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Abstract

The investigation of brain health development is paramount, as a
healthy brain underpins cognitive and physical well-being, and miti-
gates cognitive decline, neurodegenerative diseases, and mental health
disorders. This study leverages the UK Biobank dataset contain-
ing static functional network connectivity (sFNC) data derived from
resting-state functional magnetic resonance imaging (rs-fMRI) and as-
sessment data. We introduce a novel approach to forecasting a brain
health index (BHI) by deploying three distinct models, each capital-
izing on different modalities for training and testing. The first model
exclusively employs assessment measures, while the second model har-
nesses both neuroimaging and assessment data for training but relies
solely on assessment data during testing. The third model encom-
passes a holistic strategy, utilizing neuroimaging and assessment data
for the training and testing phases. The proposed models employ a
two-step approach for calculating the BHI. In the first step, the input
data is subjected to dimensionality reduction using principal compo-
nent analysis (PCA) to identify critical patterns and extract relevant
features. The resultant concatenated feature vector is then utilized
as input to variational autoencoders (VAE). This network generates a
low-dimensional representation of the input data used for calculating
BHI in new subjects without requiring imaging data. The results sug-
gest that incorporating neuroimaging data into the BHI model even

if predicting from assessments only improves its capacity to precisely



evaluate brain health. This improvement is exemplified by the VAE
model’s superior reconstruction of the sSFNC matrix compared to the
assessment data. These models also enable us to identify distinct be-
havioral and neural patterns that serve as indicators of their brain
health. Hence, this approach lays the foundation for larger-scale ef-
forts to monitor and enhance brain health, aiming to build resilient
brain systems.

Keywords: brain health index, functional network connectivity, as-

sessment data, deep learning, variational autoencoders

1 Introduction

Brain health is a comprehensive concept that encompasses the multifaceted
interaction of cognitive ability, mental well-being, and total neurological func-
tioning. Unlike mental health, which focuses primarily on emotional, psycho-
logical, and social wellness, brain health offers a more holistic understanding
of the multidimensional nature of the mind, brain, and interdependencies.
The current healthcare systems exhibit a notable constraint in their concep-
tualization of brain health, predominantly emphasizing medical illnesses and
disorders over the promotion of optimal cognitive functioning and well-being.
This limited perspective is exemplified by the National Institutes of Health
(NIH) [1], which relies upon the definition of brain health as provided by
the National Institute on Aging, rather than developing its comprehensive

framework. Furthermore, the National Institute of Aging (NIA)’s definition



of brain health, which primarily focuses on the well-being of older adults,
has its limitations. It only includes four elements: cognitive health, mo-
tor function, emotional function, and tactile function. However, this narrow
definition fails to capture the full breadth and significance of the brain’s ca-
pabilities and responsibilities. Specifically, it overlooks critical aspects such
as social interaction [2], daily life factors such as physical activity and sleep,
and overall well-being.

Measuring brain health is further complicated by variations in perception
based on age, culture, ethnicity, and geography. Patient-centered assess-
ments, which consider self-perception of cognitive function and quality of
life, are essential when evaluating brain health [3]. Therefore, there is a need
for universally acceptable, age-appropriate, and multidimensional metrics to
comprehensively measure brain health. The well-being of the brain is shaped
by a blend of cognitive elements, emotional state, choices in lifestyle, and
interactions within society. For instance, emotions such as anxiety and de-
pression have a significant impact on cognitive function [4, 5]. Understanding
and addressing these cognitive factors are vital for promoting brain health
throughout life. Engaging in activities that challenge the mind, adopting a
healthy lifestyle, and staying socially and intellectually active can contribute
to maintaining optimal fluid intelligence and memory function. Additionally,
social isolation adversely affects emotional well-being and cognitive function
[6]. On the other hand, lifestyle choices such as sleep, diet, and physical ac-

tivity both interact with and influence these emotional, cognitive, and social



functions [7]. Recent advances in understanding the underlying mechanisms
of sleep emphasize that it impacts a wide range of brain functions and that
the consequences of sleep deprivation can be detrimental, leading to impaired
memory, attention, and even neurological dysfunction [8]. Meanwhile, diet
and brain health have a bidirectional relationship. The changes in diet may
influence psychiatric disorders through direct effects on mood, while the de-
velopment of psychiatric disorders can lead to changes in eating habits [9].
Physical activity on the other hand has been shown to have significant ef-
fects on human brain health regardless of age [10]. It promotes improvements
in brain health, including cognitive enhancement, mood regulation, pain re-
lief, and protection against neurodegenerative diseases, primarily through the
release of neurotransmitters and neurotrophins, as well as gene expression
modifications. These effects have been recognized and incorporated into the
Physical Activity Guidelines for Americans, which were issued by the U.S.
Department of Health and Human Services (HHS)[11, 12]. Emerging evi-
dence also indicates that physical activity can enhance brain functions, such
as memory and attention, in both children and adults [13, 14]. Furthermore,
maintaining social connections and engaging in meaningful relationships can
also have a positive impact on brain health since social interactions help
prevent feelings of isolation and depression.

The diverse array of methods employed in studying brain health poses
challenges for comparing studies and making recommendations for potential

interventions to enhance brain health. A recent investigation [15] examined



over 400 distinct methods of measuring brain health, revealing that 56.1%
were utilized only once. The remaining methods were classified as imag-
ing, biological, clinical, mental health, and cognitive tests. Among these
categories, only a single study incorporated outcome measures from all four
distinct categories whereas approximately 32.0% of the studies encompassed
measures from two categories, with the combination of imaging and cognitive
measures being the most prevalent. Conversely, 63.3% of the studies solely
incorporated measures from a single category, with imaging emerging as the
most utilized category. The most frequently utilized imaging methods pre-
dominantly involved estimating the volume of grey[16, 17] and white matter
in specific brain regions, notably the hippocampus and the entire brain. Ad-
ditionally, methods included assessing the presence of white matter hyperin-
tensities [18] and measuring fractional anisotropy. The Trail Making Test[19]
and the Mini-Mental Status Examination (MMSE) [20] were also among the
most employed cognitive testing methods. Using cognitive testing as the sole
method for evaluating brain health presents several limitations such as cost,
limited sensitivity, and potential biases due to repeated use. Meanwhile, the
limitations of imaging for assessing brain health include heterogeneous MRI
appearances [21], subjective interpretation required for parameters like frac-
tional anisotropy [22], and significant costs, hindering widespread adoption,
especially in low- and middle-income countries with limited research funding.

Given the multifaceted and complex nature of brain health, a more holis-

tic approach is necessary. As a result, a comprehensive measure of brain



health known as the BHI has been developed as an early endeavor to cre-
ate such a holistic composite measure. The proposed deep learning models
for the computation of the BHI offer a promising avenue for advancing re-
search in brain health development. This incorporates the utilization of three
models, wherein one is based on a single-mode approach while the other
two adopt multimodal strategies, integrating data from both neuroimaging
and assessments. Through the fusion of neuroimaging and assessment data,
this strategy facilitates a comprehensive evaluation of brain health, enabling
a more nuanced understanding of the impact of interventions on cognitive
well-being. Neuroimaging data can enhance the training of models that rely
solely on behavioral data. By incorporating neuroimaging data during the
training stage, these models can be improved, leading to scalable models that
do not require neuroimaging data. The results of this study contribute to
the growing body of knowledge in the field of brain health and pave the way
for future investigations into personalized interventions for maintaining and

enhancing brain health. The main contributions of this study are as follows:

e The study introduces multiple predictive models that leverage deep
learning techniques to predict BHI on a large dataset. Each model is
adept at accommodating varying input types including neuroimaging
or assessment data, depending on the available data and the predictive

criteria.

e By employing reconstruction error, the study successfully identifies sig-



nificant brain regions and assessment data components. This analysis
allows researchers to pinpoint specific areas of the brain and key as-

sessment variables that are crucial in understanding brain health.

e The probability density plots and clustering analysis reveal the pres-
ence of distinct subpopulations within the dataset based on BHI. Addi-
tionally, the validation of BHI using assessment scores and psychiatric
disorder diagnoses further corroborates the reliability of the proposed

model.

e The study investigates the impact of cognition, well-being, lifestyle
determinants, and social engagement on brain health. Analyzing these
assessment data provides valuable insights into the interplay among

these variables and their combined effect on brain health.

e The research examines the variation in the brain health index in relation
to demographic characteristics. By analyzing how the index changes
across different demographic groups, such as age, gender, and socioe-
conomic status, the study offers valuable insights into the potential

influence of these factors on brain health.

This study makes several significant contributions to the field of brain health
research. Overall, these contributions advance our understanding of brain
health and have practical implications for interventions and personalized ap-

proaches in this field.



2 Materials and Methods

2.1 UK Biobank fMRI Data Acquisition and Prepro-
cessing

The neuroimaging training dataset for this analysis was obtained from the
UK Biobank database [23]. It consisted of 34606 participants, aged 53 to
87 years (mean age: 69.75 + 7.43 years), including 19120 females (53.1%)
and 16880 males (46.8%). The participants underwent rs-fMRI scanning
using 3 Tesla (3T) Siemens Skyra scanners with 32-channel head coils. The
imaging parameters included a gradient-echo echo planar imaging (GE-EPI)
technique with specific settings: no iPAT, fat saturation, a flip angle (FA) of
52°, spatial resolution of 2.4 x 2.4 x 2.4mm, field-of-view (FOV) of (88 x 88 x 64
matrix), repeat time (TR) of 0.735s, echo time (TE) of 39 ms, and a total
of 490 volumes. The scanning lasted for 6 minutes and 10 seconds, during
which participants were instructed to focus on a crosshair and remain relaxed.
Eight slices were acquired simultaneously, via a multiband sequence with an
acceleration factor of eight.

Various preprocessing procedures were implemented on the UK Biobank
database to ensure data quality. To address subject-specific motion, the
MCFLIRT tool [24] was utilized for intra-modal motion correction. In or-
der to facilitate comparisons of brain scans across participants, grand-mean
intensity normalization was applied, scaling the entire 4D dataset using a sin-

gle multiplicative factor. Residual temporal drifts were mitigated by a high-



pass temporal filter, and geometric aberrations were rectified using FSL’s
Topup tool [25]. EPI unwarping was performed, followed by gradient distor-
tion correction (GDC) unwarping. Independent component analysis (ICA)
in conjunction with FMRIB’s ICA-based X-noiseifier [26] was employed to
eliminate structural artifacts. Furthermore, the data were standardized to
an MNI EPI template using FLIRT and SPM12. Finally, Gaussian smooth-
ing with a full width at half maximum (FWHM) of 6mm was applied to the
data.

A fully automated spatially constrained ICA process called NeuroMark
[27] was applied to the rs-fMRI data. We used the Neuromark fMRI_1.0
template comprising 53 intrinsic connectivity networks (ICNs) that repli-
cated across two large healthy control datasets from a 100-component blind
ICA decomposition. These ICNs were then used as templates in an adap-
tive ICA approach to estimate subject-specific functional networks and their
time courses (TCs). Functional network connections were evaluated and cat-
egorized into seven domains: subcortical (SC: 5 ICNs), auditory (AUD: 2
ICNs), sensorimotor (SM: 9 ICNs), visual (VIS: 9 ICNs), cognitive control
(CC: 17 ICNs), default mode (DM: 7 ICNs), and cerebellar (CB: 4 ICNs).
The resulting static functional network connectivity (sFNC) was provided as

input to the models that utilized neuroimaging data.



2.2 UK Biobank Brain Health Assessment Data

The assessment data, consisting of self-reported questionnaires, was gath-
ered from 34606 participants in the UKBiobank database. Table. 1 shows
the different assessment questions and the corresponding brain systems for
each question. The assessment questions in the study encompass measures of
cognition, mental health, lifestyle factors, and social engagement to evaluate
different aspects of brain health. The primary brain system under considera-
tion in the UK Biobank dataset was cognition. It encompasses two essential
evaluation parameters: fluid intelligence score and prospective memory. The
UK Biobank fluid intelligence test is designed to focus on assessing verbal
and numerical reasoning abilities. The test involves participants responding
to a series of 13 multiple-choice questions. The computation of the fluid in-
telligence score involves summing up the correctly answered questions out of
the 13 presented within a two-minute duration.

Prospective memory was measured using a single-trial task. Initially, par-
ticipants were given instructions at the outset of the UK Biobank cognitive
test series. These instructions conveyed that they should touch the Orange
Circle, instead of the expected Blue Square, when presented with four col-
ored symbols after the tests. Subsequently, participants undertook various
other cognitive tests. At the test’s conclusion, participants were shown the
four shapes and were prompted to touch the Blue Square. If the partici-
pant touched the Orange Circle, signifying the accurate response, the test

concluded. Otherwise, if they touched a different shape, a prompt reminded

9



them of the alternative symbol they were supposed to remember and touch.
The assigned score in this study was binary: 1 for accurately touching the
orange circle initially, and 0 for touching any other shape.

The second brain system employed in computing brain health pertains to
well-being. Within this framework, there are 26 evaluation metrics specifi-
cally linked to the mental health facet of brain well-being. The 12 assess-
ments from “mood swings” to the “guilty feeling” are specifically designed to
derive the neuroticism score of the Eysenck Personality Inventory (EPI-N)
[28]. Neuroticism is a personality trait that encompasses the measurement
of emotional stability or instability in individuals. The co-occurrence of neu-
roticism and an elevated incidence of stressful life events has been found to
be significantly associated with a progressive decline in cognitive functioning
among elderly individuals who are affected by depression [29]. Meanwhile,
recent depression symptom (RDS-4) occurrences are summarized in assess-
ments from “frequency of depressed mood in last 2 weeks” to “frequency of
tiredness lethargy in last 2 weeks”. It is a continuous measure of symptoms
such as sadness, lack of interest, agitation, and fatigue, especially within the
past 2 weeks before scanning. The assessments of RDS-4 align with multiple
diagnostic criteria outlined in the manual of the Diagnostic and Statistical
Manual of Mental Disorders, indicating a possible association with major
depressive disorder [30]. Also, assessments like “seen a doctor/gp for nerves,
anxiety, tension or depression” and “seen a psychiatrist for nerves, anxiety,

tension, or depression serve as an indication of the subject’s probable de-
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pressive status [31]. However, these questions did not distinguish between
isolated and recurring depressive episodes. In summary, the set of well-being
assessments is completed with the remaining five evaluations, which encom-
pass general satisfaction and the levels of contentment related to family,
friendships, health, and financial situation.

Thirdly, the assessment of lifestyle quality encompasses five distinct mea-
sures from the UK Biobank database. The first measure focuses on sleep
issues, assessing the presence of problems like trouble falling asleep or dis-
ruptions during the night [32]. Another pivotal aspect is physical activity,
which is evaluated through the categorization of activities engaged in over
the past four weeks. These activities encompass leisurely walking, vigorous
sports, light do-it-yourself (DIY) tasks (like pruning and lawn maintenance),
more demanding DIY activities (including landscaping, carpentry, and exca-
vation), as well as other forms of exercise like swimming, cycling, fitness rou-
tines, and bowling [33]. Alcohol intake is another factor influencing lifestyle,
and the evaluation explores an individual’s alcohol-related behaviors. This
covers a range from those who completely refrain from alcohol to those who
used to drink but have stopped, and to those who currently engage in drink-
ing. Furthermore, dietary patterns are also accounted for in the lifestyle
evaluation. Variations in the diet on a week-to-week basis, as well as any
significant alterations to dietary habits within the past five years, contribute
to the comprehensive assessment of one’s lifestyle quality.

The last part of the assessment focused on the brain system related to

11



social life, involving two evaluations. The initial assessment determined the
frequency of engagement in various social leisure activities, such as going
to the gym, participating in social clubs, religious groups, adult education
classes, and other group activities [34]. The second evaluation gauged the
regularity of visits to friends or family, offering response options ranging from
"almost daily” and ”2-4 times a week” to "never or almost never,” providing
insight into participants’ social interactions. The selection of these assess-
ment variables was driven by a combination of factors, including the multidi-
mensional concept of brain health [35], the availability of measures within the
UK Biobank dataset, and prior research utilizing similar measures for mental
health and cognitive decline studies [30, 36]. Numerous affect-based men-
tal health measures are available in the UK Biobank dataset. Neuroticism
was evaluated using the 12-item Eysenck Personality Questionnaire-Revised
Short Form (EPQ-RS) [37], corresponding to the initial 12 assessments in the
well-being section. Higher neuroticism scores indicate heightened suscepti-
bility to negative emotions like anxiety, worry, fear, anger, frustration, and
loneliness. Inquiries 16-19 in the well-being section focus on recent depressive
symptoms (RDS-4), a continuous measure recorded during scanning, assess-
ing feelings of low mood, indifference, restlessness, and weariness. Addition-
ally, Smith and his colleagues introduced a categorical measure of lifetime
depression incidence using questions 14 and 15, indicating potential depres-
sive status [31]. Meanwhile, within the cognitive assessment, integrated into

the fully-automated touchscreen questionnaire, prospective memory and ver-
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bal and numerical reasoning (Fluid Intelligence) were evaluated [38]. Addi-
tionally, recent studies have identified robust associations between sleep and
mental health [39], along with diet and cognitive measures [40] within the

UK Biobank dataset.

2.3 Methods
2.3.1 Variational Autoencoders

The variational autoencoder [41] is an unsupervised generative deep learning
model that offers a probabilistic framework for characterizing observations in
latent space while simultaneously generating new samples. The architecture
of the VAE mainly consists of an encoder and a decoder. Unlike traditional
autoencoders that produce a single value to represent each latent attribute
on the encoder side, the VAE uses probability distributions for describing
observations in the latent space. In a VAE, the encoder network transforms
the input data to a latent space, typically represented by a multivariate
Gaussian distribution. This transformation is characterized by two sets of
parameters: the mean p and the variance o2, which define the distribution in
the latent space. These parameters are then used to sample a latent vector
z that is representative of the input data. The sampling process is obtained

by reparametrizing the latent vector z as follows:

z2=u+0@®c¢€ (1)
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Table 1: Assessment measures of UK Biobank dataset

Brain systems

Assessments

Cognition

Fluid intelligence score

Prospective memory result

Well being

Mood swings

Miserableness

Irritability

Sensitivity /hurt feeling

Fedup feeling

Nervous feeling

Worrier anxious feeling

Tense/highly strung

Worry too long after embarrassment

Suffer from nerves

Loneliness/isolation

Guilty feeling

Risk feeling

Seen a doctor/gp for nerves, anxiety, tension or
depression

Seen a psychiatrist for nerves, anxiety, tension or
depression

Frequency of depressed mood in last 2 weeks

Frequency of unenthusiasm disinterest in last 2 weeks

Frequency of tenseness restlessness in last 2 weeks

Frequency of tiredness lethargy in last 2 weeks

Illness, injury, bereavement, stress in last 2 years

Happiness

Workjob satisfaction

Health satisfaction

Family relationship satisfaction

Friendship satisfaction

Financial situation satisfaction

Lifestyle

Sleeplessness/insomnia

Type of physical activity in the last 4 weeks

Major dietary changes in the last 5 years

Variation in the diet

Alcohol drinker status

Social life

Leisure social activities

Frequency of friend family visits




where € is a random variable sampled from a standard Gaussian distribution
N(0,1). The decoder network then takes this latent vector and maps it back
to the original data space, aiming to reconstruct the input. During training,
the VAE optimizes a loss function that minimizes both the reconstruction
loss and the Kullback-Leibler (KL) divergence between the distributions of

the latent variables and independent normal distributions [42].

2.4 Brain health index prediction framework

This study presents a novel approach to predicting the brain health index us-
ing three distinct models. Each model serves a unique purpose by leveraging
different types of data for both training and testing. The first model relies
exclusively on assessment measures during its training and testing phases.
The second model takes advantage of both neuroimaging and assessment
data during its training, but during testing, it only utilizes assessment data.
This highlights the potential of incorporating neuroimaging data to enhance
model training while still being able to make predictions when only assess-
ment data is available. The third model, encompassing the full scope, em-
ploys both neuroimaging and assessment data for both training and testing.
This showcases the comprehensive approach of utilizing all available data
modalities for accurate brain health index prediction.

The process of predicting BHI in the three distinct cases involves two
primary stages. In the initial stage, PCA feature extraction is utilized to

decrease the complexity of the dataset’s information while preserving the
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most essential features. In the subsequent phase, the significant features ob-
tained from the initial PCA step are employed to create a feature vector.
For instance, in the second and third models where both neuroimaging and
assessment data are utilized for training, the feature vector is formed by
concatenating the dimensionality-reduced assessment and neuroimaging fea-
tures. This feature vector is then used as input for a VAE, which generates a
compact representation of the features. This approach aims to enhance the
prediction of BHI by effectively capturing the pertinent patterns within the
data.

The VAE is a generative model that is trained to learn the underly-
ing distribution of the feature vectors. By doing so, it can generate a low-
dimensional representation of the input data that preserves its essential char-
acteristics. The VAE consists of encoder and decoder components that work
in conjunction to process the input data. The encoder, consisting of four fully
connected hidden layers, progressively reduces the dimensionality of the data.
The first hidden layer contains 16 nodes, followed by layers with 8, 4, and 2
nodes, respectively. This encoder network produces a compressed representa-
tion of the input data in the latent space. Conversely, the decoder exhibits a
symmetric structure with the encoder, which is also composed of four hidden
layers. The first hidden layer contains 2 nodes, followed by layers with 4, 8,
and 16 nodes. The decoder’s output layer aims to reconstruct the original
input data. The selection of node configurations in the encoder and decoder

architecture underwent a rigorous cross-validation process aimed at assess-
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ing and optimizing their efficacy. Multiple configurations were systematically
tested and compared, considering their impact on the model’s performance
metrics, such as reconstruction accuracy and generalization ability.

The use of both PCA and a VAE in conjunction for dimensionality reduc-
tion serves distinct yet complementary purposes. PCA is initially employed
as a linear technique to condense the data by emphasizing the most substan-
tial variance while preserving essential features, although potentially missing
intricate non-linear associations within the dataset. In contrast, the VAE,
being a non-linear method, has the potential to capture these nuanced and
complex patterns that PCA might overlook. Rather than just compressing
the data, the VAE learns to encode and decode the information, aiming to
reconstruct the input accurately. This process of encoding and decoding re-
sults in a representation that not only reduces dimensions but also captures
more intricate and detailed patterns in the dataset. These patterns may
include non-linear associations and dependencies between features.

During training, the VAE optimizes both the encoder and decoder to-
gether. The encoder learns to map the input data to a distribution in the
latent space, often utilizing the reparameterization trick for sampling from
the learned distribution. Subsequently, the decoder takes the sampled latent
vectors and maps them back to the original input space, generating recon-
structions. VAEs are generative models that aim to reconstruct the input
data by encoding it into a lower-dimensional latent space and then decod-

ing it back to the original input space. This error essentially measures the
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difference between the original input and the reconstructed output.

Reconstruction Error =

==

> — 2 @

where z;, ©;, and N denote the original input, reconstructed output, and
number of samples, respectively. The VAE’s objective is to minimize the
reconstruction error, which quantifies the disparity between the original input
and the reconstructed output. This is accomplished through a combination
of reconstruction loss and KL loss, constituting the VAE loss. The Adam
optimizer [43] was used to train the VAE for 1000 iterations, with a learning
rate of 0.001 and a batch size of 32.

After training the VAE, the output includes a latent variable z, along
with its corresponding mean p and variance o. Through experimentation
with varying dimensionalities, we systematically evaluated the performance
of the VAE in terms of reconstruction error. The chosen dimensionality for
the latent variable is 2, resulting in two distinct variables, namely z1 and
z2. We explored a range of dimensions, from lower values such as 1 to higher
ones like 10 or more. It was observed that as we increased the dimensionality
beyond 2, the reconstruction error either plateaued or exhibited marginal
improvements, which did not justify the added complexity associated with

higher-dimensional latent spaces. Using the two latent variables, the BHI
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can be calculated using the following formula:

BHI =21 X 0l+ 22 X 02 (3)

Fig. 1 depicts the architecture of the proposed model, providing a detailed
exposition of the feature extraction and BHI prediction processes for each of

the three distinct cases.

+ P D P — N
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i data Cognition > being ] Lifestyle life
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Sub-cortical (SC)

Cognitive-Control (CC)

o i

DECODER 16 lode:\l/‘\/

Reconstructed
Output

Figure 1: An overview of the architecture of the brain health index prediction
model. The model’s design involves three key phases: (A) Data preprocess-
ing, encompassing the handling of multimodal data sources, including neu-
roimaging data (specifically, SFNC) and assessment measures from cognitive,
well-being, lifestyle, and social life domains. Subsequently, PCA is applied to
extract significant features from both data domains. (B) The incorporation
of a VAE facilitates the creation of a latent representation, thereby enhancing
prediction accuracy by effectively capturing essential data patterns. (C) Uti-
lization of network templates to identify significant regions within the sENC
data, which play a pivotal role in influencing brain health outcomes.
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Table 2: Evaluating reconstruction error for BHI prediction
sessment data (case 1).

using only as-

.. PCA dimensionality | Number of assessment | Reconstruction error | Reconstruction error
Training data | Test data . . .
reduction features (training) (testing)
Yes 10 0.1244 0.1247
Asssessment Assessment Yes 20 0.1160 0.1159
Fsssessie Assessment yeg 30 0.1216 0.1213
No 34 0.0805 0.0809

Table 3: Evaluating reconstruction error for BHI prediction using both FNC
and assessment data for training but only assessment data for testing (case

2).
Reconstruction
PCA PCA Number of | Number of error Reconstruction
Training data Test data | dimensionality | dimensionality FNC assessment (training) error assessment
reduction (FNC) reduction features features FNC | Assessment (testing)
(Assessment)
Yes Yes 10 10 0.0668 | 0.1160 0.1028
Yes Yes 10 20 0.0682 | 0.1160 0.1037
FNC and Asssessment | Assessment | Yes Yes 2 10 0.0683 | 0.1195 0.1053
Yes Yes 4 30 0.0675 | 0.1184 0.5170
Yes Yes 30 4 0.0683 | 0.1160 0.4790

Table 4: Evaluating reconstruction error for BHI prediction using both FNC
and assessment data for training and testing (case 3).

Reconstruction Reconstruction
PCA PCA Number of | Number of error error

Training data | Test data | dimensionality | dimensionality FNC assessment (training) (testing)

reduction (FNC) reduction features features FNC | Assessment | FNC | Assessment

(Assessment)

Yes Yes 500 30 0.0684 | 0.1160 0.0690 | 0.1159

Yes Yes 100 30 0.0684 | 0.1171 0.0689 | 0.1170

Yes Yes 30 20 0.0685 | 0.1160 0.0691 | 0.1159

Yes Yes 20 30 0.0684 | 0.1160 0.0689 | 0.1159
FNC and FNC and Yes Yes 20 10 0.0679 | 0.1160 0.0684 | 0.1159
Asssessment Assessment | Yes Yes 10 20 0.0680 | 0.1160 0.0684 | 0.1159

Yes Yes 1000 30 0.0681 | 0.1159 0.0667 | 0.1159

Yes No 1000 34 0.0682 | 0.1335 0.0688 | 0.1334

No Yes 1378 30 0.1059 | 0.1160 0.1069 | 0.1159

No No 1378 34 0.1052 | 0.1160 0.1063 | 0.1159

20




3 Experimental Setup and Results

To assess the efficacy of the proposed model, systematic experiments were
conducted on three complementary models for the BHI prediction. The
dataset employed for this purpose encompassed 34,606 participants sourced
from the UK Biobank database. Within this dataset, 60% of the participants
were allocated for training, while 20% each were dedicated to validation and
testing. Various cases were analyzed to calculate the BHI by employing dif-
ferent data modalities for training and testing. A detailed description of

these cases is provided below:

e Case 1: Calculation of BHI using assessment data for both training
and testing.
This model relies exclusively on the 34 assessment measures obtained
from the UK Biobank dataset to predict BHI. Within the training
phase, these assessment measures are passed through the feature ex-
traction block to extract the most significant features. This block em-
ploys PCA on the assessment features for dimensionality reduction.
Subsequently, the data is fed into the VAE stage. Within the VAE,
the data is processed to learn the underlying distribution of the feature
vectors, ultimately producing a compact, lower-dimensional representa-
tion of the assessment data. The training and validation of this model
continue until convergence. Subsequently, the fine-tuned VAE model is

evaluated using the test data, which consists solely of dimensionality-
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reduced assessment measures. The VAE generates a meaningful, low-
dimensional representation of the test data, which is then employed to
estimate the BHI. To assess the model’s performance, the entire ex-
periment is repeated after excluding the feature extraction block. This

allows for a direct comparison of the outcomes from the two scenarios.

Case 2: Calculation of BHI by training with both assessment and
sFNC data but testing using solely assessment data.

This model employs a combination of neuroimaging and assessment
data for its training process. It focuses on utilizing the upper triangu-
lar segment of the 53 x 53 sFNC matrix, resulting in the utilization of
1378 features from the sFNC data and 34 features from the assessment
data during the training phase. In the training stage, a parallel PCA
feature extraction step is executed to lower the dimensionality of both
the neuroimaging and assessment data. The resultant feature vectors
from these two data types are concatenated and then fed into a VAE.
The primary role of the VAE is to capture the inherent distribution
within these feature vectors, ultimately generating a compressed repre-
sentation of the input data possessing fewer dimensions. The training
and validation processes for this model are conducted until conver-
gence is reached. Following this, the fine-tuned VAE model undergoes
evaluation using test data, which exclusively comprises dimensionality-
reduced assessment measures. The condensed representation produced

by the optimized VAE model is subsequently used to estimate the BHI.
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e Case 3: Calculation of BHI by training and testing with both assess-
ment and sFNC data.
This model uses both neuroimaging and assessment data for training
and testing. The training phase is like case 2, where the PCA method
simplifies the neuroimaging and assessment data. These dimensionality-
reduced feature vectors are combined and then fed into the VAE. How-
ever, during testing, the VAE model is assessed using dimensionality-
reduced assessment measures and sFNC data. Additionally, this ex-

periment is also repeated without the feature extraction block.

Fig. 2 provides a probability density plot to visualize the distribution of
the BHI for case 1 for 6922 test subjects. In this case, the probability den-
sity plot of BHI derived solely from assessment data reveals a range spanning
from -3 to 4. The presence of two distinct Gaussian peaks suggests that there
are two predominant states within the data. These peaks may correspond to
different subpopulations within the dataset, each exhibiting a characteristic
brain health level. In the second case, where both neuroimaging and assess-
ment data are employed for training, while only assessment data is used for
testing, the BHI range is extended from -4 to 4. The probability density plot
now exhibits three Gaussian peaks as shown in Fig. 3. The central peak,
being the tallest among the three, suggests that a significant portion of the
dataset exhibits a relatively moderate brain health index. The presence of
additional peaks on either side of the central peak signifies two distinct sub-

groups, possibly representing individuals with higher and lower brain health
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indexes. The use of SFNC data during training has allowed the model to
capture more complex patterns, leading to the emergence of a third peak.
Finally, in the third case, where both neuroimaging and assessment features
are utilized for both training and testing, the BHI range spans from -6 to
6. Similar to the second case, the probability density plot in Fig. 4 presents
three Gaussian peaks. The central peak, once again the most prominent,
signifies a dominant brain health level within the dataset. The presence of
the same number of peaks in cases 2 and 3 indicates that even with the ex-
tended BHI range, the underlying distribution remains relatively stable. The
richer feature set from the combined data sources might have facilitated the
increased BHI range, leading to broader distribution while still maintaining
the characteristic central peak representing the most prevalent brain health

state.
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Figure 2: Examining the BHI distribution while training and testing with
assessment data. The plot exhibits two distinct peaks, indicating the pres-
ence of two separate subgroups.
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Figure 3: Examining the BHI distribution while training with both assess-
ment and neuroimaging data and testing with assessment data. The plot
exhibits three distinct peaks, indicating the presence of three separate sub-
groups.

3.1 Identification of subpopulations and validation of

BHI

In all three cases, the presence of Gaussian peaks indicates the existence of
underlying subpopulations within the dataset, each characterized by varying
brain health indexes. The differences in the number of peaks, their heights,
and the BHI ranges highlight the influence of the data sources and training
methodologies on the resulting probability density plots. This interplay be-
tween data types and training strategies provides insights into the complexity
of brain health assessment and the potential benefits of incorporating mul-

tiple data modalities in the analysis. Additionally, the presence of different
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Figure 4: Examining the BHI distribution while training and testing with
both assessment and neuroimaging data. The plot exhibits three distinct
peaks, indicating the presence of three separate subgroups.

subpopulations was verified by conducting a clustering analysis as shown in
Fig. 5. For case 1, the optimal number of clusters was found to be 2, while for
cases 2 and 3, the optimal clusters were found to be 3. This further under-
scores the presence of distinct subpopulations within the dataset, reinforcing
the significance of the observed Gaussian peaks.

To validate the accuracy of the BHI, a bar graph was generated to com-
pare BHI values across different categories of assessment scores. Each sub-
ject’s assessment score resulted from summing responses across all the as-
sessment measures provided in Table. 1. By employing k-means clustering,
it was observed that in case 1, subjects fell into only two categories with low
and high assessment scores. Conversely, cases 2 and 3 revealed three dis-

tinct categories corresponding to low, medium, and high assessment scores.
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Figure 5: Clustering analysis confirming the presence of subpopulations in
BHI distribution.

Subsequently, BHI values were extracted for each group, and the mean BHI
for every category was calculated. The resulting bar plot in Fig. 6 offers in-
sights into the correlation between assessment scores and BHI levels. Before
the analysis, data preprocessing involved normalizing both assessment scores
and BHI values to a range of 0 to 1. In case 1, subjects with low assessment
scores displayed a mean BHI value of 0.45, whereas those with high assess-
ment scores showcased a notably higher mean BHI value of 0.69. Conversely,
in case 2, the distinction was more pronounced: subjects with low assess-
ment scores had a mean BHI of 0.39, medium scorers had a mean BHI of
0.45, and high scorers had the highest mean BHI of 0.75. Similarly, in case 3,
a comparable trend was observed, although the differentiation between low
and medium assessment scores was subtle. Fig. 7 displays a bar plot com-
paring the mean BHI among individuals diagnosed with bipolar disorder and
major depression disorder using data from the UK Biobank dataset. Across

all three cases examined, it is evident that the BHI values are consistently
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Figure 6: Bar plots depicting the mean BHI for different categories of assess-
ment scores across various cases.

low, all falling below 0.5. This highlights the trend of individuals with psy-
chiatric disorders, such as bipolar disorder and major depression disorder,
exhibiting lower BHI scores. In particular, a clearer distinction in BHI is
notable in Case 2. Here, the mean BHI for individuals with bipolar disorder
is recorded at 0.35, while those with major depression disorder show a higher
mean BHI of 0.44. This difference suggests that within this dataset, bipolar
disorder may exert a more significant influence on brain health compared to

major depression disorder. Table. 2 presents the results of evaluating the
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Figure 7: Bar plots depicting the mean BHI for subjects with bipolar and
major depression disorder across various cases.

reconstruction error for predicting BHI using only assessment data. The ta-
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ble highlights the impact of applying PCA dimensionality reduction on the
reconstruction error. Evidently, the magnitude of the reconstruction error
seems to fluctuate in accordance with the number of assessment features
utilized for prediction. Notably, opting for the scenario where PCA dimen-
sionality reduction is omitted and instead utilizing all 34 assessment features
resulted in the lowest reconstruction error (0.0805 for training and 0.0809 for
testing). This result indicates that the given configuration offers the high-
est level of accuracy when estimating the BHI while utilizing the assessment
data. Also, the model demonstrates effective generalization as the differences
between training and testing errors are relatively small.

Table 3 depicts the evaluation of the reconstruction error for BHI pre-
diction for case 2. The table explores various scenarios, each characterized
by different combinations of PCA dimensionality reduction for sFNC and as-
sessment data, as well as different numbers of SFENC and assessment features
used in training. The best BHI prediction performance is achieved when the
training dataset includes a balanced combination of sFNC and assessment
features. The scenario utilizing 10 FNC features and 10 assessment features
demonstrates the lowest reconstruction error, highlighting the importance of
considering both types of data for accurate predictions. Notably, the ex-
periment that excludes dimensionality reduction couldn’t be tested for case
2 due to the potential mismatch in dimensionality that could arise during
testing. This mismatch stems from exclusively utilizing assessment features

during testing, while the training phase involves both sFNC and assessment
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features.

A comprehensive evaluation of reconstruction errors related to case 3 is
presented in Table. 4. In this scenario, BHI prediction is conducted using a
fusion of sSFNC and assessment data for both the training and testing phases.
The study explores various combinations of dimensionality reduction tech-
niques, feature sets, and feature numbers to understand their impact on the
quality of BHI prediction. The primary emphasis lies in assessing reconstruc-
tion errors, encompassing both the training and testing stages, with distinct
values presented for models based on sFNC and assessment data. The most
significant result is employing PCA-based dimensionality reduction on both
FNC and assessment data. This involved reducing sFNC features to 1000
dimensions and assessment features to 30 dimensions. This configuration
achieved a low reconstruction error of 0.0681 for training and 0.0667 for test-
ing. This indicates that the chosen combination of data sources, feature
reduction, and feature count led to a model that effectively captures and

reproduces the underlying patterns in the data.

3.2 Variation in BHI with age, gender, and education

This analysis focuses on examining the distribution of BHI in relation to de-
mographic characteristics such as age, gender, and educational qualification.
The test study encompassed a total of 6922 participants, whose ages ranged
from 53 to 86 years. The median age of the participants was 70 years, and

the interquartile range (IQR) of their ages spanned from 64 to 75 years. In
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terms of gender distribution, the sample consisted of nearly equal proportions
of males (46.6%) and females (53.4%), ensuring a balanced representation of
both sexes in the analysis. Regarding the participants’ educational back-
grounds, the study group was notably well-educated. Specifically, 45.7% of
the participants held a college or university degree, highlighting a substantial
proportion of higher education attainment. Additionally, 12.9% possessed a
higher school certificate equivalent to A levels/AS levels, typically achieved
around age 18. Also, 19.1% had a certificate similar to O levels/GCSEs,
attained after 10 years of school, around age 16. A smaller percentage, 3.9%,
had a certificate of secondary education (CSE) or an equivalent qualification,
also acquired after 10 years of school, like O Levels/GCSEs. Furthermore,
5.6% of participants had obtained a higher national certificate or diploma,
such as NVQ, HND, or HNC, which come after secondary school and usually
take 1-2 more years. A category labeled ’other professional qualifications’
was represented by 4.7% of the sample. Notably, 8.2% of participants did
not fall into any of the educational categories. This category represents in-
dividuals who might not have completed formal education up to the levels
mentioned above.

In this analysis, a violin plot was utilized to visually portray the distribu-
tion and essential statistical metrics of BHI across distinct categories, such
as age, gender, and education. Fig. 8 specifically presents the plot between
educational qualification and BHI for cases 1, 2, and 3. The plot comprises

seven distinct educational levels, with an elongated violin plot with a median
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around zero. This suggests that the data being visualized is approximately
centered around zero and that the values are spread out across positive and
negative values. This type of distribution indicates that there is no strong
bias or trend in one direction of BHI. Subsequently, Fig. 9 illustrates the
relationship between gender and BHI for the different cases. Notably, both
male and female groups exhibit analogous features with violins of varying
widths and heights. This similarity signifies comparable levels of BHI vari-
ation across genders. With medians at zero for both genders, it indicates
that, on average, there might not be a significant difference in BHI between
females and males. The third graphical representation, depicted in Fig. 10,
displays the relationship between BHI and age. Notably, this plot exhibits a
resemblance to the trend observed in the gender violin plot. Overall, these
plots highlight the variability in BHI scores across different categories of ed-
ucation, gender, and age. In all three plots, the central positioning of the
median at zero implies that the demographic categories under consideration

might not have significantly influenced the BHI scores.

3.3 Identifying significant contributors to BHI: brain

regions and assessment measures

In VAE, the most significant features that contributed to the performance
of the model can be found by computing the reconstruction error. The re-

construction error is used as a metric to assess the quality of the generated
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Figure 9: The distribution of BHI across different genders is visualized using
various models. In cases 2 and 3, the violin plots exhibit a wider spread
around the median compared to case 1, which has a narrower distribution.
This suggests that there may be greater variability in BHI scores among
different genders in cases 2 and 3, whereas in case 1, BHI scores appear to
be more tightly clustered around the median for both genders.

data and evaluate the performance of the model. The VAE learns to identify
and represent the prominent features of the input data in the latent space

by minimizing the reconstruction error.
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Figure 10: The visualization of BHI distribution across various age groups
exhibits a resemblance to the pattern observed for gender in the different
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Measuring feature importance using reconstruction error in variational
autoencoders involves assessing the impact of each input feature on the
model’s ability to accurately reconstruct the original data. In the context
of the three testing cases, the evaluation involves calculating the reconstruc-
tion error using the VAE model. The first case focuses solely on utilizing
assessment measures from the UK Biobank database as input to the VAE.
The resulting plot (Fig. 11) illustrates the reconstruction errors of the VAE
using the 34 assessment features. Notably, the highest reconstruction error
observed in this case is 0.21. Moving to the second case, the VAE is tested
using only the assessment measures, even though its training encompassed
both sFNC and assessment data. The corresponding reconstruction error
plot (Fig. 12) demonstrates the performance of the VAE using the same 34
assessment features. Within this plot, the most significant reconstruction
error recorded is 0.23. In the third case, the VAE’s assessment involves in-

puts from both sFNC and assessment measures. The evaluation results in
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two distinct plots: Fig. 13, showcasing the reconstruction errors using the
34 assessment features, and Fig. 14, depicting the SFNC domains with the
highest reconstruction errors. In the assessment-focused plot, the highest
reconstruction error observed is 0.25.

In the case of multimodal inputs, the VAE aims to capture the inher-
ent structure and characteristics of each modality in the latent space and
subsequently reconstruct them. However, different modalities might exhibit
varying degrees of complexity or information content, leading to differences
in reconstruction errors. For instance, SFNC data contains more detailed and
distinctive features compared to assessment data. Hence, the reconstruction
error for that modality may be higher, indicating a greater challenge in effec-
tively reconstructing it. Conversely, assessment data contains less complex
information and thus has a lower reconstruction error.

During the testing phase for case 1, the assessment data revealed three
prominent features with the least reconstruction error: 1) family relationship
satisfaction; 2) illness, injury, or bereavement stress in the last 2 years; and
3) risk-taking. Similarly, during the testing phase for cases 2 and 3, the as-
sessment features with the least reconstruction error were family relationship
satisfaction, illness, injury, bereavement stress in the last 2 years, and work-
job satisfaction. The consistent emergence of these patterns across all three
cases suggests that the computation of the BHI is significantly influenced by
these shared attributes within the assessment data. In the case of the sFNC

matrix for case 3 testing, the SM, VS, and CB domains showed the highest
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reconstruction error.

Fig. 15 displays the mean sENC matrix of 25% of subjects with the lowest
BHI among the total of 6922 test subjects. Conversely, Fig. 16 shows the
mean sFNC matrix of 25% of subjects with the highest BHI among the same
group of 6922 subjects for the same time points. Significantly, individuals
displaying the highest BHI values exhibited enhanced connectivity in the SC
and select regions of the SM. Conversely, participants with the lowest BHI
values demonstrated heightened connectivity in the SM, VS, and SM-VS
domain pairs. These observations obtained from the mean sFNC data of the
UK Biobank study align with the regions identified through the calculation
of reconstruction error.

The bar graphs presented in Fig. 17 depict the reconstruction error con-
cerning distinct brain systems across multiple scenarios. It can be noted
that, for case 1, the lifestyle assessment exhibits the highest reconstruction
error. This suggests that the model struggles to accurately reconstruct or
predict the lifestyle assessment measure based solely on the assessment data.
Conversely, for cases 2 and 3, the well-being metric demonstrates the high-
est reconstruction error. This suggests that even when both assessment and
neuroimaging data are used for training and testing, the model still struggles

to predict the well-being assessment measure effectively.
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Figure 11: Reconstruction error for case 1 during testing.

1SCusSs1on

4 D

In this work, we propose three novel complementary approaches for BHI pre-

diction using deep learning. Developing a practical approach for quantifying

brain health is critical in understanding the impact of interventions aimed

at enhancing cognitive well-being and mitigating neurodegenerative diseases.
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Figure 12: Reconstruction error for case 2 during testing.
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This research tackles this pivotal challenge by introducing both unimodal and

multimodal systems that facilitate efficient BHI computation. By leveraging

a large dataset, the deep learning model captures all the variations of brain

connectivity, providing a comprehensive assessment of brain health. The

analysis is trifold, with the initial case employing solely unimodal input with

assessment data. The subsequent two scenarios, however, leverage multi-
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Figure 13: Reconstruction error for case 3 during testing.
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modal input by synergizing neuroimaging and assessment information. Even

though analysis conducted using just the assessment data produced meaning-

ful outcomes, the utilization of rs-fMRI data provides valuable insights into

the intrinsic functional organization of the brain during a non-task state. To

extract significant features from the neuroimaging and assessment data, the

model employs dimensionality reduction techniques such as PCA. This step
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Figure 14: sFNC matrix highlighting salient brain region for BHI prediction.
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Figure 15: Average sFNC of subjects with the minimum BHI.

allows for the identification of key patterns and the extraction of relevant fea-
tures that contribute to the computation of the BHI. By incorporating VAE

in the subsequent stage, the model learns a low-dimensional representation
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Figure 16: Average sFNC of subjects with the maximum BHI.

°
8

Reconstruction Error
Reconstruction Error
Reconstruction Error

°
o
2

°
N

0.00 0.00 0.00
Well Being Cognition Lifestyle Social life Well Being Cognition Lifestyle Social life Well Being Cognition Lifestyle Social life
Assessment Groups Assessment Groups Assessment Groups

(a) Case 1 (b) Case 2 (c) Case 3

Figure 17: Comparison of different brain systems for each case based on
reconstruction error during testing.

of the input data that captures its essential characteristics. This compressed
representation facilitates the calculation of the BHI, enabling a more concise
and interpretable assessment of brain health.

The assessment of the BHI was done during both training and testing
for all three cases. During this evaluation, a comparative analysis was con-

ducted using different dimensionality-reduced features to predict the BHI
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and determine the configuration that gave the least reconstruction error.
The results revealed that in the first case, employing PCA for dimensionality
reduction on the assessment attributes prior to passing them to the VAE
was not necessary. The configuration devoid of PCA demonstrated superior
performance by achieving the least reconstruction error, outperforming the
configurations involving PCA. In cases 2 and 3, PCA dimensionality reduc-
tion was required for both the sFNC and the assessment data to achieve the
least error. An additional observation highlighted that the sFENC exhibited a
lower reconstruction error in comparison to assessment data. This observa-
tion underscores the VAE’s capacity to model the underlying patterns present
in the neuroimaging data, thereby enabling it to reconstruct the sFNCs with
greater accuracy and detail.

Subsequently, an additional study was conducted to examine how varia-
tions in BHI relate to demographic characteristics, such as age, gender, and
education. The trends revealed by violin plots portraying these associations
were notably consistent. Across different age, gender, and education groups,
the median BHI values clustered around zero. These findings imply that
demographic factors like age, gender, and education do not play a significant
role in influencing BHI. The limited impact of age on BHI suggests that the
natural aging process might not strongly affect BHI, indicating that the fac-
tors evaluated by BHI might remain relatively unchanged across various age
brackets. Similarly, the lack of significant gender-related differences in BHI

could indicate that it measures aspects of brain health that are consistent
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between genders. This is noteworthy because some health parameters, in-
cluding brain health, can differ between males and females due to hormonal
and physiological differences. Moreover, the absence of a strong connection
between education and the BHI suggests that the measured aspects of brain
health might not be strongly linked to an individual’s educational attain-
ment. This could indicate that factors like cognitive function, which are
often associated with education, may not be the primary drivers of the BHI.

Finally, the interpretability of the proposed approaches was assessed by
identifying the significant assessment measures and sFNC domains. In the
case of sFNC, specific regions within the SM, VS, and CB domains dis-
played elevated reconstruction errors. When higher reconstruction errors are
observed in specific brain regions or domains, it indicates that the actual
patterns of connectivity in those areas are not accurately captured by the
model used for reconstruction. Meanwhile, reconstruction error was also
used for distinguishing significant assessment measures. BHI was calculated
based on four brain systems: well-being, cognition, lifestyle, and social life.
These systems are representative of different aspects of brain function and
health. The reconstruction error varies across different cases (cases 1, 2, and
3), and specifically, social life and cognition had the lowest reconstruction
error across these cases. On the other hand, the highest reconstruction error
for case 1 was associated with the lifestyle measure, while for cases 2 and 3,
the highest reconstruction error was associated with the well-being measure.

Therefore, in cases 2 and 3, the model encounters moderate challenges in

43



effectively predicting well-being, even with the utilization of both assessment
and neuroimaging data. This difficulty arises from the inherent complexity
and subjectivity of well-being. Unlike more objective measures such as cog-
nition or certain aspects of lifestyle, well-being encompasses a wide range
of subjective experiences, emotions, and personal perceptions. Additionally,
the combination of neuroimaging and assessment data may introduce noise
and complexities, impeding accurate predictions. Meanwhile, in the case
of well-being, relying solely on assessment data provided a clearer focus on
subjective experiences, potentially improving prediction accuracy.

Overall, the findings from our analysis offer valuable insights into the com-
plexities of brain health assessment and the advantages of employing diverse
data modalities and assessment methodologies. The presence of Gaussian
peaks in the probability density plots across three distinct cases suggests the
existence of underlying subpopulations within the datasets, highlighting the
heterogeneity of brain health profiles. Clustering analysis further validates
this, revealing distinct subgroups within the data. The correlation between
assessment scores and BHI underscores the importance of comprehensive
evaluation approaches. While in case 1, there is a clear distinction between
subjects with low and high assessment scores with corresponding BHI levels,
cases 2 and 3 demonstrate a more complex relationship, with multiple as-
sessment score categories reflecting varying BHI distributions. Furthermore,
the comparison of mean BHI between subjects with bipolar disorder and ma-

jor depressive disorder from the UK Biobank dataset also yielded significant
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insights. While both conditions exhibit lower BHI values, there is evident
variability within each disorder cohort. This variability underscores the het-
erogeneous nature of psychiatric disorders and highlights the diverse impacts
they may exert on brain health across individuals. These findings highlight
the significance of incorporating a variety of data sources and assessment

metrics to achieve a thorough comprehension of individual brain health.

5 Conclusion and Future Works

This study introduced three innovative and complementary approaches for
predicting BHI using deep learning techniques. Through the integration of
unimodal and multimodal strategies, this research offers novel approaches
to computing BHI that have not been explored in previous studies. The
analysis progresses through three phases, starting with a unimodal strategy
that utilizes assessment data and then evolving into multimodal configura-
tions that combine neuroimaging and assessments. Utilizing dimensionality
reduction methods like PCA aided in extracting essential features during the
data preprocessing stage for calculating BHI. Employing dimensionality re-
duction techniques, such as PCA, facilitated the extraction of key features
during data preprocessing for BHI computation. The subsequent integration
of VAE enabled a compact representation of input data, enhancing the preci-
sion of BHI calculations. Throughout training and testing, all three cases un-

derwent BHI assessment, comparing various dimensionality-reduced features
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to identify optimal configurations with minimal reconstruction error. In the
case that relied solely on assessment data, the exclusion of PCA resulted
in the lowest reconstruction error, underscoring the unique requirements of
each case. Multimodal setups exhibited superior reconstruction accuracy,
showcasing the model’s adeptness at capturing neuroimaging patterns.
Moreover, the identification of distinct subpopulations within the dataset
based on BHI highlights the heterogeneity of brain health profiles, influenced
by data sources and training methodologies. Validation through assessment
scores reveals correlations between assessment measures and brain health
levels, with multimodal approaches showing enhanced predictive power. The
lower BHI values among individuals with psychiatric disorders underscore
BHI’s potential as a relevant biomarker for psychiatric conditions, with vari-
ations suggesting differential effects across disorders. Additionally, demo-
graphic attributes such as age, gender, and education did not exert a notable
influence on BHI across the different cases. The interpretability of the ap-
proach was assessed by identifying significant assessment measures and sEFNC
domains, emphasizing the relevance of different brain systems and regions.
Overall, this work contributes to the development of a practical approach
for quantifying brain health, which is crucial for understanding interventions
aimed at enhancing cognitive well-being and mitigating neurodegenerative
diseases. While our current findings stem from a single-center study, ac-
knowledging the importance of broad validation, our future research will

prioritize the validation of these methodologies on an independent dataset.
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This step aims to reinforce and extend the reliability and applicability of our
developed approaches across diverse settings and populations. The future
work will not only focus on validating the methods but also explore the in-
tegration of attention-based models, such as transformers, to further elevate
the predictive performance of our deep learning approach in forecasting the
BHI. Additionally, we aim to leverage the insights gained from this multi-
modal framework to develop personalized interventions tailored to individuals
based on different brain s ystems. By leveraging t he p ower of d eep learning,
we envision creating targeted interventions that can effectively promote and

optimize brain health in diverse populations.
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