EXISTENTIAL CLOSEDNESS AND THE STRUCTURE
OF BIMODULES OF 1I;, FACTORS

ADRIAN IOANA AND HUI TAN

ABSTRACT. We prove that if a separable Iy factor M is existentially closed, then every M-bimodule
is weakly contained in the trivial M-bimodule, L2 (M), and, equivalently, every normal completely
positive map on M is a pointwise 2-norm limit of maps of the form = — Zle a;xa;, for some
k € N and (a,-)le C M. This provides the first examples of non-hyperfinite separable I1; factors M
with the latter properties. We also obtain new characterizations of M-bimodules which are weakly
contained in the trivial or coarse M-bimodule and of relative amenability inside M. Additionally,
we give an operator algebraic presentation of the proof of the existence of existentially closed II;
factors. While existentially closed II; factors have property Gamma, by adapting this proof we
construct non-Gamma II; factors which are existentially closed in every weakly coarse extension.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

In this paper, motivated by the notion of existentially closed II; factors in continuous model theory,
we investigate the structure of bimodules of I1; factors. The model theoretic study of II; factors was
initiated by Farah, Hart and Sherman in [FHS11] (see [GH22] for a recent survey). Existentially
closed II; factors were first considered in [GHS12,FGHS13| and have since been studied in [GHS12,
FGHS13, Gol8, AGKE20, GH21, CDI22a, CDI22b, GJKEP23|, while bimodules of II; factors were
studied from the perspective of model theory in [GHS18|. Existentially closed II; factors were
shown to be McDuff in [GHS12] and to only have approximately inner automorphisms in [FGHS13,
Proposition 3.1]. The original, model theoretic definition of existentially closed II; factors involves
existential formulae, see [FGHS13, Definition 1.1]. In this paper, we will restrict to separable
I1; factors and work with the following equivalent operator algebraic definition (see, e.g., [GH21,
Remarks 3.2] and the comments following [GH22, Lemma 5.2]).

Definition 1.1. If M C N are separable II; factors, we say that M is existentially closed in N if
there is a *-homomorphism 7 : N — MY, for a free ultrafilter & on N, such that the restriction of
7 to M is the diagonal embedding of M into MY. A separable II; factor M is called existentially
closed if it is existentially closed in any separable II; factor N containing it.

Our first main result shows that being existentially closed has strong consequences to the structure
of bimodules and completely positive maps of a II; factor.

Theorem A. Consider the following conditions for a separable Il factor M.

(1) M is existentially closed.

(2) Every M-bimodule H satisfies H C L2(MY), for some ultrafilter U on a set I. Moreover, if
‘H is separable, then we can take I = N.

(3) Every M-bimodule H belongs to the closure of L?(M), in the Fell topology.

(4) Every M-bimodule H is weakly contained in L*(M).
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(5) For every normal, completely positive map ® : M — M, there exists a sequence (®,) C Py
such that li_)m |Pn(z) — @(x)||2 = 0, for every x € M. Moreover, if ® is subunital and
n o0

subtracial, then we can take (®,) C Spr.

Then (1) = (2) = (3) = (4) & (5), for every separable II; factor M.

Here, we denote by Pjs the set of maps ® : M — M of the form ®(z) = Zle a’za;, for some
(a;)¥_, € M, and by Sy the set of maps ® : M — M of the form ®(z) = Zle alza;, for some
(ai)¥_, € M with Zle aja; < 1 and Zle a;a; < 1. Every ® € Py is normal and completely
positive, and every ® € Sy is normal, subunital, subtracial and completely positive. For the other
terminology used in the statement of Theorem A, we refer to Section 2.

Before commenting on the proof of Theorem A, let us highlight that it leads to a new phenomenon
for I1; factors. Let A be the family of separable II; factors M which satisfy the equivalent conditions
(4) and (5) from Theorem A. If M is a separable 1I; factor, then every M-bimodule weakly contains
the coarse bimodule, L?(M) ® L%(M) (see [Po86, Proposition 2.3.2]). On the other hand, there
exists a (unique up to weak equivalence) separable M-bimodule, denoted Hpax, which weakly
contains every M-bimodule. Class A consists of II; factors M for which Hpyax = LZ(M ). If Ris
the hyperfinite II; factor [MvN43], then any two R-bimodules are weakly equivalent (see [Po86,
Proposition 3.1.4]), and therefore R € A. Also, A is closed under amplifications and inductive
limits, and thus we have M®R € A, for every M € A (see Proposition 2.6). Theorem A provides
the first examples of non-hyperfinite separable II; factors M € A. In fact, it implies that A
contains uncountably many non-isomorphic such II; factors, since there are uncountably many
non-isomorphic separable existentially closed II; factors (see [FGHS13, Corollary 1.3]).

To prove that (1) implies (2) in Theorem A, we use Shlyakhtenko’s M-valued semicircular systems
[Sh97], see Section 3 for the definition. This construction, which associates a tracial von Neumann
algebra I'(M,H)"” containing M to any symmetric M-bimodule H, allows us to realize every M-
bimodule as a sub-bimodule of L?(N), for a tracial von Neumann algebra N containing M. The
proofs of the implications (2) = (3) = (4) are immediate, and moreover show that these implications
hold for every fixed M-bimodule H.

Remark 1.2. We do not know if conditions (2)-(5) in Theorem A are equivalent for an arbitrary
separable II; factor M. If M satisfies (2) or (3), then M must have property Gamma. Indeed,
Connes’ spectral gap theorem [Co75] implies that if the M-bimodule L*(M) @ L?(M) belongs to
the closure of LQ(M ), then M has property Gamma, see [Po86, Theorem 3.3.1] and Lemma 2.1.
However, we do not know if the equivalent conditions (4) and (5) imply property Gamma.

If a separable II; factor M satisfies conditions (4) and (5) (i.e., M € A in the above notation) but
fails property Gamma, then M must have property (T) in the sense of [Co80,CJ83]. In particular,
the free group factors L(F,), for n > 2, do not belong to .4, which answers a question asked by
Jesse Peterson. To justify our claim, let H be an M-bimodule which weakly contains L2(M).
Since M satisfies (4), H is weakly contained in L2(M). Since M does not have property Gamma,
[BMO19, Proposition 3.2] shows that any M-bimodule which is weakly equivalent to L*(M) must
contain L?(M). This implies that 7 must contain L?(M) and thus M has property (T).

Remark 1.3. Partially addressing the question posed in Remark 1.2 in the first version of the
paper, Amine Marrakchi proved that conditions (2)-(4) are equivalent for every separable II; factor
M with property Gamma. More precisely, [Ma23, Corollary 3.9] shows that if M has Gamma, then
for every M-bimodule H we have H C L*(MY) if and only if H belongs to the closure of L2(M)
and if and only if H is weakly contained in L?(M). Since any separable II; factor satisfying (3)
must have property Gamma, it follows that (2) < (3), for arbitrary separable II; factors M.
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Let B C A be the family of separable 11 factors M which satisfy the equivalent conditions (2)
and (3) from Theorem A. Then the previous paragraph implies that B consists of all M € A with
property Gamma. By Remark 1.2, if M € A\ B (and thus M does not have Gamma), then M has
property (T). It is an open question whether there are Iy factors M € A with property (T).

Another natural question is whether conditions (1) and (2) from Theorem A are equivalent. Our
next result shows that (2) is satisfied by the hyperfinite II; factor R. By [FGHS13, Corollary 2.2],
R is existentially closed if and only if the Connes Embedding Problem (CEP) has a positive answer.
A negative answer to the CEP has been announced in the preprint [JNVWY20].

Corollary B. Let R be the hyperfinite II; factor. Then every R-bimodule H satisfies H C L?(RY),
for some ultrafilter U on a set I. Moreover, if H is separable, then we can take I = N.

Corollary B is a consequence of the following result on (approximate) embeddings of Shlyakhtenko’s
M-valued semicircular systems [Sh97]. It can be alternatively deduced by using that R satisfies
condition (4) from Theorem A and that conditions (2) and (4) are equivalent for II; factors with
property Gamma by [Ma23, Corollary 3.9].

Theorem C. Let (M, 1) be a tracial von Neumann algebra and H, K be two symmetric M -bimodules
such that H is weakly contained in K. Then there exists a trace preserving x-homomorphism

m:D(M,H)" — (D(M,K @ 25)" 4,

for some ultrafilter U on a set I and a set S, whose restriction to M is the diagonal embedding of
M into (T(M,K @ (28)")4. Moreover, if M and H are separable, then we can take I = S = N.

Theorem C is of independent interest. In addition to Corollary B, Theorem C and its proof lead to
characterizations of weak containment in the trivial or coarse bimodule and of relative amenability
for inclusions, in the sense of Ozawa and Popa [OPO07].

Corollary D. Let (M, 7) be a separable tracial von Neumann algebra, H a separable M -bimodule,
P,Q C M wvon Neumann subalgebras, and U a free ultrafilter on N. Denote M = M®L(Fy),
M =M xL(Fs), and M = M =g (QRL(Z)). Then the following hold:

(1) H is weakly contained in L2(M) if and only if H C L2(]\/4\”).

(2) H is weakly contained in L>(M) @ L2(M) if and only if H C LQ(MU) o LA (MY).

(8) P is amenable relative to Q inside M if and only if there exists x € P’ N MY such that
Eyu(z) =0 and Eju(x*z) = 1.

(4) The M -bimodule 1L*(M) ®¢ L*(M) is weakly contained in L2(M) if and only if there exists

a *-homomorphism 7 : M — MY whose restriction to M is the diagonal embedding of M.

Remark 1.4. Using a method from [Ha84,IV14], Marrakchi showed that if an M-bimodule H is
weakly contained in L2(M), then H C L2((M®L(Z))), see [Ma23, Theorem 2.1]. This improves
part (1) of Corollary D. We also note that by [Ma23, Theorem 3.3] the M-bimodule L?(M)®qL?(M)
is weakly contained in L2(M) (i.e., Q is weakly bicentralized in M, in the sense of [BMO19,1M19])
if and only if (Q' N MY)' N M = Q.

Although existential closedness is a strong property, it was noted in [GHS12, FGHS13] that the
class of existentially closed separable II; factors is embedding universal in the following sense:

Theorem E ([GHS12,FGHS13)). Any separable I, factor My is contained in an ezistentially
closed separable 11 factor M.
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Theorem E was noted in [FGHS13] as a consequence of results from [Us08]. Its proof consists of
verifying the model-theoretic definition of existential closedness given in [FGHS13, Definition 1.1].
In Section 4, we give an operator algebraic presentation of the proof of Theorem E, in which we
instead directly verify Definition 1.1. We hope that this will both make the class of existentially
closed II; factors more accessible to the operator algebra community and allow to prove new results.
In fact, by adapting our operator algebraic presentation of the proof of Theorem E, we obtain the
following new result:

Theorem F. Any separable Il factor My is contained in a non-Gamma separable I} factor M
which satisfies the following: M is existentially closed in any I factor N D M such that the
M -bimodule L2(N) © L?(M) is weakly contained in L?(M) @ L*(M).

By [GHS12], all existentially closed II; factors are McDuff and hence have property Gamma. Conse-
quently, a non-Gamma II; factor M cannot be existentially closed in all larger 11 factors. Moreover,
as we will see below, M cannot even be existentially closed in all larger non-Gamma II; factors.

These facts suggest the following question: how “close” can a non-Gamma separable I1; factor M
be to being existentially closed?” To make this question more precise, denote by &s the family
of separable II; factors N O M in which M is existentially closed. We would like to find M for
which &)/ is as large as possible. If N € &y, then since M € N € MY and M is non-Gamma, we
get that M’ N N = C1 and moreover that M’ N N¥ = C1. Hence, N is also non-Gamma. As a
consequence, £y is a proper subset of the set of all non-Gamma separable 1I; factors which contain
M. In particular, this shows that there is no non-Gamma II; factor which is existentially closed
in all non-Gamma II; factors containing it. Indeed, the separable II; factor P = (M®L(Z)) x L(Z)
is non-Gamma and contains M, but does not belong to s since M’ N P # C1. More generally,
if N € &y, then any II; subfactor Q C M with Q' N MY = C1, must satisfy that Q' N NY = CI1.
This altogether shows that for any non-Gamma II; factor M, inclusions of the form M C N, with
N € &y, are significantly constrained.

Nevertheless, Theorem F shows that there exist non-Gamma I1; factors M for which &y, is a large
family which contains all IT; factors N D M such that () the M-bimodule L?(N)SL?(M) is weakly
contained in L*(M) @ L2(M).

Remark 1.5. Condition (%) in Theorem F is optimal in the following sense: there are non-Gamma
II; factors M such that (%) holds for every N € £y. This fact follows from two recent papers.

First, a result of Amine Marrakchi (see [Ma23, Corollary 3.5]) implies that if M = L(T"), where I' is a
countable icc group which is biexact in the sense of Ozawa, then the M-bimodule L?(MY)SL?(M) is
weakly contained in L?(M)®L?(M). In Lemma 4.6, we give a direct proof of this when M = L(F,,),
for n > 2. For such a I factor M, condition (%) is satisfied by any N € &y since the M-bimodule
L?(N) © L*(M) is contained in L2(M¥) © L2(M) and thus weakly contained in L2(M) @ L?(M).

Secondly, Changying Ding and Jesse Peterson define in [DP23] a notion of biexactness for arbitrary
von Neumann algebras M. They prove that, for tracial von Neumann algebras M, the condition
L2(MY) © L2 (M) Cyeak L2(M) ® L2(M) is equivalent to the W*AO property defined in [Ca22,
Definition 2.1] and is implied by biexactnenss, see [DP23, Theorems 7.19 and 7.20].

Our last main result provides a spectral gap characterization of Haagerup’s approximation property
for separable II; factors, paralleling the characterization of property (T) obtained in [Ta22]. A
separable II; factor M is said to have Haagerup’s (approzimation) property [Ch83, CJ83] if there
exists a sequence of completely positive maps ®,, : M — M such that ||®,(x) — z||2 — 0, for every
x € M, and ®, is subtracial (7 o ®, < 7) and its extension to L?(M) is a compact operator, for
every n. By [BF07,00T15], Haagerup’s property for M is equivalent to the existence of a strictly
mixing M-bimodule (see Definition 2.7 for this notion) that weakly contains L?(M).
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Theorem G. A separable I factor M has Haagerup’s property if and only if there exists a
separable II factor M which contains M such that the M-bimodule L?(M) © L*(M) is strictly
mizing and M' N MY ¢ MY, for a free ultrafilter U on N.

Organization of the paper. Besides the introduction, this paper consists of three other sections.
Sections 2 and 3 are devoted to von Neumann algebras preliminaries and M-valued semicircular
systems, respectively. In Section 4, we present the proofs of the results stated in the introduction.

Acknowledgements. We are very grateful to Changying Ding, Daniel Drimbe, Ilijas Farah, Isaac
Goldbring, David Jekel, Srivatsav Kunnawalkam Elayavalli, Amine Marrakchi, Jesse Peterson, and
Sorin Popa for many comments and conversations. The first named author would also like to thank
Stuart White for his kind hospitality at the University of Oxford where this work was completed.
We are also grateful to the referee for their careful reading of the article which led to an improved
exposition.

2. PRELIMINARIES

In this section, we record some terminology and basic results concerning tracial von Neumann
algebras, bimodules and completely positive maps. We refer to [AP18] for more information.

2.1. Tracial von Neumann algebras. A tracial von Neumann algebra is a pair (M, 7) consisting
of a von Neumann algebra M and a distinguished normal tracial state 7 : M — C. In order to
emphasize the dependence of 7 on M, we will sometimes write 757 instead of 7. We assume that all
inclusions of tracial von Neumann algebras N C M are trace preserving, i.e., satisfy 7y = (TM)| N-

We let ||z]|2 = 7(z*z)'/2, for every & € M, and denote by L2(M) the Hilbert space obtained by
taking the closure of M with respect to || - ||2. For an ultrafilter &/ on a set I, we denote by MY the
tracial ultraproduct von Neumann algebra endowed with the trace given by 74(z) = lim;_¢ 7(2;),
for every = (z;) € MY. For a von Neumann subalgebra N C M, we denote by M © N the set
{z € M | En(z) = 0}, where Ey : M — N denotes the conditional expectation onto N.

2.2. Bimodules. Let (M, 7) be a tracial von Neumann algebra. An M -bimodule is a Hilbert
space ‘H equipped with two normal *-homomorphisms m : M — B(H) and 7o : M°? — B(H)
whose images commute. We write z{y = 71 (x)m2(y°P)¢ for £ € H and z,y € M, and define a
*-homomorphism 7y : M ®a; MP — B(H) by letting 7y (2 ® y°P) = mi(x)m2(y°P). Examples of
bimodules include the trivial M-bimodule L2(M), with the left and right actions given by extending
the left and right multiplication actions of M on itself, and the coarse M-bimodule L?(M) @ L?(M)
with the left and right actions given by z(¢ ® n)y = z€ @ ny, for all z,y € M and &, 7 € L*(M).

Given two M-bimodules H, IC, we say that H is contained in K and write H C K if there is an
M-bimodular isometry T : H — K. A basis of neighborhoods for the Fell topology on the space of
all M-bimodules is given by V(H, F, S, ), where H is an M-bimodule, F' C M,S C H are finite
sets and € > 0. Here, V(H, F, S, ¢) is defined as the set of all M-bimodules K for which we can find
amap T : S — K such that

(zT(§)y, T(n)) — (x€y,n)| < €, for every z,y € F, and §,n € S.

If H, K are M-bimodules, we say that H is weakly contained in K and write H Cyear K if H belongs
to the closure of K®> := K ® ¢*(N) in the Fell topology.

We next recall [Po86, Theorem 3.3.1], which gives a bimodule characterization of property Gamma
for separable II; factors (cf. [BMO19, Proposition 3.2]). For the reader’s convenience, we include
a brief proof.
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Lemma 2.1 ([Po86]). A separable II; factor M has property Gamma if and only if L2(M)®L?(M)
belongs to the closure of L2(M), in the Fell topology.

Proof. Denote &1 = 1®0,& =001 € L2(M) @ L2(M).

First, assume that M has property Gamma. Let u, € M be a sequence of trace zero unitaries
such that ||upz — zuy,||2 — 0, for every z € M. We claim that (u,) admits a subsequence which
converges weakly to 0. To find such a subsequence, let I be an ultrafilter on N and define a normal
linear functional ¢ : M — C by letting ¢(x) = T};ng{ T(zuy,), for every . € M. Let z = Eps(u), where

u = (up) € MY and Ej; is the conditional expectation from MY onto the diagonal copy of M.

Then ¢(x) = my(xu) = 7(x2), for every x € M. Since ¢(zy) = p(yx), for every z,y € M, and M

is a factor we get that z = 7(z)1 € C1. Since 7(z) = ¢(1) = 0, we get that p(z) = ling{ T(zu,) =0,
n—

for every « € M. This implies our claim.

After replacing (uy,) with its subsequence given by the above claim, we have that u, — 0, weakly.
Put & = 1 € L}(M) and &} = u,, € L*(M). Then we have lim,, (z&7'y, &) = (&Y, &;), for every
x,y € M and i,j € {1,2}. Thus, L>(M)®L*(M) = span(M¢& M) @span(ME& M) lies in the closure
of L2(M).

Conversely, assume that L?(M)@L%(M) belongs to the closure of L%(M) in the Fell topology. Then
we can find nets (£}), (€8) C L*(M) such that limy, (2€l'y, &) = (2&y, &), for every x,y € M and
i,7 € {1,2}. Suppose by contradiction that M does not have property Gamma. Since z§; = &
and ||&|l2 = 1, we get that ||z —&lx|l2 — 0 and [|]*]|2 — 1, for every € M and i € {1,2}. Since
M does not have property Gamma, [Co75, Theorem 2.1] implies the existence of a net (a]') C T =
{z € C | |z| = 1} such that || — a?1]|s — 0, for every i € {1,2}. Thus, [(¢},&5) — afaf| — 0.
Since (€7, &8) — (£1,&) = 0 and (affaf) C T, this is a contradiction. O

Definition 2.2. A symmetric M-bimodule (H,J) is an M-bimodule H equipped with an anti-
unitary involution J : H — H such that J(xly) = y*(J§)x*, for every x,y € M and & € H.

Remark 2.3. Let H be an M-bimodule. Denote by H the conjugate Hilbert space endowed with
the M-bimodule structure 28y = y*{x* (see [Po86, 1.3.7]). Then K := HOH is a symmetric Hilbert
M-bimodule, as witnessed by the anti-unitary involution J : K — K given by J({ ®7) =n D &.

Let ‘H be an M-bimodule. A vector £ € H is called tracial if (x€,§) = ({x,&) = 7(x), for every
x € M, and subtracial if (x£,&),((x, &) < 7(x), for every x € M. A vector £ € H is called left
(respectively, right) bounded if there C' > 0 such that ||{x| < C||x||2 (respectively, ||z€]| < C||z|2)
for every x € M. A vector is bounded if it is left and right bounded. Note that the subspace of
bounded vectors is dense in H (see [AP18], Proposition 8.4.4). If £ € H is left bounded, we denote
by T¢ : L?(M) — H the bounded operator uniquely determined by setting Te(x) = &x for every
z € M. If §,n € H are left bounded vectors, then ({,n)n = T{ T € B(L2(M)) belongs to M. Note
that

(nz,&) = 7({§, m)mx), for every x € M.

For M-bimodules H, K, we denote by H®ys K their Connes tensor product (see [Co94], V, Appendix
B). Let H° C H be the subspace of left bounded vectors. Then H ®j; K is obtained by separation
and completion from the algebraic tensor product H® ® K endowed with the sesquilinear form

(E1@m, & @n2) = (1, (§1,§2) mm2)-

If (M,7),(N,T) are tracial von Neumann algebras, then an M-N-bimodule is any Hilbert space
equipped with normal x-homomorphisms of M and N°P which have commuting images. If H is an
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M-N-bimodule and K is an N-P-bimodule, let H° be the subspace of H of left N-bounded vectors.
Then the Connes tensor product H® n kC, obtained by separation and completion from the algebraic
tensor product H° ® K endowed with the sesquilinear form (& ® 11, & ® m2) = (1, (€1, &) Nn2), is
an M-P-bimodule. For more information on bimodules we refer the reader to [AP18, Chapter 13].

Remark 2.4. Let H, K be M-bimodules, H° C H the subspace of left bounded vectors and °kC C K
the subspace of right bounded vectors. Let £ € H? and (1;) C K be a net with ||n;]| — 0. Then
€ & mll = 1, €, )l < 1€, Eharl|V2Il]| — 0. Simmilaxly, if (€5)  H is a net with |&]| > 0
and n € °K, then ||&; ® n|| — 0. These observations imply that if H! c H° and K! C °K are dense
subspaces, then the span of {{ ®n | & € HY,n € K'} is dense in H @/ K.

The following lemma is well-known, and its proof follows a standard recipe (see for instance the
proof of [AP18, Lemma 13.3.11]), but we include details here for completeness.

Lemma 2.5. Let (M, 1) be a tracial von Neumann algebra, H,K be Hilbert bimodules, £ € H a
subtracial vector and (&,) C K a net with lim, (x€,y, &) = (x€y, &), for every x,y € M. Then there
is a net of subtracial vectors (n,) € KP such that lim, (xn,y,n,) = (x€y, £), for every x,y € M

Proof. We follow the proof of [[V14, Theorem]. Define normal positive linear functionals w, w’, wy,, w!,
on M by letting w(z) = (z&,§), W' (x) = (€x,&), wn(x) = (&, &) and W, (z) = (Eux, &y), for ev-
ery x € M and every n. Then w, — w and w] — &', in the weak topology on M,. Since the
weak and norm closures of convex subsets of M, coincide, after replacing (w,,w,,) by a convex
combination of (wy,,w!,) and the vectors (&) by vectors in K®>°| we can ensure that in addition to
limy, (z&,y, &) = (2€y, &), for every x,y € M, we have ||w, — w| — 0 and ||w], — «'|| = 0.

Write w = 7(-T),w’ = 7(-T"),w, = 7(-T,) and !, = 7(-T7), where T,T',T,, T, € L}(M) are

positive elements. Then 0 < T,7" < 1 as £ is subtracial and &, := |1, — T|1 + [|T), = T"||1 — 0.
Let p, and p/, be the spectral projections of T;, and T}, corresponding to the interval [0,1 + /2,].

We claim that there is ng such that

(2.1) (1 = pn)énll < 2¥&, and ||&,(1 — pl,)|| < 2e,, for every n > ng.

If g, = 1—pn, then ¢, Thqn > (14 /2n)qn and ¢, Tq, < qn, hence g, (T, —T)qn > \/Engn. This gives
\/5nHQnH1 < ||Tn = T[1 < &y, hence [[gnll1 < V/€n and lanTollt < | Tn — Tt + llgnll < en + Veén-

Thus, ||(1 —pn)Thll1 = llgnTnll1 < 2/, and therefore |[(1 — pp)énll = V(1 = pr)Thll1 < 2¢/E,, for
every n large enough. This and a similar inequality prove the claim.

Let ¢, = (1 + \/a)_l/2 and define 1, = c,pn&np),. Since p,Tnp, < (1 + /ey), for every x € M,
we have that ||zn,| < enllzpnénll = env/7T(@*2pnTpn) < /7(z*x) = ||z|]2 and similarly that
Innx|| < ||z|l2. Thus, n, is subtracial. Since ||&, — || < (1 — ¢n) + [|&n — Prénp), || and lim, ¢, = 1,
(2.1) implies that limy, [|§, — 7| = 0. Thus, lim, (znyy, nn) = lim, (x,y, &) = (x€y, ), for every
x,y € M, which finishes the proof of the lemma. O

Proposition 2.6. Let A be the class of separable II) factors M for which L2(M) weakly contains
every M-bimodule. Let M and M,, n € N, be separable I} factors. Then the following hold:

(1) If M is existentially closed, then M € A.
(2) The hyperfinite II; factor R € A.
(3) If M € A, then M' € A for every t > 0.

(4) If My, C Myy1 and M, € A, for every n € N, then Unen, O € A.
(5) If M € A, then MR € A.



8 A.IOANA AND H. TAN

Proof. (1) and (2) follow from Theorem A and [Po86, Proposition 2.3.2.] (see also Corollary B),
respectively.

(3) Assume that M € A and denote N = M*, for some ¢t > 0. Let d > 1/t be a integer, and p be
a projection in My(C)®N with (Tr ®7)(p) = 1/t, where Tr is the standard (non-normalized) trace
on My4(C) and 7 denote the trace of N. Then M ~ N/t ~ p(M4(C)®N)p. Since the isomorphism
class of N/t only depends on (Tr®7)(p), we can take p = diag(py,--- ,pq) where pi,--- ,pq are
projections in N. Given an N-bimodule H, we consider the M-bimodule K = p(M;(C) ® H)p with
the natural left and right p(M4(C)® N )p-actions. More specifically,

v boy=(0 > ik & 15)ij),
1<k,l<n
for all z = (zi;), y = (¥i,;) € P(Ma(C)®N)p, £ = (&,5) € K, where z; j,v;; € pilNpj, & j € pitp;.
To show that H is weakly contained in L2(N ), it suffices to find, given F' C N,S C H finite and
e>0,amap T : S — L*(N)®°, such that |(z&x’,n) — (xT(&)2’, T(n))| < ¢, for every z,2' € F
and £,n € S. If (Tr®7)(p) > 1, we can assume that p; = 1, and the conclusion follows from

applying the fact that K is weakly contained in L?(M) as an M-bimodule to e ®x e @ €
M = p(My(C)®N)p, and €11 ® §,e11 @n € K = p(My(C) ® H)p, for z,2' € F and §,n € S.

If (Tr ®7)(p) < 1, then we can assume that p € N and M = pNp. Let ) ¢; = 1 be a finite partition
of 1 by projections in N such that 7(¢;) < 7(p). For each i, let v; be a partial isometry in N such
that v;v] = ¢; and vv; < p. Let £, € S. Then we have

(w€a',m) = Y ((awra) (@) (@' @), awna) = Y ((viwo) (vF€vy) (0 a"v), vinor).

k7i7j7l k,’i’j?l

Since pHp is weakly contained in L2(M) = L?(pNp) as an M-bimodule, for some €i .k, > 0 with

> &ijkt < €, there exists T;;(€) € L2(pNp)®>® for every (i,j) and & € S, such that for every
,7,k,l
(i,4,k,1) we have

[{(viav) (v] §v) (v a"v), vimor) — ((vRzvi) T () (v52"vr), Tea(m)] < €3k, Vo, 2" € F € m € S.
Note that ((vizvi) T ;(§)(vjz"v), Tea(n)) = (x(vili; (§)v])a", viThp(n)v]). Let T(§) = 3o viTi;(€)v]
L2(N)®> for ¢ € S. Then we have "

[(z€a’,m) — (2T()2", T (n))]
<Y ) (vi &) (03" v), vimuy) — (e (0T (§)v)a!, veTea(n))of)| < e
0,5,k
for every £,n € S, which finishes the proof of (3).

(4) Let M = TJWHWOT and E, be the conditional expectation from M onto M,,, for every n € N.
Let H be an M-bimodule. In order to show that H is weakly contained in L2(M), it suffices to
prove that for every F C M,S C H finite and € > 0 we can find a map T : S — L?(M)®>® such
that [(x€y, &) — (2T(§)y, T(§))| < €, for every z,y € F and £ € S. To this end, we may moreover
assume that ||z] < 1, for every x € F, and that S consists of subtracial vectors.

Let n € N be such that ||E,(z) — z||2 < €/6, for every z € F. Then [(zfy, &) — (E,(2)£En(v), &)| <
/3, for every z,y € F and ¢ € S. Since M,, € A, H is weakly contained in L?(M,) as an
My,-bimodule. If £ € S, then since £ is a subtracial vector, Lemma 2.5 gives a subtracial vector
T(¢) € L%(M,,)®> such that |(E,(2)¢E, (), &) — (En(2)T(E)E,(y), T(£))] < £/3, for every x,y € F.
Consider the usual embedding L2(M,)®> C L?(M)®>® and view L?(M)®>® as an M-bimodule.
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Then T(¢) € L?(M,)®>® C L?(M)®> is still a subtracial vector. This is because for every z €
M, we have that (zT'(£),T(&)) = (En, (2)T(£),T(€)) < 7(En,(z)) = 7(x) and similarly that
(T(€)z, T(E)) = (T(§)En, (2), T(§)) < 7(Ep, (2)) = ().

Since ||Ey(z) —z||2 < /6, for every z € F, we get that [(E, ()T (§)En(y), T(§)) — (zT(&)y, T(£))] <
/3, for every z,y € F. Altogether, we get that [(x€y,n) — (zT(&)y,T(n))| < €, for every z,y € F
and £ € S, which finishes the proof of (4).

(5) Write R = UpenMan ((C)WOT, for the usual inclusions Mn (C) C Mynt1(C), for every n € N.

Then MR = Upen(M@Man (C))WOT, and the conclusion follows from (3) and (4). O

2.3. Completely positive maps. Let (M, 7) be a tracial von Neumann algebra. We now recall
the well-known correspondence between M-bimodules H and normal, completely positive maps on
M. Let £ € H be a bounded vector. Then ®¢(x) = T¢xTe belongs to M, for every x € M. The

map ®¢ : M — M, called a coefficient of H, is normal, completely positive and satisfies
T(P¢(x)y) = (2€y, §), for every x,y € M.

Moreover, ®¢ extends to a bounded operator ®¢ : L*(M) — L*(M). Let C > 0 such that
[z, 62l < C|lz[l2, for every x € M. Then |7(®¢(x)y)| = (28, §y*)| < [la€|l &yl < C?[|zl|2 [lyll2,
for every @,y € M. Thus, we get that ||D¢(z)|]2 < C?||z|2, for every x € M.

Definition 2.7. Let H be an M-bimodule.

(1) We call H a mixzing M-bimodule if for every sequence w, € U(M) with u, — 0 weakly
we have nh_{]go (SuprM,HmHSl [{un&z,m)|) = nh—>Holo (SpreM,HzHgl |(2€un,m)]) = 0, for every
E&neH.

(2) Denote by Humix the set of bounded vectors & € H such that & € B(L*(M)) is compact.
We call ‘H a strictly mizing M-bimodule if the span of MH ;M is dense in H.

The notions of mixing and strictly mixing bimodules were introduced respectively in [PS09, Def-
inition 2.3] and [OOT15, Definition 4] (see also [BF07, Definition 3.1]). These two notions have
recently been shown to be equivalent in [DKEP22, Theorem 5.10].

For future reference we note that if § € H is subtracial, then ®; is subunital and subtracial.

Conversely, given a normal, completely positive map ® : M — M, there is a Hilbert M-bimodule
Ha together with a vector £ € He such that span(MEeM) = He and (2€ey, o) = 7(P(x)y), for
every x,y € M. Assume that ® is symmetric, i.e., 7(®(x)y) = 7(z®(y)), for every z,y € M. Then
Ha is a symmetric M-bimodule as witnessed by the anti-unitary involution J : He — He given by
J(xé€ay) = y*€px™*. Moreover, £ is a bounded vector, J(£p) = o, and

(2.2) (o, x€ay) v = P(x)y, for every z,y € M.

To justify (2.2), let a = (3, 2€ay)ar- The definition of a gives that 7(az) = (x€syz, £s), for every
z € M. Since (x€pyz,£p) = T(P(x)yz), it follows that a = ®(z)y, as claimed.

The assignment ® — Hg is a bijection between normal, completely positive maps and cyclic M-
bimodules H which are generated by a bounded vector &, i.e., satisfy H = span(MEM). Moreover,
if # is an M-bimodule and § € H is a bounded vector, then the M-bimodules Hg, and span(MEM)
are isomorphic.

Lemma 2.8. Let (M,7) be a tracial von Neumann algebra, ® : M — M a normal completely
positive map, and K an M-bimodule. Then He Cweax K if and only if there is a net (®;) of
coefficients of K9 such that ||®;(x) — ®(x)||2 — 0, for every x € M.
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Moreover, if ® is subunital, subtracial and He Cweax K, then there is a net (®;) of subunital,
subtracial coefficients of KP® such that ||®;(z) — ®(z)||2 — 0, for every x € M. Furthermore, in
this case, if ® is symmetric, then we can assume that ®; is symmetric, for every i.

Finally, assume that M is separable. Then we may take (®;) to be a sequence in the above assertions.

Proof. First, we prove the “if” part of the main assertion. Assume that (®;) is a net of coefficients of
K% so that ||®;(x) —®(x)||2 — 0, for every z € M. Let & € K such that 7(®;(z)y) = (x&y, &).
Since lim; 7(®;(z)y) = 7(®(z)y), we conclude that (z€sy,Es) = lim;(x&y,&;), for every z,y € M.
This implies that He Cweax K-

Now, assume that ® is subunital, subtracial and He Cweax K. Then £ € Ho is a subtracial vector.
By Lemma 2.5 we find a net of subtracial vectors (n;) C K% with (x€sy, o) = lim;(znsy, n;), for
every x,y € M. Thus, if ®; := ®,,, then 7(®(x)y) = lim; 7(P;(x)y), for every x,y € M. Since ®; is
completely positive, ®;(x)*®;(x) < ®;(z*x) and thus ||®;(z)|| < ||z, for every x € M and every 1.
This implies that ®;(z) — ®(x), in the weak topology on L?(M), for every 2 € M. Since the set of
subunital, subtracial coefficients of P> is a convex set, after taking convex combinations of (®;),
the moreover assertion follows. Assume additionally that ® is symmetric. Since 7; is subtracial,
there is a completely positive map ®; : M — M such that (zny,n;) = 7(x®(y)), for every x € M
and every i. Let W; = (®; + ®;) : M — M. Then ¥;(z) — ®(z), in the weak topology on
L2(M), for every x € M. Since ¥, is symmetric for every i and the set of symmetric, subunital,
subtracial coefficients of KX is a convex set, the furthermore assertion follows by taking convex
combinations of (U;).

Next, we prove the “only if” part of the main assertion. Let ® : M — M be a normal completely
positive map such that Hge Cyeak KC. Let T € L1(M) be a positive element such that 70® = 7(-T).
For n € N, let T, € M such that |T,, — T|l1 < (8n?)~!. Let p, € M be a projection such that
puTpn € M and ||p, — 1]]2 < (8n2(||Ty|| + 1))~Y/2. Define ¥,, : M — M by ¥, (z) = ®(ppxpn).
Let x € (M);. Since |[|®(z)]3 = 7(®(2)*®(x)) < 7(®(z*x)) = 7(2*2T), ||przpn — 2| < 2, and
[Pnapn — zll2 < 2||pn — 1|[2, we get that

1n(x) = @(2)[3 < 7((prxpn — )" (Papn — 2)T) < AT = Ty + 4| Talllpn — L3 < ()7

Let ¢, := max{||¥,(1)|, ||lpnTpn||} > 0. Since 70 ¥,, = 7(-(pTpn)), we get that c, 1V, is a
subunital, subtracial completely positive map. By applying the moreover assertion to c,,'W¥,, and
using that sup,e(a), [|¥n(z) — ®(2)[l2 < 1/n, we find a net (®;) of coefficients of £ such that
|®i(x) — @(z)||2 — O, for every x € M. Specifically, let I be set of pairs i = (F,n), where ' C M
is a finite set and n € N, ordered by i < i = (F’,n’) if and only if F C F’ and n < n’. Then for
every i = (F,n) € I, we can find a coefficient ®; of K> such that [|¢; W, (z) — ®;(z)|]2 < 1/(ncy),
for every # € F. Then ®; = ¢, ®; is a coefficient of K®>® such that ||¥,(z) — ®;(z)|]2 < 1/n, for
every x € F. Then [|®(z) — ®;(x)||2 < 2/n, for every x € F, and our assertion follows.

Finally, assume that M is separable. Let ®, (®;) be subunital, subtracial completely positive maps
on M such that ||®;(z) —P(x)||2 — 0, for every x € M. Since || ®(x)||2 < ||z]|2 and [|®;(z)||2 < [|z]|2,
we get that ||®;(z) — (z)||2 < 2||x||2, for every x € M. It follows that we can find a subsequence
(®;,,) of (®;) such that ||®;, (x) — ®(z)||]2 — O, for every x € M. This implies that (®;) can be
taken to be a sequence in the assertions of Lemma 2.8. O

2.4. An elementary lemma on homomorphisms to ultrapowers. We conclude this section
by recording some terminology and a lemma that will be used in the proofs of Theorems E and F.
Let S be a set. A x-monomial in variables X, s € S, is an expression of the form Y1Y5 - - - Y}, where
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keNandY; € {Xs, X |se S} forevery 1 <i < k. A x-polynomial p in variables X,,s € S, is
a complex linear combination of *-monomials. If A is a x-algebra, we denote by p(xs,s € S) the
evaluation of p at some {z, | s € S} C A.

Lemma 2.9. Let (M,7y) and (N,7n) be tracial von Neumann algebras, {zs | s € S} C (N);
a generating set of N, and U be a cofinal ultrafilter on a directed set I. For every i € I, let
{zis | s €S}t C (M) such that lim; Tar(p(zis, s € S)) = Tn(p(xs, s € S)), for every x-monomial p
in variables X,,s € S. Then there is a trace preserving *-homomorphism 7 : N — MY such that
w(xs) = (i), for every s € S.

Proof. Let A = {p(xs,s € S) | p *-polynomial in X,,s € S} and define a map 7 : A — MY by
letting w(p(xs,s € S)) = (p(xis, s € S)), for every s-polynomial p in X, s € S.

Then 7 is well-defined. If pi(xs, s € S) = pa(zs, s € S), for *-polynomials py, pe on X, s € S, then
p(zs,s € S) =0, with p = p; — pa. Thus, we have that

hHl ||p($7;7578 S S) 27 — hm TM(p*p(xi7875 c S))1/2 — TN(p*p($s, = S))1/2 —0.
i—U i—U

Hence, lim;_yy/ ||p1(2is,s € S) — p2(xis, s € S)||2,7, =0, so w(p1(zs,s € S)) = 7(p2(xs,s € S)) in
MY Since 7 is a trace preserving *-homomorphism on A and A is SOT-dense in N, 7 extends to a
trace preserving *-homomorphism 7 : N — MY. By definition, 7(zs) = (x;), for every s € S. O

3. SHLYAKHTENKO’S M-VALUED SEMICIRCULAR SYSTEMS

In [Sh97], Shlyakhtenko introduced a construction which generalizes Voiculescu’s free Gaussian
functor ([Vo83]) and associates to every von Neumann algebra M and symmetric M-bimodule H,
a von Neumann algebra which contains M. We recall this construction here in the case when M is
tracial, following closely [KV15, Section 3].

Definition 3.1. Let (M, 7) be a tracial von Neumann algebra, (H,.J) a symmetric M-bimodule
and denote by H" C H the set of bounded vectors. Define the Fock space associated to H by

Fu(H) =L2(M) @ (é”ﬂ@’ﬁz).

n=1
For every ¢ € HO, we define £(¢) € B(Far(H)) by letting £(€)(x) = £x and
UE) (6 @ -+ ®Bnrén) = EOn &1 ®up -+ Dy &, for every z € M and &, , &, € H.
Then £(£)*(z) = 0 and

O (&1 @um - @ €n) = (£, &) & O -+ Our &y, for every z € M and &y, -+, &, € HO.

For ¢ € HY with J(£) = &, we denote s(&) = £(£) + £(€)*. Since £(&)*0(€) = (£,&)ar, we get that
1) = 1€, &)arll'/? and thus [|s(&)] < 2[[{€, &) all™/>.

Shlyakhtenko’s M-valued semicircular system associated to H is then defined as
"
POM,H)" = (M U{s() | € € HO,J(€) = €}) © B(Fu(H)).

Let Q € Fypr(H) be the vacuum unit vector given by Q = 1 € L?(M). Then 7 : T'(M,H)" — C
given by 7(x) = (2, Q) is a faithful normal tracial state (see [Sh97] and [KV15, Proposition 3.2])
The map I'(M,H)" > 2 +— 2Q € Fu(H) extends to a unitary operator L2(T(M,H)") — Far(H).
Moreover, this map is an M-bimodule isomorphism. Clearly, the semicircular operators s(&) are
orthogonal to M, i.e., satisfy Eps(s(€)) = 0.
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Lemma 3.2. In the above notation, let Hi C H° be a dense subspace such that MH{M C Hy
and J(H1) = Hi. Then for every n € HO with J(n) = n, there exists a net (n,) C H1 such that
J(n) = N, for every n, ||n, —n|| = 0, sup, ||s(nn)]| < oo and s(n,) — s(n) in the SOT.

In the proof of Lemma 3.2 we will use the following fact: if £ € H satisfies J(§) = &, then for every
z € M we have (z¢,§) = (J(£), J(z€)) = (£, &z™) = (€z,§).

Proof. Let n € H° such that J(n) =n. If a = (n,n)y € M, then the above fact gives that for every
x € M we have (xn,n) = (nz,n) = 7(va). After rescaling 7, we may assume that |7}, < 1. Thus,
In <land 0 <a<1.

Let (&,) C Hi be a sequence such that ||&,| < 1, for every n, and ||, —n|| — 0. Since J(n) = n, we

get that [[J(&n) — nll = [[§n — nl] = 0 and thus [[(&, + J(§n))/2 — Il = 0. As (& + J(&n))/2 € Ha,
after replacing &, by (£, + J(£,))/2 € H1, we may also assume that J(§,) = &,, for every n.

For every n, let a, = (£, &n) - Since J(&,) = &,, by using the fact stated just before this proof
we get that (x€,,&,) = (§ux, &) = T(zay), for every z € M. Since ||n|| < 1 and ||&,|| < 1, for
every x € M we have that |7(z(a, — a))| = [(x&n, &) — (zn,n)| < 2||z| ||§, — n||- This implies that
llan, — all1 < 2||&, — n|| and since [|&, — n|| — 0, we conclude that ||a, — al|s — 0.

Next, for every n, define s, = f(a,), where

1 ifo<t<i1
t) = =t=0
f®) {ti ift>1

Let n, = spénsn € MH1M C Hy. Then J(n,) = nn, 0y is subtracial and thus ||s(n,)|| < 2, for
every n. We claim that ||n, — &,|| — 0. To this end, note that

[ = &nll < 1[(1 = sn)&nll + [[sn&n (1 = sp)l| < [[(1 = sn)&nll + [[6n(1 — sn)]|-
Let p, be the spectral projection of a, corresponding to the interval [1,00). Since we have that
L,00)(8)(t — 1) > (1 — f(t))*t, we get that (1 — s,)%an < pn(a, — 1) and therefore
(1 - Sn)anQ =7((1- Sn)Zan)
7(pn(an — 1))
7(pn(an — a))

Han_aH17

(VAN VAN VAN

where we used that 7(p,a) < 7(pn) as 0 < a < 1. Similarly, ||&.(1 — s,)||? < |lan — al|1. Thus,
1 — &nll < 2|lan — aHi/Q. Since ||a, — al|l1 — 0, this implies our claim that ||n, — &,|| — 0. This
further implies that ||n, — n|| — 0. Thus, ||s(n,) — s(n)|l2 = ||m — nll = 0. As sup,, ||s(n.)]| < oo,
it follows that s(n,) — s(n) in the SOT. O

Lemma 3.3. In the above notation, let H' C H° be a dense subspace such that J(H') = H!. Then
DM HY = (MU{s() €€ 1T =¢})

Moreover, let {&}ier C HO be a family of vectors such that J(&;) = &;, for every i € I, and the span
of (ME&MYicr is dense in M. Then T(M,H)" = (M U{s(&) | i € 1})"

Proof. The main assertion follows by applying Lemma 3.2 to H; = MH'M.

We give an alternative proof of the main assertion which does not rely on Lemma 3.2. We let
K c Far(H) be the span of L2(M) U (Ups1{é1 ®m -+ @m &n | &1, 160 € H'}) and denote
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"
M = (M U{s) | EeHL I = 5}) . We claim that £ C M. To this end, for n > 1, denote

by K, € Fur(H) the span of L2(M) U (Ui<pentlsOm - Om & | &1, &k € H'}). Proceeding
by induction, assume that K, C MSQ, for n > 1. If £ &,---,&, € HY and J(¢) = &, then
E@m&E @M @mén = s(E)(E1@m- - @pm&n)— (€, §1) M (2@ - ®uén) € S(YMOQ+M(MQ) = MQ.
Since every 7 € H! can be written as n = ny +in2, where n; = (n+.J(1))/2 and 72 = (n—J(n))/(27)
satisfy J(n1) = n1 and J(n2) = 72, this proves the claim. Since H! is dense in H°, Remark 2.4
implies that K is dense Fjs(H). Using the claim, we deduce that M is dense in Fjy;(#H). Hence,
M is dense in L*(T'(M,H)") and therefore M = I'(M,H)". This proves the main assertion.

Let H2 C H° be the span of {M&M}ic;. Then J(H?) = H2 Thus, the main assertion implies

" "
that T'(M,H)" is equal to (MU {s(¢) | €€ H2, J(&) = 6}) . Denote N' = (MU {s(&) |7 € I}) .
Since {(z€) = xl(§), £(Ex) = £(&)x, and J(zéx*) = xJ(&)x*, for every x € M and € € H?, we get
that s(y&y*) = ys(&)y* € N, for every y € M and i € I. Note that {& € H? | J(&) = £} is equal
to the linear span of {v&w* + w&v* | v,w € M,i € I} and further that of {y&y* |y € M,i € I}.

Since s(& + &) = s(€1) + s(&2), for every &1, & € HO, we conclude that s(¢) € N, for every & € H?
with J(£) = £. Since N also contains M, we get that M =T'(M,H)". O

An ultrafilter on a directed set (I, <) is called cofinal if it contains {i € I | i > ig}, for every ig € I.
If (z;)ier C Cis a net such that lim; z; = x and U is a cofinal ultrafilter on I, then lim; ,;; z; = x. If
(M, ) is a tracial von Neumann algebra, then we say that a positive map ® : M — M is subunital
if ®(1) < 1. We now arrive at the main result of this section.

Lemma 3.4. Let (M, 7) be a tracial von Neumann algebra, ® : M — M a subunital, symmetric
completely positive map, and ®; : M — M, i € I, a net of subunital, symmetric completely positive
maps such that ||®;(z) — ®(x)||2 — 0, for every x € M. Let U be a cofinal ultrafilter on I. Then
there is a trace preserving x-homomorphism 7 : T'(M, He)" — [, T'(M, Ha,)" such that w5 = Idys
and 7(s(€a)) = (s(s,)). Moreover, Ho C L*([T,, T(M, He,)") © L*(MY), as an M-bimodule.

In order to prove this result, we first introduce a definition and then establish a lemma.

Definition 3.5. Let n € N. We define sets of formulas S; C --- C S, involving non-commuting
variables Xg, X1,---, X, belonging to an algebra and a function ¥ having the same algebra as
domain and range, as follows. Let S; = {1, Xo, X1} and define inductively for every 2 <1i < n:

Si = {XZ} UsSi—1 U {qu’(a)b | a,be Sl',l}.
For instance, Sz and S3 contain the formulas XoW (X)X, and X3¥(X2W(X1)Xy), respectively.
Given an algebra M, a function ® : M — M and an (n+ 1)-tuple x = (xq,z1,--- ,z,) € M"HL for

every formula f € S, we denote by f®(x) the element of M obtained by replacing Xo, X1,---, X,
with xg,z1,- -+ ,2x, and ¥ with ®.

Lemma 3.6. There exist {e(a) | a € Sp},{e(a1,b1, -+ ,ar,bx) | ai1,b1, -+ ,a5,bp € Sy} C Z,
for every 1 < k < n, such that the following holds. Let ® : M — M be a normal, symmetric
completely positive map, where (M, T) is a tracial von Neumann algebra. Consider the associated

M -bimodule (Hg,&s) and the von Neumann algebra T'(M,He)"” C B(Far(Hae)). Then for every

X = (20,21, ,Zn) € M"Y, the vector ,5(€p)Tn_1- - 115(80)20Q2 € Far(Ha) is equal to
dela)a®®)+Y > elao,an by, ak, by) af (x)(af (x)€ebT (%) @+ - @ (aff (x)€ab] (X))
a€Sy k=1ag,a1,b1,,

ay,br€Sn

In particular, T(zns(€p)Tn_1- - x15(a)T0) = Eaesn e(a) T(aq’(x)).
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Proof. Let x,a,b,c € M and n € ’Hg]c’, for m > 1. Then zs(s)(a) = x€spa and (2.2) implies that
25(8e) (boc @ 1) = 2&o ® bloc @ 1 + 2(§a, bac) M1 = 2&o ® bloc @ 1 + (x@(b)c)n.

The proof is now immediate by induction. O

Proof of Lemma 8.4. Let n € N and x = (xg, 21, ,2,) € M" L. Since ||®;(y) — ®(y)||2 — 0, for
every y € M, it follows that [a®(x) — a®(x)||2 — 0, for every a € S,,. By combining this fact with
Lemma 3.6, we conclude that

(3.1) lign T(zns(&a,)Tn—1" - 215(&s,)70) = T(xns(€a)Tn-1 - x15(&0)T0), Y0, 21, ,Tn € M.
Since ®; is subunital, ||s(s,)|| < 2, for every ¢ € I. This implies that

(3.2) (xns(&a,)Tn—1---x15(€a;)T0) € HI‘(M, Hao,)" Vao,z1,-++ 2y € M.
u

Since span(M &g M) is dense in He, Lemma 3.3 implies that the linear span of
{zns(&s)rn_1---z15(a)x0 | 0,21, ,2n € M,n € N}
is || - ||2 -dense in I'(M,Hg)"”. This fact, (3.1) and (3.2) together imply the existence of a trace
preserving *-homomorphism 7 : I'(M, Ha)” — [[,, T(M,Hs,)"” such that
T(zns(€a)Tn-1 - 215(§0)20) = (2ns(€o,)Tn—1 - 215(Ep,)T0)
and 7(x) = z, for every xg,x1, -+ ,xn,x € M. This finishes the proof of the main assertion.

Finally, since Epf(s(€s,;)) = 0, for every i € I, the definition of 7 implies that we have m(Ms(ée) M) C
[T, T(M, He,)" © MY. Since the M-bimodule span(M s(£p)M) is isomorphic to He, the moreover
assertion follows. O

4. PROOFS OF MAIN RESULTS

4.1. Proof of Theorem A. We will prove (1) = (2) in the case of existentially closed separable
II; factors M, and that (2) = (3) = (4) < (5), for general separable II; factors M.

(1) = (2) Assume that M is an existentially closed separable II; factor. By Remark 2.3, for the
purpose of proving (2), after replacing H with H @ H, we may assume H to be a symmetric M-
bimodule. Put N := I'(M,H)". Since M C N, we can find an embedding 7 : N — MY, for some
ultrafilter ¢ on a set I, whose restriction s is the diagonal embedding of M. Moreover, if H
is separable, then so is N, and we can take I = N. Then 7 extends to an embedding of Hilbert
M-bimodules L2(N) c L2(MY). Since H C L(N), part (1) follows.
(2) = (3) Assume that (2) holds. Let H be an M-bimodule. Then H C L%*(MY), for a free
ultrafilter ¢/ on a set I. Fix (fj)§:1 C H such that ||€]l2 < 1 for every 1 < j < k, a finite set
F C (M); and £ > 0. Then we can find n; € M“ such that ||n;[2 < 1 and ||§; —n;|2 < §, for every
1 < j < k. Then [(z&y,&) — (xny,nyr)| < €, for every 1 < j,j' < k and z,y € F. Represent
n; = (i), where n; ; € M, for every i € I,1 < j < k. Since (xn;y,n;) = 1in&<a:ni,jy,77i7j/>, there is
i—

1 € I such that

(&5, &50) — (xni gy, migr)| < e, for every z,y € F and 1 < j,5" < k.
This implies that H belongs to the closure of L#(M) in the Fell topology, thus proving (3).
(3) = (4) This implication is obvious.

(4) = (5) Assume that (4) holds. In order to prove (5), we first establish a claim. Let Py be the
set of coefficients of L(M)®> and Sy be the set of subunital, subtracial coefficients of L?(M)®.
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Claim 4.1. Let U € Py;. Then there ezists a sequence (Vy,) C Py such that

Tim (sup{[|¥(z) — W (@)]l2 | & € M, la]| < 1}) =0.
Moreover, if U € gM, then we can take (V) € Sy.

Proof of Claim 4.1. As ¥ € Py, we can find (ag)g2, C M such that Y 72 agay < C,> 727, ata, <
C, for some C' > 0, and ¥(z) = > 77, agzaj, for every x € M. For every n € N and = € M,
let W, () = > 3 agzay, and ¥™(z) = Y27 agzay. Then (¥,) C Pp. Moreover, if ¥ € Sur,
then we can take C' = 1 and thus we have (¥,,) C Sys. By [Po01, Lemma 1.1.2], for any normal
completely positive map ¢ : M — M we have ||p(z)]|2 < ||¢(1)]2, for every x € M with [|z|] < 1.
If n € N, then by using this fact and that U™ is normal and completely positive we deduce that

(4.1) V() = Uy (x)|2 = [T (z)]|2 < ||¥"™(1)]2, for every x € M with ||z| < 1.

Since Y ;2 T(aray) < C, we get 1i_)m T(P"(1)) = li_)m (X it i1 T(aray)) = 0. Since for every
neN, 0<U"(1) <O, we get that li_>m [[¥"(1)||2 = 0. Together with (4.1), the claim follows. [

Let ® : M — M be a normal completely positive map. Then (4) implies that Ho Cweak L2(M ).
By Lemma 2.8, there exists a sequence (®,) C Py such that li_>m |®p () — ®(z)]|2 = 0, for every
n o0

2 € M. By Claim 4.1, for every n € N, we can find ®, € Py such that ||®,(z) — ®(z)|s < 1/n,
for every x € M with ||z|| < 1. Then it is clear that lim [|®,(x) — ®(z)||2 = 0, for every x € M.
n—oo

Moreover, if ® is subunital, subtracial, then we can take (®,) C Sy by Lemma 2.8 and (®,,) C Sy
by Claim 4.1. This altogether proves (5).

(5) = (4) Assume that (5) holds. If H is an M-bimodule, then H = &, span(ME; M), for a family
of bounded vectors (§;) C H. Thus, in order to prove (4), it suffices to argue that any M-bimodule
of the form H = span(MEM), for some bounded vector ¢ € H, is weakly contained in L2(M).
We denote by ® := & : M — M the associated normal completely positive map. Then H is
isomorphic to Hg. Since (5) holds, we can find a sequence (®,,) of coefficients of L?(M)®> such
that ||®,,(z) — ®(x)||2 — 0, for every x € M. Thus, He Cyear L2(M) and so H Cyear L2(M). O

In preparation for the proofs of Theorem C, Corollary B and Corollary D, we recall from [Sh97] the
following result that allows to explicitly identify I'(M, H)"” for certain symmetric M-bimodules H:

Proposition 4.2 ([Sh97]). Let (M, 1) be a tracial von Neumann algebra. Then we have

(1) T(M,L3(M))" = M®L(Z).

(2) T(M,L3(M) ® L2(M))" = M * L(Z).

(3) If Q C M is a von Neumann subalgebra, then T'(M,L*(M)®qL*(M))" = M g (QRL(Z)).
(4) If (Hi)ier are symmetric M-bimodules and H = @,;c; Hi, then T'(M,H)" = sppie1T (M, H;)".

Proof. We have L2(M) = H.,., L*(M)®L*(M) = Hiq and L*(M)®qL*(M) = HE,, as M-bimodules,
where we consider the following normal, completely positive maps: 7: M - CC M,Id: M — M
and Eg : M — @ C M. Then (1), (2) and (3) follow from parts (a), (b) and (c) of [Sh97, Example
3.3], respectively. In turn, (4) follows from [Sh97, Proposition 2.18]. O

Next we prove Theorem C and then use it to deduce Corollary B.
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4.2. Proof of Theorem C. Let H, K be symmetric M-bimodules such that H Cyeax K. Let
(&)jes C H be a family of non-zero subtracial vectors such that denoting H; = span(ME;M),
we have H = @je g Hj. For j € J, consider the subunital, subtracial completely positive map
Qj:=®¢, : M — M. Then Hg; is isomorphic to H; and so He, Cyeak K. By Lemma 2.8, we can
find a net of subunital, subtracial coefficients (®; ;);e; of K9 such that lim; ||®; ;(z)—®,(z)||2 — 0,
for every x € M. Here, we can take I to be independent of j by taking it to be the set of pairs
(F,e), with F' C M finite and € > 0, ordered by (F,e) < (F’,¢’) if and only if F' C F' and € > ¢’
Specifically, for every i = (F,e) € I, let ®;; be any subunital, subtracial coefficient of £®>° such
that ||®; ;(z) — ®j(z)||2 < ¢, for every € F. If M is separable, we can take I = N. Let U be a
cofinal ultrafilter on I.

Since Hg, , C K, we have a natural trace preserving embedding I'(M, Hg, ;)" C T'(M,K%>®)".
By Lemma 3.4, we find a trace preserving #-homomorphism 7; : I'(M,H;)" — (D(M, KP)")U
whose restriction to M is the diagonal embedding of M. Note that if (M}, ;) es are tracial von
Neumann algebras containing (M, 7) such that 7 = i for every j € J, then we have a natural
)I/{

embedding *)7,e JM;” C (*nrjesM;)™. This implies the existence of a * -homomorphism

™ = *M7jeJ7Tj : *MJGJF(M, 7‘[]‘)” — *MyjeJ(F(M, ICEBOO)”)M C (*MyjeJP(M, ]C@OO)H)M

whose restriction to M is the diagonal embedding of M. By Proposition 4.2(4), we get that
sa1jes U (M, Hy)" = D(M,H)" and #pyje s D(M,KE®)" = T(M, @, L&) = T(M,K ® (3(5))",
where S = N x J. This proves the main assertion.

Finally, assume that M and H are separable. Since M is separable, we can take I = N. Since H is
separable, we can take J = N. Altogether, this implies that we can take I = S = N, proving the
moreover assertion. U

4.3. Proof of Corollary B. Let H be an R-bimodule. By Remark 2.3, after replacing H with
H & H, we may assume that H is symmetric. Then H C L*(TI'(R,H)"), as R-bimodules. Let K =
L%(R) ® L?(R). Then by Proposition 4.2(1), I'(R,K)"” = R+ L(Z). Further, applying Proposition
4.2(4) implies that T'(R, K ® £2(9))" = R * L(Fg), for every set S. Since R is hyperfinite, we have
that H Cyeax K. Theorem C thus provides a trace preserving x-homomorphism 7 : I'(R, H)" —
(R % L(Fg))¥ such that mpr = Idg, for a set S and a cofinal ultrafilter &/ on a set I. Thus,

L2(I'(R,H)") € L2((R * L(Fs))") and therefore
(4.2) H C L2((R* L(Fg))%), as R-bimodules.
To finish the proof, we will use the following fact (see [CP09]):

Fact 4.3. Let V; be an ultrafilter on a set I;, for all j € {1,2}. Let V;®V, be the ultrafilter on I1 x I
defined as follows: lim;, ;.\ v, @, f(i1,12) = limy, v, (limg, 4y, f(i1,72)), for every f € £2°(11 x Ia).
Then for every tracial von Neumann algebra (N, 7), we have a trace preserving #-isomorphism
NY1®Ve o (NVQ)VI given by z ((1'2'1,1'2)7?2612)1'16[17 for z = (xil,iQ)(i17i2)611><12 € Z00(11 X IQ,N)'

Let J be the collection of finite subsets T' C S ordered by inclusion, and V a cofinal ultrafilter
on J. Then the map R * L(Fs) > z = (EgiL@,)(%))Tes € [Iy,(R * L(Fr)) is a trace preserving
x-homomorphism. For every finite subset T' C S, view Fr as a subgroup of Fo,. By combining the
last two facts, we get a trace preserving *-homomorphism § : R * L(Fg) — (R * L(Fs))Y such that
dgp = Idg. Since L(F) is Connes embeddable, we can find a trace preserving *-homomorphism
p: RxL(Fs) — RV, with W a free ultrafilter on N. Since any embedding of R into R" is unitarily
conjugate to the diagonal embedding, we may assume that pjgr = Idg. Thus, PV (R*L(Fy))Y —

(R™)Y given by p¥((z)jes) = (p(z}));es is a trace preserving *-homomorphism.
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Define o := (pY 0d)” : (R*L(Fg))¥ — ((R")Y)!. Using Fact 4.3, we can view ¢ as trace preserving
+-homomorphism ¢ : (R = L(Fg))" — RY®V®W_ Moreover, it is immediate that oz = Id. In
particular, we derive that

(4.3) L2((R * L(Fg))¥) c L2(R4®Y®W)  as R-bimodules.

By combining (4.2) and (4.3), we conclude that H C L?(RY®VEW) as R-bimodules. This proves
the main assertion.

Finally, assume that H is separable. The moreover part of Theorem C implies that we can take
S =1 =N. Then J is countable. Thus, ¢,)V, W, and consequently I/ ® V ® W are ultrafilters on
countable sets. This implies the moreover assertion. O

We next use Theorem C and its proof to derive Corollary D.

4.4. Proof of Corollary D. By Remark 2.3, in order to prove (1) and (2), we may assume that
‘H is a symmetric M-bimodule.

(1) Assume that H is a symmetric M-bimodule with H Cyeak L2(M). By combining parts (1) and
(4) of Proposition 4.2 we get that ['(M, L2(M)®/2(N))" = M, where M = M&L(F..). By Theorem
C, there exists a trace preserving x-homomorphism 7 : T'(M,H)" — MY, where U is an ultrafilter
on N, such that 7jp; = Idp. This implies that % C L*(I'(M,H)") C L2(MY), as M-bimodules.

Conversely, if H C LQ(Z\//F/’ ), then the same argument as in the proof of the implication (2) = (3)
from Theorem A shows that H Cyeax L2(M) = L2(M) ® £>(N) and therefore H Cyeax L2(M).

(2) Assume that H is a symmetric M-bimodule with H Cyeax L?(M) ® L?(M). By combining
parts (2) and (4) of Proposition 4.2, we get that I'(M, (L*(M) ® L2(M)) ® *(N))" = M, where
M = M x L(Fy). By Theorem C, there exists a *-homomorphism 7 : T'(M,H)" — M such

that my, = Idys. This implies that H C L*(T'(M,H)") C LQ(MU), as M-bimodules. Moreover, a
close inspection of the proof of Theorem C (see the moreover assertion of Lemma 3.4) shows that

HC LQ(MM) o L2(MY), as desired.

Conversely, assume that H C L2(Mu) o LA (MY). We claim that H Cyear L2(M) © L2(M). To see

this, note that if e > 0 and £ € LQ(MM)GLZ(MU) satisfies ||£]|2 < 1, then we can find 7 € M emv
such that ||nl2 < 1 and ||¢ — 7|2 < e. Moreover, we can represent 7 = (1;), where 1; € M © M, for
every i¢. The claim now follows by repeating the same argument as in the proof of the implication
(2) = (3) from Theorem A.

On the other hand, we have L2(M)oL?(M) = (L?(M)®L*(M)) ® ¢%(N), and thus the claim allows
us to conclude that H Cyear L2(M) @ L2(M).

To prove (3) and (4), let K = L*(M) ®¢g L?(M) and recall that we defined M=M xQ (QRL(Z)).
Then M = T'(M,K)"” by Proposition 4.2(3).
(3) If P is amenable relative to @) inside M, by [PV11, Proposition 2.4] we find a net of subtracial

vectors (&,) C K such that we have limy, |[(&,, &) ar — 1)1 = 0 and lim,, ||y&, — &yl = 0, for every
y € P. Moreover, since M is separable, we can take (&,) to be a sequence.

Define z,, = s(&,) € M. Since ls(&)l < 2|[{€n, &n)arll < 2 and Epr(s(&,)) = 0, for every n, we get
that = = (x,) belongs to MY and Eyu(x) = 0. If Q = 1 € Fy(K) is the vacuum vector, then
(yxn — py)Q = y&, — &y and thus lim, [|yz, — zpyll2 = 0, for every y € P. This implies that
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z € P’ MY. Since (&, &)ar < 1, we get that [|[(€n, &a)ar — 12 < 201(&n, &) ar — 1]1772 and thus
1{€n, &y s — 1]|2 — 0. Note that for every y € M, we have

T(@peny) = 7(5(6n) " s(En)y) = (5(6n)"5(En) Y Q) = (Eny, En) = T((&ns En) 1Y)

Thus we have Eps(x}x,) = (§n, &n) i, from which we get that Eyu(z*x) = (Epr(z)zy,)) = 1. This
proves the only if assertion.

Conversely, assume that there exists z € P’ N MY such that Eyu(z) = 0 and Epu(z*z) = 1.
Then we can find a net (z,) C M & M such that sup ||z, < oo, lim,, |Eas(z%2,) — 1] = 0 and
limy, ||[yz, — zpyll2 = 0, for every y € P. This gives that 7(z}yx,2) = 7(yz), for every y € M
and z € P. Thus, the M-P-bimodule L?(M) is weakly contained in LQ(M) © L*(M). On the
other hand, [Io12, Lemma 2.10 (1)] gives that LQ(M) o L3(M) = L*(M) ®q L, as M-bimodules,
for a @Q-M-bimodule £. By combining the last two facts we derive that M-P-bimodule L?(M) is
weakly contained in L?(M) ®¢ £. By applying [PV11, Proposition 2.4, (4) = (1)], we get that the
M-Q-bimodule L2(M) is left P-amenable, in the sense of [PV11, Definition 2.3]. As explained in
the paragraph following [PV11, Definition 2.3], this gives that P is amenable relative to @ inside
M.

(4) Assume that there exists a *-homomorphism 7 : M — MY whose restriction to M is the diagonal

embedding of M. Then LQ(M) C LQ(J\/W), as M-bimodules. If u € L(Z) C M is a Haar unitary,
then the M-bimodule span(MwuM) is isomorphic to L?(M)®qL?(M). This follows by noticing that
T(zuyu*) = 7(Eq(z)y), for every x,y € M, and so span(MuM) = Hg, = L?(M)®qL%*(M). Thus,
L2(M)®q L2(M) C L2(MY), which implies that L2(M) ®o L2(M) Cuyear L2(M) = L2(M) @ £2(N).
Hence L*(M) ®@¢ L*(M) Cyeak L?(M), as claimed.

Conversely, assume that K Cyeax L2(M). Since T'(M,K)"” = M, T(M,L*(M) ® ¢2(N))" = M and
K = Hg,, by combining Lemma 2.8 and Lemma 3.4 we deduce the existence of a trace preserving

x-homomorphism 7 : M — MY such that i = Idas O
4.5. Proof of Theorem E. Let My be a separable II; factor. We will construct an existentially
closed separable II; factor M O Mjy. To this end, let X = {x | k € N} C (My)1 be a sequence
which generates My and U be a free ultrafilter on N. The proof relies on the following claim:

Claim 4.4. There exists a separable IIy factor M1 O My such that the following holds: for any
separable tracial von Neumann algebra N O My, there is an embedding of N into MY whose
restriction to My s the diagonal embedding.

Proof of Claim 4.4. We denote by F the set of pairs (N,Y), where N is a separable tracial von
Neumann algebra which contains My and ¥ = X U {y; | K € N} C (N); is a sequence which
generates N and contains X. For m € N, we denote by P,, the set of *-monomials in the variables
{X1,, X, Y1, , Yo} of degree at most m. For (N,Y) € F, m € N and £ > 0, we denote by
Uin,yy(m,e) the set of (N,Y) € F such that writing ¥ = X U {g | k € N} we have:

Z |77 (P(X1, ooy Ty U1y ooy Um)) — TN(P(X 1, ooy Ty Y1,y - Um)) | < €.

PEPm
Consider the topology on F which has {U(yy)(m,€)}mene>0 as a neighborhood basis of any
(N,Y) € F. Note that the elements of F can be viewed as representatives of non-commutative
laws on infinitely many variables; the topology we defined on F is precisely the weak*-topology on
the space of laws. Since F is separable in this topology, it admits a dense sequence {(Ny, Yy)}nen.
Define My = *pgy nenNn. Write Yy, = X U {yn i | k € N}, for every n € N.
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Let N be a separable tracial von Neumann algebra which contains M. Choose Y C (N); such
that (NV,Y) € F. Then (N,Y) is the limit of a subsequence (Ny,,Yy,) of (Ny,Y,). Thus, we have

Tan (p(wh "'7xm7ynl,17 "'7ynl,’m)) — TN(p($17 oy Ty Y1, 7ym))7 as | — o0,
for every m € N and *-monomial p in X1, ..., X, Y1, ..., Y.

Since UpenY, C Mj, Lemma 2.9 gives a trace preserving *-homomorphism 7 : N — MY such
that T(p(Z1, .o, Ty Y1, s Ym)) = (D(T15 ooy Ty Yy 15 o> Ynyom) ), for every m € N and s-monomial p
in Xy,..., X;n, Y1, ..., Yo, In particular, w(xy) = xp, for every k € N, and thus the restriction of 7
to My is the diagonal embedding of My into M¥. Moreover, since this property still holds if we
replace My by M; x L(Z), we can assume that M is a II; factor. Here we are using the fact that
P x1L(Z) is a II; factor for any non-trivial tracial von Neumann algebra P. O

By Claim 4.4, we can inductively construct an increasing sequence of II; factors M,, D My, n > 1,
such that for every n > 0 and any separable tracial von Neumann algebra N D M,, there is an
embedding of N into MTZ:’ ' 1 whose restriction to M, is the diagonal embedding.

Let M = (U,.en Mn)”. Then M D My is a separable II; factor. We claim that M is existentially
closed. Let N be a II; factor containing M. Let {z; | k € N} C (M); and {t,, | m € N} C (N); be
sequences which generate M and N, respectively. We may assume that zp € My, for every k € N.

Let n € N and denote by P the von Neumann subalgebra of N generated by M and {t1,--- ,t,}.
Since M,, C M C P and P is separable there is a trace preserving *-homomorphism 7 : P — MY 1
such that w(z) = =z, for every © € M,. In particular, m(zx) = 2, for every 1 < k < n. Write
(tm) = (tim), where ¢, € (Mp41)1, for every I € N and 1 < m < n. Since 7 is trace preserving,
for every x-polynomial p in variables Zy, T;,,1 < k,m < n, we have

lliHLl{ v (P(2k, timy 1 < kym < n)) = 78 (p(2h, tim, L < kym < n)).
%

This implies that we can find [ € N such that denoting wu, ., := t;,,, for every 1 < m < n, we have

1
|TM(p(Zkaun,ma 1<km< n)) - TN(p(Zkvtm’ 1<km< n))| < ﬁv

for every x-monomial p of degree < n in variables Zy, X;,,, 1 < k,m < n.

Then lim,, 77 (p(2k; Un,m, k, m € N)) = 7n(p(2k, tm, k, m € N)), for every *-monomial p in variables
Zi, Xm,k,m € N. Since the set {z | k € N} U{t,,, | m € N} generates N, Lemma 2.9 gives a
trace preserving *-homomorphism p : N — MV such that p(z;) = 2 and p(tm) = (unm), for
every k,m € N. Since the set {z; | k£ € N} generates M, the restriction of p to M is the diagonal
embedding into MY. Thus, M is existentially closed in N, which finishes the proof. O

4.6. Proof of Theorem F. Our next goal is to prove Theorem F. We first establish the following
lemma.

Lemma 4.5. Let (M, 11), (M2, 72) be tracial von Neumann algebras with a common von Neumann
subalgebra (B, 7). Assume that L2(M;) © L2(B) Cyeak L?(B) ® L*(B), as B-bimodules, for every
i€ {1,2}. Then L*(M; xp M) © L?(B) Cyeax L*(B) ® L%(B), as B-bimodules.

Proof. If two B-bimodules H; and Hs are weakly contained in L?(B)®L?(B), then so is Hi ®p Ha.
Indeed, the Connes tensor product preserves weak containment of bimodules (see [AP18, Exercise
13.15]) and the B-bimodule (L?(B) ® L?(B)) ®p (L*(B) ® L*(B)) is a multiple of L?(B) ® L*(B).
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Since the B-bimodule L?(M; g My) © L?(B) decomposes as
D D e’ B)es - op (M, oL (B)

n=liy g, in€{1,2}
i1 F£G0FFin
(see [Vo83] and [Po91, Section 3]), the conclusion follows. O

Proof of Theorem F. Let My be a separable II; factor. After replacing My by My * L(Z), we may
assume that M is non-Gamma. We will construct a non-Gamma separable I1; factor M containing

My such that M is existentially closed in any II; factor N which contains M and satisfies that
L?(N) & L3(M) Cyeax L2(M) ® L?(M), as M-bimodules. Let U be a free ultrafilter on N.

The rest of the proof follows closely the proof of Theorem E, whose notation we keep here. Let G
be the subset of F consisting of (N,Y) € F such that L?(N) © L?(Mjy) Cyear L2(Mp) @ L2(Mp) as
Mp-bimodules. Since G is separable in the topology defined in the proof of Theorem E, it admits
a dense sequence {(Ny,Y,) nen. Define My = (*a1y,nenNn) * L(Z). Then M, is a II; factor. Using
Lemma 4.5 and induction implies that L2(M;) ©L?(My) Cyeax L*(Mp) @ L2(My), as Mo-bimodules.

The proof of Claim 4.4 shows that for every separable tracial von Neumann algebra N O M
such that L%(N) © L?(Mp) Cweak L?(My) @ L?(Mp) as My-bimodules, there is a trace preserving
*-homomorphism 7 : N — MY whose restriction to My is the diagonal embedding of My into M¥.

We then inductively construct an increasing sequence of II; factors M,,, n > 1, containing My such
that for every n > 0 the following properties hold:

(1) For any separable tracial von Neumann algebra N which contains M,, and satisfies that
L2(N) © L3 (M,) Cyeax L2(M,) ® L?(M,,), as M,-bimodules, there is a trace preserving
s*-homomorphism 7 : N — Mf{’ 't 1 whose restriction to M, is the diagonal embedding of M,,.

(2) L32(Myy1) © L2(M,,) Cywear L2(M,,) ® L2(M,,), as M,, bimodules.

Then M = (U, en Mn)" is a separable II; factor which contains My. We will prove that M has the
desired properties.

First, let N D M be a II; factor with L%(N) © L}(M) Cyearx L2(M) ® L?(M), as M-bimodules.
We claim that M is existentially closed in N. Let {t,, | m € N} C (IV); be a sequence which
generates N. Let n € N and denote by P C N the von Neumann subalgebra generated by M and
{t1,--- ,t,}. For every k > n, since M,, C M}, L?(Mj},) is both a sub-module of a multiple of the left
M,,-module L?(M,) and a sub-module of a multiple of the right M,-module L?(M,). Therefore,
the M,-bimodule L?(M}) ® L?(My) is a sub-bimodule of a multiple of the coarse M,-bimodule. In
combination with (2), we get that L%(Myy1) © L2(M},) Cyear L2(M,) @ L2(M,,), as M,-bimodules,
for every k > n. Since we also have L?(M) © L?(M,) = @, (L*(Myy1) © L3(My)), we get
L2(M)SL*(M,) Cweax L2(M,) ®L2(M,,), as M,,-bimodules. Since L?(N) S L*(M) Cyear L2(M)®
L?(M), as M-bimodules, and M,, C M, we also get that L*(N) © L*(M) Cyeax L*(M,) ® L*(M,),
as M,-bimodules. Using that L2(N) © L?(M,,) = (L3(N) © L2(M)) @ (L2(M) © L?(M,)) and the
last two inclusions, we further derive that L2(N ) S Lg(Mn) Cweak L2(M,) ® LQ(Mn), and hence
L3(P) © L3(M,,) Cweak L*(M,) ® L2(M,,), as M,-bimodules. We can now apply (1) to get a trace
preserving *-homomorphism 7 : P — MY ' 1 Whose restriction to M, is the diagonal embedding of
M,, into MY 't 1- Proceeding as in the proof of Theorem E gives that M is existentially closed in V.

Second, assume by contradiction that M has property Gamma. Then M’ N MY is diffuse, hence
there is a unitary u € M’ N MY of trace zero. Since My is non-Gamma, M} N M = C1. Since
Epu (u) € My MY, it follows that Epu (u) = 7(u)1 = 0. Thus, we get that u € MY © M}. Since

u commutes with My, we deduce the existence of a tracial My-central vector in L2(MY) o L2(MY),
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that is, L2(Mp) is contained in the My-bimodule L*(M¥) & L%(M¥Y). As in the proof of part (2) of
Corollary D it follows that L?(Mp) Cyeax L2(M)SL?(My), as Mo-bimodules. On the other hand, (2)
implies that L2(M, 1) © L2(M,,) Cyeax L2(Mo) ® L2(My), as My-bimodules, for every n > 0. Since
L2(M) © L3(My) = @,50(L*(My+1) © L2(M,,)), we derive that L*(M) © L*(Mp) Cyear L*(Mo) ®
L?(Mp), as Mp-bimodules. Combining these facts gives that L2(Mg) Cyear L2(Mo) @ L2(My), as
Mpy-bimodules. In other words, My is amenable (see [AP18, Theorem 13.4.1]), which contradicts
the fact that My is non-Gamma. ]

We continue by proving the following result mentioned in Remark 1.5.

Lemma 4.6. Let M = L(F,,), for somen > 1, and U be a free ultrafilter on N. Then we have that
L2(MY) © L2(M) Cyeak L2(M) ® L2(M), as M-bimodules.

Proof. The proof uses Popa’s malleable deformation of M into M = M % M. More precisely, by
[Po86,Po06] there exist automorphisms (o )ter of M such that

(1) im0 ||ae(x) — z||2 = 0, for every x € M, and
(2) the map M > x +— Ej(ay(x)) € M extends to a compact operator on L2(M), for any t # 0.

To prove the conclusion it suffices to show that span(MEM) Cyeax L2(M)®L?(M), as M-bimodules,
for every & € L2(MY) © L2(M) with ||¢]2 < 1. To this end, let F C (M) be a finite set and € > 0.
Let n € MY & M such that ||§ — |2 < £ and |||l2 < 1. Then

(4.4) [(amy,m) — (26y,€)| < 2. for every z.y € F.

By (1), we can find ¢ > 0 such that ||az(z) — z||2 < W\IH)’ for every x € F. Since F C (M); and
Inll2 < 1, we get that

(4.5)  Kaw(@)nae(y),m) — (xny,m)| < (lae(z) — 2|2 + e (y) — yll2)IIn]l < g for every x,y € F.

Write 7 = (1,), where (1,) C M is a sequence with sup ||,]| < oco. Since n € MY & M, we
have that lim,,_,;y n, = 0, weakly. Then (2) implies that lim, ./ ||a—¢(7,)|l2 = 0. Thus, denoting
Cn = a—t(n) — Enr(a—i(nn)) € M & M we derive that for every x,y € M we have that

(46)  {ar@)nanly),n) = Tm (o (@)maa(y),m) = i (o), a-im) = lim (o, Gu)

By combining (4.4), (4.5) and (4.6), we deduce that there is n € Nsuch that { = ¢, € Mo M satisfies
[{xCy, () — (x€y,&)| < e, for every x,y € F. This shows that span(MEM) Cyeax LZ(M) oL%(M), as
M-bimodules. Since the M-bimodule L2(M) & L2(M) is isomorphic to (L2(M) ® L%(M)) ® ¢2(N),
the conclusion follows. O

4.7. Proof of Theorem G. Let M be a separable II; factor.

Assume first that M has Haagerup’s property. By applying [OOT15, Theorem 9] or [BF07, Theorem
3.4] we derive the existence of a strictly mixing M-bimodule H such that L2(M) Cyeax H. By using
Lemma 2.5 and after replacing H with HP>, we get a strictly mixing M-bimodule H admitting a
sequence of subtracial vectors (7,) such that lim, (xn,y, n,) = 7(xy), for every z,y € M. Next, note
that the M-bimodule K := H®y;H is symmetric, as witnessed by the involution J(£®5,¢) = (@&,
and strictly mixing (see [OOT15, Proposition 7]). Then the vectors &, := n, @y 7, € K are

subtracial and satisfy lim,, (z&,y, &,) = 7(zy), for every x,y € M.

Let M = I(M,K)". Then M is a factor (see [KV15], Theorem 5.1). We will prove that M
has the desired properties. First, note that the M-bimodule L?(M) & L?(M) is isomorphic to
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Fu(K) © L2(M) and thus to K @y Far(K). Since K is strictly mixing, so is LQ(]\Aj) o L2(M)
by [OOT15, Proposition 7]. Second, if @ = 1 € L?(M) C Fuy(K) is the vacuum vector, then
(z8(&n) — 8(&n)x)Q = x&, — &, for every n, and thus

lim [s(£5) = s(&n)2]|2 = lim [[(25(§n) — 5(0)2) Q| = lim [[28, — Eu|| = 0, for every = € M.

Since &, is subtracial, (§,,,&,)p < 1and so ||s(&,)]| < 2, for every n. Thus, (s(&,)) € M'NMY. Since
Ean(5(&,)) = 0 and limy, |[s(&,)|]2 = limy, |[s(£,)Q|| = lim,, ||£,]| = 1, we derive that (s(&,)) ¢ MY.

Conversely, assume that there exists a separable II; factor M S M such that the M-bimodule
L2(M) © L2(M) is strictly mixing and M’ N MY ¢ MY. Let y = (yn) € (M’ 0 M%)\ MY. Then
z=y—Eyu(y) # 0 and z = (z,), where 2, = y — Es(yn) € L2(M)©L3(M). Since z € M' N MY,
we get that lim,_yy ||xzn, —zpz||2 = 0, for every z € M. Since M is a factor, and Epf(22*) € M'NM,
we get that Ep(z2*) = 7(22*)1. Thus, for every x € M we have that

lim (zzp, 2,) = Um 7(z2,2;) = T(x22") = 7(2EpN(227)) = 7(2)7(227).
n—U n—U

It follows that if we let ¢, = T(ZZ*)_%Zn € L2(M) © L2(M), then lim,_y |2, — Cazl2 = 0
and lim,, y/(x¢,, Cy) = 7(x), for every € M. This implies that L2(M) Cyeax L2(M) © L*(M).

Since the M-bimodule L2(M) © L?(M) is also strictly mixing, applying [0OT15, Theorem 9] or
[BFOT7, Theorem 3.4] gives that M has Haagerup’s property. O
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