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Abstract—Joint blind source separation (JBSS) is a powerful
methodology for analyzing multiple related datasets, able to
jointly extract sources that describe statistical dependencies
across the datasets. However, JBSS can be computationally
prohibitive with high-dimensional data, thus there exists a
key need for more efficient JBSS algorithms. JBSS algorithms
typically rely on numerical solutions, which may be expensive
due to their iterative nature. In contrast, analytic solutions
follow consistent procedures that are often less expensive. In
this paper, we introduce an efficient analytic solution for JBSS.
Denoting a set of sources dependent across the datasets as
a “source component vector” (SCV), our solution minimizes
correlation among separate SCVs by minimizing distance of the
SCV cross-covariance’s eigenvector matrix from a block diagonal
matrix. Under the orthogonality constraint, this leads to a system
of linear equations wherein each subproblem has an analytic
solution. We derive identifiability conditions of our solution’s
estimator, and demonstrate estimation performance and time
efficiency in comparison with other JBSS algorithms that exploit
source correlation across datasets. Results demonstrate that our
solution achieves the lowest asymptotic computational complexity
among JBSS algorithms, and is capable of superior estimation
performance compared with algorithms of similar complexity.

Index Terms—Joint Blind Source Separation, Independent
Vector Analysis, Multiset Canonical Correlation Analysis.

I. INTRODUCTION

Blind source separation (BSS) techniques have use over
a wide range of applications [1]–[3], providing useful data-
driven representations of latent structure within a single
dataset. While single dataset applications are common, many
other applications require the analysis of multiple datasets, in
which these multiple datasets may be inherently related due
to their similar or shared information. A classic example of
this is with multi-subject functional magnetic resonance imag-
ing (fMRI) data, where signals within each subject’s dataset
exhibit dependence across the datasets, typically representing
similar functional network activity [4]–[8]. To represent this
information within the analysis, joint blind source separation
(JBSS) techniques generalize the capabilities of BSS by jointly
analyzing the datasets, allowing JBSS to model and exploit
any statistical dependencies existing across the datasets [4]–
[6], [9]–[16]. This leads JBSS to achieve powerful estimators,
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potentially outperforming BSS not only by superior estimation
performance, but also through the key benefit of uncovering
the dependence relations across datasets [4]–[6], [9]. Ap-
plications of JBSS include analysis of fMRI [4]–[8], elec-
troencephalography (EEG) [17], electrocardiography (ECG)
[18], and remote sensing data [14], speech enhancement [19],
molecular property prediction [20], and various others.

One general formulation of JBSS arrives from independent
vector analysis (IVA), a multi-dataset extension of independent
component analysis (ICA) for BSS [9]–[11]. IVA models each
dataset as mixtures of latent sources, wherein each source
is modeled as independent to all other sources within its
own dataset and dependent to a single source within each
of the other datasets. By formulating each set of dependent
sources as a multivariate “source component vector” (SCV),
IVA performs JBSS by maximizing independence among the
separate SCVs, similar to how ICA maximizes independence
among the univariate sources within a single dataset.

Among IVA algorithms, perhaps the most computationally
practical algorithm models each SCV as generated from a
multivariate Gaussian distribution (IVA-G) [10]. By modeling
sources as Gaussian, statistical dependence between sources
is completely described by second-order statistics (SOS), i.e.
source correlation, and thus IVA-G operates by minimizing
correlation among the separate SCVs. This results in several
practical advantages that IVA-G enjoys compared with other
IVA algorithms, such as lower computational complexity and
lower data storage requirements, as IVA-G only needs to
execute linear operations over covariance matrices to per-
form JBSS. In contrast, IVA algorithms that model SCV
distributions as non-Gaussian make use of both second and
higher-order statistics (HOS), resulting in IVA algorithms
applying non-linear functions to the data with significantly
higher computational expenses [11]. Furthermore, it is notable
that regardless of the distributions of the underlying SCVs,
algorithms exploiting only source correlation across datasets
are fully capable of estimating the underlying SCVs, so long
as the SCVs are uncorrelated (which also holds if the SCVs are
statistically independent) [10], [21], [22]. These reasons make
IVA-G a practical algorithm for JBSS in most scenarios.

Canonical correlation analysis (CCA) is the oldest method
capable of JBSS, and is typically used to estimate correlated
sources across two datasets [12]. CCA extended to multi-
ple datasets, called multiset canonical correlation analysis
(MCCA), has proven useful for obtaining correlated sources
across multiple datasets [6], [13]–[15]. MCCA algorithms
operate like IVA-G in that they exploit source correlation
across datasets to achieve decompositions. MCCA is also
fully capable of performing JBSS, likewise able to estimate
underlying SCVs so long as the SCVs are uncorrelated [6].



Despite the many strengths of JBSS, little work has been
done to address its computational challenges. Particularly
when data is high-dimensional, with large numbers of sources
or datasets, computational complexity makes most JBSS algo-
rithms infeasible. These challenges even extend to algorithms
exploiting only source correlation across datasets, such as IVA-
G and MCCA. One notable reason is that virtually all JBSS
algorithms rely on numerical solutions, where an initial guess
is iteratively refined until converging to a solution.

Thus in this paper, we propose an efficient analytic solution
to JBSS derived from an eigendecomposition-based approach.
Under assumption that the latent SCVs are uncorrelated, the
SCV cross-covariance is a block diagonal matrix, and thus
the SCV cross-covariance’s eigenvectors also form a block
diagonal matrix. We exploit this property via minimizing the
distance of the SCV cross-covariance’s eigenvectors from a
block diagonal matrix, and show that each source’s subprob-
lem is equivalent to solving a system of linear equations
from eigenvectors of the observed data’s covariance matrix.
This algorithm, which we call “analytic cross-correlation min-
imization” (ACCM), achieves the lowest asymptotic compu-
tational complexity of all JBSS algorithms. We demonstrate
performance of ACCM on simulated data, showing ACCM is
not only among the most efficient JBSS algorithms, but also
provides generally superior separation performance compared
to algorithms of similar complexities. We then demonstrate
the performance of ACCM on fMRI hybrid data, and discuss
the contribution of ACCM in the general JBSS setting.

The paper is organized as follows. Section II formulates the
JBSS problem. Section III introduces a JBSS cost function
measuring SCV cross-correlation via the “block diagonality”
of the SCV cross-covariance matrix. Section IV proposes an
alternative cost measuring “block diagonality” of the SCV
cross-covariance’s eigenvector matrix (assuming uncorrelated
SCVs), from which we derive the minima of this cost given the

eigenvectors of the observed data’s covariance. Here we also
introduce the analytic solution and derive the corresponding
estimator’s identifiability conditions. Section V discusses the
theory of other JBSS methods and compares these to the
proposed algorithm. Section VI demonstrates performance of
the algorithm with respect to simulated data, and performance
with respect fMRI sources within a hybrid experiment. Section
VII discusses the contribution of the algorithm in the general
JBSS setting. Section VIII concludes with takeaways on the
proposed algorithm.

II. JBSS PROBLEM FORMULATION

We first formulate the general JBSS problem where the
data is modeled as a random vector. We have K datasets,
each observed over T samples, where each dataset is modeled
as a linear mixture of N independent sources. With x[k](t)

= [x
[k]
1 (t), . . . , x

[k]
N (t)]⊤ ∈ RN denoting the N observed

signals within the kth dataset at sample index t, these signals
are modeled as mixtures of N latent source signals s[k](t) =
[s

[k]
1 (t), . . . , s[k]N (t)]⊤ ∈ RN , that are mixed by an unknown

invertible matrix A[k] ∈ RN×N to produce the datasets x[k](t).
Here, (.)⊤ denotes the transpose. The generative model is:

x[k](t) = A[k] s[k](t) , t = 1, . . . , T, k = 1, . . . ,K (1)

To estimate the underlying sources within the K datasets,
JBSS algorithms estimate K demixing matrices W[k] ∈
RN×N that demix each dataset into their corresponding esti-
mated sources y[k](t) = [y

[k]
1 (t), . . . , y[k]N (t)]⊤ ∈ RN , given by

y[k](t) = W[k] x[k](t). The nth row of demixing matrix W[k]

is given by (w
[k]
n )⊤, and is used to estimate the nth source

within the kth dataset, given by y
[k]
n (t) = (w

[k]
n )⊤ x[k](t).

Since the K datasets are observed over T samples, the
observed datasets are represented by matrices X[k] = [x[k]

1 ,
. . . , x[k]

N ]⊤ ∈ RN×T , and the generative model in (1) is given

. .
K number of datasets (dataset index k = 1, . . . ,K)
N number of SCVs (SCV index n = 1, . . . , N )
T number of samples (sample index t = 1, . . . , T )

x[k] / X[k] kth dataset
s[k] / S[k] kth dataset’s sources
y[k] / Y[k] kth dataset’s estimated sources
x
[k]
n / x[k]

n nth observed signal in kth dataset
s
[k]
n / s[k]n nth source in kth dataset

y
[k]
n / y[k]

n nth estimated source in kth dataset
A[k] kth dataset’s mixing matrix
W[k] kth dataset’s estimated demixing matrix

(w
[k]
n )⊤ nth demixing vector (row) in W[k]

sn / Sn nth SCV
yn / Yn nth estimated SCV
s / S vertical concatenation of the N SCVs
y / Y vertical concatenation of the N estimated SCVs
x / X vertical concatenation of the K datasets
Pn nth SCV’s demixing vectors (w

[k]
n )⊤ in a block matrix

P vertical concatenation of all N SCV’s Pn

Popt optimal P matrix
. .

. .
(W[k])opt optimal W[k] demixing matrix
(w

[k]
n )⊤opt optimal (w[k]

n )⊤ demixing vector
Cs SCV cross-covariance matrix
Csn nth SCV covariance matrix
Ĉy estimated SCV cross-covariance matrix
Ĉyn nth estimated SCV covariance matrix

Cx / Ĉx covariance / sample covariance matrix of x
Vs / Ds eigenvectors / eigenvalues of Cs

Vsn / Dsn eigenvectors / eigenvalues of Csn

V̂y eigenvectors of Ĉy

Vx / V̂x eigenvectors of Cx / Ĉx

(v̂y)
[k]
n

⊤ row in V̂y corresponding to (w
[k]
n )⊤

(V̂
[k]
x )n submatrix in V̂x corresponding to (w

[k]
n )⊤

V
[k]
x N rows of Vx corresponding to kth dataset

V
[k]
s N rows of Vs corresponding to the kth dataset

(v
[k]
sn )⊤ kth row of Vsn

G[k] pairwise similarity of columns in V
[k]
x

G eigenvector similarity matrix
. .
. .

Table 1. Notations used in this paper (Sections II — IV). Vectors are given as column vectors, e.g. w[k]
n is a column vector,

aaaaaaaa and (w
[k]
n )⊤ is a row vector, with ⊤ denoting the transpose. Datasets and sources are represented as a random vector

aaaaaaaa (e.g. x[k] ∈ RN ), or by T observed samples of a random vector (e.g. X[k] ∈ RN×T ).
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as X[k] = A[k] S[k], with latent sources given by S[k] = [s[k]1 ,
. . . , s[k]N ]⊤ ∈ RN×T , and estimated sources given by Y[k] =
W[k] X[k] = [y[k]

1 , . . . , y[k]
N ]⊤ ∈ RN×T .

JBSS is distinguished from BSS in that JBSS exploits de-
pendence across the K datasets to leverage cross-information
and improve overall estimation performance. JBSS formula-
tions assume that sources of the same index n are dependent
across the K datasets, thus forming N sets of K sources.
In IVA terminology, each of these sets is referred to as a
“source component vector” (SCV), and for simplicity we refer
to these sets as SCVs for the other JBSS algorithms as well.
The nth SCV is given as sn = [s

[1]
n , . . . , s

[K]
n ]⊤ ∈ RK ,

which is estimated by yn = [y
[1]
n , . . . , y

[K]
n ]⊤ ∈ RK (for

simplicity of notation, we drop sample index t when describing
random variables or random vectors). Over T samples of the
data, the nth SCV is represented by the matrix Sn = [s

[1]
n ,

. . . , s
[K]
n ]⊤ ∈ RK×T , which is estimated by Yn = [y

[1]
n ,

. . . , y
[K]
n ]⊤ ∈ RK×T . Typically each SCV is modeled as

independent (and uncorrelated) from all other SCVs, and thus
any two sources across the datasets are modeled as dependent
only if they correspond to the same index n (nth SCV).

JBSS algorithms can only identify demixing matrix vectors
(w

[k]
n )⊤ and estimated sources y

[k]
n up to scaling and permu-

tation ambiguity within each dataset. JBSS additionally orders
sources within each dataset to align with the order of SCVs,
such that the nth source within a dataset corresponds to the
nth SCV. In practice, the scaling ambiguity can be removed
by requiring each estimated source to have unit variance.

Furthermore, most implementations of JBSS involve stan-
dardizing and pre-whitening each dataset prior to estimation.
The advantage is that if sources are standardized and pre-
whitened within each dataset, then the residual mixing matri-
ces A[k] become orthogonal, or asymptotically orthogonal for
the observed datasets X[k] as T → ∞ (since E

{
s[k] s[k]⊤

}
=

limT→∞
1

T−1 S[k] S[k]⊤ = I, thus E
{
x[k] x[k]⊤} = limT→∞

1
T−1 X[k] X[k]⊤ = A[k] A[k]⊤ = I), in which case orthog-
onality constraints can be imposed on W[k] to considerably

simplify the problem [23]. For the remainder of the paper, we
assume that sources and datasets are standardized, and that
datasets have been pre-whitened prior to JBSS.

III. JOINT COVARIANCE BLOCK DIAGONALIZATION COST

Before introducing the proposed cost, we first define quan-
tities with respect to the N underlying SCVs sn ∈ RK . As
each SCV is a set of standardized sources, each SCV thus has
mean E {sn} = 0 ∈ RK and some covariance matrix (which
is also a correlation matrix) Csn ≜ E

{
sn s⊤n

}
∈ RK×K .

Correlation among all N SCVs is described by the “SCV
cross-covariance” matrix Cs = ≜ E

{
s s⊤

}
∈ RNK×NK ,

where s ≜ [(s1)
⊤, . . . , (sN )⊤]⊤ ∈ RNK is the vertical

concatenation of all N SCVs. These N SCVs are uncorrelated
if and only if the pairwise cross-covariance (cross-correlation
matrix) between any two SCVs is a matrix of zeros. If this
holds, Cs is equal to the direct sum of all N SCV covariances:
Cs =

⊕N
n=1 Csn ∈ RNK×NK , a block diagonal matrix with

N blocks given by the N SCV covariances Csn . Fig. 1 (a)
gives an example of Cs for N = 4 uncorrelated SCVs.

Concerning the estimated SCVs, yn (mean 0 ∈ RK ,
covariance Cyn ∈ RK×K), we can similarly define Cy ≜
E
{
y y⊤} ∈ RNK×NK , with y ≜ [(y1)

⊤, . . . , (yN )⊤]⊤

∈ RNK . Over T samples of data such that yn is represented
by matrix Yn ∈ RK×T , each Cyn

is itself estimated in
practice by “estimated SCV covariance” Ĉyn

= 1
T−1 Yn

Y⊤
n ∈ RK×K , and cross-covariance Cy is itself estimated

by the “estimated SCV cross-covariance” Ĉy = 1
T−1 Y Y⊤

∈ RNK×NK , with Y = [(Y1)
⊤, . . . , (YN )⊤]⊤ ∈ RNK×T .

From estimated SCV cross-covariance Ĉy, we may mea-
sure the degree of SCV cross-correlation by the distance
of Ĉy from a block diagonal matrix. This is measured by
the squared Frobenius norm of “off-blocks” (pairwise SCV
cross-covariances) within Ĉy, which we denote by the “Joint
Covariance Block Diagonalization” (JCBD) cost:

J JCBD (Y) =

∥∥∥∥∥Ĉy −
N⊕

n=1

Ĉyn

∥∥∥∥∥
2

F

(2)

Fig. 1. SCV cross-covariance Cs ∈ RNK×NK of N = 4 uncorrelated SCVs, and corresponding eigenvectors Vs.
(a) SCV cross-covariance Cs. Blocks on the diagonal are SCV covariances Csn = E

{
sn s⊤n

}
= ∈ RK×K . Off-blocks are

pairwise cross-covariances (E
{
sm s⊤n

}
∈ RK×K for m ̸= n), which equal 0 ∈ RK×K if SCVs are uncorrelated.

(b) SCV cross-covariance eigenvectors Vs, with eigenvectors (columns of Vs) permuted according to SCV groupings
(“block permuted”). The nth diagonal block of Vs contains all K eigenvectors of the nth SCV covariance Csn .
(c) Vs, with eigenvectors permuted according to corresponding eigenvalue size (smallest to largest eigenvalues, left to right).
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We now consider how to formulate (2) with respect to
demixing vectors w

[k]
n . This is done by first noting that the

nth estimated SCV yn is obtainable by yn = Pn x,
where we define x ≜ [(x[1])⊤, . . . , (x[K])⊤]⊤ ∈ RNK as
the vertical concatenation of the K datasets, represented over
T samples by X = [(X[1])⊤, . . . , (X[K])⊤]⊤ ∈ RNK×T , and
Pn ≜ [p

[1]
n ,p

[2]
n , . . . ,p

[K]
n ]⊤ ∈ RK×NK is defined such that

p
[k]
n ≜ ek

⊗
w

[k]
n ∈ RNK is the Kronecker product of w

[k]
n

with the kth standard basis vector ek. By further defining P
≜ [P⊤

1 ,P
⊤
2 , . . . ,P

⊤
N ]⊤ ∈ RNK×NK , we can obtain all N

estimated SCVs y, and estimated SCV cross-covariance Ĉy :

yn = Pn x , y = P x , Ĉy = P Ĉx P⊤ (3)
where Ĉx = 1

T−1 X X⊤ ∈ RNK×NK is the sample estimate
of Cx = ≜ E

{
x x⊤}, and Ĉ

[k,j]
x = 1

T−1 X[k] X[j]⊤ ∈ RN×N .
Similarly, we obtain the nth estimated SCV’s covariance by

Ĉyn
= Pn Ĉx P⊤

n . Thus subject to
∥∥∥(w[k]

n )⊤
∥∥∥
2
= 1, we may

write (2) with respect to all K demixing matrices W[k] via
matrix P, or with respect to each demixing vector (w[k]

n )⊤:

J JCBD (P) =

∥∥∥∥∥P Ĉx P⊤ −
N⊕

n=1

Pn Ĉx P⊤
n

∥∥∥∥∥
2

F

(4)

J JCBD ( (w[k]
n )⊤ ) =

K∑
j=1

N∑
i=1
i̸=n

∥∥∥ (w[k]
n )⊤Ĉ[k,j]

x w
[j]
i

∥∥∥2
F

(5)

The cost in (4) is associated with algorithms that perform
“generalized joint diagonalization” [24]–[28], whose solutions
require iterative procedures and cannot be solved analytically
(since the cost for (w

[k]
n )⊤ depends on realizations of other

demixing vectors w
[j]
i ). However in the next section, we

propose a surrogate cost to (4) that can be solved analytically,
by exploiting the assumption that Cs is block diagonal.

IV. AN EIGENVECTOR-BASED JBSS COST

A. JBSS by eigendecomposition of the data

A key property of Cs being a block diagonal matrix is
that its eigendecomposition is also block diagonal. With Cs

=
⊕N

n=1 Csn , the eigendecomposition of Csn is given

by Csn = Vsn Dsn V⊤
sn , where Vsn ∈ RK×K is the

matrix with K columns containing the K eigenvectors of
Csn , and Dsn ∈ RK×K is a diagonal matrix containing the
K eigenvalues of Csn . Thus, the eigendecomposition of Cs

is given by Cs = Vs Ds V⊤
s , where Vs =

⊕N
n=1 Vsn

∈ RNK×NK are the NK block diagonal eigenvectors of Cs

(representing the K eigenvectors for each of the N SCV’s
Csn ), and Ds =

⊕N
n=1 Dsn ∈ RNK×NK is a diagonal matrix

containing the NK eigenvalues. Fig. 1 (b) shows eigenvectors
Vs of an example SCV cross-covariance Cs, with eigenvectors
(columns) permuted to reveal this block diagonal structure.

Another important consequence is the direct relationship
between the eigendecompositions of SCV cross-covariance
Cs and data covariance Cx . As stated earlier, if the SCVs
are uncorrelated, it follows from pre-whitening the datasets
that the mixing matrices A[k] are orthogonal, and thus the
optimal W[k] are also orthogonal. With all optimal W[k]

orthogonal, the optimal P matrix is also orthogonal, which
we denote by Popt . This is significant concerning the noted
eigendecomposition relations, because with Cs = Popt Cx

P⊤
opt , we have that Cs is equal to Cx under conjugation

by orthogonal matrix Popt. Therefore, the eigenvalues of
Cs and Cx are the same, and the eigenvectors of Cs are
obtained by rotating each eigenvector of Cx by Popt. With
Vx ∈ RNK×NK denoting the eigenvectors of Cx and V̂x the
respective eigenvectors of Ĉx, this relationship is given by:

Popt Vx = Vs (6)
In regards to estimating parameter P, the implications are

that eigenvectors of the estimated SCV cross-covariance V̂y ∈
RNK×NK can be directly obtained from P V̂x = V̂y provided
that demixing matrices W[k] are constrained to be orthogonal.

This motivates a surrogate cost to (4) where instead of
measuring distance of Cy from a block diagonal matrix, we
introduce a measure of “block diagonality” over the corre-
sponding eigenvectors V̂y. In terms of parameter P, this is
given by the distance between P V̂x and its nearest block
diagonal matrix B( P V̂x )(N,K), which we denote by the
“Joint Eigenvector Block Diagonalization” (JEBD) cost:

J JEBD (P) =
∥∥∥ P V̂x − B( P V̂x )(N,K)

∥∥∥2
F

(7)

Fig. 2. Overview of the linear system of equations given in (7). Highlighted in red are the relevant quantities aaaa
aaaaaaaaaa used to solve the subproblem for w[k]

n given in (8), where in this example subproblem n = 1 and k = 1. aaaa
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where we define B(V)(N,K) as the operation that maps
eigenvector matrix V ∈ RNK×NK to a block diagonal matrix
of N blocks each of size K × K, by setting values in the
“off-blocks” of V to zero. This is analogous to (4), where we
have that B( P Ĉx P⊤ )(N,K) =

⊕N
n=1 Pn Ĉx P⊤

n .
To meaningfully minimize (7), we first assume that eigen-

vectors (columns) in V̂x are permuted so that corresponding
eigenvectors (columns) in Vs form a block diagonal matrix.
In other words, eigenvectors are permuted such that the nth
set of K eigenvectors correspond to the same SCV in Vs

(eigenvector columns (n− 1)K to nK correspond to the nth
SCV). Eigendecompositon routines do not naturally do this
sorting, instead they typically sort eigenvectors by size of their
eigenvalues, for example as in Fig. 1 (c). We later explain in
Section IV.C how one may sort V̂x eigenvectors into SCV
groupings, but for now we assume they are already permuted
for the purpose of explaining the following solution.

With columns correctly permuted, minimizing (7) is simpli-
fied by solving for each demixing vector (w[k]

n )⊤ individually.
Defining (v̂y)

[k]
n

⊤ as the row of V̂y corresponding to the
same index row p

[k]
n

⊤ in P, we have from p
[k]
n

⊤ V̂x =
(v̂y)

[k]
n

⊤ that demixing vector (w
[k]
n )⊤ associated with p

[k]
n

⊤

is estimated to maximize block diagonality of V̂y with respect
to (v̂y)

[k]
n

⊤. This entails minimizing the norm of NK − K

values in (v̂y)
[k]
n

⊤ corresponding to the NK−K eigenvectors
of the N − 1 other SCVs. These values are given by vector
(w

[k]
n )⊤(V̂

[k]
x )n ∈ RNK−K , where (V̂

[k]
x )n ∈ RN × NK−K

is a submatrix of V̂x formed from the N rows corresponding
to dataset k, and the NK − K columns corresponding to
the NK −K eigenvectors of the N − 1 other SCVs. Fig. 2
illustrates in red how (w

[k]
n )⊤(V̂

[k]
x )n is manifested in (7).

Thus, the cost (7) can be defined for each individual (w[k]
n )⊤:

J JEBD ( (w[k]
n )⊤ ) =

∥∥∥ (w[k]
n )⊤(V̂[k]

x )n

∥∥∥2
F

(8)

Unlike the cost in (5), the cost in (8) does not depend
on realizations of the other demixing vectors, which is why
minimizing this cost admits an analytic solution.

The solution to (8) is given as the minimizer of the quadratic
form (V̂

[k]
x )n (V̂

[k]
x )⊤n ∈ RN×N , under the constraint that∥∥∥(w[k]

n )⊤
∥∥∥
2

= 1. Therefore, (w
[k]
n )⊤ is directly estimated

by the eigenvector of (V̂
[k]
x )n (V̂

[k]
x )⊤n corresponding to its

smallest eigenvalue. This procedure is repeated for each of the
NK different (V̂[k]

x )n to estimate all NK demixing vectors
(w

[k]
n )⊤ across all K demixing matrices W[k]. Since this

is an analytic solution to JBSS by minimizing SCV cross-
correlation, we refer to the procedure as “analytic cross-
correlation minimization” for JBSS (ACCM).

In the next section, we discuss the necessary and sufficient
conditions on the data’s generative model for which ACCM is
able to uniquely identify the true sources via (w

[k]
n )⊤ subject

to scale and permutation ambiguity, which we refer to as the
identifiability conditions of the ACCM estimator.

B. Identifiability conditions of the ACCM estimator

The following theorem and proof makes use of notations
and relations introduced at the beginning of section IV.A.

Theorem 1 (ACCM identifiability conditions): We assume
that all datasets have been pre-whitened, that the true statistics
of the data are known (Ĉx = Cx and V̂x = Vx), and that the
latent SCVs are uncorrelated ( E

{
sm s⊤n

}
= 0 for m ̸= n).

Then W[k] = (A[k])⊤ for all k = 1, . . . ,K, subject to scale
and permutation ambiguity of the (w

[k]
n )⊤, if and only if for

all n = 1, . . . , N , there exists at least one eigenvalue within
Dsn that is unique in Ds.

Proof: we denote (W[k])opt as the optimal orthogonal
matrices W[k] first mentioned in Section IV.A. Without loss
of generality, (W[k])opt = (A[k])⊤ subject to scale and per-
mutation ambiguity. Our goal is thus to prove that W[k] =
(W[k])opt subject to scale and permutation ambiguity.

We first consider the case where all eigenvalues in Ds

are unique, and thus all corresponding eigenvectors (columns
within Vx and Vs) are uniquely determined. Later in the proof
we expand on the case when eigenvalues are not unique.

We refer to (6): Popt Vx = Vs, and assume that eigen-
vectors in Vs (and corresponding eigenvectors in Vx) are
“block permuted” as explained in section IV.A. To observe
how (W[k])opt manifests in (6), we can isolate the equations
in (6) that pertain only to the kth dataset:

(W[k])opt V
[k]
x = V[k]

s (9)
where we define V

[k]
x ∈ RN×NK as the N rows of Vx

corresponding to the N mixtures in the kth dataset x[k], and
V

[k]
s ∈ RN×NK likewise as the N rows of Vs corresponding

to the N sources in the kth dataset s[k]. Fig. 3 illustrates this
“k-centric” formulation given in (9).

The first item to note within this k-centric formulation is
how the block diagonality of Vs extends to V

[k]
s . Given that

SCVs are uncorrelated, each source’s row in V
[k]
s has NK−K

values equal to 0, corresponding to the NK−K eigenvectors
of the N − 1 other SCVs. V

[k]
s can formally be written as

V
[k]
s =

⊕N
n=1 (v

[k]
sn )

⊤, where (v
[k]
sn )

⊤ ∈ RK is the kth
row of the eigenvector matrix Vsn corresponding to SCV
covariance Csn . This reveals that all NK columns of V

[k]
s

can be represented by some scaled standard basis vector en,
with the nth set of K columns (of the nth SCV) corresponding
to different scalings of the nth standard basis vector.

Fig. 3. k-centric formulation (9). Columns of V[k]
s are scaled standard basis vectors, rotated by (W[k])⊤opt to produce V

[k]
x .
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Now given pre-whitened data resulting in (W[k])opt as
orthogonal, each column of V

[k]
x is equal to its respective

column in V
[k]
s rotated by orthogonal matrix (W[k])⊤opt. With

the nth set of K columns in V
[k]
s corresponding to the nth

standard basis vector en, this means that the nth set of K
columns in V

[k]
x are equal to scaled versions of the nth

row in (W[k])opt, denoted by (w
[k]
n )⊤opt, since (W[k])⊤opt en

= (w
[k]
n )opt. Therefore, columns of (V̂

[k]
x )n are composed of

scaled versions of all (w[k]
i )opt for i ̸= n, thus (V̂[k]

x )n (V̂
[k]
x )⊤n

is a rank N − 1 matrix with (w
[k]
n )⊤opt as the eigenvector

corresponding to the smallest eigenvalue (eigenvalue 0).
This proves that given the previous assumptions, and given

that all eigenvalues in Ds are unique, then W[k] = (W[k])opt
subject to scale and permutation ambiguity.

We now consider the case where some of the eigenval-
ues in Ds are not unique. Uniqueness of estimating Vs

(and by extension Vx) is ultimately dependent on whether
the eigenvalues of Cs are unique, specifically through the
eigenvalues Dsn of the SCV covariances Csn . Any two or
more eigenvectors of Vs are not uniquely determined if their
corresponding eigenvalues are equal. If said eigenvectors cor-
respond to two different SCVs, then these eigenvectors are not
uniquely determined and not uniquely block diagonal within
Vs (i.e., corresponding columns in V

[k]
s are not uniquely equal

to scaled en). Thus the estimator may fail if it includes these
eigenvectors in the procedure. By ignoring all eigenvectors of
Vx (corresponding to eigenvectors in Vs) with non-unique
eigenvalues, it immediately follows that any single SCV sn
is identifiable if and only if at least one of its eigenvalues in
Dsn is unique in Ds. This completes the proof.

An additional outcome of this proof is that given ACCM
identifiability and assumptions in Theorem 1 hold, it can
be shown that the ACCM solution exactly minimizes both
the JCBD and JEBD costs in (4) and (7). With the true
SCVs having a block diagonal Cs, then there exists a block
diagonal representation of Vs even if some eigenvectors are
not unique (non-unique eigenvectors can be rotated by an
orthogonal matrix into becoming block diagonal, and still
provide valid eigenvectors of Cs). Thus in this representation,
(9) exhibits a block diagonal V[k]

s for all k = 1, . . . ,K, like in
Fig. 3. As the proof describes W[k] = (W[k])opt subject to the
aforementioned ambiguities so long as identifiability holds,
then V̂

[k]
y = V

[k]
s for all k = 1, . . . ,K subject to sign and

permutation ambiguity of the rows of V̂[k]
y . Therefore for the

ACCM estimated W[k], there similarly exists a block diagonal
representation of V̂y even if some eigenvectors are not unique,
which means that Ĉy must also be block diagonal. Thus, the
JCBD cost (4) and the JEBD cost (7) are minimized exactly
(with (7) minimized provided it is written with respect to only
the unique eigenvectors in V̂x), both with cost value of 0.

One important characteristic to note is that the separately
estimated (w

[k]
n )⊤ are only guaranteed orthogonal within each

W[k] when the underlying SCVs are uncorrelated. However
in practice, real-world data encounters SCVs that are not
exactly uncorrelated. Thus, separately estimated (w

[k]
n )⊤ may

not form an orthogonal matrix, which becomes problematic as

P V̂x = V̂y is no longer true when W[k] are not orthogonal.
To preserve orthogonality, a final step after estimating each
(w

[k]
n )⊤ is to map each W[k] to its nearest orthogonal matrix

[29] by W[k] → W[k](W[k]⊤W[k])−
1
2 . We note that still

the mapped W[k] may not necessarily achieve the optimum
of (7) when SCVs are correlated. An alternative for finding this
optimum would be to split (7) into costs for each W[k], instead
of for each (w

[k]
n )⊤ as in (8). However to our knowledge,

explicitly minimizing that cost does not admit an analytic
solution. We emphasize that our solution may not necessarily
achieve the minimum cost when SCVs are correlated, but
achieves a solution typically within range of the minimum
while retaining the highly efficient analytic procedure. We
support this statement with results in Section VI, showing
that ACCM significantly outperforms the other orthogonally
constrained methods (MCCA) when SCVs are correlated.

As stated in Section IV.A, the proposed estimation proce-
dure is only achieved meaningfully if eigenvectors in V̂x can
be identified according to their N SCV groupings in Vs. In
the next section, we introduce a scheme to group eigenvectors
in V̂x corresponding to the different SCVs, by defining a
similarity measure between the eigenvectors from the inner-
products between columns within the V̂

[k]
x .

C. Sorting eigenvectors for the ACCM algorithm

From the formal definition of V
[k]
s =

⊕N
n=1 (v

[k]
sn )

⊤ in
IV.B, we note that all NK columns of V[k]

s can be represented
by a scaled standard basis vector en, with the nth set of K
columns (of the nth SCV) corresponding to different scalings
of the nth standard basis vector. Therefore, any two columns
in V

[k]
s have an inner product of 0 if they correspond to

two eigenvectors of two different SCVs. Furthermore, as each
column of V[k]

x is its corresponding column in V
[k]
s rotated by

orthogonal matrix (W[k])⊤opt, we likewise have that any two
columns in V

[k]
x have an inner product of 0 if they correspond

to two eigenvectors of two different SCVs.
The magnitudes of pairwise inner products between any

two columns in V
[k]
x is represented by the pairwise similarity

matrix G[k] ≜ abs( V
[k]
x

⊤ V
[k]
x ) ∈ RNK×NK , where we

define abs( V ) as the matrix obtained from the absolute
values of V. This similarity matrix allows a sorting of the
NK eigenvectors of Vx into their N SCV groups, since eigen-
vectors of different SCVs will have similarity of 0 and thus
eigenvectors of the same SCV will naturally group together.
This extends from the fact that G[k] is invariant with respect
to orthogonal mixing matrices A[k], since abs( V

[k]
s

⊤ V
[k]
s )

= abs( V[k]
x

⊤ A[k]⊤ A[k] V
[k]
x ) = abs( V[k]

x
⊤ V

[k]
x ).

With G[k] specific to the kth dataset, this naturally leads to
a similarity measure aggregated across the K datasets’ G[k],
denoted by eigenvector similarity matrix G ∈ RNK×NK :

G ≜
K∑

k=1

G[k] =

K∑
k=1

abs
(
V[k]

x
⊤ V[k]

x

)
(10)

Here we likewise have that G is invariant with respect to
A[k]. Furthermore, similarity values in G are bounded in [0
1], given from the fact that eigenvectors in Vx are unit norm.
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Table 2. Computational complexity in the limit of ACCM, IVA-G, and the 5 variants of MCCA. Here q is aaaaaaaa
the number of iterations, relevant only for the iterative algorithms (SSQCOR, GENVAR, IVA-G).

ACCM SUMCORR MAXVAR MINVAR SSQCOR GENVAR IVA-G

O( N3K3 ) O( N3K3 ) O( 3N4K3 ) O( 3N4K3 ) O( q(3N4K + 2N3K2) ) O( q(3N4K +N3K2

+NK(K − 1)2) )
O( q(KN4 +K2N3

+NK4) )

Estimating G thus makes it possible to learn the eigen-
vector groupings of Vx , and thus makes it possible to
meaningfully estimate the W[k] matrices according to the
procedure proposed in IV.A . However, the proposed procedure
for estimating W[k] can be simplified by the fact that each
subproblem’s (V

[k]
x )n is highly redundant, due to any SCV’s

K columns in (V
[k]
x )n effectively being scalar multiples of one

another. Omitting all but 1 column for each SCV still leads to
each subproblem’s quadratic form (V̂

[k]
x )n (V̂

[k]
x )⊤n as a rank

N − 1 matrix with (w
[k]
n )opt as the eigenvector corresponding

to the smallest eigenvalue (eigenvalue 0). Therefore, (V[k]
x )n

can be constructed from only N−1 eigenvectors in Vx corre-
sponding to N−1 different SCVs, which means that the entire
estimation procedure requires finding only N eigenvectors in
Vx corresponding to the N different SCVs.

One possible way to find N eigenvectors of Vx correspond-
ing to the N different SCVs is to find any N eigenvectors
whose N ×N similarity matrix in G is equal or as close as
possible to an identity matrix. For the purposes of our proce-
dure, we implement a greedy search to select N eigenvectors
of V̂x whose N ×N similarity matrix in Ĝ has the minimum
Frobenius norm distance to an identity matrix.

In the next section, we overview a practical design of the
proposed algorithm given the results of the previous sections.

D. Analytic algorithm overview (ACCM)

We now overview the procedure of the proposed algorithm:

Algorithm Analytic Cross-Correlation Minimization

Input: a set of K datasets X[k] ∈ RN×T (k = 1, . . . ,K)
Output: a set of K demixing matrices W[k] ∈ RN×N

1: concatenate the datasets X = [(X[1])⊤, . . . , (X[K])⊤]⊤,
estimate the data covariance Ĉx = 1

T−1 X X⊤, and
eigendecompose the covariance Ĉx = V̂x D̂x V̂⊤

x

2: estimate the eigenvector similarity matrix:
Ĝ =

∑K
k=1 abs( V̂[k]

x
⊤ V̂

[k]
x )

3: find N eigenvectors (V̂x)N ∈ RNK×N whose N × N
similarity matrix in Ĝ is as close as possible to an identity
matrix (“maximally independent” according to Ĝ).

4: estimate each w
[k]
n vector according to (8), where (V̂

[k]
x )n

∈ RN×N−1 is formed from the N rows of (V̂x)N
corresponding to dataset k, and from all columns of
(V̂x)N except for the nth column.

5: map all W[k] to the nearest orthogonal matrix:
W[k] → W[k](W[k]⊤W[k])−

1
2

The algorithm’s computational complexity is dominated by
the eigendecomposition of Ĉx, of complexity O( (NK)3 ).
Aside from this, the second most complex step is step 3. For

each (V̂x)N candidate, computing the norm of its similarity
matrix in Ĝ has complexity O( N2 ). If we were to evaluate
all combinations of N eigenvectors within the NK total, this
amounts to O(

(
NK
N

)
N2 ). In practice, we simplify this

step only selecting a few (V̂x)N candidates from eigenvectors
corresponding to both the largest and smallest eigenvalues in
Ĉx, exemplifying eigenvectors describing most of the effects
of correlation or partial correlation among SCVs in Cy. For
smaller complexity of this step, we perform a greedy search
(starting with smallest values in Ĝ), and limit the number of
(V̂x)N candidates to 1

2 (KN2)
1
3 , thus the complexity of this

step is always less than O( (NK)3 ). Finally, steps 4 and
5 both have complexity O( KN3 ), leading to the algorithm
having a total complexity of O( (NK)3 ) .

In the next section, we discuss other JBSS algorithms
exploiting source correlation across datasets. We compare im-
plementation of these algorithms with ACCM, in preparation
for performance evaluations in Sections VI and VII.

V. RELATIONSHIP TO OTHER JBSS ALGORITHMS
EXPLOITING SOURCE CORRELATION ACROSS DATASETS

A. IVA — Multivariate Gaussian Distribution (IVA-G)

IVA-G assumes that each SCV has a probability distribution
function (PDF) characterized by the i.i.d. multivariate Gaus-
sian distribution [10]. Using the previously defined quantities,
this leads to the general IVA-G cost function :

JIVA-G (W) =
NK log(2πe)

2
+

1

2

N∑
n=1

log
∣∣∣∣ det

(
Ĉyn

) ∣∣∣∣
−

K∑
k=1

log
∣∣∣∣ det

(
W[k]

) ∣∣∣∣
where W = {W[1], . . . ,W[K]} is the set of W[k]. The term
log | det

(
Ĉyn

)
| measures correlation within the nth SCV,

while the term log | det
(
W[k]

)
| acts as a penalty keeping

W[k] close to orthogonal.
Unlike most other JBSS methods exploiting source corre-

lation across datasets, IVA-G does not constrain W[k] to be
orthogonal. This gives IVA-G the ability to estimate correlated
SCVs, leading to a significantly more robust estimator. IVA-
G also has less stringent identifiability conditions than other
methods (including ACCM): provided that no two sources
within an SCV are independent, IVA-G can identify all SCVs
so long as any two SCVs si and sj do not have identical
covariances Csi and Csj subject to the aforementioned ambi-
guities. Thus, IVA-G may be considered a “gold standard” of
JBSS algorithms exploiting source correlation across datasets.

However, compared with other JBSS algorithms exploiting
source correlation, IVA-G suffers considerably in terms of
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computational complexity. Asides from initial costs of esti-
mating Ĉx, each IVA-G iteration requires updating all NK

demixing vectors w
[k]
n , where each of these w

[k]
n operations

involves an update of W[k] of O( N3 ) complexity, an update
of Ĉyn

of O( N2K ) complexity, and an update of Ĉ−1
yn

of
O( K3 ) complexity. If the algorithm requires q iterations to
converge, this leads to IVA-G having a total complexity of
O( q(N4K +N3K2 +NK4) ) .

B. MCCA

MCCA generalizes CCA to more than two datasets, and
variations of MCCA are capable of JBSS [6]. Using previously
defined concepts, the goal at each stage of MCCA is to
estimate demixing vectors w[k]

n corresponding to SCV yn such
that correlation in the SCV’s estimated Ĉyn is maximized.

Five variants of MCCA exist, each employing a different
empirical measure of correlation in Ĉyn . These costs are
evaluated with respect to covariance entries (Ĉyn)ij , or eigen-
values λ̂k, where λ̂k is the kth largest eigenvalue of Ĉyn . The
five variants are given by their cost functions :

1) SUMCORR : maximize the sum of elements in Ĉyn

JSUMCORR (Ĉyn
) = 1⊤ Ĉyn

1 .

2) MAXVAR : maximize the largest eigenvalue of Ĉyn

JMAXVAR (Ĉyn ) = λ̂1 .

3) MINVAR : minimize the smallest eigenvalue of Ĉyn

JMINVAR (Ĉyn
) = λ̂K .

4) SSQCOR : maximize the sum of squared elements
of Ĉyn

, equal to sum of squared eigenvalues of Ĉyn

JSSQCOR (Ĉyn
) =

∑K
i=1

∑K
j=1 (Ĉyn

)2ij =
∑K

k=1 λ̂2
k .

5) GENVAR : minimize the product of eigenvalues
(determinant) of Ĉyn

JGENVAR (Ĉyn
) =

∏K
k=1 λ̂k .

With pre-whitened data, all MCCA algorithms constrain
W[k] to be orthogonal. All MCCA algorithms (with exception
of SUMCORR) are solved by deflationary procedures esti-
mating each SCV one at a time, where w

[k]
n are constrained

orthogonal to previously estimated w
[k]
i for i < n. GENVAR

and SSQCOR are necessarily solved by iterative procedures
where an initial guess is refined until convergence, whereas
SUMCORR, MAXVAR, and MINVAR are achievable with
analytic solutions. Table 2 lists the computational complexi-
ties of ACCM, IVA-G and the 5 variants of MCCA.

Several of the MCCA algorithms have noteworthy connec-
tions to the previously mentioned JBSS algorithms. GENVAR
can be seen as a deflationary, orthogonally constrained version
of IVA-G. Similarly, SSQCOR can be seen as a deflationary
approach to minimizing the JCBD cost in (5). This connection
of SSQCOR to (5) is provable from the fact that given W[k]

are constrained orthogonal, maximizing the squared norm of
the SCV covariances is equivalent to minimizing the squared
norm of the SCV cross-covariances in (5).

MAXVAR and SUMCORR both model each SCV Sn ∈
RK×T as a common source shared across datasets, specifically
a rank 1 “signal” matrix plus a full rank “noise” matrix :

Sn = unv
⊤
n + Zn, 1 ≤ n ≤ N (11)

where we define vn ∈ RT as the common source, un ∈ RK

as the weights of vn within each s
[k]
n , and Zn ∈ RK×T

as the additive noise matrix (assumed to have a diagonal
covariance matrix). The differences in the algorithms is on
how un is modeled: SUMCORR assumes that weights in un

are equivalent to one another, while MAXVAR estimates un

that minimizes tr[var{Sn − unv
⊤
n }], where tr[.] denotes the

trace and var{.} denotes the variance [13].
SUMCORR is particularly notable for an analytic solution

highly similar to ACCM. Like ACCM, the SUMCORR so-
lution is estimated directly from eigenvectors of Ĉx [14],
[15]. With the previously defined concepts in Section IV,
provided that datasets are pre-whitened, the SUMCORR w

[k]
n

are directly obtained from the N principal eigenvectors of Ĉx

(corresponding to the N largest eigenvalues). Specifically, the
nth principal eigenvector of Ĉx, denoted by v̂xn ∈ RNK , is
the concatenation of scaled SUMCORR demixing vectors of
the nth SCV: v̂xn

= [(w[1]
n )⊤, . . . , (w[K]

n )⊤]⊤. This solution
can be seen as performing a rank-N PCA on the vertical
concatenation of datasets, and is elsewhere called group-PCA
[30]. This simple analytic solution leads to SUMCORR being
among the most efficient of all JBSS algorithms, as shown in
Table 2. In comparison, the ACCM solution is estimated from
N eigenvectors that are maximally independent according to
eigenvector similarity matrix Ĝ (eigenvectors that are most
“block diagonal” at the optimum), which better ensures that
the N eigenvectors correspond to the N different SCVs (and
thus all N SCVs are identified).

While complexities of SUMCORR and ACCM are identical
in the limit (both O( N3K3 )), there are several advantages
that ACCM provides over SUMCORR. To estimate the true
sources, SUMCORR requires that the N principal eigenvectors
of Ĉx correspond to the N different SCVs. Thus, SUMCORR
has identifiability conditions that the largest eigenvalue of each
Csn must be both unique in Ds, and larger than the second
largest eigenvalue of all other Csn . Thus, SUMCORR has
more stringent identifiability conditions compared to ACCM.
Fig. 1 (c) displays one example when ACCM is able to
identify the sources but SUMCORR fails. Furthermore, when
SCVs are correlated, “off-block” entries in the N principal
eigenvectors are typically much farther from 0 than “off-block”
entries in other eigenvectors, thus ACCM may choose better
eigenvectors for minimizing SCV cross-correlation.

C. Joint Diagonalization Approaches for JBSS

Another approach to solving the BSS problem has been
through joint diagonalization (JD) of multiple matrices, e.g.,
JADE [31] and SOBI [32] are two such early algorithms,
and now have many variants. Several generalizations of these
have also been proposed for JBSS [24]–[28], which are called
“generalized joint diagonalization” (GJD). GJD algorithms
typically estimate demixing matrices W[k] that jointly di-
agonalize a set of “cumulant matrices” that describe source
dependence within and across the datasets. One noteworthy
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use of cumulant matrices are the covariances/pairwise cross-
covariances between the K datasets (E

{
x[i] x[j]⊤} for 1 ≤

i, j ≤ K), for which it can be shown that the general GJD cost
used in [24] is equivalent to the JCBD cost in (4), provided that
W[k] are constrained to be orthogonal. In BSS terminology,
this form of GJD provides a “symmetric” iterative procedure
for minimizing (4) (i.e., all demixing vectors w

[k]
n are learned

in parallel), as opposed to the deflationary iterative procedure
provided by SSQCOR for minimizing (4).

Other types of matrices used in GJD-type algorithms in-
clude fourth-order cumulant matrices as in JADE and auto-
covariance matrices describing sample to sample dependence
within and across the sources, as in SOBI. This flexibility in
cumulant matrices make GJD algorithms attractive for JBSS.

In the next section, we demonstrate performance of these
JBSS algorithms in Section V with simulated data, demonstrat-
ing how each algorithm’s separation performance depends on
the statistics that define the generative model of the data and
underlying sources. After that, we demonstrate performance
on real fMRI sources in the context of a hybrid experiment.

VI. RESULTS

We use joint inter-symbol-interference (joint-ISI) to com-
pare separation performance of JBSS algorithms when A[k]

are known, such as for simulations. Joint-ISI is given by:
aa

ISIJNT (W ,A) ≜
1

2N(N − 1)

[
N∑

n=1

(
N∑

m=1

q̄[n,m]

maxp q̄[n,p]
− 1

)

+

N∑
m=1

(
N∑

n=1

q̄[n,m]

maxp q̄[p,m]
− 1

)]
With W as the set of W[k], A as the set of A[k], Q[k]

= W[k] A[k] as the “mixing-demixing matrix” of the kth
dataset, q[k][m,n] as the [m,n] entry in Q[k], and q̄[m,n] =

∑K
k=1

|q[k][m,n]|. Joint-ISI is given in [10] as an extension of the inter-
symbol-interference measure (ISI) introduced in [33]. Joint-ISI
is normalized in [0 1], and collectively measures how close
each Q[k] = W[k] A[k] matrix is to a permuted diagonal
matrix, with 0 joint-ISI indicative of perfect separation.

As our paper primarily focuses on efficient JBSS, we
limit our results to the source correlation-based algorithms
explained in Section V. These include IVA-G, the 5 variants
of MCCA, and the GJD algorithm in [24] called “JBSS-SOS”,
which minimizes (4) subject to the orthogonality constraint.

For all performance evaluations done in Sections VI and
VII, we use the computational recources provided by the
UMBC High Performance Computing Facility (HPCF), thus
CPU time is reflective of HPCF’s capabilities. All iterative
algorithms used a maximum 1000 iterations and same stop cri-
teria ζ ≤ 0.0001, defined by ζ = max(1−diag(W[k]

old W[k]⊤))

where W
[k]
old is W[k] of the previous iteration.

A. Performance with simulated data

Our SCV generative model is as follows. We model an SCV
Sn ∈ RK×T (mean 0 ∈ RK , covariance Csn ∈ RK×K) as the
sum of a low rank source matrix and a full rank noise matrix:

Sn = UnV
⊤
n + Zn, 1 ≤ n ≤ N, (12)

where we define Vn ∈ RRn×T as the low rank source
components spanning the SCV, Un ∈ RK×Rn as the weights
of the source components within each s

[k]
n , and Zn ∈ RK×T

as the additive noise matrix of Sn. The number of components
Rn is called the effective rank of SCV Sn, which represents a
level of “complexity” within the SCV. SCVs with a larger
effective rank tend to have covariances Csn closer to an
identity matrix (less correlation among sources in Sn).

This model in (12) generalizes the MAXVAR and SUM-
CORR model of Sn = un v⊤

n + Zn in (11), where our model
allows the effective rank of Sn to be greater than 1.

In order to have full control over simulation of SCVs, we
define a model analogous to (12) on the covariances Csn :

Csn = αnQnQ
⊤
n + (1− αn)IK , 1 ≤ n ≤ N, (13)

where IK ∈ RK×K is the identity matrix (covariance of Zn),
Qn ∈ RK×Rn is a matrix where rows of Qn are random
unit norm Gaussian distributed vectors (thus Qn Q⊤

n is a
random rank Rn correlation matrix), and αn is a value in
[0 1] determining the signal to noise ratio (SNR) of the SCV.
By this model, we can generate a SCV following the low rank
model in (12) by directly specifying its covariance in (13).

We also test algorithm performance in the event that
SCVs are not exactly uncorrelated. We introduce SCV cross-
correlation by simulating all Sn together concurrently : S
≜ [(S1)

⊤, . . . , (SN )⊤]⊤ ∈ RNK×T (mean 0 ∈ RNK ,
covariance Cs ∈ RNK×NK). This allows us to directly specify
SCV cross-correlation via the SCV cross-covariance Cs. Here,
values in “off-blocks” (pairwise cross-covariances between
SCVs) can now be varied in average value of their magnitudes,
which we denote as “SCV cross-corr” γ. SCVs become more
correlated as γ increases, with γ = 0 indicating uncorrelated
SCVs. This model better represents real-world SCVs which
are typically correlated, such as with fMRI data.

There are a number of different variables in generating the
underlying SCVs that affects performance of the algorithms.
These variables include the number of SCVs N , the number
of samples T , the number of the datasets K, the effective
rank of the SCVs Rn, the SNR within SCVs (represented
by αn), and the degree of SCV cross-correlation (represented
by γ). For the following experiments, we study the effect of
varying all of these variables except for N and T , since all
algorithms consistently perform worse with increasing N and
decreasing T . For further simplicity, we specify each SCV’s
αn to be distinct and equidistant within [0.8 0.5], to represent
SCVs with both high and low source correlation. Therefore,
we study the performance of the algorithms with respect to
the number of the datasets K, the effective rank of the SCVs
Rn, and the degree of SCV cross-correlation (via γ). Each
simulation concerns changing one variable while keeping the
others fixed to either small or large values.

Unless otherwise specified, in all simulations we fix N =
4, K = 10, and T = 10000. All SCVs have Csn specified ac-
cording to (13), with αn = [0.8 0.7 0.6 0.5] respectively for the
4 SCVs, and Rn the same for all SCVs. Cs is specified such
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that SCV covariances equal Csn , and the average magnitude of
pairwise SCV cross-covariances equals γ. All SCVs are then
generated concurrently from a multivariate Gaussian random
vector S (mean 0 ∈ RNK , covariance Cs ∈ RNK×NK).
Sources are then distributed to their corresponding datasets
S[k], then mixed according to X[k] = A[k] S[k] with values in
A[k] drawn from the standard Gaussian distribution.

Later, we also test performance with noisy observations:
X[k] = η A[k] S[k] + (1−η) N[k], where N[k] is standardized
Gaussian noise, and η ∈ [0 1] is a normalized measure of
dataset SNR. We implement η = 1 (noiseless X[k]) for all
earlier experiments except when later testing the effect of η.

Fig. 4 plots the algorithms’ CPU time performances with
varying the number of SCVs N and the number of datasets K.
We first note that SUMCORR and ACCM are among the least
expensive JBSS algorithms, with comparable time costs. Other
MCCA algorithms have considerably higher costs (in order of
MAXVAR, MINVAR, GENVAR, and SSQCOR), and IVA-G
has the highest cost. JBSS-SOS has the second highest cost
for small N , but is comparable to MCCA algorithms for very
large N . Both plots were observed using Rn = 2, γ = 0.0,
and η = 1, however we note that across all experiments, each
algorithm’s time was observed to primarily only depend on the
dimensions N and K, and less on the statistics of the data.

Fig. 5 plots the algorithms’ joint-ISI performances with
respect to K. IVA-G is consistently the most accurate of
these algorithms. ACCM is generally second to fourth most
accurate (most to third most accurate orthogonally constrained
algorithm), often competing closely with SSQCOR and JBSS-
SOS. Given uncorrelated SCVs (γ = 0.0) in (a) and (b), or-
thogonally constrained algorithms such as ACCM. SSQCOR,
and JBSS-SOS are nearly able to match IVA-G’s performance.
SUMCORR and MAXVAR perform nearly identically in all
cases here, except for (c) where SUMCORR performs worse.
Performance of GENVAR in (a) and (b) is difficult to ascertain:
intuitively when SCVs have Rn < K, then the smallest K-Rn

eigenvalues of SCV covariances are expected to describe SCV
noise. Thus, GENVAR may perform well when Rn = K and
SCVs are uncorrelated as in (b) where K = 10, but otherwise
GENVAR may not be a dependable MCCA algorithm. MIN-
VAR is consistently among the worst performing algorithms.
Finally, with γ = 0.4 in (c) and (d), ACCM significantly
outperforms all MCCA algorithms, and outperforms JBSS-
SOS in (d) for Rn = 10, indicating a relatively high-quality
orthogonally constrained solution.

Fig. 6 plots the algorithms’ joint-ISI performances with

Fig. 4. CPU time (seconds) w.r.t. varying number of sources
N (fixing K=10) and number of datasets K (fixing N=4).

respect to varying the effective rank of all SCVs Rn. As in
Fig. 5, we see that IVA-G is the most accurate algorithm, that
ACCM is second to fourth most accurate (closely competing
with SSQCOR and JBSS-SOS), and that SUMCORR and
MAXVAR perform nearly identically to each other. SUM-
CORR and MAXVAR also perform worse with larger Rn,
likely attributed to their generative model in (11) assuming Rn

= 1. GENVAR performs comparatively well in (a) given the
SCVs are close to full effective rank (Rn = K), but otherwise
performs poorly. Finally, we note that ACCM significantly
outperforms all other orthogonally constrained algorithms in
(d) when γ, K, and Rn are large, representing data with
a higher level of complexity in inter-SCV and intra-SCV
correlation (often observed with real-world data). We do not
include CPU time plots with respect to increasing Rn, since
changes in time were not significant across algorithms, except
for IVA-G where time was significantly higher for Rn = 1 and
nearly constant for all other Rn.

Fig. 7 plots the algorithms’ joint-ISI performances with
respect to varying the average of absolute values in pairwise
SCV cross-covariances ("SCV cross-corr") γ. SCVs become
more correlated as γ increases, corresponding to a significantly
worse performance for orthogonally constrained methods. As
IVA-G does not constrain the W[k] to be orthogonal, IVA-G
significantly outperforms when γ is higher. As in Fig. 5 and 6,
we note that ACCM generally the most to third most accurate
orthogonally constrained algorithm. Additionally, Fig. 5, 6,
and 7 all demonstrate that performance difference between
ACCM and the other orthogonally constrained algorithms
increases significantly when γ, Rn and K are large. Other
similarities to previous figures are that GENVAR performs
comparatively well here in (b) given that Rn = K (see K =
10), and that MAXVAR and SUMCORR perform nearly iden-
tically to each other. We also note that MAXVAR and SUM-
CORR are among the worst performing MCCA algorithms ob-
served in these simulated conditions. Regarding performance
of SUMCORR, this may be due to the fact that the SUMCORR
solution is estimated from the N principal eigenvectors of Ĉx

as mentioned in Section V.B. . With correlated SCVs, principal
eigenvectors of Cs are farther from block diagonal, leading to
worse estimation. In contrast, ACCM selects N eigenvectors
that are close as possible to “block diagonal", which better
ensures that the N different SCVs are identified, leading to
better performance given correlated SCVs. We observed that
changes in time with varying γ were not significant across
algorithms, except for IVA-G where time slightly increased as
γ increased.

Fig. 8 plots the algorithms’ joint-ISI performances with
respect to varying the SNR η, with η ∈ [0 1], and Gaussian
noise added by X[k] = η A[k] S[k] + (1 − η) N[k]. If we
were to observe as T → ∞, adding noise this way can be
seen as “shrinking” values in the data covariance Ĉx, which
tends Ĉx closer to an identity matrix as η → 0, resulting
in unidentifiable sources for all algorithms. An interesting
note is that IVA-G is the best performing algorithm with
high SNR η, but is among the worst performing for low η.
The orthogonally constrained algorithms appear to perform
relatively better for very low SNR; this may be due to the
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Fig. 5. Joint-ISI performance w.r.t. varying number of datasets K, while fixing SCV effective rank Rn and aaaa
a “SCV cross-corr” γ. (a) Rn = 2, γ = 0.0 . (b) Rn = 10, γ = 0.0 . (c) Rn = 2, γ = 0.4 . (d) Rn = 10, γ = 0.4 .

Fig. 6. Joint-ISI performance w.r.t. varying effective rank of the SCVs Rn, while fixing “SCV cross-corr” γ and num-
aaaaaaa ber of datasets K. (a) K = 10, γ = 0.0 . (b) K = 100, γ = 0.0 . (c) K = 10, γ = 0.4 . (d) K = 100, γ = 0.4 .

Fig. 7. Joint-ISI performance w.r.t. varying the average of absolute values in pairwise SCV cross-covariances
("SCV cross-corr") γ, while fixing SCV effective rank Rn and number of datasets K. aaaaaaa
(a) Rn = 2, K = 10 . (b) Rn = 10, K = 10 . (c) Rn = 2, K = 100 . (d) Rn = 10, K = 100 .

Fig. 8. Joint-ISI performance w.r.t. varying normalized dataset SNR η, while fixing SCV effective rank Rn and aaaa
a “SCV cross-corr” γ. (a) Rn = 2, γ = 0.0 . (b) Rn = 10, γ = 0.0 . (c) Rn = 2, γ = 0.4 . (d) Rn = 10, γ = 0.4 .

constraint’s reduction of the solution space (effectively half as
many parameters to estimate) being useful when the data is
especially noisy. Otherwise, all other conclusions noted from
the previous figures were also observed here. ACCM is among
the best performing orthogonally constrained algorithms, and
ACCM performs relatively well for very low SNR.

Next, we study the performance of the JBSS algorithms for
fMRI analysis in the context of a hybrid data experiment.

B. fMRI hybrid experiment

One common application of JBSS is for analyzing medical
imaging datasets, particularly with functional magnetic reso-
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nance imaging data (fMRI) [4], [6]–[8]. There are several ways
of applying JBSS to fMRI data, but for our experiments we
apply JBSS to the data introduced in [34], openly available
at https://coins.trendscenter.org. Having fMRI source compo-
nents previously extracted from this dataset, we use these
sources in a hybrid experiment to generate hybrid data. This
allows us to scale the data to a very large number of datasets,
while also allowing us to know the ground truth and thus
directly infer the estimation performance of the algorithms.

A total of K = 200 datasets are generated over N = 20
SCVs, wherein each SCV is generated from linear mixtures
of fMRI source components combined with additive Gaussian
noise. The SCV generative model is given the same as in
(12), with Vn ∈ RRn×T as the low rank fMRI components
spanning Sn, Un ∈ RK×Rn as the weights of the components
within each s

[k]
n , and Zn ∈ RK×T as the noise matrix.

Each SCV is given an effective rank Rn between 2 and 10,
for which Rn fMRI components Vn ∈ RRn×T are assigned
to that SCV. We introduce various levels of correlation across
the SCVs by specifically introducing correlation across the
different Vn. Analogous to what is done in Section VI.A
where we define the average magnitude of correlation between
SCVs γ, here we define the magnitude of correlation between
the SCVs’ respective fMRI components Vn.

To introduce this correlation across the Vn, we first specify
a matrix H ≜ [(V1)

⊤, . . . , (VN )⊤]⊤ ∈ RRH×T as the vertical
concatenation of the Vn, with RH ≜

∑N
n=1 Rn, and ĈH =

1
T−1 HH⊤ ∈ RRH×RH as the desired cross covariance matrix
among all Vn. Correlation between any two Vn is introduced
by specifying the pairwise cross covariances Θ̂(m,n) ≜ 1

T−1

Vm V⊤
n ∈ RRm×Rn . For each pair of SCVs, all values of the

corresponding Θ̂m,n are made to equal a value β(m,n) drawn
randomly from the uniform distribution in [0 0.4], and all
Θ̂n,n are specified as matrices where diagonal values equal 1
and off-diagonal values equal 0.5 . This ensures that the SCVs
are still separable from each other (maximally uncorrelated)
despite the SCVs being correlated.

With desired covariance ĈH defined by the pairwise cross
covariances Θ̂(m,n), we then obtain RH fMRI components
H with covariance ĈH by applying a coloring transform on
RH uncorrelated fMRI components H̃ ∈ RRH×T , given by
the coloring transform H = V̂H D̂

1
2

H H̃. Here V̂H are the
eigenvectors of desired covariance matrix ĈH, and D̂H the
respective eigenvalues. With correlated fMRI components thus
obtained by H, we thus distribute the different Vn to each
SCV, and then generate SCVs according to Sn = UnV

⊤
n +

Zn, with values in Un and Zn both drawn from the standard
Gaussian distribution. This produces data with different levels
of dependence amongst and within the SCVs, ultimately to be
reflective of the complex dependence relations exhibited for
fMRI and other medical imaging modalities.

Once SCVs are generated, sources within each SCV are
distributed to their corresponding datasets S[k], then mixed
according to X[k] = A[k] S[k] with values in A[k] drawn from
the standard Gaussian distribution. As done in the previous
simulations, we run the algorithms on the mixed sources to
estimate corresponding W[k]. We use joint-ISI to compare the

methods’ estimated W[k] to the true A[k]. Table 3 measures
joint-ISI (jISI) and CPU time of the JBSS methods averaged
over 50 random variations of A[k].

We first note here that IVA-G comes the closest to estimat-
ing the hybrid SCVs, consistent with IVA-G being considered
a “gold standard” of JBSS algorithms exploiting source corre-
lation across datasets. However, IVA-G is disproportionately
burdened by high computational costs, well above that of any
other algorithm. This is due to the fact that IVA-G has quartic
complexity with respect to K (effectively O(qNK4) in the
limit as K → ∞). It is notable that the the standard deviation
of CPU time for IVA-G is also extremely large, almost 2 hours
for this dataset, which is disproportionately large relative to
the mean time. In contrast, all other algorithms tested have
very small CPU time standard deviations relative to their mean
time. This suggests that the simpler cost functions of the other
algorithms provide a significant advantage with respect to the
relative consistency in their CPU times.

After IVA-G, ACCM is the second most accurate algorithm,
with joint-ISI comparable to IVA-G. It is notable that ACCM
can achieve a low joint-ISI despite being an orthogonally
constrained algorithm operating on correlated SCVs, where the
true A[k] are relatively far from orthogonal. However, unlike
IVA-G, ACCM is among the fastest algorithms, only beaten by
SUMCORR in that regard. Whereas IVA-G takes an average
of 15.8 hours to estimate the sources, ACCM takes an average
of only 1.7 minutes. The other algorithms either trade off
worse estimation for better time performance (SUMCORR),
or have both worse estimation and time performance (JBSS-
SOS, SSQCOR, and MAXVAR). This shows that ACCM
is among the fastest JBSS algorithms, yet ACCM can also
provide a reliable estimation performance compared with the
other efficient JBSS algorithms.

VII. DISCUSSION

These experiments demonstrate that while IVA-G is perhaps
the most statistically efficient algorithm exploiting source
correlation across datasets, it is also the most costly. Indeed
for ICA and IVA, the most statistically efficient algorithms are
costlier than simpler orthogonally constrained algorithms.

In the context of optimizing for both statistical efficiency
and time of the decomposition, it is beneficial to use a
faster orthogonally constrained algorithm as an initialization
to a more statistically efficient algorithm, such as IVA-G or
other variants of IVA. Orthogonally constrained algorithms
like ACCM provide at least an inexpensive initial guess that
is sufficiently close to the optimal solution, for which more

Table 3. mean ± std. of joint-ISI (jISI) and CPU time
(minutes) of JBSS algorithms in estimating the fMRI sources,
averaged over 50 random mixtures. SUMCORR, MINVAR,
and GENVAR are excluded due to poorer jISI performances.

IVA-G ACCM JBSS-SOS SSQCOR MAXVAR

jISI 0.01
± 8e−5

0.04
± 9e−12

0.07
± 1e−3

0.08
± 7e−3

0.10
± 2e−15

time 947.3
± 118

1.7
± 2e−2

26.3
± 5.2

5.6
± 2e−1

8.6
± 5e−1
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statistically efficient algorithms can refine upon. We note that
ACCM alone is a quality option if the SCVs are close to
uncorrelated or if speed is an important concern.

VIII. CONCLUSION

This paper introduces an efficient analytic solution to JBSS,
derived from the eigendecomposition of the observed data’s
covariance matrix. Based on assumption that the SCVs are
uncorrelated, the proposed ACCM algorithm exploits the block
diagonal nature of the SCV cross-covariance matrix to refor-
mulate the problem as solving a system of linear equations
from eigenvectors of the observed data’s covariance matrix.
Thereafter, identifiability conditions of ACCM are derived, and
an efficient scheme is proposed to estimate the solution.

The ACCM algorithm is compared with other JBSS algo-
rithms exploiting source correlation across datasets, including
the MCCA algorithms, a comparable variant of GJD (JBSS-
SOS), and IVA-G. Simulations varying the statistics of the data
demonstrate that ACCM is among the most statistically and
computationally efficient of the tested algorithms. Performance
is then demonstrated on fMRI data in a hybrid experiment,
which reiterates these strengths of ACCM.

Finally, we note that performing the ACCM algorithm
alone is perhaps most useful when speed is a concern, and a
reasonably accurate solution is desired in a very small amount
of time. Otherwise, ACCM can be used to initialize a more
statistically efficient algorithm such as IVA-G. This initializa-
tion is expected to lead to an overall JBSS decomposition that
is both statistically and computationally efficient.
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