0 Ja .
lim 5 £,(6) = 25 (lim £,(0)).
Thus,

0 0 0
=5£(0) = == (lim £,(0)) = lim = £,(6) = lim g,(6) = 9(6).

D.5 Proof of Theorem A.3
The proof is based on Appendix D.4. To obtain a more accurate estimation, we define the set
I‘én) C Ils; 4, for a given parameter symbol 6 and n € N:

I‘e(") = {r € Ilg,, : 0 appears k times on path 7 and 0 < k < n}.
For the set I‘é"), we have a lemma similar to Lemma D.10.
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) 81 83 sm

LeEmMA D.12. Foranym € Fe(n) \Te(o), n > 1, & can be written as & = ll. P(o - —> Ih—- =1,

withl < iy < - < ip <m, 1< k < nsuch that&-}. = [e_i%"f]q;.j forj = 1,...,k. These
&i;,1 < j < k correspond to k times occurrences of 0. Then, for any observable O, we have

k
tr(Oj ® 0? Z 8;7(/))) Z( 0 (tr(ozg (p)) +tr(028m Tijer- ,rn(trql] (Eny- i, L)@ O',j))))

€A
Proor. The proof is similar to the proof of Lemma D.10. ]

We also need another lemma that is similar to Lemma 5.3.

LemMma D.13. Consider a quantum loop P = while M[§] = 1 do Q od with fixed parameters (omit-
ted). Assume that the state space Hp is finite-dimensional and P terminates almost surely. We define
superoperators E; : D(Hp) — D(Hp) by Ei(p) = Ml-leT, i=0,1and & : D(Hp) —» D(Hp) by
E(p) = [Q] (p). Then, for any € € (0, 1), there exists N = N > 0 such thatVn € N,¥p € D(Hp),

tr((E 0 &) (p)) < el ¥ tr(p).

ProOOF. Because P terminates almost surely, we have that the operator Py in Appendix D.1 is
an identify operator Py = I. By Lemma D.2, for any € € (0,1), there exists N > 0 such that
(G")N(Py) C ePy, which is

G el
Therefore, for any n € N, any p € D(Hp), we have

tr((& 0 81)"(p)) = tr((G")"(Dp) < tr(e'NIp) = el ¥ tr(p).

We then follow the previous proof of Lemma D.11.

Proor oF THEOREM A.3. With the Lemma D.12 and a similar proof of Inequality (D.11), we have

that for any 7 € Fg("),

kx
tr (02 ® 02 Z Ey(p) ) Z( (MZ tr(Ex(p)) + M? tr(Sm Tipn ,rn(amj))))

nEAy

ko
_ ;(%”(S ( >)+%tr(s,f,jmjﬂ...,,,,(a,,,.j))), D.18)

where M is the largest eigenvalue of |O|, k, is the k in Lemma D.12 and
Om, = trg, (c‘),ﬁ...,rir1 (p) ® i,

Let M, = LC(P(0)). For convenience, we assume M, > 1 temporarily. According to the defini-
tion of LC (in Definite A.2), P(@) contains M, subprograms of while statements:

P;(0) = while MY [§;] = 1do Q;(9) od, j=1,...,M,.

With Lemma 5.3, for any € € (0, 1), there exists N, > 1 that satisfies the following formula similar
to Formula (D.12):
Yn>0,Yp € Wp(g),l <j<M,,

. . " D.19
(&Y o ([0;(8)] 0 EY)"(p)) < €' ¥ tr(p). (D19
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Let M; = RCy(P(0)) > 1. For any n > 1, we consider 7 € Fé("H)MZMI_I) \ Fé"MZMI_l), the
parameter symbol 6 appears on 7 at least n™z ), times, then 7 has at least n™2M;/M; = nMe
locations of parameter symbol 6 repeatedly appear, which is caused by while statements. Then, 7=
has at least n™2 times running into into the loop bodies of above P;(0),j = 1, ..., M,. By the same
discussion in the proof of Lemma D.11, there exists 1 < j, < M, such that 7 continuously runs
into the loop body of Pj,(0) with more than n — 1 times.

With the help of Formula (D.19) and Lemma D.5, we can also obtain an inequality similar to
Inequality (D.16) in the same way of the proof of Lemma D.11 (note: we can get a tighter bound
by limiting 0 < m < I(k;) for every 1 < j < M,, where k; is the depth of subprogram P(0); nested
with other M — 1 subprograms mentioned before and when k > 2,1(k) = (n—1)?nF72,1(1) = 1),°

M,

tr(Ex(p) < D (I(ky) + 1)e" ¥ tr(p)
j=1

(n+1)M2 pry -1y, (nM2 Ay -1)
71'61"5 \Fg

IA

M,

Z(l(i) + 1)el % tr(p) (D.20)

j=1
(My + (n = )™ = 1))el e tr(p)
< (My + (n— 1) (02 = 1),)el 5 tr(p),

IA

IA

where (x); = max{0, x}. This inequality also holds for M, = 0, because if M, = 0, then

((n+1)Mz Aty —1) (MM —-1) _ (((n+1)°M;-1) (n°M;=1) _ ~(M;-1) (M;—1)
I‘e 1 \re 1 _re 1 \re 1 _FB 1 \Fg 1

is an empty set and P(0) does not contain while statement, then I1s,, = M),
With Inequality (D.18) and Inequality (D.20), we have that for n > 1,
> (020 ) &(p)
”er((nﬂ)ﬂz M;-1) neEAx
- 6. 2M2
Y Z 0 (8 (o) + > Z (Eyyriyer-n ()
elﬂ(<n+1)]‘[21rul 1 J= Er((n+1>1”21\11 ) J=
= Term-A + Term-B.
For Term-A:

Z Z—tr = (p))

Gr((n+1)1”2 My-1) J=

n

& oM
< Z Z )|+ 2] > jzm) ~(p))

Y _ My oy M.
(1 20y) J=1 k 1ﬂ€ré(k+1) 2 My 1)\Fe()(k) 2 My -1

OIn the proof of Lemma D.11, we define the set A;."’m) for0 < m < (n+ 1)™2M; — 1. However, we can prove that for
any m > I(k;) and any 7 € A}l’m, there exists j” such that kjy < kj and 7 € A;?,’m, and m’ < I(kj ) by induction on k;.

Thus, we only need consider those sets A;"’m) with0 < m < l(kj).
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My 2 n (k+1)M2af-1 2

2M 2M
IR DYDY D Gy rEx o)
j=1 neréMl) k=1 Jj=1 ”Eré(k+1)AlZA[l—l)\rf()(k)MZ]\11—1)

M, n (k+1)M2pr-1
2M? 2M? k-t
——tr(p) | + = (M + (k= 1) (K™ = 1))l N ()
JZ wo kZ ]Z uoy ' g
(By Inequality (D.20))
< ZMZ(S(MI) n ((M2 + (k= DKM = 1),)8 ((k+ )My - 1) eLkN—SJ)) tr(p),
k=1
where S(n) = }’:1 ﬁ

For Term-B:

ko
Z Z i%; tr(aﬂij”ij+l...ﬂn(aﬂij))

My ap_qy j=1
”Er;(nﬂ) 2My-1) J

K
= Z Z Z_](V]I; tr(aﬂ'ij”ij+l‘””n (O.”ij))

reri) =1
n ZAPIVE:
2] D 225Gy Emmynan Omy)

k=1 ”eré(k+1)}\’21\[1—1)\Fé(k)l‘[2/\[1—1) Jj=1
= Term-C + Term-D.
For Term-C, we consider all the O, = trg, (Ex, S (p)) ® oi, that have same 8,11..‘,“.],71 (p), let
M
Ej = {711 sy s Anstor =g € 1“9( 1)}

for every 1 < j < M, and

M
mequ = {71' € 1"9( v dpstr=m--- ﬂ'ij_ﬂ]}
then,
k
% 2M?
2 2y H By 0m,)
merg™ J=1 a

= Z Z Z i_A(;P)Z tr(a”"j”l’j“"'”" (G”"j))

Jj=1m T €E; 7r€F,,1...,,ij_1

2 2
Z — tr(J,fij) (apply Lemma D.5 to F, ---m-jfl)

j=1m ---nij,leEj

[

M, 2

- Z Z % tr(tr‘?ij (8”1“%1‘]-_1 (,0)) ® O'ij)

j=1m wn,-j,leEj
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M,

_ Z Z Z—Agtr(Sﬂl.~~nijl(P))

Jj=1 R ! €E;

M; 2M2

= - mtr

= 2M?*S(M,) tr(p).

(p) (apply Lemma D.5 to Ej)

For Term-D, we have already known that any

My af My pf, —
nefé(k“) 2M;—-1) \ré(k) 2M;-1)

must continuously runs into a loop body P (6),1 < k < M, at least n times. For any & above,

Eryriyr--a (T, 15
8,,1.1_ iy Tt (trqij (8,,1...,,,.]__1 (p)) ® 0i;).

Forany 1 < j < ((k +1)M2M; — 1), the location 7; . will only split successive runs of the loop body

at most once, thus, we can get a scale Mo replace el%l in Inequality (D.20) by Lemma 5.3
and Lemma D.13:

tr(Pn,j)

merkrn e -n, pet A - (D.21)
My—1 n=l_g
< (My + (k = 1) (KM —1),)e ¥ i (p),

where prj = Exy iy, (0n,)) if 7 has jth occurrence of 6, or equal to & if 7 has no jth
occurrence of 0. '

Thus,
k
4 2M?
Z Z Ftr(aﬂij”ij+l“'”n (Oﬂij))
”eré(kﬂ)’”zA11-1)\Fé<k)’”z1\11-1) Jj=1 H
& oM?
= Z Z m tr(pyr, ;)
ﬂ_eré(kﬂ)[uZ All—l)\ré(k)MZ My-1) J=1
((k+1)M2 Ay —1) M2
< G) tr(px,j)
”Eré(kﬂ)’”zMrl)\rt(;k)“z My-1) Jj=1 H
Myag _
((ke+1)M2 Aty —1) M2
= F tr(p,,,j)
J=1 7Z€ré(k+1)]\12AIl_l)\Fé(k)AIZAll_l) a
((k+1)Mz2 Aty —1) IM? .
1 — k-1_ .
< Gy e+ (k= DEMT = 1))t 5 r(p) (by Inequality (D.21))
7

=1

= 2M*(My + (k = D)(M7 = 1).)8 ((k + )™M, — 1) el N ().
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Then, Term-D can be bounded as follows:
( n ky 2 MZ

Z Z Z m ”zj”ijﬂ‘“ﬂn (O.”ij)))

k=1 Mo ag, - M:
”Eré(k+1) 2 My 1)\r((9(k) 2 My -1) J=

n

< 2M? Z((M2 + (k= 1) (kM1 —1),)S ((k + 1)Mepg, - 1) eL?v—’!Jfl) tr(p).
k=1
Therefore, Term-B is bounded as follows:

Z Z % tr(s”z Tij1 (Gnij))

1.‘((l‘erl)/\IZ My—

< oM? (S(Ml) + Z((M2 (k= DEM = 1,8 ((k+ )My - 1) eL'Rr—S“)) tr(p).
k=1

Finally, we have the following inequality:

> tr (og ®0 ) 6,,(,;))

ﬂer((’(nﬂ)f”z M;-1) neEA,

< M2(4S(M1) + Zn:((Mz + (k=1 (KM - 1),) (D.22)
k=1

S ((k+1)MeM, — 1) (2¢H5e 4 zeLkN—?J—l)))tr(p)

that holds for any n > 1 and M;, M, > 0.
By the definition of F("), we have

_ (n)
s = Ure .
n=1
When M, > 1, we also have

e M.
_ (n™2M;-1)
sy, = U I .

With Vn > 1, I‘é,") c Fénﬂ) and Inequality (D.22), we have

> tr(o§,®02 > 8,7(,0)) > tr(o§,®02 > a,,(p))

JTEHSP(B) neA, HEU“’ r(n 21\11) neA,

Z tr (Oj ® 0* Z 8,,(,0))
2 ptp)

e, F("A NE€AL

lim Z tr(ojcz)oz Z 8,,(p))

T EI‘é"ME My) €A

IA

IA
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n—oo

= lim M2 4S(M;) + Z((M2 + (k- )M - 1))
k=1
-5 ((k+1)Meat; — 1) (2¢M50 L + ZeLkN—S“)) tr(p)

= M?| 4S(M;) + i((M2 + (k= 1) (kM — 1))
k=1

-5 ((k+1)Mer; — 1) (250 + Zet%i‘l)) :

(by tr(p) < 1)

When M, = 0, we already know ILg,, , = FQ(MI), then the above inequality also holds.
An equation similar to Equation (D.10) is

(04® 0% =tr (oz®o§ ﬂ%ew(e)))ﬂ (p)) = Z tr| 0% ® 0? Z Ey(p) |

mwells P(0) neA,
Thus, we finally obtain the following inequality:
(04 ® 0%)

< M| 4S(My) + Z((M2 (k= DKM = 108 (G + )"0 - 1) (25 + zel%—SJ—l)) .
k=1
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