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Transient Nanoscopy of Exciton Dynamics in 2D Transition
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and Costas P. Grigoropoulos*

1. Introduction

The electronic and optical properties of 2D transition metal dichalcogenides

are dominated by strong excitonic resonances. Exciton dynamics plays

a critical role in the functionality and performance of many miniaturized 2D
optoelectronic devices; however, the measurement of nanoscale excitonic be-
haviors remains challenging. Here, a near-field transient nanoscopy is reported
to probe exciton dynamics beyond the diffraction limit. Exciton recombination
and exciton—exciton annihilation processes in monolayer and bilayer MoS, are
studied as the proof-of-concept demonstration. Moreover, with the capability
to access local sites, intriguing exciton dynamics near the monolayer-bilayer
interface and at the MoS, nano-wrinkles are resolved. Such nanoscale
resolution highlights the potential of this transient nanoscopy for fundamental
investigation of exciton physics and further optimization of functional devices.

J. Li, R. Yang, C. P. Grigoropoulos

Laser Thermal Laboratory

Department of Mechanical Engineering

University of California

Berkeley, CA 94720, USA

E-mail: cgrigoro@berkeley.edu

N. Higashitarumizu, A. Javey

Department of Electrical Engineering and Computer Sciences
University of California

Berkeley, CA 94720, USA

N. Higashitarumizu, J. Wu, A. Javey
Materials Sciences Division

Lawrence Berkeley National Laboratory
Berkeley, CA 94720, USA

S.Dai

Materials Research and Education Center
Department of Mechanical Engineering

Auburn University

Auburn, AL36849, USA

). Wu

Department of Materials Science and Engineering

University of California
Berkeley, CA 94720, USA

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/adma.202311568

© 2024 The Authors. Advanced Materials published by Wiley-VCH
GmbH. This is an open access article under the terms of the Creative
Commons Attribution-NonCommercial-NoDerivs License, which permits
use and distribution in any medium, provided the original work is
properly cited, the use is non-commercial and no modifications or
adaptations are made.

DOI: 10.1002/adma.202311568

Adv. Mater. 2024, 36, 2311568 2311568 (1 of 7)

Atomically thin 2D transition metal
dichalcogenides (ITMDCs) exhibit many
intriguing physical properties, includ-
ing strong photoluminescence (PL) from
monolayers, tunable bandgaps, and valley
polarization.'*] The reduced dielectric
screening and enhanced Coulomb interac-
tions in TMDCs result in the formation of
excitons (i.e., bound electron-hole pairs) at
room temperature with much larger bind-
ing energies than those in conventional
semiconductors.*5 The strong excitonic
effects lead to pronounced light absorption
and emission, making TMDCs promising
for applications in photovoltaics, sensors,
and light sources.[*# For instance, mono-
layer TMDCs have demonstrated superior
performances in low-power transistors,”) high-sensitivity
photodetectors,[') and low-threshold nanolasers.['!]

One of the most important aspects of 2D TMDC research
is the dynamics of photoexcited excitons, which ultimately de-
termine the efficiency of photonic and optoelectronic devices.
The transient behaviors and relaxation pathways of excitons are
of key significance for both fundamental study and technologi-
cal innovation of TMDC materials.['?! Time-resolved PL (TRPL)
spectroscopy has been widely utilized to measure the PL life-
time of monolayer TMDCs.['*] Alternatively, transient absorp-
tion (TA) spectroscopy traces the change in the absorption of
single-layer or few-layer TMDCs to analyze the exciton recom-
bination process.l"l Enhanced many-body interactions, such as
Auger recombination and exciton—exciton annihilation (EEA),
have been observed due to the reduced dimensionality.'>"'"] As
a nonradiative recombination process, EEA is found to be dom-
inant at high excitation energy, which limits the device perfor-
mance. With the integration of optical imaging techniques, TA
microscopy has also been developed to investigate the transport
and diffusion properties of excitons.!'®2°1 However, the spatial
resolution of TRPL and TA is typically limited by optical diffrac-
tion, which prevents accessing the nanoscale heterogeneity of ex-
citon dynamics.2-23]

Scanning probe methods provide nanoscale spatial resolu-
tion to overcome the optical diffraction limit. For instance, scan-
ning tunneling microscopy has been used to probe the local-
ized excitonic properties.l?#?°] Scattering-type scanning near-
field optical microscopy (s-SNOM) also demonstrates the capa-
bility to map excitonic responses!?®?’] and exciton polaritons!242?]
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Figure 1. General concept. a) Schematic showing transient s-SNOM to measure exciton dynamics in MoS,. The pump and probe beams have a wave-
length of 400 and 800 nm, respectively. b) The AFM tip can access the localized information of 2D MoS,, such as the crystal interfaces and nanoscale

strains.

in 2D TMDCs. The transient s-SNOM nanoimaging of exciton—
polaritons further reveals their temporal evolution after fem-
tosecond photoexcitation.?*32l In addition, ultrafast terahertz
s-SNOM has been established to probe the interlayer trans-
port and phase transition of excitons in TMDCs with nanoscale
inhomogeneity.3*3*]

2. Results and Discussion

Here, we report a transient s-SNOM in the visible-near-infrared
spectral region®! to measure nanoscale exciton dynamics in
TMDCs. As illustrated in Figure 1a, an 800 nm probe beam and a
400 nm pump beam with a controlled time delay (At) are directed
onto an atomic force microscope (AFM) tip (see Experimental
Section for more details on the experimental setup). The local ex-
citonic properties can be probed via strong near-field interactions
between the tip apex and the sample. Our probe beam is close to
the excitonic transition energies of TMDCs, which is sensitive
to the change of local dielectric function induced by photoexcited
excitons. Thus, information on exciton dynamics can be obtained
by analyzing the transient evolution of the scattered probe beam.
The AFM tip enables a sub-50 nm spatial resolution to character-
ize the effects of nanoscale heterogeneities, such as crystal inter-
faces and localized strains (Figure 1b), on the excitonic responses.
With the high spatiotemporal resolution and easy implementa-
tion, the transient near-field nanoscopy brings additional advan-
tages compared to other tools for advancing TMDC research and
accelerating their practical applications (Figure S1, Supporting
Information).

We measure few-layer MoS, flakes prepared by mechanical
exfoliation (Figure 2a). The monolayer and bilayer regions can
be distinguished from optical images and confirmed by PL and
Raman spectroscopy (Figure 2b; Figure S2, Supporting Informa-
tion). The layer number is further characterized by probe-only
static s-SNOM imaging. The amplitude image shows nearly uni-
form responses from the substrate, monolayer, and bilayer re-
gions with clear boundaries (Figure S3, Supporting Information).
To probe the spatiotemporal behavior of excitons in MoS, flakes,
we scan the sample underneath the AFM tip to acquire the tran-
sient s-SNOM images at each time delay (Figure 2c). These im-
ages reveal evident dynamics with nanoscale heterogeneity where
monolayer and bilayer MoS, yield distinct responses. To better
present the departures, we plot the evolution of the near-field am-
plitude along a line traversing the sample (white dashed line in
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Figure 2c). Such a spatiotemporal map captures the nanoscale
dynamics of the sample (Figure 2d). Notably, the s-SNOM am-
plitude in the bilayer region drops significantly within ~20 ps,
while the monolayer MoS, shows a much slower decay. This vari-
ation can also be clearly visualized from the averaged transient s-
SNOM amplitude profiles in Figure 2e. We further demonstrate
the nanoscale resolution of transient s-SNOM to reveal exciton
behaviors near the monolayer-bilayer interface, where the exci-
ton dynamics differ from the faraway counterparts (Figure S4,
Supporting Information).

To understand the transient s-SNOM data of MoS,, we adopt
the point-dipole model to interpret our observations (Figure 3a,
Section S5, Supporting Information).**! The point-dipole model
can effectively capture the response of atomically thin layers on
thick substrates.l?®] The time-resolved s-SNOM profiles can be
analyzed by the dynamic change of the dielectric function & of
MoS,:3%

€ (w, At) = €4, (@) + A€ (o, At) (1)

where ® and At are the photon energy and time delay, re-
spectively. ¢, is the equilibrium dielectric function that can
be described by the Lorentz model (Figure S5, Supporting
Information),’”) and Ae accounts for the change in dielectric
function caused by pump beam illumination, which is a func-
tion of photoexcited exciton density N(At) (Section S7, Support-
ing Information).l**3!l Therefore, by feeding Equation (1) to the
point-dipole model, we can calculate the s-SNOM amplitude as a
function of the exciton density (Figure 3c). For both monolayer
and bilayer MoS,, the calculated s-SNOM amplitude rises dra-
matically at the exciton density N ~#10¥-10" cm~3.

The exciton dynamics of MoS, can be described with a decay
and an EEA (Figure 3b):!1°)

dN _ N
i @

with the solution
N (0) exp (— % )

N = 1+ keN(0) [1 — exp (—H)]

G)

N(At) is the exciton density at a delay time At, 7 is the ex-
citon lifetime without annihilation, and k is the EEA rate. By
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Figure 2. Transient s-SNOM measurement of monolayer and bilayer MoS,. a) Optical image of the exfoliated MoS, flake. b) PL spectra of monolayer
and bilayer MoS,. c) Transient s-SNOM imaging of the rectangle region in (a) with delay time At = 3.3, 4.7, 10, 16.7, and 36.7 ps. d) Spatiotemporal
map of the near-field amplitude along the dashed arrow line in (c). ) The averaged transient s-SNOM profiles on monolayer and bilayer MoS, extracted

from (d). Scale bars: a) 10 pm; c) 1 um.

integrating Equations (1)—(3) with Figure 3c, we can calculate the
transient s-SNOM responses related to the exciton dynamics.
The transient s-SNOM profiles of monolayer and bilayer MoS,
with a better temporal resolution are presented in Figure 3d,e,
where our calculations (dashed curves) agree very well with the
data (connected dots). We extract the exciton lifetime of mono-
layer and bilayer MoS, to be 449.4 and 9.1 ps, respectively. The
radiative recombination of monolayer MoS, is usually faster than
that of the bilayer,*®] and this experimental lifetime is dominated
by the nonradiative processes.['*l The observed much shorter life-
time in bilayer MoS, is likely related to the enhanced exciton—
phonon scattering.*®! Notably, the EEA rates of monolayer and
bilayer MoS, are determined as 0.06 and 0.03 cm? s™', respec-
tively. The larger EEA rate of monolayer MoS, is ascribed to
stronger many-body interactions and direct bandgap at the mono-
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layer limit (Figure S6, Supporting Information).['>1¢] We also
measure the dynamics under different exciton densities by tun-
ing the pump beam intensity (Figure 3f). The results show that
the bimolecular EEA process depends on the exciton density, *]
and the EEA rate decreases with the reduced pump power (Figure
S7, Supporting Information).

In addition to the difference in monolayer and bilayer, the
excitonic properties of TMDCs can also be affected by vari-
ous physical and chemical facts, including defects, dopants, and
strains.[?24142] Here, we study the strain effects from naturally
formed wrinkles in exfoliated monolayer MoS, (Figure 4a; Figure
S8, Supporting Information). The nano-wrinkle has a size of less
than 100 nm, which is challenging to access by far-field optical
techniques. By scanning the sample underneath the tip, we ac-
quire the time-resolved near-field imaging of the nano-wrinkle to
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Figure 3. Transient s-SNOM data on exciton dynamics. a) Schematic of the point-dipole model. E;,, and E,,, are the incident and scattered light,
respectively. g, z, and ¢ are the AFM tip radius, tip-sample distance, and sample permittivity, respectively. b) Schematic showing the exciton relaxation
pathways in MoS,. c) Calculated s-SNOM amplitude for monolayer and bilayer MoS, as a function of exciton density. d,e) Experimental transient s-
SNOM data (dots) and fitting curves (dashed line) of d) monolayer and e) bilayer MoS,. The shading area indicates standard errors from multiple
measurements. f) Transient s-SNOM scans of monolayer MoS, measured under different pump intensities.

reveal the spatially-resolved exciton dynamics. Before the pump
beam arrives (At,), the near-field amplitude is lower at the nano-
wrinkle (Figure 4b), which is due to the existence of an air void
that leads to a smaller effective refractive index (Section S11,
Supporting Information).*}! After the photoexcitation, the nano-
wrinkle becomes brighter in the near-field image (Figure 4c),
which is ascribed to a higher exciton density due to the exciton
funneling effect (Figure S10, Supporting Information).[214445]
This contrast in near-field amplitude persists at longer time de-
lays (Figure 4d). The trend is consistent with the transient s-
SNOM profiles measured at the flat flake and the MoS, nano-
wrinkle (Figure 4e). The transient s-SNOM measurement also
unambiguously reveals the difference in exciton dynamics be-
tween the flat and wrinkled regions (Figure 4f). Notably, the EEA
rate of the nano-wrinkle is reduced by more than 40% compared
with the flat flake.

This EEA suppression observed at the nanowrinkles is due
to the strain-induced exciton transition energy shift. In general,
the EEA process involves two excitons, and the final state con-
sists of a high-energy electron and hole with an energy differ-
ence of 2Ey, where Ey is the exciton transition energy. The pres-
ence of strain can shift the exciton transition energy Ey, after
which the density of possible final states at 2Ey is reduced to
suppress EEA.[Y7] On this account, unlike the flat monolayer, the
EEA rate at the strained wrinkle is independent of the pump in-
tensity (Figure S11, Supporting Information).[*) Besides MoS,,
we further demonstrate the general applicability of our transient
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nanoscopy to probe nanoscale exciton dynamics in other TMDCs,
such as MoSe, (Figure S12, Supporting Information).

3. Conclusions

In summary, we have studied the nanoscale exciton dynamics in
atomically thin TMDCs using transient near-field nanoscopy. In
addition to establishing the physical framework to understand
the time-resolved near-field responses, we demonstrate the ca-
pability to probe local straining effects on excitonic properties.
With high spatial resolution beyond the diffraction limit, our tip-
based nanoscopy opens new possibilities to unravel the roles
of nanoscale heterogeneity on many intriguing physical prop-
erties of TMDC materials, such as strain-engineered exciton-
to-trion conversion, ¥’ dark excitons,*) and quantum light
emission.>") We further anticipate the applications of this tool to
provide more insights on understanding the excitonic properties
for future innovation of TMDC materials and devices.

4. Experimental Section

Materials and Characterizations: MoS, and MoSe, flakes were pre-
pared by mechanical exfoliation from commercially available crystals
(MoS, from SPI Supplies and MoSe, from HQ Graphene). PL and Ra-
man spectra were obtained using a micro-PL and Raman measurement
system (Renishaw) with an excitation laser wavelength of 532 nm.
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Figure 4. Probing strain effects on exciton dynamics at the nanoscale. a) AFM topography of a monolayer MoS, flake with nano-wrinkles. b-d) Transient
s-SNOM imaging of the nano-wrinkle with a time delay of b) At; =-6.7 ps, c) At, = 6.7 ps, and d) At; = 36.7 ps. e) Transient s-SNOM curves measured
at flat and wrinkled regions. f) Normalized transient s-SNOM data and fitting curves (dashed lines) of flat and wrinkled MoS,. Scale bars: 200 nm.

Experimental Setup: The setup was developed based on a commercial
scanning near-field optical microscopy system from Molecular Vista. The
Pt-coated AFM tip had an apex radius of 25 nm and a tapping frequency
Q at ~250 kHz. An 800 nm femtosecond laser beam (Spectra-Physics)
was split by a beam splitter into a probe beam and a pump beam. The
probe laser was p-polarized with a repetition rate of 80 MHz and a separa-
tion time of 12.5 ns between two adjacent pulses to avoid interference. The
pump beam was frequency doubled by a beta barium borate crystal (Eksma
Optics) and then amplitude-modulated by an acoustic—optic modulator.
The modulation frequency was set to be the third harmonic of the tapping
frequency of the AFM tip. The probe beam passed through a mechanical
delay stage (Thorlabs) to control the delay time. Both beams were directed
to the AFM tip with a parabolic mirror. The scattered probe beam was then
collected by the parabolic mirror and redirected to an avalanche photo-
diode detector (Thorlabs) after it was interfered with a reference beam
from the reference mirror, per the scheme known as homodyne detec-
tion. The signal from the avalanche photodiode detector (Thorlabs) was
sent to a lock-in amplifier for signal demodulation at the same modula-
tion frequency of the pump beam, that is, the third harmonic of the tap-
ping frequency (AS;), to suppress the background noise. A long-pass fil-
ter (Thorlabs) was placed before the detector to block the scattered pump
beam.

Supporting Information

Supporting Information is available from the Wiley Online Library or from
the author.
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