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In this paper, we discuss a general framework for multicontinuum homogenization. Multicontin-
uum models are widely used in many applications and some derivations for these models are 
established. In these models, several macroscopic variables at each macroscale point are defined 
and the resulting multicontinuum equations are formulated. In this paper, we propose a general 
formulation and associated ingredients that allow performing multicontinuum homogenization. 
Our derivation consists of several main parts. In the first part, we propose a general expansion, 
where the solution is expressed via the product of multiple macro variables and associated cell 
problems. The second part consists of formulating the cell problems. The cell problems are for-
mulated as saddle point problems with constraints for each continua. Defining the continua via 
test functions, we set the constraints as an integral representation. Finally, substituting the ex-
pansion to the original system, we obtain multicontinuum systems. We present an application to 
the mixed formulation of elliptic equations. This is a challenging system as the system does not 
have symmetry. We discuss the local problems and various macroscale representations for the 
solution and its gradient. Using various order approximations, one can obtain different systems 
of equations. We discuss the applicability of multicontinuum homogenization and relate this to 
high contrast in the cell problem. Numerical results are presented.

1. Introduction

Many problems have multiscale nature. For example, the flow in porous media occurs in multiscale media with heterogeneities 
at multiple scales and high contrast. The simulations of these problems are often performed on a coarse computational grid, where 
the grid size is much larger compared to the scales of heterogeneities. In these simulations, we distinguish two cases in the paper. 
The first is the case with no-scale separation and the second is the case with scale separation. In the first case, approaches use the 
information within the entire computational grid or beyond to derive macroscopic equations. We will not discuss this case in the 
paper. In the second case, the representative volume-based information (which is much smaller compared to the target coarse block) 
is used in deriving macroscopic equations.

For the case of no-scale separation, many approaches are developed to account for subgrid effects. These approaches, e.g., 
[17,20,21,24,26,18,29,6,23,16,19,2,1], include the construction of multiscale basis functions that are supported in domain larger 
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than the target coarse block. Among these approaches, the CEM-GMsFEM [18] is related to the approaches presented in this paper. 
In these approaches, the multiscale basis functions are computed in oversampled regions. There are several basis functions in each 
target coarse block representing different continua effects. These concepts will further be used in multicontinua homogenization.

In the case of scale separation, one uses information in representative volume (which is much smaller compared to the coarse 
block) to derive effective properties. The well-known approach includes the homogenization technique [11,12,8,4], which is widely 
used in many applications. The main idea of this approach is to assume that the solution in each macroscopic point, can be repre-
sented by its average. The homogenization method provides a systematic expansion, which allows for deriving the equations. In this 
derivation, the small-scale 𝜖 is the RVE size. In the derivation, all terms depending on different powers of 𝜖 are separated. The latter 
is one of the limitations in extending these methods to problems where the media properties can depend on 𝜖 (high-contrast case).

In this paper, we introduce a general homogenization method, where we assume that the media properties can have high contrast. 
In our expansion, we consider that each macroscopic point has several macroscopic variables associated with it. The macroscopic 
variables are defined via auxiliary functions and assumed to be smooth functions. The expansion of the solution via macroscopic 
variables uses the solution of local microscopic problems posed in RVE, called solutions of cell problems. These local problems 
account for the micro-scale behavior of the solution given certain constraints. These constraints are related to the definition of 
macroscopic variables. In particular, our first cell problem imposes constraints to represent the constants in the average behavior of 
each continua. The consequent cell problems impose constraints to represent the high-order polynomials in the average behavior of 
each continua.

The multi-continuum homogenization expansion is substituted into the fine-scale equations. Our next assumptions include the 
fact that the integrals in the macroscopic variational formulation can be written in terms of the integrals over RVE and macroscopic 
variables are smooth. Using these assumptions, we derive a system of equations on a coarse grid. The resulting system of equation 
include additional terms and can involve higher-order derivatives. These equations share similarities to other models derived earlier 
and some terms can be negligible due to high contrast in the media properties.

Our approaches share some common ingredients with mixture theories [30,33,28]. In mixture theories, the conservation of 
mass and momentum are written for each component. This model can be used in deriving a general set of macroscopic equations. 
However, these models do not make any specific assumptions on exchange terms. Our models generalize some earlier derived model 
equations related to works [22], dual-permeability models [31,9,32,3,25,14,7,10,15,5] and we establish a general tool for deriving 
multicontinuum homogenization models.

One of the challenging aspects of multicontinuum homogenization is in formulating cell problems correctly. We consider large 
oversampled regions, where we can impose higher-order polynomial constraints. By imposing averages in each RVE within the 
oversampled region, our main test is to guarantee that the solution of the cell problem converges to zero. To achieve this, one needs 
a careful formulation of cell problems. For example, in a carefully studied example of mixed Darcy equations, we show how one can 
achieve this. We obtain a generalized Darcy approximation on the coarse grid. We present an error analysis for our multicontinuum 
approach in a separate arxiv paper [27].

We present numerical examples. In this numerical example, we consider a mixed formulation between velocity and pressure in 
Darcy’s equation. Because pressure and velocity are treated separately, their relation at the microscale will not necessarily preserve 
at the macroscale as in the standard homogenization. We note that there is a linear relation between the velocity and the gradient 
of the pressure via the multiscale permeability field. Because the mixed formulation is not symmetric, this causes further challenges 
that are addressed in numerical examples when imposing local constraint problems. Our numerical results show a good convergence 
as we decrease the mesh size.

The paper is organized as follows. In the next section, we present preliminaries and a simple derivation of multicontinuum 
homogenization for zero-order equations. In Section 3, we present a general theory for multicontinuum homogenization and also 
discuss the relation to mixture theory. Section 4 is devoted to mixed-order systems. In Section 5, we present numerical experiments.

2. Preliminaries and zero order equation

To present preliminaries, we consider zero-order equations (following [12]). We consider the following zero-order equation

𝐴(𝑥)𝑢(𝑥) = 𝑓 (𝑥), (1)

where 𝐴(𝑥) is a scalar function with multiple scales and high contrast. For example, we assume 𝐴 is a periodic function where the 
period consists of two distinct regions with highly varying coefficients. We denote by 𝜓𝑖 the characteristic function for the region 𝑖, 
called the 𝑖th continua.

It is assumed that the problem is solved on a computational grid consisting of grid blocks, denoted 𝜔, that are much larger 
than heterogeneities. We assume some type of periodicity within each computational block represented by Representative Volume 
Element 𝑅𝜔 that corresponds to a computational element 𝜔 (see Fig. 1) (more precise meaning will be defined later). We assume 
that within each 𝑅𝜔, there are several distinct average states (known as multicontinua). We denote the characteristic function for 
the continuum 𝑖 within 𝑅𝜔 by 𝜓𝜔

𝑖
(𝜔 will be omitted since local computations are restricted to a coarse block), i.e., 𝜓𝑖 = 1 within 

continuum 𝑖 (can be irregularly shaped regions consisting of several parts, in general) and 0 otherwise. We introduce oversampled 
𝑅+
𝜔
that contains several 𝑅𝑝

𝜔 ’s, where 𝑝 denotes different 𝑅𝜔 ’s. We denote the central (target) RVE by, simply, 𝑅𝜔. We denote 𝜓
𝑝

𝑖
, 

the characteristic function for 𝑅𝑝
𝜔 and will omit the index 𝑝 for simplicity if it is clear which region we are referring to.
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Fig. 1. Illustration.

We consider the expansion of 𝑢 in each RVE as (for simplicity, we use equal sign instead of approximation)

𝑢 = 𝜙𝑖𝑈𝑖, (2)

where 𝜙𝑖 is a microscopic function for each 𝑖 and 𝑈𝑖(𝑥) is a smooth function for each 𝑖. The summation over repeated indices is 
taken. To obtain the microscopic function 𝜙𝑖, we formulate the following cell problems in each RVE within 𝜔 and use 𝑦 dependence 
to denote microscopic nature:

𝐴(𝑦)𝜙𝑖(𝑦) =𝐷𝑖𝑗𝜓𝑗 in 𝑅𝜔

∫
𝑅𝜔

𝜙𝑖𝜓𝑗 = 𝛿𝑖𝑗 ∫
𝑅𝜔

𝜓𝑗 , for each 𝑗, (3)

where 𝐷𝑖𝑗 are constants and can be shown that 𝐷𝑖𝑗𝜓𝑗 = 𝐶𝑖𝜓𝑖. Moreover, it can be easily computed that

𝐶𝑗 =
∫
𝑅𝜔

𝜓𝑗

∫
𝑅𝜔

𝜓2
𝑗
𝐴−1

.

Next, we derive macroscopic equations. For this, we first write an integral form (for any test function 𝑣)

∫
𝐷

𝑓𝑣 = ∫
𝐷

𝐴(𝑥)𝑢(𝑥)𝑣(𝑥) =
∑
𝜔

∫
𝜔

𝐴(𝑥)𝑢(𝑥)𝑣(𝑥)

≈
∑
𝜔

|𝜔|
|𝑅𝜔| ∫

𝑅𝜔

𝐴(𝑦)𝑢(𝑦)𝑣(𝑦).

(4)

Substituting 𝑢 from (2) into the equation and writing 𝑣 = 𝜙𝑖𝑉𝑖, we get

∫
𝑅𝜔

𝐴(𝑦)𝑢(𝑦)𝑣(𝑥)𝑑𝑦 ≈𝑈𝑖(𝑥𝜔)𝑉𝑗 (𝑥𝜔)∫
𝑅𝜔

𝐴(𝑦)𝜙𝑖(𝑦)𝜙𝑗 (𝑦) 𝑑𝑦, (5)

where 𝑥𝜔 is a mid-point of 𝑅𝜔. We will omit the microscopic dependence of macroscale variables (e.g., 𝑈𝑖) and simply use 𝑈𝑖

notation

∫
𝑅𝜔

𝐴(𝑦)𝑢(𝑦)𝑣(𝑥)𝑑𝑦 =𝑈𝑖𝑉𝑗 ∫
𝑅𝜔

𝐴(𝑦)𝜙𝑖(𝑦)𝜙𝑗 (𝑦) 𝑑𝑦. (6)

We denote

𝛼𝑖𝑗 = ∫
𝑅𝜔

𝐴(𝑦)𝜙𝑖(𝑦)𝜙𝑗 (𝑦) 𝑑𝑦. (7)

It can be shown that

𝛼𝑖𝑗 = 𝛿𝑖𝑗𝐶𝑖 ∫
𝑅𝜔

𝜓𝑗 . (8)

From the above, we see that the macroscopic equation has the form

𝛼𝑖𝑗𝑈𝑖 = 𝑏𝑗 ,

where

𝑏𝑗 = ∫
𝑅𝜔

𝑓𝜙𝑗 .
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Taking into account that 𝛼 is a diagonal matrix, we have

𝑈𝑖 =
𝑏𝑖

𝐶𝑖 ∫𝑅𝜔
𝜓𝑖

.

We note that, in single continua homogenization, we obtain

𝑈1 = 𝑏1
1

|𝑅𝜔|2 ∫
𝑅𝜔

𝐴−1.

3. General case. A formal derivation

In this section, we present a formal derivation of generalized multicontinuum homogenization. The derivation makes several 
assumptions, which may or may not hold depending on particular problems. We will make these assumptions as we go along.

We consider a general linear system given by

𝜕𝑢

𝜕𝑡
+𝐴𝑢 = 𝑓, in 𝐷, (9)

where 𝐴 is a differential operator, 𝑢 is a vector valued solution and 𝐷 is the domain. The problem (9) is supplemented with some 
appropriate initial and boundary conditions. We next present several examples.

Example 1. In the scalar case, 𝐴𝑢 = −𝑑𝑖𝑣(𝜅(𝑥)∇𝑢), where 𝜅(𝑥) is a multiscale and high-contrast coefficient.

Example 2. In a vector case, one can consider the elasticity problem with 𝐴𝑢 = −∇𝑖𝐶𝑖𝑗𝑘𝑙(𝑥)𝑒𝑘𝑙(𝑢), where 𝐶𝑖𝑗𝑘𝑙(𝑥)’s represent hetero-
geneous and high-contrast media properties, 𝑒𝑘𝑙(𝑢) = (∇𝑘𝑢𝑙 +∇𝑙𝑢𝑘)∕2, and 𝑢 is the displacement vector.

Example 3. We can consider Example 1 in a mixed formulation as a first-order system. In this case, 𝑢 = (𝑝, 𝑣), where 𝑝 and 𝑣 solve 
𝜅−1𝑣 +∇𝑝 = 0, 𝑑𝑖𝑣(𝑣) = 𝑓 .

Example 4. One can consider the first order systems, 𝐴𝑢 = 𝑣(𝑥) ⋅∇𝑢 + 𝑎(𝑥)𝑢, where 𝑣(𝑥) and 𝑎(𝑥) are highly heterogeneous fields.

We write (9) as a variational problem

(
𝜕𝑢

𝜕𝑡
, 𝑣) + 𝑎𝐷(𝑢, 𝑣) = (𝑓, 𝑣), (10)

where 𝑎𝐷(𝑢, 𝑣) = ∫
𝐷
(𝐴𝑢)𝑣, e.g., in Example 1, 𝑎𝐷(𝑢, 𝑣) = ∫

𝐷
𝜅∇𝑢 ⋅∇𝑣 (assuming zero Dirichlet boundary conditions).

In the multicontinuum homogenization, we assume that in each RVE, 𝑅𝜔, there exist functions 𝜓𝑖 (𝑖 refers to continua, 𝜓𝑖 can be 
a characteristic function of subregion), such that

𝑈𝑖(𝑥
∗
𝜔
) =

∫
𝑅𝜔

𝑢𝜓𝑖

∫
𝑅𝜔

𝜓𝑖

are macroscopic variables, where 𝑥∗
𝜔
is a point in 𝑅𝜔. One main assumption is that 𝑈𝑖’s are smooth functions if we consider them 

over all RVEs. In our examples, the macroscopic variables have physical meanings as they represent the average of the solution in 
subregions associated with 𝜓𝑖 ’s. Next, we present the steps in deriving macroscopic equations.

Step 1. Expansion.
The first step consists of expanding the solution 𝑢 in terms of macroscopic variables. The coefficients in front of them, denoted by 

𝜙𝑖 ’s, represent the local microscopic solution in RVE. We consider the expansion of the solution 𝑢 as

𝑢 = 𝜙𝑚𝑈𝑚 + 𝜙𝑗
𝑚
∇𝑗𝑈𝑚 + 𝜙𝑖𝑗

𝑚
∇2
𝑖𝑗
𝑈𝑚 + ..., (11)

where ∇𝑗 refers to 
𝜕

𝜕𝑥𝑗
. In this expansion, we will discuss the functions 𝜙, which are defined as the solutions of local problems in 

RVE, 𝑅𝜔. We note that the number of macroscale variables defines the size of the coarse system. In general, we expect that the 
number of macroscale variables is small compared to the number of fine degrees of freedom.

Step 2. Cell problems.
Next, we introduce equations for 𝜙𝑖 ’s. These equations are written in each RVE subject to some constraints. These constraints 

are related to definitions of macroscopic variables. We use Taylor’s expansion concepts in defining the local functions such that 
they solve local problems with constraints that their averages with respect to 𝜓𝑖 behave as constants, linear functions, and quadratic 
functions.

Our first cell problem imposes constraints to represent the constants in the average behavior of each continua (continua 𝑚 in 
(12)). We note that all cell problems are solved with zero Dirichlet boundary conditions. Because of oversampling region. We expect 
the boundary conditions do not affect the homogenized equations as described below. We consider the cell problem in oversampled 
regions 𝑅+

𝜔
that contain several 𝑅𝜔, denoted by 𝑅

𝑝
𝜔.
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𝐴𝜙𝑖
𝑚
= Γ𝑖𝑗𝑝

𝑚𝑛
𝜓𝑝
𝑛
𝑒𝑗 in𝑅+

𝜔
,

∫
𝑅
𝑝
𝜔

𝜙𝑖
𝑚
𝜓𝑝
𝑛
= 𝛿𝑚𝑛𝑒

𝑖 ∫
𝑅
𝑝
𝜔

𝜓𝑝
𝑛
, ∀𝑝, (12)

where 𝑒𝑖 is the unit vector (solution 𝑢 is vector valued) and 𝜓𝑝
𝑛 is the characteristic function in 𝑅

𝑝
𝜔. This cell problem corresponds to 

appropriate energy minimizing solution subject to the constraints. Here and later, by Γ, we denote the Lagrange multipliers due to 
constraints. We denote 𝜙𝑚 the matrix spanned by 𝜙

𝑖
𝑚
(as columns).

Our second cell problem imposes constraints to represent the linear functions in the average behavior of each continua.

𝐴𝜙𝑖𝑙
𝑚
= Γ𝑖𝑗𝑝𝑙

𝑚𝑛
𝜓𝑝
𝑛
𝑒𝑗 in𝑅+

𝜔
,

∫
𝑅
𝑝
𝜔

𝜙𝑖𝑙
𝑚
𝜓𝑝
𝑛
= 𝛿𝑚𝑛𝑒

𝑖 ∫
𝑅
𝑝
𝜔

(𝑥𝑙 − 𝑐𝑙)𝜓
𝑝
𝑛
, ∀𝑝, (13)

where 𝑐𝑙 (later on also) is chosen such that ∫𝑅𝜔
(𝑥𝑙 − 𝑐𝑙) = 0, where 𝑅𝜔 is the RVE defined in the middle of 𝑅

+
𝜔
. Similarly, we denote 

𝜙𝑙
𝑚
the matrix spanned by 𝜙𝑖𝑙

𝑚
(as columns).

We can also define higher-order cell problems. The next cell problem imposes constraints to represent the quadratics in the 
average behavior of each continua.

𝐴𝜙𝑖𝑗𝑙
𝑚

= Γ𝑖𝑗𝑙𝑝𝑠
𝑚𝑛

𝜓𝑝
𝑛
𝑒𝑠 in𝑅+

𝜔
,

∫
𝑅
𝑝
𝜔

𝜙𝑖𝑗𝑙
𝑚
𝜓𝑝
𝑛
= 𝛿𝑚𝑛𝑒

𝑖 ∫
𝑅
𝑝
𝜔

(𝑥𝑗𝑥𝑙 − 𝑐𝑗𝑙)𝜓
𝑝
𝑛
, ∀𝑝. (14)

Similarly, we denote 𝜙𝑙𝑗
𝑚 the matrix spanned by 𝜙𝑖𝑗𝑙

𝑚 (as columns).
We note that in our cell problems, we solve for each component of the vector solutions. The first cell problem is scalar and the 

number of higher order cell problems depends on the dimension of the space. In some applications, one can lump some components 
if some relations between components of the vector are known apriori.

Existence and uniqueness can be shown in most cases for positive symmetric operators with appropriate norms. In general, we 
need inf-sup condition for well-posedness of cell problems [13]. We note that the local solution away from 𝑅𝜔 (middle RVE) is 
independent of the oversampling domain size. This appears as a decay in NLMC approach, where zero constraints are imposed 
outside the target RVE. In our case, the solution at the target RVE becomes independent of oversampling domain size.

Step 3. Substitution in the variational formulation.
In this step, we use 𝑢 and 𝑣 expansion in the fine-grid formulation of the problem. In particular, we have

𝑢 = 𝜙𝑖
𝑚
𝑈 𝑖
𝑚
+ 𝜙𝑖𝑙

𝑚
∇𝑙𝑈

𝑖
𝑚
+𝜙𝑖𝑙𝑝

𝑚
∇2
𝑙𝑝
𝑈 𝑖
𝑚

𝑣 = 𝜙𝑖
𝑚
𝑉 𝑖
𝑚
+ 𝜙𝑖𝑙

𝑚
∇𝑙𝑉

𝑖
𝑚
+ 𝜙𝑖𝑙𝑝

𝑚
∇2
𝑙𝑝
𝑉 𝑖
𝑚
.

(15)

We substitute and get the following equation (we use matrix notations for 𝜙’s)

∑
𝑅𝜔

|𝜔|
|𝑅𝜔|{∫

𝑅𝜔

𝜕

𝜕𝑡
(𝜙𝑚𝑈𝑚 + 𝜙𝑙

𝑚
∇𝑙𝑈𝑚 + 𝜙𝑙𝑝

𝑚
∇2
𝑙𝑝
𝑈𝑚)(𝜙𝑛𝑉𝑛 + 𝜙𝑘

𝑛
∇𝑘𝑉𝑛 + 𝜙𝑘𝑠

𝑛
∇2
𝑘𝑠
𝑉𝑛)

𝑎𝑅𝜔
(𝜙𝑚𝑈𝑚, 𝜙𝑛𝑉𝑛) + 𝑎𝑅𝜔

(𝜙𝑚𝑈𝑚, 𝜙
𝑘
𝑛
∇𝑘𝑉𝑛) + 𝑎𝑅𝜔

(𝜙𝑚𝑈𝑚, 𝜙
𝑘𝑠
𝑛
∇2
𝑘𝑠
𝑉𝑛)+

𝑎𝑅𝜔
(𝜙𝑙

𝑚
∇𝑙𝑈𝑚, 𝜙𝑛𝑉𝑛) + 𝑎𝑅𝜔

(𝜙𝑙
𝑚
∇𝑙𝑈𝑚, 𝜙

𝑘
𝑛
∇𝑘𝑉𝑛) + 𝑎𝑅𝜔

(𝜙𝑙
𝑚
∇𝑙𝑈𝑚, 𝜙

𝑘𝑠
𝑛
∇2
𝑘𝑠
𝑉𝑛)+

𝑎𝑅𝜔
(𝜙𝑙𝑝

𝑚
∇2
𝑙𝑝
𝑈𝑚, 𝜙𝑛𝑉𝑛) + 𝑎𝑅𝜔

(𝜙𝑙𝑝
𝑚
∇2
𝑙𝑝
𝑈𝑚, 𝜙

𝑘
𝑛
∇𝑘𝑉𝑛) + 𝑎𝑅𝜔

(𝜙𝑙𝑝
𝑚
∇2
𝑙𝑝
𝑈𝑚, 𝜙

𝑘𝑠
𝑛
∇2
𝑘𝑠
𝑉𝑛)}

=
∑
𝑅𝜔

|𝜔|
|𝑅𝜔| ∫

𝑅𝜔

𝑓 (𝜙𝑛𝑉𝑛 + 𝜙𝑘
𝑛
∇𝑘𝑉𝑛 + 𝜙𝑘𝑠

𝑛
∇2
𝑘𝑠
𝑉𝑛).

(16)

Our next two steps include using RVE concepts and taking into account that 𝑈𝑖 and 𝑉𝑖 are smooth functions.
Step 4. Integral localization.
Our next step includes dividing the integral over the coarse partition 𝜔 and then using the RVE concept. More precisely, for each 

integral and a smooth function 𝐹 , we have

∫
𝐷

𝐹 =
∑
𝜔

𝐹 ≈
∑
𝜔

|𝜔|
|𝑅𝜔| ∫

𝑅𝜔

𝐹 . (17)

We note that we use only 𝑅𝜔 as the solution in the representative elements near the boundary of the oversampled region 𝜕𝑅
+
𝜔
are 

affected by artificial boundary conditions.
Step 5. Piecesmooth approximation of macroscopic terms.
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In this step, the macroscopic terms, 𝑈𝑖 and 𝑉𝑖 assumed to be smooth functions and the operator 𝐴 acts only on cell problem 
solutions. As before (in zero-order equation case), we take the macroscopic variables out of the integrals over 𝑅𝜔. To demonstrate 
this step, we consider only two term expansion in (15) writing the integrals over RVE.

More precisely, the terms in the equation (16) have the following forms in 𝑅𝜔.

∑
𝜔

|𝜔|
|𝑅𝜔| (∫

𝑅𝜔

𝜙𝑚𝜙𝑛)
𝜕

𝜕𝑡
𝑈𝑚𝑉𝑛 +

∑
𝜔

|𝜔|
|𝑅𝜔| (∫

𝑅𝜔

𝜙𝑚𝜙
𝑘
𝑛
)
𝜕

𝜕𝑡
𝑈𝑚∇𝑘𝑉𝑛+

∑
𝜔

|𝜔|
|𝑅𝜔| (∫

𝑅𝜔

𝜙𝑙
𝑚
𝜙𝑛)

𝜕

𝜕𝑡
∇𝑙𝑈𝑚𝑉𝑛 +

∑
𝜔

|𝜔|
|𝑅𝜔| (∫

𝑅𝜔

𝜙𝑙
𝑚
𝜙𝑘
𝑛
)
𝜕

𝜕𝑡
∇𝑙𝑈𝑚∇𝑘𝑉𝑛+

+
∑
𝜔

|𝜔|
|𝑅𝜔|𝑎𝑅𝜔

(𝜙𝑚, 𝜙𝑛)𝑈𝑚𝑉𝑛 +
∑
𝜔

|𝜔|
|𝑅𝜔|𝑎𝑅𝜔

(𝜙𝑚, 𝜙
𝑘
𝑛
)𝑈𝑚∇𝑘𝑉𝑛+

∑
𝜔

|𝜔|
|𝑅𝜔|𝑎𝑅𝜔

(𝜙𝑙
𝑚
, 𝜙𝑛)∇𝑙𝑈𝑚𝑉𝑛 +

∑
𝜔

|𝜔|
|𝑅𝜔|𝑎𝑅𝜔

(𝜙𝑙
𝑚
, 𝜙𝑘

𝑛
)∇𝑙𝑈𝑚∇𝑘𝑉𝑛+

=
∑
𝜔

|𝜔|
|𝑅𝜔| (∫

𝑅𝜔

𝑓𝜙𝑛)𝑉𝑛 +
∑
𝜔

|𝜔|
|𝑅𝜔| (∫

𝑅𝜔

𝑓𝜙𝑘
𝑛
)∇𝑘𝑉𝑛.

(18)

In Equation (18), we further take into account that 𝑈𝑖 and 𝑉𝑖 are smooth functions defined in 𝐷 and get the following macroscopic 
equation for 𝑈𝑖 (in strong form)

𝐴𝑛𝑚

𝜕

𝜕𝑡
𝑈𝑚 +𝐵𝑛𝑚𝑈𝑚 +𝐵𝑖

𝑛𝑚
∇𝑖𝑈𝑚 −∇𝑘𝐵

𝑘

𝑛𝑚
𝑈𝑚 −∇𝑘(𝐵

𝑖𝑘
𝑛𝑚
∇𝑖𝑈𝑚) = 𝑏𝑛. (19)

Here, we neglect the second, third, and fourth terms in (18). The latter is because 𝜙𝑘
𝑛
is of order RVE size, while 𝜙𝑛 is of order 𝑂(1), 

in general. Because the coefficients in the operator 𝐴 have high-contrast properties, we can not neglect these terms. We will remark 
on this later. The coefficients 𝐴’s and 𝐵’s are defined from (18). More precisely,

𝐴𝑛𝑚 =
1

|𝑅𝜔| ∫
𝑅𝜔

𝜙𝑚𝜙𝑛, 𝑏𝑛 =
1

|𝑅𝜔| ∫
𝑅𝜔

𝑓𝜙𝑛,

𝐵𝑛𝑚 =
1

|𝑅𝜔|𝑎𝑅𝜔
(𝜙𝑚, 𝜙𝑛), 𝐵𝑖

𝑛𝑚
=

1

|𝑅𝜔|𝑎𝑅𝜔
(𝜙𝑖

𝑚
, 𝜙𝑛),

𝐵
𝑘

𝑛𝑚
=

1

|𝑅𝜔|𝑎𝑅𝜔
(𝜙𝑚, 𝜙

𝑘
𝑛
), 𝐵𝑖𝑘

𝑛𝑚
=

1

|𝑅𝜔|𝑎𝑅𝜔
(𝜙𝑖

𝑚
, 𝜙𝑘

𝑛
).

(20)

If we use the second-order expansion, the macroscopic equation will have the following form

𝐴𝑛𝑚

𝜕

𝜕𝑡
𝑈𝑚+

𝐵𝑛𝑚𝑈𝑚 +𝐵𝑖
𝑛𝑚
∇𝑖𝑈𝑚 +𝐵𝑖𝑗

𝑛𝑚
∇2
𝑖𝑗
𝑈𝑚−

∇𝑘(𝐵
𝑘
𝑛𝑚
𝑈𝑚) − ∇𝑘(𝐵

𝑖𝑘
𝑛𝑚
∇𝑖𝑈𝑚) − ∇𝑘(𝐵

𝑖𝑗𝑘
𝑛𝑚

∇2
𝑖𝑗
𝑈𝑚)+

∇2
𝑘𝑝
(𝐵𝑘𝑝

𝑛𝑚
𝑈𝑚) + ∇2

𝑘𝑝
(𝐵𝑖𝑘𝑝

𝑛𝑚
∇𝑖𝑈𝑚) + ∇2

𝑘𝑝
(𝐵𝑖𝑗𝑘𝑝

𝑛𝑚
∇2
𝑖𝑗
𝑈𝑚) = 𝑏𝑛.

(21)

Next, we make several remarks.
First, different terms in the macroscopic equation can have negligible weights. In general, 𝜙𝑘’s (the cell solutions accounting for 

the averages) are of order 𝑂(1), while 𝜙𝑛
𝑘
’s (the cell solutions accounting for the gradients) are of order 𝑂(𝜖), where 𝜖 is the RVE 

size (see [22]). For this reason, we have neglected some terms in the time derivative terms and source terms. However, because 
of high-contrast coefficients, one can not neglect different terms that stem from 𝜙𝑘 ’s or from 𝜙𝑛

𝑘
’s. In [22], we show that the zero-

order terms are important when there is high contrast. More precisely, the reaction terms scale as the inverse of the RVE size. If 
the effective diffusivity is high, then the reaction and diffusion terms balance each other. Otherwise, one can show that there is no 
multicontinuum and our macroscopic equations result to single continuum homogenization.

Our second remark is regarding the definition of the continua. Throughout the paper, we assume that 𝜓𝑖 ’s are associated with sub-
regions defined apriori. In general, one can use spatial functions for 𝜓𝑖, for example, defined via local spectral problems as it is done 
in nonlocal multicontinua approach or GMsFEM [20,34]. In summary, we formulate conditions that are needed for multicontinuum 
homogenizatiom.

• We require that the solutions of cell problems (𝜙𝑚, 𝜙
𝑗
𝑚,...) do not depend on oversampling domain sizes, which show that the 

boundary conditions do not affect the solution in the middle RVE much.
• We require that 𝑈𝑖 are smooth functions.
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• We need 𝜓𝑖 to approximate smooth functions in the whole domain 𝐷, in some sense. More precisely, we assume that ‖𝑢 −𝑢‖(𝜔) ≤ 𝐶𝐻𝜉𝜔‖𝑢 −𝑢‖(𝜔), for each 𝜔, for some 𝜉𝜔 > 0, where  ⊂  . The typical norms for elliptic equations are ‖𝑢‖(𝜔) =∫
𝜔
𝜅𝑢2 and ‖𝑢‖(𝜔) = ∫

𝜔
𝜅|∇𝑢|2.

3.1. Example. A scalar elliptic equation

This example is discussed in [22]. We briefly mention it here. We will focus on multicontinuum expansion, macroscopic equations, 
and constraints, for simplicity, and do not write down the cell problem equations (cf. (12)). The multicontinuum expansion is 
𝑢 = 𝜙𝑖𝑈𝑖 + 𝜙𝑚

𝑖
∇𝑚𝑈𝑖, where cell solutions have constraints for 𝜙𝑚

∫
𝑅
𝑝
𝜔

𝜙𝑚𝜓
𝑝
𝑛
= 𝛿𝑚𝑛 ∫

𝑅
𝑝
𝜔

𝜓𝑝
𝑛 (22)

and for 𝜙𝑙
𝑚

∫
𝑅
𝑝
𝜔

𝜙𝑙
𝑚
𝜓𝑝
𝑛
= 𝛿𝑚𝑛 ∫

𝑅
𝑝
𝜔

(𝑥𝑙 − 𝑐𝑙)𝜓
𝑝
𝑛
.

(23)

Note that the equations for 𝜙𝑚 and for 𝜙
𝑙
𝑚
are solved separately.

The macroscopic equations have the following form

𝐵𝑛𝑚𝑈𝑚 +𝐵𝑖
𝑛𝑚
∇𝑖𝑈𝑚 −∇𝑘(𝐵

𝑘

𝑛𝑚
𝑈𝑚) − ∇𝑘(𝐵

𝑖𝑘
𝑛𝑚
∇𝑖𝑈𝑚) = 𝑏𝑛. (24)

3.2. Comments on error analysis

The analysis of multicontinuum homogenization for elliptic equations can be carried out. We post the results in a separate arxiv 
document [27]. The proof uses the ideas from NLMC and estimates the difference between 𝑈𝑖 and the averaged fine-scale solution 
defined via ∫ 𝑢𝜓𝑖. More precisely, we estimate ‖𝐴∗([𝑈𝑖] −[⟨𝑢⟩𝑖])‖, where 𝐴∗ is the homogenized operator, [𝑈𝑖] is the vector consisting 
of 𝑈𝑖 ’s, and ⟨𝑢⟩𝑖 is an appropriate average of the fine-grid solution in 𝑖th continuum. It was shown that this residual is small. The 
proof uses the smoothness of 𝑈𝑖 and the properties of the cell solutions. Furthmore, the proof assumes regularity for the inverse of 
𝐴∗ to conclude the closness of 𝑈𝑖 and ⟨𝑢⟩𝑖. The details can be found in [27].

3.3. Example. A system of elliptic equations

We consider

−
𝜕

𝜕𝑥𝑘
(𝐴𝑘𝑙

𝑗𝑖

𝜕

𝜕𝑥𝑙
𝑢𝑖) = 𝑓𝑗 . (25)

The multicontinuum expansion has the following form

𝑢𝑖 = 𝜙𝑚𝑖𝑗𝑈𝑚𝑗 + 𝜙𝑘
𝑚𝑖𝑗

∇𝑘𝑈𝑚𝑗 ,

where the cell problems have the constraints for 𝜙𝑖𝑚𝑛

∫
𝑅
𝑝
𝜔

𝜙𝑚𝑖𝑗𝜓
𝑝
𝑛
= 𝛿𝑚𝑛𝛿𝑖𝑗 ∫

𝑅
𝑝
𝜔

𝜓𝑝
𝑛 (26)

and for 𝜙𝑙
𝑚𝑖𝑗

∫
𝑅
𝑝
𝜔

𝜙𝑙
𝑚𝑖𝑗

𝜓𝑝
𝑛
= 𝛿𝑚𝑛𝛿𝑖𝑗 ∫

𝑅
𝑝
𝜔

(𝑥𝑙 − 𝑐𝑙)𝜓
𝑝
𝑛
.

(27)

For example, for two equations, we have

[
𝑢1
𝑢2

]
=

[
𝜙𝑗11 𝜙𝑗12

𝜙𝑗21 𝜙𝑗22

][
𝑈𝑗1

𝑈𝑗2

]
+

[
𝜙𝑚
𝑗11

𝜙𝑚
𝑗12

𝜙𝑚
𝑗21

𝜙𝑚
𝑗22

][
∇𝑚𝑈𝑗1

∇𝑚𝑈𝑗2

]
. (28)

The constraints are the following

∫
𝑅
𝑝
𝜔

[
𝜙𝑚11

𝜙𝑚21

]
𝜓𝑝
𝑛
= 𝛿𝑚𝑛

[
1

0

]
∫
𝑅
𝑝
𝜔

𝜓𝑝
𝑛
, ∫

𝑅
𝑝
𝜔

[
𝜙𝑚12

𝜙𝑚22

]
𝜓𝑝
𝑛
= 𝛿𝑚𝑛

[
0

1

]
∫
𝑅
𝑝
𝜔

𝜓𝑝
𝑛
, (29)
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∫
𝑅
𝑝
𝜔

[
𝜙𝑘
𝑚11

𝜙𝑘
𝑚21

]
𝜓𝑝
𝑛
= 𝛿𝑚𝑛

[
1

0

]
∫
𝑅
𝑝
𝜔

(𝑥𝑘 − 𝑐𝑘)𝜓
𝑝
𝑛
,

∫
𝑅
𝑝
𝜔

[
𝜙𝑘
𝑚12

𝜙𝑘
𝑚22

]
𝜓𝑝
𝑛
= 𝛿𝑚𝑛

[
0

1

]
∫
𝑅
𝑝
𝜔

(𝑥𝑘 − 𝑐𝑘)𝜓
𝑝
𝑛
.

(30)

The macroscopic equations have the following form

𝐵𝑖𝑗𝑛𝑚𝑈𝑗𝑚 +𝐵𝑙
𝑖𝑗𝑛𝑚

∇𝑙𝑈𝑗𝑚 −∇𝑘(𝐵
𝑘
𝑖𝑗𝑛𝑚

𝑈𝑗𝑚) − ∇𝑘(𝐵
𝑙𝑘
𝑖𝑗𝑛𝑚

∇𝑙𝑈𝑗𝑚) = 𝑏𝑖𝑛, (31)

where

𝐵𝑖𝑗𝑛𝑚 = 𝑎𝑅𝜔
(𝜙𝑚𝑟𝑖, 𝜙𝑛𝑡𝑗 ), 𝐵𝑙

𝑖𝑗𝑛𝑚
= 𝑎𝑅𝜔

(𝜙𝑚𝑟𝑖, 𝜙
𝑙
𝑛𝑡𝑗

)

𝐵𝑙𝑘
𝑖𝑗𝑛𝑚

= 𝑎𝑅𝜔
(𝜙𝑙

𝑚𝑟𝑖
, 𝜙𝑘

𝑛𝑡𝑗
), 𝑏𝑖𝑛 = ∫

𝑅𝜔

𝑓𝑟𝜙𝑛𝑟𝑖,
(32)

where

𝑎𝑅𝜔
(𝑢, 𝑣) = ∫

𝑅𝜔

𝐴𝑘𝑙
𝑗𝑖

𝜕

𝜕𝑥𝑙
𝑢𝑖

𝜕

𝜕𝑥𝑘
𝑣𝑗 .

It can be shown that the second and third terms cancel each other and the scaling of 𝐵𝑛𝑚 is of order 1∕𝜖2, where 𝜖 is RVE size. 
Because of high contrast, this term can balance with the diffusion term.

3.4. Mixture theory and its relation

Here, we briefly note that one can also derive general multicontinuum equations using mixture theory [30,33,28]; however, 
precise micro and macro relations can not be derived from this theory. Mixture theory specifies several model classes [28]. One that 
is suitable for our models is Class II, where 𝑁 balances of mass for N components of the mixture and also 𝑁 balances of linear 
momentum for N components of mixture are formulated. In this case, the equations have the following form

𝜕𝜌𝑖

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝑖𝑣𝑖) =𝑚𝑖,

∑
𝑖

𝑚𝑖 = 0,

𝜕𝜌𝑖𝑣𝑖

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝑖𝑣𝑖 ⊗𝑣𝑖) = 𝑑𝑖𝑣(𝑖) +𝑖 +𝑚𝑖𝑣𝑖,

∑
𝑖

(𝑖 +𝑚𝑖𝑣𝑖) = 0.

(33)

Here, we use a simplified formulation from [28], and use the notations from [28], where 𝜌𝑖 is the density of 𝑖th component, 𝑣𝑖 is the 
velocity, 𝑚𝑖 is the exchange terms for mass conservation, 𝑖 is the stress tensor, and 𝑖 is the exchange terms for momentum.

To derive a multicontinuum equations, we consider solid and two fluid continua mixture. For momentum equations, we have 
(ignoring gravity)

𝜕𝜌
𝑓

1
𝑣
𝑓

1

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌

𝑓

1
𝑣
𝑓

1
⊗𝑣

𝑓

1
) = 𝑑𝑖𝑣( 𝑓

1
) +𝑓

1
,

𝜕𝜌
𝑓

2
𝑣
𝑓

2

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌

𝑓

2
𝑣
𝑓

2
⊗𝑣

𝑓

2
) = 𝑑𝑖𝑣( 𝑓

2
) +𝑓

2
,

𝜕𝜌𝑠𝑣𝑠

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝑠𝑣𝑠 ⊗𝑣𝑠) = 𝑑𝑖𝑣(𝑠) +𝑠,

(34)

where 𝑠 = −𝑓

1
−𝑓

2
, 𝑠 denotes the solid and 𝑓 denotes the fluid. It is assumed that 𝑣𝑠 ≈ 0,  𝑓

𝑖
= 𝑝𝑖𝐼 , 𝑖 = 1, 2, 𝑓

𝑖
= 𝜅−1

𝑖
𝑣𝑖, and the 

flow is steady-state and slow. In the mass conservation equations,

𝜕𝜌
𝑓

1

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌

𝑓

1
𝑣
𝑓

1
) =𝑚

𝑓

1
,

𝜕𝜌
𝑓

2

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌

𝑓

2
𝑣
𝑓

2
) =𝑚

𝑓

2
,

𝜕𝜌𝑠

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝑠𝑣𝑠) =𝑚𝑠.

(35)

We have 𝑣𝑠 ≈ 0, 𝑚𝑠 ≈ 0, and take

𝑚
𝑓

1
= 𝛼𝜌

𝑓

1
(𝑝2 − 𝑝1)

𝑚
𝑓

2
= 𝛼𝜌

𝑓

2
(𝑝1 − 𝑝2).

(36)
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The resulting equations have the form of multicontinuum equations (24).

4. First-order mixed system

We consider a first-order mixed system as an example of a system, where the variables are coupled.

𝜅−1𝑣+∇𝑢 = 0

𝑑𝑖𝑣(𝑣) = 𝑓.
(37)

This equation is a non-symmetric system with the solution vector (𝑣, 𝑢) and the operator

𝐴 =

[
𝜅−1 ∇

𝑑𝑖𝑣 0

]
. (38)

The local cell problems and constraints require special attention to avoid the boundary condition influence. We consider the deriva-
tion of macroscopic equations. In general, as before, one can use various constraints and derive various macroscopic equations.

We consider piecewise constant velocity and piecewise linear type pressure approximations at the RVE level. We use different 
notations because differing notations for variables. In this case, we have the following expansion

𝑣𝑠 = 𝜙𝑣𝑢
𝑖𝑠
𝑈𝑖 + 𝜙𝑣𝑢

𝑖𝑠𝑚
∇𝑚𝑈𝑖 +𝜙𝑣𝑣

𝑖𝑠𝑘
𝑉𝑖𝑘

𝑢 = 𝜙𝑢𝑢
𝑖
𝑈𝑖 + 𝜙𝑢𝑢

𝑖𝑚
∇𝑚𝑈𝑖 + 𝜙𝑢𝑣

𝑖𝑘
𝑉𝑖𝑘.

(39)

Here, 𝑖 refers to the continua, (𝜙𝑢𝑣, 𝜙𝑢𝑢) represents the cell solutions with zero constraints on 𝑣 and (𝜙𝑣𝑢, 𝜙𝑣𝑣) represents cell solutions 
with zero constraints on 𝑢 (see Section 5, (48)-(50)).

We multiple the mixed system (37) by

[
𝜙𝑣𝑢
𝑗
𝑄𝑗 + 𝜙𝑣𝑢

𝑗𝑙
∇𝑙𝑄𝑗

𝜙𝑢𝑢
𝑗
𝑄𝑗 + 𝜙𝑢𝑢

𝑗𝑙
∇𝑙𝑄𝑗

]
(40)

and sum up the equations (use vector notations for simplicity)

∫
𝑅𝜔

(𝜙𝑣𝑢
𝑗
𝑄𝑗 + 𝜙𝑣𝑢

𝑗𝑙
∇𝑙𝑄𝑗 )𝜅

−1(𝜙𝑣𝑢
𝑖
𝑈𝑖 + 𝜙𝑣𝑢

𝑖𝑚
∇𝑚𝑈𝑖 +𝜙𝑣𝑣

𝑖
𝑉𝑖)

+ ∫
𝑅𝜔

(𝜙𝑣𝑢
𝑗
𝑄𝑗 + 𝜙𝑣𝑢

𝑗𝑙
∇𝑙𝑄𝑗 )∇(𝜙

𝑢𝑢
𝑖
𝑈𝑖 + 𝜙𝑢𝑢

𝑖𝑚
∇𝑚𝑈𝑖 + 𝜙𝑢𝑣

𝑖
𝑉𝑖)

+ ∫
𝑅𝜔

𝑑𝑖𝑣(𝜙𝑣𝑢
𝑖
𝑈𝑖 + 𝜙𝑣𝑢

𝑖𝑚
∇𝑚𝑈𝑖 + 𝜙𝑣𝑣

𝑖
𝑉𝑖)(𝜙

𝑢𝑢
𝑗
𝑄𝑗 + 𝜙𝑢𝑢

𝑗𝑙
∇𝑙𝑄𝑗 )

=∫
𝑅𝜔

𝑓 (𝜙𝑢𝑢
𝑗
𝑄𝑗 + 𝜙𝑢𝑢

𝑗𝑙
∇𝑙𝑄𝑗 ).

(41)

In the global form, the equation has the form

𝛼𝑢
𝑖𝑗
𝑈𝑖 + 𝛼𝑢

𝑖𝑗𝑚
∇𝑚𝑈𝑖 −∇𝑚(𝛼

𝑢

𝑖𝑗𝑚
𝑈𝑖) − ∇𝑛(𝛼

𝑢
𝑖𝑗𝑛𝑚

∇𝑚𝑈𝑖) + 𝛽𝑢
𝑗𝑖
𝑉𝑖 + 𝛽𝑢

𝑗𝑖𝑚
∇𝑚𝑉𝑖 = 𝑓 𝑢

𝑗
. (42)

In our numerical simulations, we observe that the sum of two convection terms (the second and third terms in the equation) is small 
and can be neglected. This is because In our calculations, we drop some of the terms depending on the relative scalings of 𝜙’s and 
their gradients.

Next, we multiply the system (37) by

[
𝜙𝑣𝑣
𝑗
𝑄𝑗

𝜙𝑢𝑣
𝑗
𝑄𝑗

]
(43)

and sum up (use vector notations for simplicity)
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∫
𝑅𝜔

𝜙𝑣𝑣
𝑗
𝑄𝑗𝜅

−1(𝜙𝑣𝑢
𝑖
𝑈𝑖 +𝜙𝑣𝑢

𝑖𝑚
∇𝑚𝑈𝑖 + 𝜙𝑣𝑣

𝑖
𝑉𝑖)

+ ∫
𝑅𝜔

𝜙𝑣𝑣
𝑗
𝑄𝑗∇(𝜙

𝑢𝑢
𝑖
𝑈𝑖 +𝜙𝑢𝑢

𝑖𝑚
∇𝑚𝑈𝑖 + 𝜙𝑢𝑣

𝑖
𝑉𝑖)

+ ∫
𝑅𝜔

𝑑𝑖𝑣(𝜙𝑣𝑢
𝑖
𝑈𝑖 + 𝜙𝑣𝑢

𝑖𝑚
∇𝑚𝑈𝑖 + 𝜙𝑣𝑣

𝑖
𝑉𝑖)𝜙

𝑢𝑣
𝑗
𝑄𝑗

=∫
𝑅𝜔

𝑓𝜙𝑢𝑣
𝑗
𝑄𝑗 .

(44)

In the global form, the equation has the form

𝛼𝑣
𝑖𝑗
𝑈𝑖 + 𝛼𝑣

𝑖𝑗𝑚
∇𝑚𝑈𝑖 + 𝛽𝑣

𝑗𝑖
𝑉𝑖 = 𝑓 𝑣

𝑗
. (45)

In our numerical simulations, we observe that 𝛼𝑣
𝑖𝑗
is small and can be neglected.

In general, one can choose a more general representation of the velocity via piecewise linear functions and obtain general models 
with higher order derivatives.

Note that the polynomial constraints in the approximation of velocity and pressures in (39) is for homogenization and is not 
related to stable polynomial approximation in finite element methods.

5. Numerical example

In this section, we will present some numerical examples to demonstrate the performance of the method in a mixed formulation. 
Here, we propose the following local problems for velocity 𝑣 and pressure 𝑢 in the equation

𝜅−1𝑣+∇𝑢 = 0

𝑑𝑖𝑣(𝑣) = 𝑞.
(46)

Next, we describe the local solutions for velocity and pressure. We will only write down the constraints, the formulation of the 
local problem follows from equations (12) and (13). For the velocity constraints, we impose an intermediate domain 𝑅𝑉

𝜔
, where 𝑅𝑉

𝜔

is a subset of 𝑅+
𝜔
and contains 𝑅𝜔. Moreover, we assume that 𝑅

𝑉
𝜔
consists of 𝑅𝑝

𝜔, where 𝑝 is a numeration of local domains, one of 
them being 𝑅𝜔. We remind that the local solution has the following matrix form.

[
𝑢

𝑣𝑠

]
=

[
𝜙𝑢𝑢
𝑖

𝜙𝑢𝑢
𝑖𝑚

𝜙𝑢𝑣
𝑖𝑘

𝜙𝑣𝑢
𝑖𝑠

𝜙𝑣𝑢
𝑖𝑠𝑚

𝜙𝑣𝑣
𝑖𝑠𝑘

]⎡⎢⎢⎣

𝑈𝑖

∇𝑚𝑈𝑖

𝑉𝑖𝑘

⎤⎥⎥⎦
(47)

The local constraints for 𝜙’s are imposed column by column. The constraints are the following

∫
𝑅
𝑝
𝜔

𝜙𝑢𝑢
𝑖
𝜓𝑗 = 𝛿𝑖𝑗 ∫

𝑅
𝑝
𝜔

𝜓𝑗 , ∀𝑅
𝑝
𝜔
⊂𝑅+

𝜔
,

∫
𝑅
𝑝
𝜔

𝜙𝑣𝑢
𝑖𝑠
𝜓𝑗 = 0, ∀𝑅𝑝

𝜔
⊂𝑅𝑉

𝜔
,

(48)

and

∫
𝑅
𝑝
𝜔

𝜙𝑢𝑢
𝑖𝑚
𝜓𝑗 = 𝛿𝑖𝑗 ∫

𝑅
𝑝
𝜔

(𝑥𝑚 − 𝑐𝑚)𝜓𝑗 , ∀𝑅
𝑝
𝜔
⊂𝑅+

𝜔
,

∫
𝑅
𝑝
𝜔

𝜙𝑣𝑢
𝑖𝑠𝑚

𝜓𝑗 = 0, ∀𝑅𝑝
𝜔
⊂𝑅𝑉

𝜔
,

(49)

and

∫
𝑅
𝑝
𝜔

𝜙𝑢𝑣
𝑖𝑘
𝜓𝑗 = 0, ∀𝑅𝑝

𝜔
⊂𝑅+

𝜔
,

∫
𝑅
𝑝
𝜔

𝜙𝑣𝑣
𝑖𝑠𝑘

𝜓𝑗 = 𝛿𝑖𝑗𝛿𝑠𝑘 ∫
𝑅
𝑝
𝜔

𝜓𝑗 , ∀𝑅
𝑝
𝜔
⊂𝑅𝑉

𝜔
.

(50)
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Fig. 2. Case 1. Left: Parameter 𝜅. Right: Reference solution. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 1
Error comparison for Case 1.

𝐻 𝜖 𝑒
(1)

2
𝑒
(2)

2

1∕10 1∕10 27.19% 6.21%

1∕20 1∕20 11.63% 1.19%

1∕40 1∕40 3.25% 0.88%

𝐻 𝜖 𝑒
(1)

2
𝑒
(2)

2

1∕10 1∕10 27.19% 6.21%

1∕10 1∕20 12.79% 2.43%

1∕10 1∕40 6.32% 1.70%

In the calculations of macroscopic domains, we use another intermediate domain 𝑅𝐼
𝜔
, which is a subset of 𝑅+

𝜔
and contains 𝑅𝑉

𝜔
. 

The local expansion is given by (39).
In the first example, we consider the layered medium depicted on Fig. 2. The permeability field 𝜅 has a period denoted by 𝜖. 

We denote the low conductivity region and the high conductivity region of 𝜅 by Ω1 and Ω2, respectively. The source term 𝑓 and 
conductivity 𝜅 are as follows

𝑓 (𝑥) =

{
1000min{𝜅}𝑒−40|(𝑥−0.5)2+(𝑦−0.5)2| 𝑥 ∈Ω1

𝑒−40|(𝑥−0.5)2+(𝑦−0.5)2| 𝑥 ∈Ω2

and

𝜅(𝑥) =

⎧⎪⎨⎪⎩

𝜖

10000
𝑥 ∈Ω1

1

100𝜖
𝑥 ∈Ω2

We divide the computational domain Ω into 𝑀 ×𝑀 coarse grid. The coarse mesh size 𝐻 is defined as 𝐻 = 1∕𝑀 . We consider the 
whole coarse grid element as an RVE for the corresponding coarse element. The oversampling RVE 𝑅+

𝜔
(or 𝜔+) for each coarse RVE 

𝜔 is defined as an extension of 𝐾 (target coarse block) by 𝑙 layers of coarse grid element, where 𝑙 will be changed in simulations.
We define the relative 𝐿2- error in Ω1 and the relative 𝐿

2- error in Ω2 by

(𝑒
(𝑖)

2
)2 =

∑
𝐾 | 1

|𝐾|∫𝐾 𝑈𝑖 −
1

|𝐾 ∩Ω𝑖| ∫𝐾∩Ω𝑖
𝑢|2

∑
𝐾 | 1

𝐾 ∩Ω𝑖

∫
𝐾∩Ω𝑖

𝑢|2
.

𝐾 denotes the RVE, which is taken to be 𝜔.
For the first case, we take the fine-mesh size to be 𝐻𝜖. We present 𝑒(𝑖)

2
in Table 1. First, we observe that the proposed approach 

provides an accurate approximation of the averaged solution as we decrease the mesh size. In Fig. 3, we depict upscaled solutions 
and corresponding averaged fine-scale solutions. We observe that these solutions are very close. In the first table, we decrease the 
coarse-mesh size and the period size. In standard numerical homogenization methods, this gives a resonance error (stagnating errors). 
Here, by choosing an appropriate number of layers, we observe that the error remains small. In the second table, we fix the mesh 
size and decrease 𝜖. Our theoretical results suggest that the error is of order 𝐻 . In this case, the error will decrease as it reaches of 
order 𝐻 and then stagnates.

For the second case, we change the permeability field to the one shown in Fig. 4. We present 𝑒(𝑖)
2
in Table 2. Again, we observe 

that the proposed approach provides an accurate approximation of the averaged solution as we decrease the mesh size. In Fig. 5, 
we depict upscaled solutions and corresponding averaged fine-scale solutions. We observe a good agreement between coarse- and 
fine-grid solutions. In the first table, we decrease the coarse-mesh size and the period size at the same time. We observe that the 
total error decreases as the mesh size decreases. Note that the individual continuum error may not decrease. Our theoretical results 



Journal of Computational Physics 510 (2024) 112980

12

E. Chung, Y. Efendiev, J. Galvis et al.

Fig. 3. Case 1. Top-Left: reference average solution in Ω1. Top-Right: homogenized average solution in Ω1 . Bottom-Left: reference average solution in Ω2 . Bottom-
Right: homogenized average solution in Ω2 .

Fig. 4. Case 2. Left: Parameter 𝜅. Right: reference solution.

Table 2
Error comparison for Case 2.

𝐻 𝜖 𝑒
(1)

2
𝑒
(2)

2

1∕10 1∕10 11.74% 1.61%

1∕20 1∕20 4.18% 0.97%

1∕40 1∕40 1.86% 1.08%

𝐻 𝜖 𝑒
(1)

2
𝑒
(2)

2

1∕10 1∕10 11.74% 1.61%

1∕10 1∕20 9.12% 6.13%

1∕10 1∕40 8.05% 7.27%

suggest that the total error will decrease. Here, by choosing an appropriate number of layers, we observe that the error remains 
small. In the second table, we fix the mesh size and decrease 𝜖. Our theoretical results suggest that the error is of order 𝐻 . In this 
case, the error does not decrease as the decrease of 𝜖 does not affect the error because the error is dominated by 𝐻 .
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Fig. 5. Case 2. Top-Left: reference average solution in Ω1. Top-Right: homogenized average solution in Ω1 . Bottom-Left: reference average solution in Ω2 . Bottom-
Right: homogenized average solution in Ω2 .

6. Conclusions

In this paper, we propose a general framework for multicontinuum homogenization. The method introduces several macroscopic 
variables at each macroscale point using characteristic functions associated with subdomains. The homogenization expansion is 
written using macroscale variables and associated local cell problems. The local cell problems are formulated as constraint problems 
in oversampled regions. This is not an easy task, in general, since the constraints are formulated in a spatially localized fashion. 
We present an example of a mixed formulation of the elliptic equation, where we use some special formulations for cell problems. 
The proposed general framework shows that one can obtain various macroscale equations. We briefly discuss the relation to mixture 
theories.
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