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Abstract

The investigation of brain health development is paramount, as a

healthy brain underpins cognitive and physical well-being, and miti-

gates cognitive decline, neurodegenerative diseases, and mental health

disorders. This study leverages the UK Biobank dataset contain-

ing static functional network connectivity (sFNC) data derived from

resting-state functional magnetic resonance imaging (rs-fMRI) and as-

sessment data. We introduce a novel approach to forecasting a brain

health index (BHI) by deploying three distinct models, each capital-

izing on different modalities for training and testing. The first model

exclusively employs assessment measures, while the second model har-

nesses both neuroimaging and assessment data for training but relies

solely on assessment data during testing. The third model encom-

passes a holistic strategy, utilizing neuroimaging and assessment data

for the training and testing phases. The proposed models employ a

two-step approach for calculating the BHI. In the first step, the input

data is subjected to dimensionality reduction using principal compo-

nent analysis (PCA) to identify critical patterns and extract relevant

features. The resultant concatenated feature vector is then utilized

as input to variational autoencoders (VAE). This network generates a

low-dimensional representation of the input data used for calculating

BHI in new subjects without requiring imaging data. The results sug-

gest that incorporating neuroimaging data into the BHI model even

if predicting from assessments only improves its capacity to precisely
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evaluate brain health. This improvement is exemplified by the VAE

model’s superior reconstruction of the sFNC matrix compared to the

assessment data. These models also enable us to identify distinct be-

havioral and neural patterns that serve as indicators of their brain

health. Hence, this approach lays the foundation for larger-scale ef-

forts to monitor and enhance brain health, aiming to build resilient

brain systems.

Keywords: brain health index, functional network connectivity, as-

sessment data, deep learning, variational autoencoders

1 Introduction

Brain health is a comprehensive concept that encompasses the multifaceted

interaction of cognitive ability, mental well-being, and total neurological func-

tioning. Unlike mental health, which focuses primarily on emotional, psycho-

logical, and social wellness, brain health offers a more holistic understanding

of the multidimensional nature of the mind, brain, and interdependencies.

The current healthcare systems exhibit a notable constraint in their concep-

tualization of brain health, predominantly emphasizing medical illnesses and

disorders over the promotion of optimal cognitive functioning and well-being.

This limited perspective is exemplified by the National Institutes of Health

(NIH) [1], which relies upon the definition of brain health as provided by

the National Institute on Aging, rather than developing its comprehensive

framework. Furthermore, the National Institute of Aging (NIA)’s definition
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of brain health, which primarily focuses on the well-being of older adults,

has its limitations. It only includes four elements: cognitive health, mo-

tor function, emotional function, and tactile function. However, this narrow

definition fails to capture the full breadth and significance of the brain’s ca-

pabilities and responsibilities. Specifically, it overlooks critical aspects such

as social interaction [2], daily life factors such as physical activity and sleep,

and overall well-being.

Measuring brain health is further complicated by variations in perception

based on age, culture, ethnicity, and geography. Patient-centered assess-

ments, which consider self-perception of cognitive function and quality of

life, are essential when evaluating brain health [3]. Therefore, there is a need

for universally acceptable, age-appropriate, and multidimensional metrics to

comprehensively measure brain health. The well-being of the brain is shaped

by a blend of cognitive elements, emotional state, choices in lifestyle, and

interactions within society. For instance, emotions such as anxiety and de-

pression have a significant impact on cognitive function [4, 5]. Understanding

and addressing these cognitive factors are vital for promoting brain health

throughout life. Engaging in activities that challenge the mind, adopting a

healthy lifestyle, and staying socially and intellectually active can contribute

to maintaining optimal fluid intelligence and memory function. Additionally,

social isolation adversely affects emotional well-being and cognitive function

[6]. On the other hand, lifestyle choices such as sleep, diet, and physical ac-

tivity both interact with and influence these emotional, cognitive, and social
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functions [7]. Recent advances in understanding the underlying mechanisms

of sleep emphasize that it impacts a wide range of brain functions and that

the consequences of sleep deprivation can be detrimental, leading to impaired

memory, attention, and even neurological dysfunction [8]. Meanwhile, diet

and brain health have a bidirectional relationship. The changes in diet may

influence psychiatric disorders through direct effects on mood, while the de-

velopment of psychiatric disorders can lead to changes in eating habits [9].

Physical activity on the other hand has been shown to have significant ef-

fects on human brain health regardless of age [10]. It promotes improvements

in brain health, including cognitive enhancement, mood regulation, pain re-

lief, and protection against neurodegenerative diseases, primarily through the

release of neurotransmitters and neurotrophins, as well as gene expression

modifications. These effects have been recognized and incorporated into the

Physical Activity Guidelines for Americans, which were issued by the U.S.

Department of Health and Human Services (HHS)[11, 12]. Emerging evi-

dence also indicates that physical activity can enhance brain functions, such

as memory and attention, in both children and adults [13, 14]. Furthermore,

maintaining social connections and engaging in meaningful relationships can

also have a positive impact on brain health since social interactions help

prevent feelings of isolation and depression.

The diverse array of methods employed in studying brain health poses

challenges for comparing studies and making recommendations for potential

interventions to enhance brain health. A recent investigation [15] examined
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over 400 distinct methods of measuring brain health, revealing that 56.1%

were utilized only once. The remaining methods were classified as imag-

ing, biological, clinical, mental health, and cognitive tests. Among these

categories, only a single study incorporated outcome measures from all four

distinct categories whereas approximately 32.0% of the studies encompassed

measures from two categories, with the combination of imaging and cognitive

measures being the most prevalent. Conversely, 63.3% of the studies solely

incorporated measures from a single category, with imaging emerging as the

most utilized category. The most frequently utilized imaging methods pre-

dominantly involved estimating the volume of grey[16, 17] and white matter

in specific brain regions, notably the hippocampus and the entire brain. Ad-

ditionally, methods included assessing the presence of white matter hyperin-

tensities [18] and measuring fractional anisotropy. The Trail Making Test[19]

and the Mini-Mental Status Examination (MMSE) [20] were also among the

most employed cognitive testing methods. Using cognitive testing as the sole

method for evaluating brain health presents several limitations such as cost,

limited sensitivity, and potential biases due to repeated use. Meanwhile, the

limitations of imaging for assessing brain health include heterogeneous MRI

appearances [21], subjective interpretation required for parameters like frac-

tional anisotropy [22], and significant costs, hindering widespread adoption,

especially in low- and middle-income countries with limited research funding.

Given the multifaceted and complex nature of brain health, a more holis-

tic approach is necessary. As a result, a comprehensive measure of brain
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health known as the BHI has been developed as an early endeavor to cre-

ate such a holistic composite measure. The proposed deep learning models

for the computation of the BHI offer a promising avenue for advancing re-

search in brain health development. This incorporates the utilization of three

models, wherein one is based on a single-mode approach while the other

two adopt multimodal strategies, integrating data from both neuroimaging

and assessments. Through the fusion of neuroimaging and assessment data,

this strategy facilitates a comprehensive evaluation of brain health, enabling

a more nuanced understanding of the impact of interventions on cognitive

well-being. Neuroimaging data can enhance the training of models that rely

solely on behavioral data. By incorporating neuroimaging data during the

training stage, these models can be improved, leading to scalable models that

do not require neuroimaging data. The results of this study contribute to

the growing body of knowledge in the field of brain health and pave the way

for future investigations into personalized interventions for maintaining and

enhancing brain health. The main contributions of this study are as follows:

• The study introduces multiple predictive models that leverage deep

learning techniques to predict BHI on a large dataset. Each model is

adept at accommodating varying input types including neuroimaging

or assessment data, depending on the available data and the predictive

criteria.

• By employing reconstruction error, the study successfully identifies sig-
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nificant brain regions and assessment data components. This analysis

allows researchers to pinpoint specific areas of the brain and key as-

sessment variables that are crucial in understanding brain health.

• The probability density plots and clustering analysis reveal the pres-

ence of distinct subpopulations within the dataset based on BHI. Addi-

tionally, the validation of BHI using assessment scores and psychiatric

disorder diagnoses further corroborates the reliability of the proposed

model.

• The study investigates the impact of cognition, well-being, lifestyle

determinants, and social engagement on brain health. Analyzing these

assessment data provides valuable insights into the interplay among

these variables and their combined effect on brain health.

• The research examines the variation in the brain health index in relation

to demographic characteristics. By analyzing how the index changes

across different demographic groups, such as age, gender, and socioe-

conomic status, the study offers valuable insights into the potential

influence of these factors on brain health.

This study makes several significant contributions to the field of brain health

research. Overall, these contributions advance our understanding of brain

health and have practical implications for interventions and personalized ap-

proaches in this field.
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2 Materials and Methods

2.1 UK Biobank fMRI Data Acquisition and Prepro-

cessing

The neuroimaging training dataset for this analysis was obtained from the

UK Biobank database [23]. It consisted of 34606 participants, aged 53 to

87 years (mean age: 69.75 ± 7.43 years), including 19120 females (53.1%)

and 16880 males (46.8%). The participants underwent rs-fMRI scanning

using 3 Tesla (3T) Siemens Skyra scanners with 32-channel head coils. The

imaging parameters included a gradient-echo echo planar imaging (GE-EPI)

technique with specific settings: no iPAT, fat saturation, a flip angle (FA) of

52◦, spatial resolution of 2.4×2.4×2.4mm, field-of-view (FOV) of (88×88×64

matrix), repeat time (TR) of 0.735s, echo time (TE) of 39 ms, and a total

of 490 volumes. The scanning lasted for 6 minutes and 10 seconds, during

which participants were instructed to focus on a crosshair and remain relaxed.

Eight slices were acquired simultaneously, via a multiband sequence with an

acceleration factor of eight.

Various preprocessing procedures were implemented on the UK Biobank

database to ensure data quality. To address subject-specific motion, the

MCFLIRT tool [24] was utilized for intra-modal motion correction. In or-

der to facilitate comparisons of brain scans across participants, grand-mean

intensity normalization was applied, scaling the entire 4D dataset using a sin-

gle multiplicative factor. Residual temporal drifts were mitigated by a high-
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pass temporal filter, and geometric aberrations were rectified using FSL’s

Topup tool [25]. EPI unwarping was performed, followed by gradient distor-

tion correction (GDC) unwarping. Independent component analysis (ICA)

in conjunction with FMRIB’s ICA-based X-noiseifier [26] was employed to

eliminate structural artifacts. Furthermore, the data were standardized to

an MNI EPI template using FLIRT and SPM12. Finally, Gaussian smooth-

ing with a full width at half maximum (FWHM) of 6mm was applied to the

data.

A fully automated spatially constrained ICA process called NeuroMark

[27] was applied to the rs-fMRI data. We used the Neuromark fMRI 1.0

template comprising 53 intrinsic connectivity networks (ICNs) that repli-

cated across two large healthy control datasets from a 100-component blind

ICA decomposition. These ICNs were then used as templates in an adap-

tive ICA approach to estimate subject-specific functional networks and their

time courses (TCs). Functional network connections were evaluated and cat-

egorized into seven domains: subcortical (SC: 5 ICNs), auditory (AUD: 2

ICNs), sensorimotor (SM: 9 ICNs), visual (VIS: 9 ICNs), cognitive control

(CC: 17 ICNs), default mode (DM: 7 ICNs), and cerebellar (CB: 4 ICNs).

The resulting static functional network connectivity (sFNC) was provided as

input to the models that utilized neuroimaging data.
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2.2 UK Biobank Brain Health Assessment Data

The assessment data, consisting of self-reported questionnaires, was gath-

ered from 34606 participants in the UKBiobank database. Table. 1 shows

the different assessment questions and the corresponding brain systems for

each question. The assessment questions in the study encompass measures of

cognition, mental health, lifestyle factors, and social engagement to evaluate

different aspects of brain health. The primary brain system under considera-

tion in the UK Biobank dataset was cognition. It encompasses two essential

evaluation parameters: fluid intelligence score and prospective memory. The

UK Biobank fluid intelligence test is designed to focus on assessing verbal

and numerical reasoning abilities. The test involves participants responding

to a series of 13 multiple-choice questions. The computation of the fluid in-

telligence score involves summing up the correctly answered questions out of

the 13 presented within a two-minute duration.

Prospective memory was measured using a single-trial task. Initially, par-

ticipants were given instructions at the outset of the UK Biobank cognitive

test series. These instructions conveyed that they should touch the Orange

Circle, instead of the expected Blue Square, when presented with four col-

ored symbols after the tests. Subsequently, participants undertook various

other cognitive tests. At the test’s conclusion, participants were shown the

four shapes and were prompted to touch the Blue Square. If the partici-

pant touched the Orange Circle, signifying the accurate response, the test

concluded. Otherwise, if they touched a different shape, a prompt reminded

9



them of the alternative symbol they were supposed to remember and touch.

The assigned score in this study was binary: 1 for accurately touching the

orange circle initially, and 0 for touching any other shape.

The second brain system employed in computing brain health pertains to

well-being. Within this framework, there are 26 evaluation metrics specifi-

cally linked to the mental health facet of brain well-being. The 12 assess-

ments from “mood swings” to the “guilty feeling” are specifically designed to

derive the neuroticism score of the Eysenck Personality Inventory (EPI-N)

[28]. Neuroticism is a personality trait that encompasses the measurement

of emotional stability or instability in individuals. The co-occurrence of neu-

roticism and an elevated incidence of stressful life events has been found to

be significantly associated with a progressive decline in cognitive functioning

among elderly individuals who are affected by depression [29]. Meanwhile,

recent depression symptom (RDS-4) occurrences are summarized in assess-

ments from “frequency of depressed mood in last 2 weeks” to “frequency of

tiredness lethargy in last 2 weeks”. It is a continuous measure of symptoms

such as sadness, lack of interest, agitation, and fatigue, especially within the

past 2 weeks before scanning. The assessments of RDS-4 align with multiple

diagnostic criteria outlined in the manual of the Diagnostic and Statistical

Manual of Mental Disorders, indicating a possible association with major

depressive disorder [30]. Also, assessments like “seen a doctor/gp for nerves,

anxiety, tension or depression” and “seen a psychiatrist for nerves, anxiety,

tension, or depression serve as an indication of the subject’s probable de-
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pressive status [31]. However, these questions did not distinguish between

isolated and recurring depressive episodes. In summary, the set of well-being

assessments is completed with the remaining five evaluations, which encom-

pass general satisfaction and the levels of contentment related to family,

friendships, health, and financial situation.

Thirdly, the assessment of lifestyle quality encompasses five distinct mea-

sures from the UK Biobank database. The first measure focuses on sleep

issues, assessing the presence of problems like trouble falling asleep or dis-

ruptions during the night [32]. Another pivotal aspect is physical activity,

which is evaluated through the categorization of activities engaged in over

the past four weeks. These activities encompass leisurely walking, vigorous

sports, light do-it-yourself (DIY) tasks (like pruning and lawn maintenance),

more demanding DIY activities (including landscaping, carpentry, and exca-

vation), as well as other forms of exercise like swimming, cycling, fitness rou-

tines, and bowling [33]. Alcohol intake is another factor influencing lifestyle,

and the evaluation explores an individual’s alcohol-related behaviors. This

covers a range from those who completely refrain from alcohol to those who

used to drink but have stopped, and to those who currently engage in drink-

ing. Furthermore, dietary patterns are also accounted for in the lifestyle

evaluation. Variations in the diet on a week-to-week basis, as well as any

significant alterations to dietary habits within the past five years, contribute

to the comprehensive assessment of one’s lifestyle quality.

The last part of the assessment focused on the brain system related to

11



social life, involving two evaluations. The initial assessment determined the

frequency of engagement in various social leisure activities, such as going

to the gym, participating in social clubs, religious groups, adult education

classes, and other group activities [34]. The second evaluation gauged the

regularity of visits to friends or family, offering response options ranging from

”almost daily” and ”2-4 times a week” to ”never or almost never,” providing

insight into participants’ social interactions. The selection of these assess-

ment variables was driven by a combination of factors, including the multidi-

mensional concept of brain health [35], the availability of measures within the

UK Biobank dataset, and prior research utilizing similar measures for mental

health and cognitive decline studies [30, 36]. Numerous affect-based men-

tal health measures are available in the UK Biobank dataset. Neuroticism

was evaluated using the 12-item Eysenck Personality Questionnaire-Revised

Short Form (EPQ-RS) [37], corresponding to the initial 12 assessments in the

well-being section. Higher neuroticism scores indicate heightened suscepti-

bility to negative emotions like anxiety, worry, fear, anger, frustration, and

loneliness. Inquiries 16-19 in the well-being section focus on recent depressive

symptoms (RDS-4), a continuous measure recorded during scanning, assess-

ing feelings of low mood, indifference, restlessness, and weariness. Addition-

ally, Smith and his colleagues introduced a categorical measure of lifetime

depression incidence using questions 14 and 15, indicating potential depres-

sive status [31]. Meanwhile, within the cognitive assessment, integrated into

the fully-automated touchscreen questionnaire, prospective memory and ver-
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bal and numerical reasoning (Fluid Intelligence) were evaluated [38]. Addi-

tionally, recent studies have identified robust associations between sleep and

mental health [39], along with diet and cognitive measures [40] within the

UK Biobank dataset.

2.3 Methods

2.3.1 Variational Autoencoders

The variational autoencoder [41] is an unsupervised generative deep learning

model that offers a probabilistic framework for characterizing observations in

latent space while simultaneously generating new samples. The architecture

of the VAE mainly consists of an encoder and a decoder. Unlike traditional

autoencoders that produce a single value to represent each latent attribute

on the encoder side, the VAE uses probability distributions for describing

observations in the latent space. In a VAE, the encoder network transforms

the input data to a latent space, typically represented by a multivariate

Gaussian distribution. This transformation is characterized by two sets of

parameters: the mean µ and the variance σ2, which define the distribution in

the latent space. These parameters are then used to sample a latent vector

z that is representative of the input data. The sampling process is obtained

by reparametrizing the latent vector z as follows:

z = µ+ σ ⊙ ϵ (1)
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Table 1: Assessment measures of UK Biobank dataset

Brain systems Assessments

Cognition
Fluid intelligence score
Prospective memory result

Well being

Mood swings
Miserableness
Irritability
Sensitivity/hurt feeling
Fedup feeling
Nervous feeling
Worrier anxious feeling
Tense/highly strung
Worry too long after embarrassment
Suffer from nerves
Loneliness/isolation
Guilty feeling
Risk feeling
Seen a doctor/gp for nerves, anxiety, tension or
depression
Seen a psychiatrist for nerves, anxiety, tension or
depression
Frequency of depressed mood in last 2 weeks
Frequency of unenthusiasm disinterest in last 2 weeks
Frequency of tenseness restlessness in last 2 weeks
Frequency of tiredness lethargy in last 2 weeks
Illness, injury, bereavement, stress in last 2 years
Happiness
Workjob satisfaction
Health satisfaction
Family relationship satisfaction
Friendship satisfaction
Financial situation satisfaction

Lifestyle

Sleeplessness/insomnia
Type of physical activity in the last 4 weeks
Major dietary changes in the last 5 years
Variation in the diet
Alcohol drinker status

Social life
Leisure social activities
Frequency of friend family visits14



where ϵ is a random variable sampled from a standard Gaussian distribution

N (0, 1). The decoder network then takes this latent vector and maps it back

to the original data space, aiming to reconstruct the input. During training,

the VAE optimizes a loss function that minimizes both the reconstruction

loss and the Kullback-Leibler (KL) divergence between the distributions of

the latent variables and independent normal distributions [42].

2.4 Brain health index prediction framework

This study presents a novel approach to predicting the brain health index us-

ing three distinct models. Each model serves a unique purpose by leveraging

different types of data for both training and testing. The first model relies

exclusively on assessment measures during its training and testing phases.

The second model takes advantage of both neuroimaging and assessment

data during its training, but during testing, it only utilizes assessment data.

This highlights the potential of incorporating neuroimaging data to enhance

model training while still being able to make predictions when only assess-

ment data is available. The third model, encompassing the full scope, em-

ploys both neuroimaging and assessment data for both training and testing.

This showcases the comprehensive approach of utilizing all available data

modalities for accurate brain health index prediction.

The process of predicting BHI in the three distinct cases involves two

primary stages. In the initial stage, PCA feature extraction is utilized to

decrease the complexity of the dataset’s information while preserving the
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most essential features. In the subsequent phase, the significant features ob-

tained from the initial PCA step are employed to create a feature vector.

For instance, in the second and third models where both neuroimaging and

assessment data are utilized for training, the feature vector is formed by

concatenating the dimensionality-reduced assessment and neuroimaging fea-

tures. This feature vector is then used as input for a VAE, which generates a

compact representation of the features. This approach aims to enhance the

prediction of BHI by effectively capturing the pertinent patterns within the

data.

The VAE is a generative model that is trained to learn the underly-

ing distribution of the feature vectors. By doing so, it can generate a low-

dimensional representation of the input data that preserves its essential char-

acteristics. The VAE consists of encoder and decoder components that work

in conjunction to process the input data. The encoder, consisting of four fully

connected hidden layers, progressively reduces the dimensionality of the data.

The first hidden layer contains 16 nodes, followed by layers with 8, 4, and 2

nodes, respectively. This encoder network produces a compressed representa-

tion of the input data in the latent space. Conversely, the decoder exhibits a

symmetric structure with the encoder, which is also composed of four hidden

layers. The first hidden layer contains 2 nodes, followed by layers with 4, 8,

and 16 nodes. The decoder’s output layer aims to reconstruct the original

input data. The selection of node configurations in the encoder and decoder

architecture underwent a rigorous cross-validation process aimed at assess-
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ing and optimizing their efficacy. Multiple configurations were systematically

tested and compared, considering their impact on the model’s performance

metrics, such as reconstruction accuracy and generalization ability.

The use of both PCA and a VAE in conjunction for dimensionality reduc-

tion serves distinct yet complementary purposes. PCA is initially employed

as a linear technique to condense the data by emphasizing the most substan-

tial variance while preserving essential features, although potentially missing

intricate non-linear associations within the dataset. In contrast, the VAE,

being a non-linear method, has the potential to capture these nuanced and

complex patterns that PCA might overlook. Rather than just compressing

the data, the VAE learns to encode and decode the information, aiming to

reconstruct the input accurately. This process of encoding and decoding re-

sults in a representation that not only reduces dimensions but also captures

more intricate and detailed patterns in the dataset. These patterns may

include non-linear associations and dependencies between features.

During training, the VAE optimizes both the encoder and decoder to-

gether. The encoder learns to map the input data to a distribution in the

latent space, often utilizing the reparameterization trick for sampling from

the learned distribution. Subsequently, the decoder takes the sampled latent

vectors and maps them back to the original input space, generating recon-

structions. VAEs are generative models that aim to reconstruct the input

data by encoding it into a lower-dimensional latent space and then decod-

ing it back to the original input space. This error essentially measures the
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difference between the original input and the reconstructed output.

Reconstruction Error =
1

N

N∑
i=1

(xi − x̂i)
2 (2)

where xi, x̂i, and N denote the original input, reconstructed output, and

number of samples, respectively. The VAE’s objective is to minimize the

reconstruction error, which quantifies the disparity between the original input

and the reconstructed output. This is accomplished through a combination

of reconstruction loss and KL loss, constituting the VAE loss. The Adam

optimizer [43] was used to train the VAE for 1000 iterations, with a learning

rate of 0.001 and a batch size of 32.

After training the VAE, the output includes a latent variable z, along

with its corresponding mean µ and variance σ. Through experimentation

with varying dimensionalities, we systematically evaluated the performance

of the VAE in terms of reconstruction error. The chosen dimensionality for

the latent variable is 2, resulting in two distinct variables, namely z1 and

z2. We explored a range of dimensions, from lower values such as 1 to higher

ones like 10 or more. It was observed that as we increased the dimensionality

beyond 2, the reconstruction error either plateaued or exhibited marginal

improvements, which did not justify the added complexity associated with

higher-dimensional latent spaces. Using the two latent variables, the BHI
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can be calculated using the following formula:

BHI = z1× σ1 + z2× σ2 (3)

Fig. 1 depicts the architecture of the proposed model, providing a detailed

exposition of the feature extraction and BHI prediction processes for each of

the three distinct cases.

UK Biobank 

(N=34606)

Assessment 

data

Deep learning model for BHI prediction

Rest-
fMRI 
data

Pre-
processin

g

Spatially 
constrain
ed ICA

sFNC

Network Templates 

Social 
life

Lifestyle
Well-
being

Cognition

Neuroimaging 

data

(A)

(B) (C)

Data Preprocessing

Figure 1: An overview of the architecture of the brain health index prediction
model. The model’s design involves three key phases: (A) Data preprocess-
ing, encompassing the handling of multimodal data sources, including neu-
roimaging data (specifically, sFNC) and assessment measures from cognitive,
well-being, lifestyle, and social life domains. Subsequently, PCA is applied to
extract significant features from both data domains. (B) The incorporation
of a VAE facilitates the creation of a latent representation, thereby enhancing
prediction accuracy by effectively capturing essential data patterns. (C) Uti-
lization of network templates to identify significant regions within the sFNC
data, which play a pivotal role in influencing brain health outcomes.
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Table 2: Evaluating reconstruction error for BHI prediction using only as-
sessment data (case 1).

Training data Test data
PCA dimensionality

reduction
Number of assessment

features
Reconstruction error

(training)
Reconstruction error

(testing)

Asssessment Assessment

Yes 10 0.1244 0.1247
Yes 20 0.1160 0.1159
Yes 30 0.1246 0.1243
No 34 0.0805 0.0809

Table 3: Evaluating reconstruction error for BHI prediction using both FNC
and assessment data for training but only assessment data for testing (case
2).

Training data Test data
PCA

dimensionality
reduction (FNC)

PCA
dimensionality

reduction
(Assessment)

Number of
FNC

features

Number of
assessment
features

Reconstruction
error

(training)
Reconstruction
error assessment

(testing)
FNC Assessment

FNC and Asssessment Assessment

Yes Yes 10 10 0.0668 0.1160 0.1028
Yes Yes 10 20 0.0682 0.1160 0.1037
Yes Yes 20 10 0.0683 0.1195 0.1053
Yes Yes 4 30 0.0675 0.1184 0.5170
Yes Yes 30 4 0.0683 0.1160 0.4790

Table 4: Evaluating reconstruction error for BHI prediction using both FNC
and assessment data for training and testing (case 3).

Training data Test data
PCA

dimensionality
reduction (FNC)

PCA
dimensionality

reduction
(Assessment)

Number of
FNC

features

Number of
assessment
features

Reconstruction
error

(training)

Reconstruction
error

(testing)

FNC Assessment FNC Assessment

FNC and
Asssessment

FNC and
Assessment

Yes Yes 500 30 0.0684 0.1160 0.0690 0.1159
Yes Yes 100 30 0.0684 0.1171 0.0689 0.1170
Yes Yes 30 20 0.0685 0.1160 0.0691 0.1159
Yes Yes 20 30 0.0684 0.1160 0.0689 0.1159
Yes Yes 20 10 0.0679 0.1160 0.0684 0.1159
Yes Yes 10 20 0.0680 0.1160 0.0684 0.1159
Yes Yes 1000 30 0.0681 0.1159 0.0667 0.1159
Yes No 1000 34 0.0682 0.1335 0.0688 0.1334
No Yes 1378 30 0.1059 0.1160 0.1069 0.1159
No No 1378 34 0.1052 0.1160 0.1063 0.1159
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3 Experimental Setup and Results

To assess the efficacy of the proposed model, systematic experiments were

conducted on three complementary models for the BHI prediction. The

dataset employed for this purpose encompassed 34,606 participants sourced

from the UK Biobank database. Within this dataset, 60% of the participants

were allocated for training, while 20% each were dedicated to validation and

testing. Various cases were analyzed to calculate the BHI by employing dif-

ferent data modalities for training and testing. A detailed description of

these cases is provided below:

• Case 1: Calculation of BHI using assessment data for both training

and testing.

This model relies exclusively on the 34 assessment measures obtained

from the UK Biobank dataset to predict BHI. Within the training

phase, these assessment measures are passed through the feature ex-

traction block to extract the most significant features. This block em-

ploys PCA on the assessment features for dimensionality reduction.

Subsequently, the data is fed into the VAE stage. Within the VAE,

the data is processed to learn the underlying distribution of the feature

vectors, ultimately producing a compact, lower-dimensional representa-

tion of the assessment data. The training and validation of this model

continue until convergence. Subsequently, the fine-tuned VAE model is

evaluated using the test data, which consists solely of dimensionality-
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reduced assessment measures. The VAE generates a meaningful, low-

dimensional representation of the test data, which is then employed to

estimate the BHI. To assess the model’s performance, the entire ex-

periment is repeated after excluding the feature extraction block. This

allows for a direct comparison of the outcomes from the two scenarios.

• Case 2: Calculation of BHI by training with both assessment and

sFNC data but testing using solely assessment data.

This model employs a combination of neuroimaging and assessment

data for its training process. It focuses on utilizing the upper triangu-

lar segment of the 53× 53 sFNC matrix, resulting in the utilization of

1378 features from the sFNC data and 34 features from the assessment

data during the training phase. In the training stage, a parallel PCA

feature extraction step is executed to lower the dimensionality of both

the neuroimaging and assessment data. The resultant feature vectors

from these two data types are concatenated and then fed into a VAE.

The primary role of the VAE is to capture the inherent distribution

within these feature vectors, ultimately generating a compressed repre-

sentation of the input data possessing fewer dimensions. The training

and validation processes for this model are conducted until conver-

gence is reached. Following this, the fine-tuned VAE model undergoes

evaluation using test data, which exclusively comprises dimensionality-

reduced assessment measures. The condensed representation produced

by the optimized VAE model is subsequently used to estimate the BHI.
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• Case 3: Calculation of BHI by training and testing with both assess-

ment and sFNC data.

This model uses both neuroimaging and assessment data for training

and testing. The training phase is like case 2, where the PCA method

simplifies the neuroimaging and assessment data. These dimensionality-

reduced feature vectors are combined and then fed into the VAE. How-

ever, during testing, the VAE model is assessed using dimensionality-

reduced assessment measures and sFNC data. Additionally, this ex-

periment is also repeated without the feature extraction block.

Fig. 2 provides a probability density plot to visualize the distribution of

the BHI for case 1 for 6922 test subjects. In this case, the probability den-

sity plot of BHI derived solely from assessment data reveals a range spanning

from -3 to 4. The presence of two distinct Gaussian peaks suggests that there

are two predominant states within the data. These peaks may correspond to

different subpopulations within the dataset, each exhibiting a characteristic

brain health level. In the second case, where both neuroimaging and assess-

ment data are employed for training, while only assessment data is used for

testing, the BHI range is extended from -4 to 4. The probability density plot

now exhibits three Gaussian peaks as shown in Fig. 3. The central peak,

being the tallest among the three, suggests that a significant portion of the

dataset exhibits a relatively moderate brain health index. The presence of

additional peaks on either side of the central peak signifies two distinct sub-

groups, possibly representing individuals with higher and lower brain health
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indexes. The use of sFNC data during training has allowed the model to

capture more complex patterns, leading to the emergence of a third peak.

Finally, in the third case, where both neuroimaging and assessment features

are utilized for both training and testing, the BHI range spans from -6 to

6. Similar to the second case, the probability density plot in Fig. 4 presents

three Gaussian peaks. The central peak, once again the most prominent,

signifies a dominant brain health level within the dataset. The presence of

the same number of peaks in cases 2 and 3 indicates that even with the ex-

tended BHI range, the underlying distribution remains relatively stable. The

richer feature set from the combined data sources might have facilitated the

increased BHI range, leading to broader distribution while still maintaining

the characteristic central peak representing the most prevalent brain health

state.
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Figure 2: Examining the BHI distribution while training and testing with
assessment data. The plot exhibits two distinct peaks, indicating the pres-
ence of two separate subgroups.
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Figure 3: Examining the BHI distribution while training with both assess-
ment and neuroimaging data and testing with assessment data. The plot
exhibits three distinct peaks, indicating the presence of three separate sub-
groups.

3.1 Identification of subpopulations and validation of

BHI

In all three cases, the presence of Gaussian peaks indicates the existence of

underlying subpopulations within the dataset, each characterized by varying

brain health indexes. The differences in the number of peaks, their heights,

and the BHI ranges highlight the influence of the data sources and training

methodologies on the resulting probability density plots. This interplay be-

tween data types and training strategies provides insights into the complexity

of brain health assessment and the potential benefits of incorporating mul-

tiple data modalities in the analysis. Additionally, the presence of different
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Figure 4: Examining the BHI distribution while training and testing with
both assessment and neuroimaging data. The plot exhibits three distinct
peaks, indicating the presence of three separate subgroups.

subpopulations was verified by conducting a clustering analysis as shown in

Fig. 5. For case 1, the optimal number of clusters was found to be 2, while for

cases 2 and 3, the optimal clusters were found to be 3. This further under-

scores the presence of distinct subpopulations within the dataset, reinforcing

the significance of the observed Gaussian peaks.

To validate the accuracy of the BHI, a bar graph was generated to com-

pare BHI values across different categories of assessment scores. Each sub-

ject’s assessment score resulted from summing responses across all the as-

sessment measures provided in Table. 1. By employing k-means clustering,

it was observed that in case 1, subjects fell into only two categories with low

and high assessment scores. Conversely, cases 2 and 3 revealed three dis-

tinct categories corresponding to low, medium, and high assessment scores.
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Figure 5: Clustering analysis confirming the presence of subpopulations in
BHI distribution.

Subsequently, BHI values were extracted for each group, and the mean BHI

for every category was calculated. The resulting bar plot in Fig. 6 offers in-

sights into the correlation between assessment scores and BHI levels. Before

the analysis, data preprocessing involved normalizing both assessment scores

and BHI values to a range of 0 to 1. In case 1, subjects with low assessment

scores displayed a mean BHI value of 0.45, whereas those with high assess-

ment scores showcased a notably higher mean BHI value of 0.69. Conversely,

in case 2, the distinction was more pronounced: subjects with low assess-

ment scores had a mean BHI of 0.39, medium scorers had a mean BHI of

0.45, and high scorers had the highest mean BHI of 0.75. Similarly, in case 3,

a comparable trend was observed, although the differentiation between low

and medium assessment scores was subtle. Fig. 7 displays a bar plot com-

paring the mean BHI among individuals diagnosed with bipolar disorder and

major depression disorder using data from the UK Biobank dataset. Across

all three cases examined, it is evident that the BHI values are consistently
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Figure 6: Bar plots depicting the mean BHI for different categories of assess-
ment scores across various cases.

low, all falling below 0.5. This highlights the trend of individuals with psy-

chiatric disorders, such as bipolar disorder and major depression disorder,

exhibiting lower BHI scores. In particular, a clearer distinction in BHI is

notable in Case 2. Here, the mean BHI for individuals with bipolar disorder

is recorded at 0.35, while those with major depression disorder show a higher

mean BHI of 0.44. This difference suggests that within this dataset, bipolar

disorder may exert a more significant influence on brain health compared to

major depression disorder. Table. 2 presents the results of evaluating the
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Figure 7: Bar plots depicting the mean BHI for subjects with bipolar and
major depression disorder across various cases.

reconstruction error for predicting BHI using only assessment data. The ta-
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ble highlights the impact of applying PCA dimensionality reduction on the

reconstruction error. Evidently, the magnitude of the reconstruction error

seems to fluctuate in accordance with the number of assessment features

utilized for prediction. Notably, opting for the scenario where PCA dimen-

sionality reduction is omitted and instead utilizing all 34 assessment features

resulted in the lowest reconstruction error (0.0805 for training and 0.0809 for

testing). This result indicates that the given configuration offers the high-

est level of accuracy when estimating the BHI while utilizing the assessment

data. Also, the model demonstrates effective generalization as the differences

between training and testing errors are relatively small.

Table 3 depicts the evaluation of the reconstruction error for BHI pre-

diction for case 2. The table explores various scenarios, each characterized

by different combinations of PCA dimensionality reduction for sFNC and as-

sessment data, as well as different numbers of sFNC and assessment features

used in training. The best BHI prediction performance is achieved when the

training dataset includes a balanced combination of sFNC and assessment

features. The scenario utilizing 10 FNC features and 10 assessment features

demonstrates the lowest reconstruction error, highlighting the importance of

considering both types of data for accurate predictions. Notably, the ex-

periment that excludes dimensionality reduction couldn’t be tested for case

2 due to the potential mismatch in dimensionality that could arise during

testing. This mismatch stems from exclusively utilizing assessment features

during testing, while the training phase involves both sFNC and assessment
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features.

A comprehensive evaluation of reconstruction errors related to case 3 is

presented in Table. 4. In this scenario, BHI prediction is conducted using a

fusion of sFNC and assessment data for both the training and testing phases.

The study explores various combinations of dimensionality reduction tech-

niques, feature sets, and feature numbers to understand their impact on the

quality of BHI prediction. The primary emphasis lies in assessing reconstruc-

tion errors, encompassing both the training and testing stages, with distinct

values presented for models based on sFNC and assessment data. The most

significant result is employing PCA-based dimensionality reduction on both

FNC and assessment data. This involved reducing sFNC features to 1000

dimensions and assessment features to 30 dimensions. This configuration

achieved a low reconstruction error of 0.0681 for training and 0.0667 for test-

ing. This indicates that the chosen combination of data sources, feature

reduction, and feature count led to a model that effectively captures and

reproduces the underlying patterns in the data.

3.2 Variation in BHI with age, gender, and education

This analysis focuses on examining the distribution of BHI in relation to de-

mographic characteristics such as age, gender, and educational qualification.

The test study encompassed a total of 6922 participants, whose ages ranged

from 53 to 86 years. The median age of the participants was 70 years, and

the interquartile range (IQR) of their ages spanned from 64 to 75 years. In
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terms of gender distribution, the sample consisted of nearly equal proportions

of males (46.6%) and females (53.4%), ensuring a balanced representation of

both sexes in the analysis. Regarding the participants’ educational back-

grounds, the study group was notably well-educated. Specifically, 45.7% of

the participants held a college or university degree, highlighting a substantial

proportion of higher education attainment. Additionally, 12.9% possessed a

higher school certificate equivalent to A levels/AS levels, typically achieved

around age 18. Also, 19.1% had a certificate similar to O levels/GCSEs,

attained after 10 years of school, around age 16. A smaller percentage, 3.9%,

had a certificate of secondary education (CSE) or an equivalent qualification,

also acquired after 10 years of school, like O Levels/GCSEs. Furthermore,

5.6% of participants had obtained a higher national certificate or diploma,

such as NVQ, HND, or HNC, which come after secondary school and usually

take 1-2 more years. A category labeled ’other professional qualifications’

was represented by 4.7% of the sample. Notably, 8.2% of participants did

not fall into any of the educational categories. This category represents in-

dividuals who might not have completed formal education up to the levels

mentioned above.

In this analysis, a violin plot was utilized to visually portray the distribu-

tion and essential statistical metrics of BHI across distinct categories, such

as age, gender, and education. Fig. 8 specifically presents the plot between

educational qualification and BHI for cases 1, 2, and 3. The plot comprises

seven distinct educational levels, with an elongated violin plot with a median
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around zero. This suggests that the data being visualized is approximately

centered around zero and that the values are spread out across positive and

negative values. This type of distribution indicates that there is no strong

bias or trend in one direction of BHI. Subsequently, Fig. 9 illustrates the

relationship between gender and BHI for the different cases. Notably, both

male and female groups exhibit analogous features with violins of varying

widths and heights. This similarity signifies comparable levels of BHI vari-

ation across genders. With medians at zero for both genders, it indicates

that, on average, there might not be a significant difference in BHI between

females and males. The third graphical representation, depicted in Fig. 10,

displays the relationship between BHI and age. Notably, this plot exhibits a

resemblance to the trend observed in the gender violin plot. Overall, these

plots highlight the variability in BHI scores across different categories of ed-

ucation, gender, and age. In all three plots, the central positioning of the

median at zero implies that the demographic categories under consideration

might not have significantly influenced the BHI scores.

3.3 Identifying significant contributors to BHI: brain

regions and assessment measures

In VAE, the most significant features that contributed to the performance

of the model can be found by computing the reconstruction error. The re-

construction error is used as a metric to assess the quality of the generated
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Figure 8: The distribution of BHI across diverse educational qualifications is
depicted through various models. A shared characteristic among all the violin
plots is their elongated shape with a median centered at zero. Nevertheless,
the interquartile range exhibits variability across the different scenarios.
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Figure 9: The distribution of BHI across different genders is visualized using
various models. In cases 2 and 3, the violin plots exhibit a wider spread
around the median compared to case 1, which has a narrower distribution.
This suggests that there may be greater variability in BHI scores among
different genders in cases 2 and 3, whereas in case 1, BHI scores appear to
be more tightly clustered around the median for both genders.

data and evaluate the performance of the model. The VAE learns to identify

and represent the prominent features of the input data in the latent space

by minimizing the reconstruction error.
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Figure 10: The visualization of BHI distribution across various age groups
exhibits a resemblance to the pattern observed for gender in the different
cases.

Measuring feature importance using reconstruction error in variational

autoencoders involves assessing the impact of each input feature on the

model’s ability to accurately reconstruct the original data. In the context

of the three testing cases, the evaluation involves calculating the reconstruc-

tion error using the VAE model. The first case focuses solely on utilizing

assessment measures from the UK Biobank database as input to the VAE.

The resulting plot (Fig. 11) illustrates the reconstruction errors of the VAE

using the 34 assessment features. Notably, the highest reconstruction error

observed in this case is 0.21. Moving to the second case, the VAE is tested

using only the assessment measures, even though its training encompassed

both sFNC and assessment data. The corresponding reconstruction error

plot (Fig. 12) demonstrates the performance of the VAE using the same 34

assessment features. Within this plot, the most significant reconstruction

error recorded is 0.23. In the third case, the VAE’s assessment involves in-

puts from both sFNC and assessment measures. The evaluation results in
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two distinct plots: Fig. 13, showcasing the reconstruction errors using the

34 assessment features, and Fig. 14, depicting the sFNC domains with the

highest reconstruction errors. In the assessment-focused plot, the highest

reconstruction error observed is 0.25.

In the case of multimodal inputs, the VAE aims to capture the inher-

ent structure and characteristics of each modality in the latent space and

subsequently reconstruct them. However, different modalities might exhibit

varying degrees of complexity or information content, leading to differences

in reconstruction errors. For instance, sFNC data contains more detailed and

distinctive features compared to assessment data. Hence, the reconstruction

error for that modality may be higher, indicating a greater challenge in effec-

tively reconstructing it. Conversely, assessment data contains less complex

information and thus has a lower reconstruction error.

During the testing phase for case 1, the assessment data revealed three

prominent features with the least reconstruction error: 1) family relationship

satisfaction; 2) illness, injury, or bereavement stress in the last 2 years; and

3) risk-taking. Similarly, during the testing phase for cases 2 and 3, the as-

sessment features with the least reconstruction error were family relationship

satisfaction, illness, injury, bereavement stress in the last 2 years, and work-

job satisfaction. The consistent emergence of these patterns across all three

cases suggests that the computation of the BHI is significantly influenced by

these shared attributes within the assessment data. In the case of the sFNC

matrix for case 3 testing, the SM, VS, and CB domains showed the highest
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reconstruction error.

Fig. 15 displays the mean sFNC matrix of 25% of subjects with the lowest

BHI among the total of 6922 test subjects. Conversely, Fig. 16 shows the

mean sFNC matrix of 25% of subjects with the highest BHI among the same

group of 6922 subjects for the same time points. Significantly, individuals

displaying the highest BHI values exhibited enhanced connectivity in the SC

and select regions of the SM. Conversely, participants with the lowest BHI

values demonstrated heightened connectivity in the SM, VS, and SM-VS

domain pairs. These observations obtained from the mean sFNC data of the

UK Biobank study align with the regions identified through the calculation

of reconstruction error.

The bar graphs presented in Fig. 17 depict the reconstruction error con-

cerning distinct brain systems across multiple scenarios. It can be noted

that, for case 1, the lifestyle assessment exhibits the highest reconstruction

error. This suggests that the model struggles to accurately reconstruct or

predict the lifestyle assessment measure based solely on the assessment data.

Conversely, for cases 2 and 3, the well-being metric demonstrates the high-

est reconstruction error. This suggests that even when both assessment and

neuroimaging data are used for training and testing, the model still struggles

to predict the well-being assessment measure effectively.
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Figure 11: Reconstruction error for case 1 during testing.

4 Discussion

In this work, we propose three novel complementary approaches for BHI pre-

diction using deep learning. Developing a practical approach for quantifying

brain health is critical in understanding the impact of interventions aimed

at enhancing cognitive well-being and mitigating neurodegenerative diseases.
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Figure 12: Reconstruction error for case 2 during testing.

This research tackles this pivotal challenge by introducing both unimodal and

multimodal systems that facilitate efficient BHI computation. By leveraging

a large dataset, the deep learning model captures all the variations of brain

connectivity, providing a comprehensive assessment of brain health. The

analysis is trifold, with the initial case employing solely unimodal input with

assessment data. The subsequent two scenarios, however, leverage multi-
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Figure 13: Reconstruction error for case 3 during testing.

modal input by synergizing neuroimaging and assessment information. Even

though analysis conducted using just the assessment data produced meaning-

ful outcomes, the utilization of rs-fMRI data provides valuable insights into

the intrinsic functional organization of the brain during a non-task state. To

extract significant features from the neuroimaging and assessment data, the

model employs dimensionality reduction techniques such as PCA. This step
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Figure 14: sFNC matrix highlighting salient brain region for BHI prediction.

Figure 15: Average sFNC of subjects with the minimum BHI.

allows for the identification of key patterns and the extraction of relevant fea-

tures that contribute to the computation of the BHI. By incorporating VAE

in the subsequent stage, the model learns a low-dimensional representation
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Figure 16: Average sFNC of subjects with the maximum BHI.
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(c) Case 3

Figure 17: Comparison of different brain systems for each case based on
reconstruction error during testing.

of the input data that captures its essential characteristics. This compressed

representation facilitates the calculation of the BHI, enabling a more concise

and interpretable assessment of brain health.

The assessment of the BHI was done during both training and testing

for all three cases. During this evaluation, a comparative analysis was con-

ducted using different dimensionality-reduced features to predict the BHI
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and determine the configuration that gave the least reconstruction error.

The results revealed that in the first case, employing PCA for dimensionality

reduction on the assessment attributes prior to passing them to the VAE

was not necessary. The configuration devoid of PCA demonstrated superior

performance by achieving the least reconstruction error, outperforming the

configurations involving PCA. In cases 2 and 3, PCA dimensionality reduc-

tion was required for both the sFNC and the assessment data to achieve the

least error. An additional observation highlighted that the sFNC exhibited a

lower reconstruction error in comparison to assessment data. This observa-

tion underscores the VAE’s capacity to model the underlying patterns present

in the neuroimaging data, thereby enabling it to reconstruct the sFNCs with

greater accuracy and detail.

Subsequently, an additional study was conducted to examine how varia-

tions in BHI relate to demographic characteristics, such as age, gender, and

education. The trends revealed by violin plots portraying these associations

were notably consistent. Across different age, gender, and education groups,

the median BHI values clustered around zero. These findings imply that

demographic factors like age, gender, and education do not play a significant

role in influencing BHI. The limited impact of age on BHI suggests that the

natural aging process might not strongly affect BHI, indicating that the fac-

tors evaluated by BHI might remain relatively unchanged across various age

brackets. Similarly, the lack of significant gender-related differences in BHI

could indicate that it measures aspects of brain health that are consistent
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between genders. This is noteworthy because some health parameters, in-

cluding brain health, can differ between males and females due to hormonal

and physiological differences. Moreover, the absence of a strong connection

between education and the BHI suggests that the measured aspects of brain

health might not be strongly linked to an individual’s educational attain-

ment. This could indicate that factors like cognitive function, which are

often associated with education, may not be the primary drivers of the BHI.

Finally, the interpretability of the proposed approaches was assessed by

identifying the significant assessment measures and sFNC domains. In the

case of sFNC, specific regions within the SM, VS, and CB domains dis-

played elevated reconstruction errors. When higher reconstruction errors are

observed in specific brain regions or domains, it indicates that the actual

patterns of connectivity in those areas are not accurately captured by the

model used for reconstruction. Meanwhile, reconstruction error was also

used for distinguishing significant assessment measures. BHI was calculated

based on four brain systems: well-being, cognition, lifestyle, and social life.

These systems are representative of different aspects of brain function and

health. The reconstruction error varies across different cases (cases 1, 2, and

3), and specifically, social life and cognition had the lowest reconstruction

error across these cases. On the other hand, the highest reconstruction error

for case 1 was associated with the lifestyle measure, while for cases 2 and 3,

the highest reconstruction error was associated with the well-being measure.

Therefore, in cases 2 and 3, the model encounters moderate challenges in
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effectively predicting well-being, even with the utilization of both assessment

and neuroimaging data. This difficulty arises from the inherent complexity

and subjectivity of well-being. Unlike more objective measures such as cog-

nition or certain aspects of lifestyle, well-being encompasses a wide range

of subjective experiences, emotions, and personal perceptions. Additionally,

the combination of neuroimaging and assessment data may introduce noise

and complexities, impeding accurate predictions. Meanwhile, in the case

of well-being, relying solely on assessment data provided a clearer focus on

subjective experiences, potentially improving prediction accuracy.

Overall, the findings from our analysis offer valuable insights into the com-

plexities of brain health assessment and the advantages of employing diverse

data modalities and assessment methodologies. The presence of Gaussian

peaks in the probability density plots across three distinct cases suggests the

existence of underlying subpopulations within the datasets, highlighting the

heterogeneity of brain health profiles. Clustering analysis further validates

this, revealing distinct subgroups within the data. The correlation between

assessment scores and BHI underscores the importance of comprehensive

evaluation approaches. While in case 1, there is a clear distinction between

subjects with low and high assessment scores with corresponding BHI levels,

cases 2 and 3 demonstrate a more complex relationship, with multiple as-

sessment score categories reflecting varying BHI distributions. Furthermore,

the comparison of mean BHI between subjects with bipolar disorder and ma-

jor depressive disorder from the UK Biobank dataset also yielded significant
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insights. While both conditions exhibit lower BHI values, there is evident

variability within each disorder cohort. This variability underscores the het-

erogeneous nature of psychiatric disorders and highlights the diverse impacts

they may exert on brain health across individuals. These findings highlight

the significance of incorporating a variety of data sources and assessment

metrics to achieve a thorough comprehension of individual brain health.

5 Conclusion and Future Works

This study introduced three innovative and complementary approaches for

predicting BHI using deep learning techniques. Through the integration of

unimodal and multimodal strategies, this research offers novel approaches

to computing BHI that have not been explored in previous studies. The

analysis progresses through three phases, starting with a unimodal strategy

that utilizes assessment data and then evolving into multimodal configura-

tions that combine neuroimaging and assessments. Utilizing dimensionality

reduction methods like PCA aided in extracting essential features during the

data preprocessing stage for calculating BHI. Employing dimensionality re-

duction techniques, such as PCA, facilitated the extraction of key features

during data preprocessing for BHI computation. The subsequent integration

of VAE enabled a compact representation of input data, enhancing the preci-

sion of BHI calculations. Throughout training and testing, all three cases un-

derwent BHI assessment, comparing various dimensionality-reduced features
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to identify optimal configurations with minimal reconstruction error. In the

case that relied solely on assessment data, the exclusion of PCA resulted

in the lowest reconstruction error, underscoring the unique requirements of

each case. Multimodal setups exhibited superior reconstruction accuracy,

showcasing the model’s adeptness at capturing neuroimaging patterns.

Moreover, the identification of distinct subpopulations within the dataset

based on BHI highlights the heterogeneity of brain health profiles, influenced

by data sources and training methodologies. Validation through assessment

scores reveals correlations between assessment measures and brain health

levels, with multimodal approaches showing enhanced predictive power. The

lower BHI values among individuals with psychiatric disorders underscore

BHI’s potential as a relevant biomarker for psychiatric conditions, with vari-

ations suggesting differential effects across disorders. Additionally, demo-

graphic attributes such as age, gender, and education did not exert a notable

influence on BHI across the different cases. The interpretability of the ap-

proach was assessed by identifying significant assessment measures and sFNC

domains, emphasizing the relevance of different brain systems and regions.

Overall, this work contributes to the development of a practical approach

for quantifying brain health, which is crucial for understanding interventions

aimed at enhancing cognitive well-being and mitigating neurodegenerative

diseases. While our current findings stem from a single-center study, ac-

knowledging the importance of broad validation, our future research will

prioritize the validation of these methodologies on an independent dataset.
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This step aims to reinforce and extend the reliability and applicability of our 

developed approaches across diverse settings and populations. The future 

work will not only focus on validating the methods but also explore the in-

tegration of attention-based models, such as transformers, to further elevate 

the predictive performance of our deep learning approach in forecasting the 

BHI. Additionally, we aim to leverage the insights gained from this multi-

modal framework to develop personalized interventions tailored to individuals 

based on different brain s ystems. By l everaging the power of deep learning, 

we envision creating targeted interventions that can effectively promote and 

optimize brain health in diverse populations.
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