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ARTICLE INFO ABSTRACT
Keywords: In this paper, we discuss a general framework for multicontinuum homogenization. Multicontin-
MUlﬁSC'ale uum models are widely used in many applications and some derivations for these models are
Upscaling established. In these models, several macroscopic variables at each macroscale point are defined
Multicontinuum . . . . .

o and the resulting multicontinuum equations are formulated. In this paper, we propose a general
Homogenization

formulation and associated ingredients that allow performing multicontinuum homogenization.
Our derivation consists of several main parts. In the first part, we propose a general expansion,
where the solution is expressed via the product of multiple macro variables and associated cell
problems. The second part consists of formulating the cell problems. The cell problems are for-
mulated as saddle point problems with constraints for each continua. Defining the continua via
test functions, we set the constraints as an integral representation. Finally, substituting the ex-
pansion to the original system, we obtain multicontinuum systems. We present an application to
the mixed formulation of elliptic equations. This is a challenging system as the system does not
have symmetry. We discuss the local problems and various macroscale representations for the
solution and its gradient. Using various order approximations, one can obtain different systems
of equations. We discuss the applicability of multicontinuum homogenization and relate this to
high contrast in the cell problem. Numerical results are presented.

Mixture theory
Porous media

1. Introduction

Many problems have multiscale nature. For example, the flow in porous media occurs in multiscale media with heterogeneities
at multiple scales and high contrast. The simulations of these problems are often performed on a coarse computational grid, where
the grid size is much larger compared to the scales of heterogeneities. In these simulations, we distinguish two cases in the paper.
The first is the case with no-scale separation and the second is the case with scale separation. In the first case, approaches use the
information within the entire computational grid or beyond to derive macroscopic equations. We will not discuss this case in the
paper. In the second case, the representative volume-based information (which is much smaller compared to the target coarse block)
is used in deriving macroscopic equations.

For the case of no-scale separation, many approaches are developed to account for subgrid effects. These approaches, e.g.,
[17,20,21,24,26,18,29,6,23,16,19,2,1], include the construction of multiscale basis functions that are supported in domain larger

* Corresponding author.
E-mail address: yalchinrefendiev@gmail.com (Y. Efendiev).

https://doi.org/10.1016/j.jcp.2024.112980
Received 15 September 2023; Received in revised form 7 February 2024; Accepted 28 March 2024

Available online 18 April 2024
0021-9991/© 2024 Published by Elsevier Inc.



E. Chung, Y. Efendiev, J. Galvis et al. Journal of Computational Physics 510 (2024) 112980

than the target coarse block. Among these approaches, the CEM-GMSsFEM [18] is related to the approaches presented in this paper.
In these approaches, the multiscale basis functions are computed in oversampled regions. There are several basis functions in each
target coarse block representing different continua effects. These concepts will further be used in multicontinua homogenization.

In the case of scale separation, one uses information in representative volume (which is much smaller compared to the coarse
block) to derive effective properties. The well-known approach includes the homogenization technique [11,12,8,4], which is widely
used in many applications. The main idea of this approach is to assume that the solution in each macroscopic point, can be repre-
sented by its average. The homogenization method provides a systematic expansion, which allows for deriving the equations. In this
derivation, the small-scale ¢ is the RVE size. In the derivation, all terms depending on different powers of € are separated. The latter
is one of the limitations in extending these methods to problems where the media properties can depend on € (high-contrast case).

In this paper, we introduce a general homogenization method, where we assume that the media properties can have high contrast.
In our expansion, we consider that each macroscopic point has several macroscopic variables associated with it. The macroscopic
variables are defined via auxiliary functions and assumed to be smooth functions. The expansion of the solution via macroscopic
variables uses the solution of local microscopic problems posed in RVE, called solutions of cell problems. These local problems
account for the micro-scale behavior of the solution given certain constraints. These constraints are related to the definition of
macroscopic variables. In particular, our first cell problem imposes constraints to represent the constants in the average behavior of
each continua. The consequent cell problems impose constraints to represent the high-order polynomials in the average behavior of
each continua.

The multi-continuum homogenization expansion is substituted into the fine-scale equations. Our next assumptions include the
fact that the integrals in the macroscopic variational formulation can be written in terms of the integrals over RVE and macroscopic
variables are smooth. Using these assumptions, we derive a system of equations on a coarse grid. The resulting system of equation
include additional terms and can involve higher-order derivatives. These equations share similarities to other models derived earlier
and some terms can be negligible due to high contrast in the media properties.

Our approaches share some common ingredients with mixture theories [30,33,28]. In mixture theories, the conservation of
mass and momentum are written for each component. This model can be used in deriving a general set of macroscopic equations.
However, these models do not make any specific assumptions on exchange terms. Our models generalize some earlier derived model
equations related to works [22], dual-permeability models [31,9,32,3,25,14,7,10,15,5] and we establish a general tool for deriving
multicontinuum homogenization models.

One of the challenging aspects of multicontinuum homogenization is in formulating cell problems correctly. We consider large
oversampled regions, where we can impose higher-order polynomial constraints. By imposing averages in each RVE within the
oversampled region, our main test is to guarantee that the solution of the cell problem converges to zero. To achieve this, one needs
a careful formulation of cell problems. For example, in a carefully studied example of mixed Darcy equations, we show how one can
achieve this. We obtain a generalized Darcy approximation on the coarse grid. We present an error analysis for our multicontinuum
approach in a separate arxiv paper [27].

We present numerical examples. In this numerical example, we consider a mixed formulation between velocity and pressure in
Darcy’s equation. Because pressure and velocity are treated separately, their relation at the microscale will not necessarily preserve
at the macroscale as in the standard homogenization. We note that there is a linear relation between the velocity and the gradient
of the pressure via the multiscale permeability field. Because the mixed formulation is not symmetric, this causes further challenges
that are addressed in numerical examples when imposing local constraint problems. Our numerical results show a good convergence
as we decrease the mesh size.

The paper is organized as follows. In the next section, we present preliminaries and a simple derivation of multicontinuum
homogenization for zero-order equations. In Section 3, we present a general theory for multicontinuum homogenization and also
discuss the relation to mixture theory. Section 4 is devoted to mixed-order systems. In Section 5, we present numerical experiments.

2. Preliminaries and zero order equation

To present preliminaries, we consider zero-order equations (following [12]). We consider the following zero-order equation

AX)u(x) = f(x), (@)

where A(x) is a scalar function with multiple scales and high contrast. For example, we assume A is a periodic function where the
period consists of two distinct regions with highly varying coefficients. We denote by y; the characteristic function for the region i,
called the ith continua.

It is assumed that the problem is solved on a computational grid consisting of grid blocks, denoted w, that are much larger
than heterogeneities. We assume some type of periodicity within each computational block represented by Representative Volume
Element R, that corresponds to a computational element @ (see Fig. 1) (more precise meaning will be defined later). We assume
that within each R, there are several distinct average states (known as multicontinua). We denote the characteristic function for
the continuum i within R, by y;” (w will be omitted since local computations are restricted to a coarse block), i.e., y; = 1 within
continuum i (can be irregularly shaped regions consisting of several parts, in general) and 0 otherwise. We introduce oversampled
R? that contains several R?’s, where p denotes different R,’s. We denote the central (target) RVE by, simply, R,. We denote u/l.p s
the characteristic function for R?, and will omit the index p for simplicity if it is clear which region we are referring to.
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Fig. 1. Illustration.

We consider the expansion of u in each RVE as (for simplicity, we use equal sign instead of approximation)

u=¢;U, 2

where ¢; is a microscopic function for each i and U;(x) is a smooth function for each i. The summation over repeated indices is
taken. To obtain the microscopic function ¢;, we formulate the following cell problems in each RVE within @ and use y dependence
to denote microscopic nature:

A()¢;(y)=D;;y; inR,
/(ﬁiwj:&[j/q/j, for each j, 3
R

2] R,

where D;; are constants and can be shown that D;;y; = C;y;. Moreover, it can be easily computed that

_ /Rw Vi

Next, we derive macroscopic equations. For this, we first write an integral form (for any test function v)

/ fu= / A(x)u(x)U(x)=Z / AX)u(x)v(x)
D “

D
|| @
~ ) T | ADu(no(y).
2 i,
Substituting u from (2) into the equation and writing v = ¢,V;, we get
/ AWuvx)dy = Ui(x,)V;(x,) / A (N;(y) dy, (5)
R, R,

where x,, is a mid-point of R,. We will omit the microscopic dependence of macroscale variables (e.g., U;) and simply use U,
notation

/ AUy =U,V, / AP, 0) dy. .
R(,U RU)
We denote
%= / AW (;(») dy. .
R

@

It can be shown that

aij=5ijCi/1//j. (8)

R

1)

From the above, we see that the macroscopic equation has the form

a;U; = b;,

bj:/f¢j-
Rw

where
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Taking into account that « is a diagonal matrix, we have
b

1

B CI/R Wi.

1)

i

We note that, in single continua homogenization, we obtain

1 -1
U, =b—— AT
: ‘|Rm|2R/

@

3. General case. A formal derivation

In this section, we present a formal derivation of generalized multicontinuum homogenization. The derivation makes several
assumptions, which may or may not hold depending on particular problems. We will make these assumptions as we go along.
We consider a general linear system given by

%+Au:f, in D, 9

where A is a differential operator, u is a vector valued solution and D is the domain. The problem (9) is supplemented with some
appropriate initial and boundary conditions. We next present several examples.

Example 1. In the scalar case, Au = —div(x(x)Vu), where k(x) is a multiscale and high-contrast coefficient.

Example 2. In a vector case, one can consider the elasticity problem with Au = —V,C;;,(x)ey, (u), where C;;;,(x)’s represent hetero-
geneous and high-contrast media properties, e;,;(u) = (V,u; + V,u;)/2, and u is the displacement vector.

Example 3. We can consider Example 1 in a mixed formulation as a first-order system. In this case, u = (p, v), where p and v solve
o+ Vp=0, divw) = f.

Example 4. One can consider the first order systems, Au = v(x) - Vu + a(x)u, where v(x) and a(x) are highly heterogeneous fields.

We write (9) as a variational problem
d
(5;-0) +ap(@.v) = (f.0). (10)

where ap(u,v) = f p(Au)v, e.g., in Example 1, ap(u,v) = f p K Vu - Vo (assuming zero Dirichlet boundary conditions).
In the multicontinuum homogenization, we assume that in each RVE, R, there exist functions y; (i refers to continua, y; can be
a characteristic function of subregion), such that

B /R uy;

are macroscopic variables, where x’ is a point in R,. One main assumption is that U,’s are smooth functions if we consider them
over all RVEs. In our examples, the macroscopic variables have physical meanings as they represent the average of the solution in
subregions associated with y;’s. Next, we present the steps in deriving macroscopic equations.

Step 1. Expansion.

The first step consists of expanding the solution u in terms of macroscopic variables. The coefficients in front of them, denoted by
¢;’s, represent the local microscopic solution in RVE. We consider the expansion of the solution u as

U= Uy + LV ,U,y + GINLU,, + s an

where V; refers to %. In this expansion, we will discuss the functions ¢, which are defined as the solutions of local problems in
J

RVE, R,. We note that the number of macroscale variables defines the size of the coarse system. In general, we expect that the
number of macroscale variables is small compared to the number of fine degrees of freedom.

Step 2. Cell problems.

Next, we introduce equations for ¢;’s. These equations are written in each RVE subject to some constraints. These constraints
are related to definitions of macroscopic variables. We use Taylor’s expansion concepts in defining the local functions such that
they solve local problems with constraints that their averages with respect to y; behave as constants, linear functions, and quadratic
functions.

Our first cell problem imposes constraints to represent the constants in the average behavior of each continua (continua m in
(12)). We note that all cell problems are solved with zero Dirichlet boundary conditions. Because of oversampling region. We expect
the boundary conditions do not affect the homogenized equations as described below. We consider the cell problem in oversampled
regions R} that contain several R,,, denoted by RY,.
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i PPl i +
A, =TTyle’ in RT,

/¢mw”=5 e /w,,, vp, (12)

RP R

1)

where ¢ is the unit vector (solution u is vector valued) and v} is the characteristic function in R?,. This cell problem corresponds to
appropriate energy minimizing solution subject to the constraints. Here and later, by I', we denote the Lagrange multipliers due to
constraints. We denote ¢,, the matrix spanned by ¢£n (as columns).

Our second cell problem imposes constraints to represent the linear functions in the average behavior of each continua.

Agil =T'irlyPel in RY,

/d)tlwp — /(xl —Cz)ll/,,a Vp, (13)

m

where ¢; (later on also) is chosen such that [, (x;, —¢;) =0, where R, is the RVE defined in the middle of R}. Similarly, we denote

¢£n the matrix spanned by ¢£rlz (as columns).
We can also define higher-order cell problems. The next cell problem imposes constraints to represent the quadratics in the
average behavior of each continua.

ijl _ ijlps,, p,S ; +
A¢m —an L lan’

/¢le P=5 ¢ /(ij[ _le)ll/fv Vp. (14)
R;, R;,
Similarly, we denote ¢f,{ the matrix spanned by ¢Zl (as columns).

We note that in our cell problems, we solve for each component of the vector solutions. The first cell problem is scalar and the
number of higher order cell problems depends on the dimension of the space. In some applications, one can lump some components
if some relations between components of the vector are known apriori.

Existence and uniqueness can be shown in most cases for positive symmetric operators with appropriate norms. In general, we
need inf-sup condition for well-posedness of cell problems [13]. We note that the local solution away from R, (middle RVE) is
independent of the oversampling domain size. This appears as a decay in NLMC approach, where zero constraints are imposed
outside the target RVE. In our case, the solution at the target RVE becomes independent of oversampling domain size.

Step 3. Substitution in the variational formulation.

In this step, we use u and v expansion in the fine-grid formulation of the problem. In particular, we have

i i il i ilpg2 rri
u=¢ U, +¢, VU, +¢,/V, U,

V=@V GV Ve + GV Vi

(15)
We substitute and get the following equation (we use matrix notations for ¢’s)

2 l'};"ll{/ = @nUn + 80, ViUp + 2V U@,V + BEViV, + G5 V3 V)

ag, @uUpn ®,V,) +ag (b, m’¢kvkv)+aR,(¢mUm’¢ksvks V)+
ag, @,V U V) + ag (@YU, 65V, V,) +ag (#,V,U,,, ¢ Vi V,)+ (16)

ag, @2V} Upe @aV,) + ag, G2V U 0V, V) + ag, ($2V] Uy 07V V)
|',‘;"| /f<¢ V4 LV, + VRV

R,

Our next two steps include using RVE concepts and taking into account that U; and V; are smooth functions.

Step 4. Integral localization.

Our next step includes dividing the integral over the coarse partition w and then using the RVE concept. More precisely, for each
integral and a smooth function F, we have

||
/F:ZMZ% r a7
D ® ® @ 3

We note that we use only R, as the solution in the representative elements near the boundary of the oversampled region dR} are
affected by artificial boundary conditions.
Step 5. Piecesmooth approximation of macroscopic terms.
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In this step, the macroscopic terms, U; and V; assumed to be smooth functions and the operator A acts only on cell problem
solutions. As before (in zero-order equation case), we take the macroscopic variables out of the integrals over R,. To demonstrate
this step, we consider only two term expansion in (15) writing the integrals over RVE.

More precisely, the terms in the equation (16) have the following forms in R,,,.
|a)| / / ks O
U Vv, + —U,V,V,+
wl( D Pn) 5 Um Z IRI( ¢m¢)at mViVa

|60| ! g || I 1ky 9
|R|(/¢¢) VUV+Z|R|(/¢¢) VU, ViVt

w w
+ 2 maRm(qu,¢n)UmVn + ; K, |aRw(¢m,¢k)U ViVt (18)
Z |Icol ag (@), 6)V,U,V, + Z l'};"||aRw(¢f",¢’;)V,UkaVn+
W, +Z|R l(/f¢ WiV

In Equation (18), we further take into account that U; and V; are smooth functions defined in D and get the following macroscopic
equation for U; (in strong form)

le
IR I

0 —k i
Aun 5 U+ BunUn + B! V.U, -V,B, U,—V(B*vVU,=b,. 19
Here, we neglect the second, third, and fourth terms in (18). The latter is because ¢”j is of order RVE size, while ¢, is of order O(1),
in general. Because the coefficients in the operator A have high-contrast properties, we can not neglect these terms. We will remark

on this later. The coefficients A’s and B’s are defined from (18). More precisely,

1 1
A = — , b =—— s
nm lRw|/¢m¢n " IRa,I/m"
R(JJ Rm

1 i 1 i 20
Bun = TR ke @) Bl = gk, @b 20
&* 1 ky  pik 1 ik
= TRk B ¥ B = T2y, 8

If we use the second-order expansion, the macroscopic equation will have the following form

0
"'"aU+

B,yUy + B, ViU, + Bl V.U, ~

V(B Uy) = Vi(Bi ViU,) = Vi (BIVEU, )+
2 k 2 ik 2 jkpxg2
Vi, (BirU,) + Vi (BIV,U,) + Vi (BIPVLU,) =b,

(21)

Next, we make several remarks.

First, different terms in the macroscopic equation can have negligible weights. In general, ¢,’s (the cell solutions accounting for
the averages) are of order O(1), while qbZ’s (the cell solutions accounting for the gradients) are of order O(¢), where ¢ is the RVE
size (see [22]). For this reason, we have neglected some terms in the time derivative terms and source terms. However, because
of high-contrast coefficients, one can not neglect different terms that stem from ¢,’s or from ¢}’s. In [22], we show that the zero-
order terms are important when there is high contrast. More precisely, the reaction terms scale as the inverse of the RVE size. If
the effective diffusivity is high, then the reaction and diffusion terms balance each other. Otherwise, one can show that there is no
multicontinuum and our macroscopic equations result to single continuum homogenization.

Our second remark is regarding the definition of the continua. Throughout the paper, we assume that y;’s are associated with sub-
regions defined apriori. In general, one can use spatial functions for y;, for example, defined via local spectral problems as it is done
in nonlocal multicontinua approach or GMsFEM [20,34]. In summary, we formulate conditions that are needed for multicontinuum
homogenizatiom.

+ We require that the solutions of cell problems (¢,,, fn,...) do not depend on oversampling domain sizes, which show that the
boundary conditions do not affect the solution in the middle RVE much.
+ We require that U; are smooth functions.
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+ We need y; to approximate smooth functions in the whole domain D, in some sense. More precisely, we assume that |lu —
Pullyey < CH So ||u— Pully(y), for each w, for some &, > 0, where W C V. The typical norms for elliptic equations are ||uy,) =

/w xu* and 1l = /wK|Vu|2.
3.1. Example. A scalar elliptic equation
This example is discussed in [22]. We briefly mention it here. We will focus on multicontinuum expansion, macroscopic equations,

and constraints, for simplicity, and do not write down the cell problem equations (cf. (12)). The multicontinuum expansion is
u=¢;U; + ¢!"V,U;, where cell solutions have constraints for ¢,

(u

and for q’zfn
!
/d’m‘/’r’: =6, /(x, -yt (23)
R}, RG,

Note that the equations for ¢,, and for d;in are solved separately.
The macroscopic equations have the following form

B, U +B’VU’—VAB

nm=m

V(B v,U,)=b, (24)

nm m)

3.2. Comments on error analysis

The analysis of multicontinuum homogenization for elliptic equations can be carried out. We post the results in a separate arxiv
document [27]. The proof uses the ideas from NLMC and estimates the difference between U; and the averaged fine-scale solution
defined via / uy;. More precisely, we estimate [|A*([U;]—[{u);])]l, where A* is the homogenized operator, [U;] is the vector consisting
of U;’s, and (u); is an appropriate average of the fine-grid solution in ith continuum. It was shown that this residual is small. The
proof uses the smoothness of U; and the properties of the cell solutions. Furthmore, the proof assumes regularity for the inverse of
A* to conclude the closness of U; and (u),. The details can be found in [27].

3.3. Example. A system of elliptic equations

We consider

ax axg ka’ax u)=Jj: 25)

The multicontinuum expansion has the following form

k
= OpijUpj + ¢mu Unjs

where the cell problems have the constraints for ¢,,,,

/ PijWh = Sy / vy (26)

and for q.’)’

mij

/%u mu/W‘Ww @7
For example, for two equations, we have
ur| _ 9 b2 | |Un i ‘i’:nlz VUi | (28)
=l¢. Uo |t ]om v, U
7 bin1 bin 2 Py m< j2

The constraints are the following

D _ o _ 0
[0z H/M bz <o V] [
RrR? RP

2]
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¢ 11] P H/ _
Iip/[qjgzl v, (xg — cw?t,

0]

& (30)
0
[t [ fe-ome
¢m22
R7, RY,
The macroscopic equations have the following form
i Ik
Bl/"mUlm + Bz/nmlejm - (ijnm Jm) - Vk(Bljan Ujm) — Vin» (3D
where
Bijnm = aRw(‘ﬁmri’ ¢ntj) B,jnm aR (d’mna ¢Vllj)
Ik P~ 32
Bi/nm_aR (¢mr1’ n!j) b /f¢nr1’ (32)
where

an, 0= [ 44Ty

It ox; ’6xk a
RU]

It can be shown that the second and third terms cancel each other and the scaling of B,,, is of order 1/¢?, where ¢ is RVE size.
Because of high contrast, this term can balance with the diffusion term.

3.4. Mixture theory and its relation

Here, we briefly note that one can also derive general multicontinuum equations using mixture theory [30,33,28]; however,
precise micro and macro relations can not be derived from this theory. Mixture theory specifies several model classes [28]. One that
is suitable for our models is Class I, where N balances of mass for N components of the mixture and also N balances of linear
momentum for N components of mixture are formulated. In this case, the equations have the following form

0p:
§+div(p,-v,»)=m,-, Zm,:o,

(33)
9piV;

— +div(p,0, ® v) =div(T) +Q; +myu, (Q; +mv) =0.

1
Here, we use a simplified formulation from [28], and use the notations from [28], where p; is the density of ith component, v; is the
velocity, m; is the exchange terms for mass conservation, 7; is the stress tensor, and Q; is the exchange terms for momentum.
To derive a multicontinuum equations, we consider solid and two fluid continua mixture. For momentum equations, we have
(ignoring gravity)

apfuf .

ét Lt div(e/v] ® o)) =div(T!) + 0],

S
dp) v

272 i N gin(T) f 34
T"l‘d!U(szz@Uz)—dlU(Té )+Q B

aps s

+div(p’v® @ v*) =div(T,) + Q°,

where Q° = —Q{ - Qf , s denotes the solid and f denotes the fluid. It is assumed that v* ~ 0, Tf =pl,i=1,2, Qf =K; u and the
flow is steady-state and slow. In the mass conservation equations,

;
1 PN I AN
TR + dlU(pl vy )=
A
35
—2 + dlu(p2 fy= (35
a '
a—"’t +div(p* ") =m’
We have v* = 0, m® ~ 0, and take
mf—apf(pz -p)
(36)

ml =
m, = ap, /() = py)-
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The resulting equations have the form of multicontinuum equations (24).

4. First-order mixed system

We consider a first-order mixed system as an example of a system, where the variables are coupled.

o+ Vu=0
37)
div(v)=f.
This equation is a non-symmetric system with the solution vector (v,u) and the operator
kv
- [ div 0] (38)

The local cell problems and constraints require special attention to avoid the boundary condition influence. We consider the deriva-
tion of macroscopic equations. In general, as before, one can use various constraints and derive various macroscopic equations.

We consider piecewise constant velocity and piecewise linear type pressure approximations at the RVE level. We use different
notations because differing notations for variables. In this case, we have the following expansion

vy =NU; + i VU + 05 Vi

ism = m

u= U, + ¢V, U, + LV,

im " m

(39)

Here, i refers to the continua, (¢*?, ¢"*) represents the cell solutions with zero constraints on v and (¢", ") represents cell solutions
with zero constraints on u (see Section 5, (48)-(50)).
We multiple the mixed system (37) by

¢UMQ + ¢Uu V
[ P40, + ] (40)

and sum up the equations (use vector notations for simplicity)
/ (B0, + 14V,0,)k ™ @U, + $4V,,U, + 1V,)

/ (B0, + 11V, 0V (U, + B, U, + V)

(41)
¥ / di U, + B9V, U, + 3 V)BQ, + $4Y,0))

R

2]

/f(¢“”Q +¢5V,0).

R

2

In the global form, the equation has the form

aU+a V,U; - V(a

ijm " m

V@ VU + BVi+ B,V Vi = F1. (42)

In our numerical simulations, we observe that the sum of two convection terms (the second and third terms in the equation) is small
and can be neglected. This is because In our calculations, we drop some of the terms depending on the relative scalings of ¢’s and
their gradients.

Next, we multiply the system (37) by

e
[«b;vgj] “43)

and sum up (use vector notations for simplicity)

ijm i)
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/ ¢k~ (GMU; + iV Ui + ¢ V)
Rw

+ [ 670,59, + 49,0+ 61

RIU
44
4 / dio( U, + $14V,U, + 4V 0,
R(u
= / f(]bvaj
R,
In the global form, the equation has the form
a Ui+ a), VUi + B Vi= /). (45)

In our numerical simulations, we observe that a;; is small and can be neglected.

In general, one can choose a more general representation of the velocity via piecewise linear functions and obtain general models
with higher order derivatives.

Note that the polynomial constraints in the approximation of velocity and pressures in (39) is for homogenization and is not
related to stable polynomial approximation in finite element methods.

5. Numerical example

In this section, we will present some numerical examples to demonstrate the performance of the method in a mixed formulation.
Here, we propose the following local problems for velocity v and pressure u in the equation

o+ Vu=0
(46)
div(v) =q.

Next, we describe the local solutions for velocity and pressure. We will only write down the constraints, the formulation of the
local problem follows from equations (12) and (13). For the velocity constraints, we impose an intermediate domain RZ, where RZ
is a subset of R; and contains R,. Moreover, we assume that RZ consists of R‘gJ, where p is a numeration of local domains, one of
them being R,,. We remind that the local solution has the following matrix form.

U.

u ¢1_m ¢{«u uv i
[U ] = ¢2u ¢15174n é]; VmUi (47)

s is ism isk Vik

The local constraints for ¢’s are imposed column by column. The constraints are the following

— +
/‘/’?"‘/’j =6 / w;, YR C R,

R}, R
(48)
) = 14
[ v, =0.vr < R,
RZ)
and
= +
/‘15?51‘/’/' =0 /(xm — ¢y, VR C R,
R R’
w w (49)
- v
/‘l’:-vsuij =0, VR CR,
R,
and
= +
/ Ww; =0, VR? CRY,
R,
(50)
= |4
/‘f’iﬂ% _5ij65k/l//js VR? CRY.
R, R
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Fig. 2. Case 1. Left: Parameter k. Right: Reference solution. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 1
Error comparison for Case 1.
(1) (2) (1) )
H € e, e, H € e, e,
1/10 1/10 27.19% 6.21% 1/10 1/10 27.19% 6.21%
1/20 1/20 11.63% 1.19% 1/10 1/20 12.79% 2.43%
1/40 1/40 3.25% 0.88% 1/10 1/40 6.32% 1.70%

In the calculations of macroscopic domains, we use another intermediate domain Rﬂ’), which is a subset of R:; and contains RZ.
The local expansion is given by (39).

In the first example, we consider the layered medium depicted on Fig. 2. The permeability field x has a period denoted by e.
We denote the low conductivity region and the high conductivity region of k¥ by €, and ,, respectively. The source term f and
conductivity k are as follows

1000 min{x }e~#0I6-092+0-051  x e @

fx)= o= 401(x—0.52+(y-0.5)?| xeQ,

and

€
K(x) = 101000

— Q
T00e €2

We divide the computational domain Q into M X M coarse grid. The coarse mesh size H is defined as H = 1/ M. We consider the
whole coarse grid element as an RVE for the corresponding coarse element. The oversampling RVE R} (or »*) for each coarse RVE
 is defined as an extension of K (target coarse block) by / layers of coarse grid element, where / will be changed in simulations.

We define the relative L?- error in Q, and the relative L?- error in Q, by

1

[y S
(e([))z_ ZK |K|/K i |K09i|/KﬂQ‘
)= .

1
Xk |m/1msz,- ul?

K denotes the RVE, which is taken to be w.

For the first case, we take the fine-mesh size to be He. We present e, in Table 1. First, we observe that the proposed approach
provides an accurate approximation of the averaged solution as we decrease the mesh size. In Fig. 3, we depict upscaled solutions
and corresponding averaged fine-scale solutions. We observe that these solutions are very close. In the first table, we decrease the
coarse-mesh size and the period size. In standard numerical homogenization methods, this gives a resonance error (stagnating errors).
Here, by choosing an appropriate number of layers, we observe that the error remains small. In the second table, we fix the mesh
size and decrease €. Our theoretical results suggest that the error is of order H. In this case, the error will decrease as it reaches of
order H and then stagnates. )

For the second case, we change the permeability field to the one shown in Fig. 4. We present e(z’) in Table 2. Again, we observe
that the proposed approach provides an accurate approximation of the averaged solution as we decrease the mesh size. In Fig. 5,
we depict upscaled solutions and corresponding averaged fine-scale solutions. We observe a good agreement between coarse- and
fine-grid solutions. In the first table, we decrease the coarse-mesh size and the period size at the same time. We observe that the
total error decreases as the mesh size decreases. Note that the individual continuum error may not decrease. Our theoretical results

()
2

11
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Fig. 3. Case 1. Top-Left: reference average solution in Q,. Top-Right: homogenized average solution in Q,. Bottom-Left: reference average solution in Q,. Bottom-
Right: homogenized average solution in Q,.

W 2Ll

Fig. 4. Case 2. Left: Parameter k. Right: reference solution.

Table 2

Error comparison for Case 2.
H € e(zl) 9(22) H € e(zl) 8(22)
1/10 1/10 11.74% 1.61% 1/10 1/10 11.74% 1.61%
1/20 1/20 4.18% 0.97% 1/10 1/20 9.12% 6.13%
1/40 1/40 1.86% 1.08% 1/10 1/40 8.05% 7.27%

suggest that the total error will decrease. Here, by choosing an appropriate number of layers, we observe that the error remains
small. In the second table, we fix the mesh size and decrease e. Our theoretical results suggest that the error is of order H. In this
case, the error does not decrease as the decrease of ¢ does not affect the error because the error is dominated by H.

12
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Fig. 5. Case 2. Top-Left: reference average solution in Q,. Top-Right: homogenized average solution in Q,. Bottom-Left: reference average solution in Q,. Bottom-
Right: homogenized average solution in Q,.

6. Conclusions

In this paper, we propose a general framework for multicontinuum homogenization. The method introduces several macroscopic
variables at each macroscale point using characteristic functions associated with subdomains. The homogenization expansion is
written using macroscale variables and associated local cell problems. The local cell problems are formulated as constraint problems
in oversampled regions. This is not an easy task, in general, since the constraints are formulated in a spatially localized fashion.
We present an example of a mixed formulation of the elliptic equation, where we use some special formulations for cell problems.
The proposed general framework shows that one can obtain various macroscale equations. We briefly discuss the relation to mixture
theories.
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