
SIAM/ASA J. UNCERTAINTY QUANTIFICATION © 2023 Nathaniel Pritchard
Vol. 11, No. 3, pp. 996–1024

Towards Practical Large-Scale Randomized Iterative Least Squares Solvers

through Uncertainty Quantification∗

Nathaniel Pritchard† and Vivak Patel†

Abstract. As the scale of problems and data used for experimental design, signal processing, and data assimi-
lation grow, the oft-occurring least squares subproblems are correspondingly growing in size. As the
scale of these least squares problems creates prohibitive memory movement costs for the usual in-
cremental QR and Krylov-based algorithms, randomized least squares problems are garnering more
attention. However, these randomized least squares solvers are difficult to integrate into application
algorithms as their uncertainty limits practical tracking of algorithmic progress and reliable stop-
ping. Accordingly, in this work, we develop theoretically rigorous, practical tools for quantifying the
uncertainty of an important class of iterative randomized least squares algorithms, which we then
use to track algorithmic progress and create a stopping condition. We demonstrate the effectiveness
of our algorithm by solving a 0.78 TB least squares subproblem from the inner loop of incremental
4D-Var using only 195MB of memory.

Key words. random sketching, linear systems, iterative methods, gradient estimation, stopping criterion,
least-squares, coordinate descent, 4D-Var

MSC codes. 65F10, 65F25, 60F10, 62L12

DOI. 10.1137/22M1515057

1. Introduction. Least squares problems are regularly solved as core subproblems in a
variety of important algorithms for experimental design [13, 3], signal processing [26, 28],
data assimilation [29, 9], and uncertainty quantification [30, 27]. Moreover, these least squares
subproblems are growing in both the number of equations and the dimension of the unknown
variables for two reasons: (1) improvements in technology have increased the permeation of
higher-frequency sensors, which grows the volume of data being used and which, in turn,
(usually) increases the number of equations in the least squares subproblem; and (2) the
growing desire for more accurately simulating models (e.g., using finer meshes for partial
differential equation models) increases the number of unknown variables in the least squares
problems.

Unfortunately, the growth of least squares subproblems is a challenge for commonly used
solvers. For instance, solving a least squares problem with many observations can be addressed
in a memory-efficient manner using an incremental QR algorithm [17], so long as the resulting
upper triangular term can be fit in memory. Unfortunately, if the number of unknowns is
sufficiently larger, this least squares incremental QR algorithm will be unable to store and

∗Received by the editors August 10, 2022; accepted for publication (in revised form) April 10, 2023; published
electronically August 31, 2023.

https://doi.org/10.1137/22M1515057
Funding: This work was supported by UW-Madison WARF award AAD5914.

†Department of Statistics, University of Wisconsin - Madison, Madison, WI 53706 USA (npritchard@wisc.edu,
vivak.patel@wisc.edu, vivakpatel.org).

© 2023 Nathaniel Pritchard

996

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

4
 t

o
 7

3
.1

9
7
.9

5
.1

3
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

TRACKING AND STOPPING FOR LEAST SQUARES SOLVERS 997

manipulate the resulting upper triangular matrix without substantial slowdowns induced by
memory movement costs. As another example, Krylov-based least squares solvers can also
be efficiently deployed [10], so long as matrix-vector and matrix-transpose-vector products
can be efficiently computed. Unfortunately, if the system is sufficiently large that it cannot
be stored in memory, then Krylov-based least squares solvers are substantially slowed down
also because of the memory movement costs needed to read in the matrix multiple times per
iteration [15].

As these challenges to standard solvers are driven by size, randomized least squares solvers
(e.g., iterative Hessian sketch [22] and generalized column subspace descent [20, 19, 21]) seem
to be promising alternatives as they are able to compress the information in the original
linear system to more manageable dimensions. However, such iterative randomized least
squares solvers must first overcome a key practical challenge: as such solvers would be called
repeatedly within an iterative algorithm, their solution accuracy must be controlled so as
to ensure algorithmic efficiency. For example, in incremental 4D-Var [4], a least squares
subproblem occurs at every iteration of the algorithm. Indeed, in the initial few iterations,
the least squares subproblem only needs to be solved to low accuracy as this is usually enough
to generate progress quickly, while later iterations will demand that the subproblem be solved
to higher accuracy. Thus, achieving such control over the least squares subproblem solver’s
accuracy ensures the efficiency of the overall algorithm.

When it comes to solving least squares problems, controlling the solver’s accuracy de-
pends on tracking the progress of the iterations and defining clear stopping conditions, which
are typically achieved by using the norm of the gradient of the least squares subproblem.1

Unfortunately, the gradient of a large least squares problem is calculated by applying a very
large matrix in both its original and transposed orientation to a vector—a procedure that is
very costly because of its guaranteed violation of the principal of spatial locality for memory
accesses [15] (excepting the case in which the matrix is symmetric). This issue is further ex-
acerbated for a randomized solver: the gradient at an iterate of a randomized solver is never

explicitly calculated, and, even if it were calculated occasionally for monitoring progress, it
would be less reliable, as we now explain. As the iterates of the randomized solver are ran-
dom, the gradient evaluated at these iterates inherits this randomness; thus, a wide range of
gradient norm values would correspond to the same residual norm squared in the iterates (see
the blue boxes in Figure 1), which results in the norm of the gradient being a poor reflection
of the residual norm squared. To reiterate, the gradient norm is widely used for tracking and
stopping least squares problems, but it is infeasible to calculate for large-scale problems, and
is unreliable for randomized solvers.

In the class of sketching-based randomized solvers that we consider in this work, the
infeasibility of calculating the entire gradient can be addressed by using the sketch of the
gradient,2 which is efficiently and regularly calculated by this class of randomized solvers.3

1In the case of this manuscript, the least squares problem we are considering is minx∈Rn ‖Ax− b‖2B , and
thus the gradient is gk =A>B(Axk − b).

2We can mathematically represent the sketched gradient as g̃k = S>
k+1gk, where Sk+1 is a random matrix

satisfying properties to be discussed in section 2.
3While there are cases where this is not true, we generally accept the premise that randomly sketching a

matrix can be efficiently calculated. For instance, the Fast Johnson–Lindenstrauss Transform leverages the fast
Fourier transform to efficiently sketch a matrix [2]. As another example, a Gaussian sketch can be efficiently
applied using emerging photonic hardware, e.g., lighton.ai.

© 2023 Nathaniel Pritchard

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

4
 t

o
 7

3
.1

9
7
.9

5
.1

3
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

998 NATHANIEL PRITCHARD AND VIVAK PATEL

1e-06

1e-05

1e-04

1e-03

1e-02

(9
8
5
,9
9
0
]

(9
9
0
,9
9
5
]

(9
9
5
,1
0
0
0
]

(1
0
0
0
,1
0
0
5
]

(1
0
0
5
,1
0
1
0
]

(1
0
1
0
,1
0
1
5
]

(1
0
1
5
,1
0
2
0
]

(1
0
2
0
,1
0
2
5
]

(1
0
2
5
,1
0
3
0
]

(1
0
3
0
,1
0
3
5
]

(1
0
3
5
,1
0
4
0
]

(1
0
4
0
,1
0
4
5
]

(1
0
4
5
,1
0
5
0
]

(1
0
5
0
,1
0
5
5
]

(1
0
5
5
,1
0
6
0
]

(1
0
6
0
,1
0
6
5
]

(1
0
6
5
,1
0
7
0
]

(1
0
7
5
,1
0
8
0
]

Bins for ranges of values of ‖Ax − b‖2
2

‖
.
‖
2 2

o
f
G
ra

d
ie
n
t

Sketch Grad

True Grad

Box plots for distribution of gradients at different residual ranges for a Phillips Matrix

Figure 1. We solve a Phillips linear system, which has a condition number of O(109), from Matrix Depot
[32] using an iterative random sketching method. We compute the norm squared of the true and sketched
gradients of the iterates as well as the norm squared of the residual of the iterates. The box plots show the
distribution of gradient values for the norms squared of the sketched and true gradients at different intervals
of residual norm squared values. For instance, the red box plot and blue box plot over (985,990] represent the
distribution of the norms squared of the sketched and true gradients that correspond to residual norm squared
values between 985 and 990.

However, the sketched gradient norm inherits not only the randomness of the gradient at an
iterate, but also the randomness from the sketching procedure. To see this, as shown by the red
boxes in Figure 1, the sketched gradient norm has an even wider range for the same residual
norm squared relative to the gradient norm. Thus, the sketched gradient norm, though feasibly
calculated, is even less reliable for tracking and stopping an iterative randomized least squares
solver.

While the sketched gradient norm alone is insufficient to reliably track and stop the un-
derlying randomized least squares solver, if the sketched gradient norm’s uncertainty could be
quantified, then we could use this uncertainty set to create risk-informed4 metrics for tracking
and stopping the corresponding underlying algorithm. In this work, we develop a practical,
computationally efficient method for quantifying the uncertainty set of the norm squared of
the sketched gradient, and use it to develop risk-informed methods for tracking and stopping
the underlying algorithm. In fact, we take this a step further by generalizing our method to a
moving average of the sketched gradients, which turns out to be more reliable. We emphasize
that our method, which requires only a small additional computational and memory cost over
the solver, will accurately reflect the algorithm’s progress based on a user-defined threshold for
risk, and will stop the algorithm based on a user-defined threshold for risk. We demonstrate
the power of our methodology by solving a 0.78 TB least squares subproblem arising from the
incremental 4D-Var algorithm using only 195 MB of memory, for which LSQR is infeasible

4By risk-informed, we mean that the user can specify probabilities for which the tracking metrics and
stopping conditions can fail.

© 2023 Nathaniel Pritchard

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

4
 t

o
 7

3
.1

9
7
.9

5
.1

3
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

TRACKING AND STOPPING FOR LEAST SQUARES SOLVERS 999

(see subsection 4.4). As a result of our methodology, we are enabling the practical integration
of an important class of randomized least squares solvers into algorithms that are widely used
in science and engineering, which will support solving larger problems in these fields.

Note that in our previous work [23] we developed an analogous procedure for consistent
linear systems. While at first glance these procedures seem identical owing to our effort to
maintain notational consistency, the procedures and their analysis differ in two fundamental
ways. First, the procedure and analysis in [23] relies on consistency, which is not available
for the least squares problem. Because of consistency, the procedure in [23] can use left-
sketching techniques, which are well studied [1, 2, 8, 25, 14, 20, 22]. Without consistency the
procedure in [23] would fail to reflect the progress of the algorithm because left-sketching fails
to adequately solve least squares problems [22, 24]. Hence, in this work, the procedure uses
the less familiar right-sketching approach.

Second, as the procedure herein uses right-sketching, we must analyze the procedure using
arguments about the column space, rather than arguments about the row space as in [23].
Thus, while we follow a similar sequence of steps to, and replicate notation from, [23], the
underlying concepts in the analysis of the two procedures are rather distinct.

The remainder of this paper is organized as follows. In section 2, we specify the problem
that we are solving, the algorithm used to solve this problem, our moving average of the
norm squared of the gradient estimator, our estimate of its uncertainty set, and our stopping
condition. In section 3, we rigorously establish the foundations of our estimators. In section 4,
we numerically demonstrate the effectiveness of our estimators and compare our algorithm to
a state-of-the-art solver. In section 5, we conclude.

2. Problem formulation and algorithm. We are interested in solving the minimization
problem

min
x∈Rn

‖Ax− b‖2B,(2.1)

where A∈Rm×n is a coefficient matrix; B ∈Rm×m is any symmetric positive definite matrix;
b ∈R

m is a constant vector; and both m and n are large. Note that we allow m and n to be
arbitrary, so our methodology applies to overdetermined, underdetermined, and rank-deficient
systems. Owing to the size of A, we can only access A through matrix-vector multiplications;
similarly, though we will not need it in our algorithm, we can access A> through matrix-
vector multiplications, though this would be substantially more expensive owing to the needed
memory access pattern [15]. For all other operations, we make use of efficiently computed
(see footnote 3) sketches of A, which we individually denote by (possibly with a subscript)

Ã=AS ∈Rm×p,(2.2)

where p is generally significantly smaller than n (see Remark 3.6), and S ∈Rn×p is a random
matrix that satisfies the Johnson–Lindenstrauss property [12] defined in the following manner.

Definition 2.1. A matrix S ∈ R
n×p satisfies the Johnson–Lindenstrauss property if there

exist constants C,ω > 0 such that for all δ≥ 0 and for any x∈Rn,

P
(

|‖Sx‖22 − ‖x‖22|> δ‖x‖22
)

< 2e
−min

{

Cpδ2

2
, δ

2ω

}

.(2.3)

© 2023 Nathaniel Pritchard

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

4
 t

o
 7

3
.1

9
7
.9

5
.1

3
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1000 NATHANIEL PRITCHARD AND VIVAK PATEL

Table 1

Values of C and ω in Definition 2.1 for common sampling methods.

C ω

Gaussian Matrix [5] 1.1 0.47
Achlioptas [1] 1.16 0.46
FJLT [2] 0.83 0.70

Remark 2.2. In Definition 2.1, the constants C and ω are determined by the method used
to generate S. There are many choices of these methods, such as sparse Rademacher matrices
[1], the Fast Johnson–Lindenstrauss Transform (FJLT) [2], and Gaussian matrices [5, 11, 16].
Estimates for these constants based on numerical experiments are supplied in Table 1.

Remark 2.3. By Definition 2.1, ‖Sx‖2
2

‖x‖2
2

is a subexponential (defined in Definition 3.8) ran-

dom variable with parameters (1/(Cp), ω) [31].

To solve this problem we will employ an important subclass of generalized column-space
descent methods (see [21]), which begins with an iterate x0 ∈Rn and generates a sequence of
iterates, {xk : k ∈N}, according to the recursive equation

xk = xk−1 − Skuk,(2.4)

where uk = argminu∈Rp‖Ãku− (Axk−1 − b)‖2B,(2.5)

and Ãk = SkA, which can be computed efficiently (see footnote 3). This update is explicitly
given by

xk = xk−1 − Sk(Ã>
k BÃk)

†Ã>
k B(Axk−1 − b),(2.6)

where † is the Moore–Penrose pseudoinverse, and {Sk : k ∈ N} are independent, identically
distributed matrices satisfying Definition 2.1. This form is mathematically equivalent to

xk = xk−1 − Sk(S>
k A

>BASk)
†S>

k A
>B(Axk−1 − b),(2.7)

which is a form that will be useful for proving theory relating to the convergence of (2.6),
but which we do not explicitly use for the algorithm as A> is unfavorable to access for large

matrices.

Under this formulation, Algorithm 2.1 presents our methodology for practically tracking
and stopping the progress of least squares solvers of the form (2.7) for matrices {Sk} that
satisfy Definition 2.1. Algorithm 2.1 has several key components that we explain presently.5

1. At each iteration, we compute estimators of two key quantities to determine the progress
and uncertainty of the algorithm. One quantity we wish to estimate is the moving average of
the norms squared of the gradients, ρλk , which we define as

ρλk =

k
∑

i=k−λ+1

‖gi‖22
λ

,(2.8)

5In Algorithm 2.1, we use Ã to denote B1/2AS, possibly with a subscript. This is done to write Algo-
rithm 2.1 in terms of 2-norms.

© 2023 Nathaniel Pritchard

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

4
 t

o
 7

3
.1

9
7
.9

5
.1

3
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

TRACKING AND STOPPING FOR LEAST SQUARES SOLVERS 1001

Algorithm 2.1 Tracking and Stopping for Least Squares.

Require: A∈Rm×n, b∈Rm, B1/2 ∈Rm×m, x0 ∈Rn,{Sk} satisfying Definition 2.1.
Require: Moving average window widths λ1 ≤ λ2 ∈N.
Require: α> 0, ξI ∈ (0,1), ξII ∈ (0,1), δI ∈ (0,1), δII > 1, η≥ 1, υ > 0.

1: k← 0, k′←∞, ρ̃∗0← 0, ι̃∗0← 0, λ← 1, FLAG← false.
2: while k== 0 or ρ̃λk−1 ≥ υ or

√

ι̃λk−1 ≥min

{

λ(1− δI)2υ2Cp
(1 + log(λ))2 log(1/ξI)

√

ι̃λk−1

,
λυ(1− δI)
2 log(1/ξI)ω

,

λ(δII − 1)2υ2Cp

(1 + log(λ))2 log(1/ξII)
√

ι̃λk−1

,
λυ(δII − 1)

2 log(1/ξII)ω

}

do

3: # Iteration k #

4: rk←B1/2(Axk − b)
5: Ãk+1←B1/2ASk+1

6: g̃k← Ã>
k+1rk

7: if k== 0 then

8: λ← 1
9: ρ̃0, ι̃0←‖g̃0‖22,‖g̃0‖42

10: else

11: if (not FLAG) and ‖g̃k‖22 > ‖g̃k−1‖22 then

12: FLAG← true

13: end if

14: if (not FLAG) and k < λ1 then

15: λ← k+ 1
16: ρ̃k, ι̃k← (kρ̃k−1 + ‖g̃k‖22)/λ, (kι̃k−1 + ‖g̃k‖42)/λ
17: else if (not FLAG) and k≥ λ1 then

18: λ← λ1
19: ρ̃k, ι̃k← (λ1ρ̃k−1 + ‖g̃k‖22 − ‖g̃k−λ1

‖22)/λ, (λ1ι̃k−1 + ‖g̃k‖42 − ‖g̃k−λ1
‖42)/λ

20: else if FLAG and λ< λ2 then

21: λ← λ+ 1
22: ρ̃k, ι̃k← ((λ− 1)ρ̃k−1 + ‖g̃k‖22)/λ, ((λ− 1)ι̃k−1 + ‖g̃k‖42)/λ
23: else

24: λ← λ2
25: ρ̃k, ι̃k← (λ2ρ̃k−1 + ‖g̃k‖22 − ‖g̃k−λ2

‖22)/λ, (λ2ι̃k−1 + ‖g̃k‖42 − ‖g̃k−λ2
‖42)/λ

26: end if

27: end if

28: Update the estimated (1− α)-interval by computing:

© 2023 Nathaniel Pritchard

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

4
 t

o
 7

3
.1

9
7
.9

5
.1

3
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1002 NATHANIEL PRITCHARD AND VIVAK PATEL

Algorithm 2.1 (cont.).

ρ̃λk ±max

(

√

2 log(2/α)ι̃λk(1 + log(λ))

Cpλη
,
2 log(2/α)

√

ι̃λkω

λη

)

29: uk+1← argminu‖Ãk+1u− rk‖22 # See [17] and [10]
30: xk+1← xk − Skuk+1

31: k← k+ 1
32: end while

33: return xk and estimated (1− α)-interval

where gk =A>B(Axk−b) is the gradient at iterate xk, and where λ is the width of the moving
window. When λ= 1, we recover just the gradient at iteration xk−1, and when λ> 1, we have
a moving average of the gradients. As it is infeasible to calculate ρλk , we estimate ρλk with the
norms squared of the sketched gradients that have already been computed in the updates of

our algorithm (see (2.6)),

ρ̃λk =

k
∑

i=k−λ+1

‖g̃i‖22
λ

,(2.9)

where g̃k = Ã>
k+1B(Axk − b). When λ = 1, we recover the sketched gradient norm at iterate

xk, and when λ > 1, we have a moving average of the sketched gradient norms, which turns
out to be more reliable.

2. We derive a distribution for ρ̃λk in subsection 3.2. This distribution relies on an unknown
quantity that we estimate using

ι̃λk =

k
∑

i=k−λ+1

‖g̃i‖42
λ

.(2.10)

3. The matrix B1/2 is the square root of the positive definite matrix, B ∈Rm×m, used in
the general norm. In practice, B1/2 can be computed using the Cholesky decomposition, if B
is not too dense or large. Fortunately, in many problems that we consider, such as 4D-Var, B
has an underlying structure that can be exploited to efficiently compute B1/2.

4. The constants C,ω, and p play an important role in the algorithm owing to their
relationship with Definition 2.1. The parameters C and ω are constants relating to the size
of the tail bound described in Definition 2.1, which depend on the chosen sketching method;
see Table 1. The constant p is the embedding dimension of the random matrix Sk, and also
appears in the tail bound of Definition 2.1. A small lower bound on the size of p is necessary
for convergence (see Lemma 3.5 and Remark 3.6).

© 2023 Nathaniel Pritchard

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

4
 t

o
 7

3
.1

9
7
.9

5
.1

3
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

TRACKING AND STOPPING FOR LEAST SQUARES SOLVERS 1003

5. Line 2 contains the conditions for stopping the algorithm. If ρλk could be practically
calculated, then the algorithm could be stopped when ρλk falls below a user-specified threshold,
υ. However, since we must instead use the estimator of ρλk , ρ̃

λ
k , stopping when ρ̃λk ≤ υ leads to

two possible sources of error.
5a. One type of error is associated with stopping the algorithm later than desired. Algo-

rithmically, this scenario arises when ρλk ≤ υ while ρ̃λk > υ. To control this error, we need two
user-specified quantities. The first quantity specifies how far ρλk is below υ. In particular, we
let the user choose δI ∈ (0,1), and we control the probability that ρλk ≤ δIυ while ρ̃λk >υ. The
second quantity is a user-specified bound on this probability, ξI , that indicates the user’s level
of risk tolerance for possibly stopping too late.

5b. The second type of error is associated with stopping too early. Algorithmically, this
scenario occurs when ρλk > υ, while ρ̃λk ≤ υ. Similar to the first scenario, we will let the user
choose δII > 1 to quantify how much larger ρλk is in comparison to υ, when ρ̃λk < υ. Then we
control this probability with a user-specified value ξII , which reflects the user’s level of risk
tolerance for potentially stopping too early.

6. The user-specified parameter η is an optional parameter to adjust for the conservative-
ness of the theoretical confidence interval and stopping condition. If the user specifies η = 1,
then there is no adjustment. Reasonable, yet still conservative, choices for η can be found in
Table 2, which are based on numerical simulations.

7. Lines 15, 18, 21, and 24 adaptively change the window width of the moving average.
This procedure is necessary as there are two distinct phases of convergence in the algorithm.
In the first phase, the iterates converge rapidly towards the solution, which necessitates a
smaller moving average window width to reduce the impact of earlier iterates. In the second
phase, the iterates begin to make less progress and the randomness of the algorithm is more
pronounced in their behavior, which necessitates a larger moving average window width to
smooth out this randomness. We identify the change point between the two phases to be the
iteration where the norm of the sketched gradients are no longer monotonically decreasing,
i.e., ‖g̃k‖22 > ‖g̃k−1‖22. At this point we slowly increase the width of the window from the
narrow window width, λ1, by one at each iteration until it reaches that of the wide window
width, λ2. While we choose the monotonic condition because of its simplicity and effective-
ness, other conditions that attempt to estimate the change point between phases could also
be used.

8. Lines 16, 19, 22, and 25 inexpensively update the estimators ρ̃λk and ι̃λk , requiring
only four floating point operations to calculate. However, this update can suffer from issues
of numerical stability, especially for ι̃λk . If this is a concern, then ρ̃λk and ι̃λk can be com-
puted in O(λ2) time simply by taking the mean of the nonzero entries in its storage vector,
ρ or ι.

9. Line 28 describes a 1− α credible interval designed to contain ρλk using the estimators
ρ̃λk and ι̃λk computed at iteration k. As with the stopping condition, this credible interval is
derived in subsection 3.3 from the tail bounding distribution described in subsection 3.2. The
parameter α is selected by the user.

3. Validity of the credible interval and stopping condition. With an understanding
of the parts of Algorithm 2.1, we must now demonstrate the validity of Algorithm 2.1. In

© 2023 Nathaniel Pritchard

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

4
 t

o
 7

3
.1

9
7
.9

5
.1

3
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1004 NATHANIEL PRITCHARD AND VIVAK PATEL

Table 2

Table of conservative η values for three sampling methods.

Method Gaussian FJLT Achlioptas

η 3 4 3

particular, we must show that line 28 is a valid, credible interval for ρλk , and we must show
that line 2 controls the probabilities of the two aforementioned errors at ξI and ξII . As both
the credible interval and stopping condition depend on ρ̃λk and ι̃λk , we will need to establish
the validity of these two estimators (i.e., their consistency) in order to establish the validity
of the credible interval and stopping condition. In turn, as the consistency of ρ̃λk and ι̃λk
depends on the convergence of the iterates, {xk}, we show the convergence of the iterates in
subsection 3.1 (specifically, see Theorem 3.7). Then we show that ρ̃λk and ι̃λk are consistent
estimators for their respective quantities ρλk and ιλk

6 by deriving a tail bound for both quantities
(see subsection 3.2 and Theorems 3.9 and 3.10). Now that we have established the validity of
ρ̃λk and ι̃λk , we derive the credible interval (see subsection 3.2 and Corollary 3.11) and stopping
condition (see subsection 3.2 and Corollary 3.12). Both the credible interval and stopping
condition require a quantity that is impractical to compute, so we establish that using ι̃λk
as a plug-in estimator for the impractical quantity controls the relative error between the
theoretical values for the credible interval and stopping condition and the versions that use
the plug-in estimator (see subsection 3.3 and Lemma 3.13).

3.1. Convergence of the iterates. To show that the iterates converge to a solution, it
is equivalent to show that the gradient of the least squares problem goes to zero. In turn, if
B is the identity matrix, it is equivalent to show that the component of the residual of the
linear system in the column space of A goes to zero. For general B, an analogous equivalence
is established in the following lemma.

Lemma 3.1. Let A ∈ R
m×n, B ∈ R

m×m be positive definite, and x ∈ R
n. Let P be the

orthogonal projection onto col(B1/2A). Then the gradient of the least squares problem at x,
A>B(Ax− b) = 0 if and only if PB1/2(Ax− b) = 0.

Proof. Let r=Ax− b. Suppose A>Br= 0,

0 =A>Br=A>B1/2(PB1/2r+ (I −P)B1/2r) =A>B1/2PB1/2r,(3.1)

where the last equality comes from I −P being an orthogonal projector onto the null space
of A>B1/2. Since PB1/2r is in the range of B1/2A we know that A>B1/2PB1/2r will only be
zero when PB1/2r= 0.

Now suppose PB1/2r= 0. Then

6This quantity has not yet been defined, but will be defined in subsection 3.2.

© 2023 Nathaniel Pritchard

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

4
 t

o
 7

3
.1

9
7
.9

5
.1

3
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

TRACKING AND STOPPING FOR LEAST SQUARES SOLVERS 1005

A>Br=A>B1/2(PB1/2r+ (I −P)B1/2r) =A>B1/2(I −P)B1/2r= 0,(3.2)

where the last equality follows from I −P being an orthogonal projector onto the null space
of A>B1/2.

As the preceding lemma establishes, showing {PB1/2rk} → 0 is equivalent to showing
that the iterates converge to a solution. Thus, we establish a recursive relationship between
PB1/2rk and PB1/2rk−1. From (2.7),

rk = (I −ASk(S>
k A

>BASk)
†S>

k A
>B)rk−1.(3.3)

Multiplying both sides by B1/2,

B1/2rk = (I −B1/2ASk(S
>
k A

>BASk)
†S>

k A
>B1/2)B1/2rk−1.(3.4)

From here, let ψk = B1/2rk. Since col(B1/2A) ⊃ col(B1/2ASk), multiplying both sides by P
produces

Pψk = (I −B1/2ASk(S
>
k A

>BASk)
†S>

k A
>B1/2)Pψk−1.(3.5)

Finally, since B1/2ASk(S
>
k A

>BASk)†S>
k A

>B1/2 is an orthogonal projection matrix, we
can define a matrix Qk to be the matrix with orthonormal columns that span col(B1/2ASk).
Then we can write (3.5) as

Pψk = (I −QkQ
>
k)Pψk−1.(3.6)

With these relationships and notation established, we now turn to establishing conver-
gence.

Geometric reduction in residual components that lie in the column space of B1/2A. Let τ0 = 0
and τ1 being the first iteration, where

col(Q1) + col(Q2) + · · ·+ col(Qτ1) = col(B1/2A)(3.7)

is satisfied. Noting that if (3.7) is not satisfied, then τ1 is infinite; otherwise, τ1 is finite and
the following lemma holds.

Lemma 3.2. Let ψ0 ∈ R
m and let {Pψk} be generated according to (3.5) for {Sk : k ∈ N},

which are independent and identically distributed random matrices satisfying Definition 2.1.
On the event, {τ1 <∞} there exists a γ1 ∈ (0,1) such that

‖Pψτ1‖2 ≤ γ1‖Pψ0‖2.(3.8)

Proof. To prove this, it is only necessary to show that γ1 exists. First, let qk,1, . . . , qk,p
denote the columns of Qk. Then we can write ψτ1 by (3.6) as

Pψτ1 =

[

τ1
∏

k=1

(

I − qk,jq>k,j
)

]

Pψ0.(3.9)

© 2023 Nathaniel Pritchard

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

4
 t

o
 7

3
.1

9
7
.9

5
.1

3
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1006 NATHANIEL PRITCHARD AND VIVAK PATEL

Since Pψ0 ∈ col(B1/2A), [20, Theorem 4.1] implies that there exist γ1 ∈ (0,1) that is a function
of {q1,1, q1,2, . . . , qτ1,p} such that ‖Pψτ1‖2 ≤ γ1‖Pψτ0‖2.

We can easily repeat this argument for more than just τ1; in fact when {τ` <∞}, define
τ`+1 to be the first iteration after τ`, where

col(Qτ`+1) + col(Qτ`+2) + · · ·+ col(Qτ`+1
) = col(B1/2A);(3.10)

otherwise let τ`+1 be infinite. The preceding argument for the existence of γ1 ∈ (0,1) will then
result in the following corollary.

Corollary 3.3. Let ψ0 ∈Rm and let {Pψk} be generated according to (3.5) for {Sk : k ∈N},
which are independent and identically distributed random matrices satisfying Definition 2.1.
On the event ∩L`=1 {τ` <∞} there exist γ` ∈ (0,1) for `= 1, . . . ,L, such that

‖PψτL‖2 ≤
(

L
∏

`=1

γ`

)

‖Pψ0‖2.(3.11)

Control of random rate and random iteration. While appearing to indicate the convergence
of the Pψk, Corollary 3.3 does not guarantee that the portion of the ψk in the range of B1/2A
converges to 0. This lack of guarantee for convergence arises from two possible points of
failure, one being the case where γ` → 1 as `→∞ and the other being the case where τ` is
infinite. The following result addresses the former issue using the independence of {Sk}.

Lemma 3.4. Let {Sk : k ∈N} be independent and identically distributed random variables.

If, for any `∈N, τ` is finite, then {τj − τj−1 : j ≤ `} exist and are independent and identically

distributed; and {γj : j ≤ `} are independent and identically distributed.

Proof. When τ` is finite, [7, Theorem 4.1.3] states that {Qτ`+1, . . . ,Qτ`+k} given τ` are in-
dependent of {Q1, . . . ,Qτ`} and are identically distributed to {Q1, . . . ,Qk} for all k. Therefore,
τ`+1−τ` and τ1 are independent and identically distributed. It follows that γ` are independent
and identically distributed.

So far, we only know that τ0 = 0 is finite. Hence, we only know that the random variable
τ1− τ0 exists, but we do not know anything about its finiteness. The next result provides the
appropriate remedy.

Lemma 3.5. Let {Sk : k ∈N} be independent and identically distributed random variables

satisfying Definition 2.1. If

p >
2 log(2)

Cδ2
(3.12)

for some δ ∈ (2ω log(2),1),7 then there exists π ∈ (0,1] such that for all `∈N and k≥ rank(A),

P(τ` − τ`−1 = k)≤
(

k− 1

rank(A)− 1

)

(1− π)k−rank(A)πrank(A).(3.13)

7The implicit restriction on ω≤ 1
2 log(2)

poses no real concerns in practice; see Table 1.

© 2023 Nathaniel Pritchard

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

4
 t

o
 7

3
.1

9
7
.9

5
.1

3
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

TRACKING AND STOPPING FOR LEAST SQUARES SOLVERS 1007

Proof. We begin by verifying that for z ∈ col(B1/2A) and z 6= 0, then S>A>B1/2z 6= 0
with some nonzero probability. Definition 2.1 implies that for any δ ∈ (0,1),

P(‖S>A>B1/2z‖22 > 0)≥ P

(∣

∣

∣
‖S>A>B1/2z‖22 − ‖A>B1/2z‖22

∣

∣

∣
≤ δ‖A>B1/2z‖22

)

(3.14)

≥ 1− 2e
−min

{

Cpδ2

2
, δ

2ω

}

.(3.15)

When δ ∈ (2ω log(2),1) is chosen such that (3.12) holds, then 1− 2e
−min

{

Cpδ2

2
, δ

2ω

}

> 0. More-
over, as this bound is independent of z ∈ col(B1/2A), we will refer to the lower bound of
P(‖S>A>B1/2z‖22 > 0) by π ∈ (0,1] for any z 6= 0. Thus, owing to the relationship between
Qk and col(B1/2ASk),P(‖Q>

k z‖2 > 0)≥ π for all z 6= 0.
Given that {col(Qk) : k ∈N} are independent and identically distributed, we conclude that

the probability that col(Q1)+· · ·+col(Qk+1) increases in dimension from col(Q1)+· · ·+col(Qk),
when dim(col(Q1)+ · · ·+col(Qk+1))< rank(A), is at least π. This implies that the probability
that the dimension increases rank(A) times in the first k iterations with k > rank(A) is
dominated by a negative binomial distribution, i.e., for k≥ rank(A),

P(τ1 = k)≤
(

k− 1

rank(A)− 1

)

(1− π)k−rank(A)πrank(A).(3.16)

As a result, τ1 is finite with probability one. The result follows by Lemma 3.4.

Remark 3.6. If δ = .7, for the Gaussian, Achlioptas, and FJLT sampling methods one
should choose p≥ 2 to satisfy the hypothesis of Lemma 3.5.

Convergence of the moments. With the establishment of the previous lemmas we can now
conclude the following theorem.

Theorem 3.7. Let x0 ∈Rn and let P be the orthogonal projection onto col(B1/2A). Suppose
that {Sk : k ∈ N} are independent and identically distributed random variables satisfying

Definition 2.1 and (3.12) for some δ ∈ (0,1). Let {xk : k ∈ N} be generated according to

(2.6). Define ψk = B1/2(Axk − b). Then for any d ∈ N, E
[

‖Pψk‖d2
]

→ 0 and E
[

‖g̃k‖d2
]

=

E

[

‖Ã>
k+1B(Axk − b)‖d2

]

→ 0 as k→∞. Furthermore, for any particular ` we have

E

[

‖Pψτ`‖d2
]

≤E[γd1]
`‖Pψ0‖d2.(3.17)

Proof. It is enough to show that E
[

‖Pψτ`‖d2
]

→ 0 as k→∞. By Lemma 3.2, ‖Pψk‖2 is
a nonincreasing sequence. Thus, we only need to show a subsequence converges to zero. By
Corollary 3.3 and Lemmas 3.4 and 3.5,

E

[

‖Pψτ`‖d2
]

≤E[γd1]
`‖Pψ0‖d2(3.18)

for all `∈N, where E[γd1]< 1. Therefore, as `→∞, the conclusion follows.

3.2. Theoretical values for the credible interval and stopping condition. With conver-
gence in all moments established, we now turn to understanding the distributions of ρ̃λk and
ι̃λk , in order to validate the estimators as well as derive the stopping condition and credible

© 2023 Nathaniel Pritchard

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

4
 t

o
 7

3
.1

9
7
.9

5
.1

3
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1008 NATHANIEL PRITCHARD AND VIVAK PATEL

interval. We begin with an examination of the distribution of ρ̃λk . To perform this examina-
tion, it is first important to present the definition of a subexponential distribution for it will
be used throughout this subsection.

Definition 3.8. For a random variable Y , with E[Y] = µ, Y − µ follows a subexponential,

SE(σ2, ω), distribution with parameters σ2 and ω if for all δ≥ 0

P (|Y − µ|> δ)≤ 2e−min{δ2/(2σ2),δ/(2ω)}.(3.19)

Equivalently, a random variable Y − µ is subexponential, SE(σ2, ω), if

E[et(Y−µ)]≤ e t2σ2

2 ,(3.20)

when |t|< 1/ω [31].

With this definition established, we can note intuitively that if the terms of ρ̃λk were
independent, we would trivially have that ρ̃λk satisfies Definition 3.8. Unfortunately, they are

not independent. Thus, we innovate the following method to derive the distribution of ρ̃λk to
handle the dependencies, which results in only an additional logarithmic term relative to what
would have been the case, if the terms had been independent.

Theorem 3.9. Suppose the setting of Theorem 3.7 holds. Define Fk−λ+1 to be the σ-algebra
generated by S1, . . . , Sk−λ+1. Then

ρ̃λk − ρλk
∣

∣

∣
Fk−λ+1 ∼ SE

(

M4
k−λ+1(1 + log(λ))

Cpλ
,
ωM2

k−λ+1

λ

)

,(3.21)

where Mk−λ+1 = ‖A>B1/2‖2‖PB1/2rk−λ+1‖2 and rk−λ+1 =Axk−λ − b.
Proof. By induction, we prove, for |t| ≤ λ/(ωM2

k−λ+1),

E

[

k
∏

i=k−λ+1

exp

{

t

λ

(

‖g̃i‖22 − ‖gi‖22
)

}

∣

∣

∣

∣

∣

Fk−λ+1

]

≤ exp





t2M4
k−λ+1

2Cpλ

λ
∑

j=1

1

j



 ,(3.22)

where Mk−λ+1 = ‖A>B1/2‖2‖PB1/2rk−λ+1‖2 and the bound on t comes from Lemma SM3.1
in the supplementary material. We can then use a logarithm to bound the summation. As a
result, the subexponential distribution of ρ̃λk − ρλk follows by Definition 3.8.

The base case of λ= 1 follows trivially from ‖g̃k−λ+1‖22 being subexponential. Now assume
that the result holds for k− λ+ 1 to k− 1. Then

© 2023 Nathaniel Pritchard

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

4
 t

o
 7

3
.1

9
7
.9

5
.1

3
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

TRACKING AND STOPPING FOR LEAST SQUARES SOLVERS 1009

E

[

k
∏

i=k−λ+1

exp

{

t
(

‖g̃i‖22 − ‖gi‖22
)

λ

}∣

∣

∣

∣

∣

Fk−λ+1

]

(3.23)

=E

[

E

[

k
∏

i=k−λ+1

exp

{

t
(

‖g̃i‖22 − ‖gi‖22
)

λ

}∣

∣

∣

∣

∣

Fk

]∣

∣

∣

∣

∣

Fk−λ+1

]

(3.24)

=E

[

E

[

exp

{

t
(

‖g̃k‖22 − ‖gk‖22
)

λ

}∣

∣

∣

∣

∣

Fk

]

k−1
∏

i=k−λ+1

exp

{

t
(

‖g̃i‖22 − ‖gi‖22
)

λ

}∣

∣

∣

∣

∣

Fk−λ+1

]

(3.25)

≤E

[

exp

{

t2‖gk‖42
2λ2Cp

} k−1
∏

i=k−λ+1

exp

{

t
(

‖g̃i‖22 − ‖gi‖22
)

λ

}∣

∣

∣

∣

∣

Fk−λ+1

]

,(3.26)

where we have made use of ‖g̃k‖22 being subexponential in the ultimate line. Now, applying
Hölder’s inequality and the induction hypothesis,

E

[

exp

{

t2‖gk‖42
2λ2Cp

} k−1
∏

i=k−λ+1

exp

{

t
(

‖g̃i‖22 − ‖gi‖22
)

λ

}∣

∣

∣

∣

∣

Fk−λ+1

]

(3.27)

≤E

[

exp

{

t2‖gk‖42
2λCp

}∣

∣

∣

∣

Fk−λ+1

]
1

λ

E

[

k−1
∏

i=k−λ+1

exp

{

t
(

‖g̃i‖22 − ‖gi‖22
)

λ− 1

}∣

∣

∣

∣

∣

Fk−λ+1

]

λ−1

λ

(3.28)

≤E

[

exp

{

t2‖gk‖42
2λCp

}∣

∣

∣

∣

Fk−λ+1

]
1

λ

exp







t2M4
k−λ+1

2Cp(λ− 1)

λ−1
∑

j=1

1

j







λ−1

λ

.(3.29)

Now, Lemmas 3.1 and 3.4 and Corollary 3.3 imply, with probability one,

‖gk‖42 ≤ ‖A>B1/2‖42‖PB1/2rk‖42 ≤ ‖A>B1/2‖42‖PB1/2rk−λ+1‖42 =M4
k−λ+1.(3.30)

Since Mk−λ+1 is measurable with respect to Fk−λ+1, we apply the inequality of (3.30) to
(3.29) to conclude the proof by induction.

With the establishment of the distribution around the difference between ρ̃λk and ρλk ,
we also obtain the consistency of ρ̃λk for ρλk from Theorem 3.9 by allowing k → ∞, taking
the expectation of the subexponential tail bound Definition 3.8, and using the dominated
convergence theorem to switch the limit and the integral. With this consistency result, we
conclude that ρ̃λk is a valid estimator for ρλk .

Just as ρ̃λk is an estimator for ρλk , ι̃
λ
k is an estimator for the quantity

ιλk =

k
∑

i=k−λ+1

‖A>(Axi − b)‖42
λ

,(3.31)

which is impractical to compute. We now turn to showing the validity of ι̃λk as an estimator
for ιλk . To show the validity of ι̃λk we transform ι̃λk−ιλk into a form where we can make repeated
applications of (3.22). After making these applications, we get the consistency result for ι̃λk
presented in the following theorem.

© 2023 Nathaniel Pritchard

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

4
 t

o
 7

3
.1

9
7
.9

5
.1

3
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1010 NATHANIEL PRITCHARD AND VIVAK PATEL

Theorem 3.10. Under the conditions of Theorem 3.7, we have for ε > 0

P

(∣

∣

∣
ι̃λk − ιλk

∣

∣

∣
> ε|Fk−λ+1

)

≤ 2(1 + λ) exp

(

−min

(

ε2Cpλ

2(2M2
k−λ+1 +

√
λε)2M4

k−λ+1(1 + log(λ))
,

λε

2(2M2
k−λ+1 +

√
λε)ωM2

k−λ+1

))

,

(3.32)

where Mk−λ+1 = ‖A>B1/2‖2‖PB1/2rk−λ+1‖2 and rk−λ+1 =Axk−λ+1− b. Thus, as k→∞, ι̃λk
is a consistent estimator for ιλk .

Proof. Using the definitions of ιλk and ι̃λk we have

P

(

|ι̃λk − ιλk |> ε
∣

∣

∣

∣

Fk−λ+1

)

(3.33)

= P

(∣

∣

∣

∣

∣

k
∑

i=k−λ+1

‖g̃i‖42 − ‖gi‖42
λ

∣

∣

∣

∣

∣

> ε

∣

∣

∣

∣

Fk−λ+1

)

(3.34)

≤ P

(

k
∑

i=k−λ+1

∣

∣

∣

∣

‖g̃i‖42 − ‖gi‖42
λ

∣

∣

∣

∣

> ε

∣

∣

∣

∣

Fk−λ+1

)

(3.35)

≤ P

(

k
∑

i=k−λ+1

∣

∣

∣

∣

‖g̃i‖22 − ‖gi‖22
λ

∣

∣

∣

∣

∣

∣‖g̃i‖22 + ‖gi‖22
∣

∣> ε

∣

∣

∣

∣

Fk−λ+1

)

.(3.36)

Then, using any constant G> 2M2
k−λ+1, we partition (3.36) into disjoint sets. Thus,

P

(

k
∑

i=k−λ+1

∣

∣

∣

∣

‖g̃i‖22 − ‖gi‖22
λ

∣

∣

∣

∣

∣

∣‖g̃i‖22 + ‖gi‖22
∣

∣> ε

∣

∣

∣

∣

Fk−λ+1

)

(3.37)

= P

(k
∑

i=k−λ+1

∣

∣

∣

∣

‖g̃i‖22 − ‖gi‖22
λ

∣

∣

∣

∣

∣

∣‖g̃i‖22 + ‖gi‖22
∣

∣> ε,

k
⋂

i=k−λ+1

{∣

∣‖g̃i‖22 + ‖gi‖22
∣

∣≤G
}

∣

∣

∣

∣

Fk−λ+1

)

(3.38)

+ P

(k
∑

i=k−λ+1

∣

∣

∣

∣

‖g̃i‖22 − ‖gi‖22
λ

∣

∣

∣

∣

∣

∣‖g̃i‖22 + ‖gi‖22
∣

∣> ε,

k
⋃

i=k−λ+1

{∣

∣‖g̃i‖22 + ‖gi‖22
∣

∣>G
}

∣

∣

∣

∣

Fk−λ+1

)

≤ P

(k
∑

i=k−λ+1

∣

∣

∣

∣

‖g̃i‖22 − ‖gi‖22
λ

∣

∣

∣

∣

>
ε

G

∣

∣

∣

∣

Fk−λ+1

)

+ P

(k
⋃

i=k−λ+1

{∣

∣‖g̃i‖22 + ‖gi‖22
∣

∣>G
}

∣

∣

∣

∣

Fk−λ+1

)

.

(3.39)

From here we will present the bounds for the left and right terms of (3.39) separately. For
the left-hand term of (3.39) we use a Chernoff bound and (3.22), resulting in

© 2023 Nathaniel Pritchard

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

4
 t

o
 7

3
.1

9
7
.9

5
.1

3
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

TRACKING AND STOPPING FOR LEAST SQUARES SOLVERS 1011

P

(k
∑

i=k−λ+1

∣

∣

∣

∣

‖g̃i‖22 − ‖gi‖22
λ

∣

∣

∣

∣

>
ε

G

∣

∣

∣

∣

Fk−λ+1

)

≤2exp
(

t2M4
k−λ+1(1 + log(λ))

2Cpλ
− εt

G

)

.(3.40)

We next wish to minimize this bound. First note that if unconstrained, this minimization
would be achieved by setting t= εCpλ

GM4
k−λ+1(1+log(λ)) . However, from Definition 3.8 we know this

Chernoff bound only holds when 0 ≤ t ≤ λ
ωM2

k−λ+1

, thus minimizing this bound requires the

consideration of two cases. In the first case we consider when εCpλ
GM4

k−λ+1(1+log(λ)) <
λ

ωM2
k−λ+1

,

resulting in the minimum of the Chernoff bound of the left-hand term of (3.39) being

2exp

(

− ε2Cpλ

2G2M4
k−λ+1(1 + log(λ))

)

.(3.41)

In the second case we consider when εCpλ
GM4

k−λ+1(1+log(λ)) >
λ

ωM2
k−λ+1

, and in this case we set

t= λ
ωM2

k−λ+1

, resulting in the minimum of the Chernoff bound of the left-hand term of (3.39)

being

2exp

(

− ελ

2GM2
k−λ+1ω

)

.(3.42)

Combining these two cases we get that

P

(k
∑

i=k−λ+1

∣

∣

∣

∣

‖g̃i‖22 − ‖gi‖22
λ

∣

∣

∣

∣

>
ε

G

∣

∣

∣

∣

Fk−λ+1

)

(3.43)

≤ 2exp

(

−min

(

ε2Cpλ

2G2M4
k−λ+1(1 + log(λ))

,
λε

2GωM2
k−λ+1

))

.(3.44)

We next address the right-hand term of (3.39), for which we have

P

(k
⋃

i=k−λ+1

{∣

∣‖g̃i‖22 + ‖gi‖22
∣

∣>G
}

∣

∣

∣

∣

Fk−λ+1

)

(3.45)

= P

(k
⋃

i=k−λ+1

{∣

∣‖g̃i‖22 − ‖gi‖22 + 2‖gi‖22
∣

∣>G
}

∣

∣

∣

∣

Fk−λ+1

)

(3.46)

≤ P

(k
⋃

i=k−λ+1

{∣

∣

∣

∣

∣

‖g̃i‖22 − ‖gi‖22
M2

k−λ+1

∣

∣

∣

∣

∣

+ 2M2
k−λ+1 >G

}

∣

∣

∣

∣

Fk−λ+1

)

(3.47)

≤
k
∑

i=k−λ+1

P

(

∣

∣‖g̃i‖22 − ‖gi‖22
∣

∣>G− 2M2
k−λ+1

∣

∣

∣

∣

Fk−λ+1

)

(3.48)

≤ 2λ exp

(

t2M4
k−λ+1

2Cp
− t
(

G− 2M2
k−λ+1

)

)

,(3.49)

where (3.47) comes from (3.30), and (3.49) comes from the Chernoff bound and (3.22). We
next wish to minimize this bound. First note that if unconstrained, this minimization would

© 2023 Nathaniel Pritchard

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

4
 t

o
 7

3
.1

9
7
.9

5
.1

3
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1012 NATHANIEL PRITCHARD AND VIVAK PATEL

be achieved by setting t=
Cp(G−2M2

k−λ+1)

M4
k−λ+1

. However, from Definition 3.8 we know this bound

only holds when 0 ≤ t ≤ 1
ωM2

k−λ+1

, and thus minimizing this Chernoff bound requires the

consideration of two cases. In the first case,
Cp(G−2M2

k−λ+1)

M4
k−λ+1

< 1
ωM2

k−λ+1

, which results in the

minimum of the Chernoff bound of the right-hand term of (3.39) being

2λ exp

(

−
Cp(G− 2M2

k−λ+1)
2

2M4
k−λ+1

)

.(3.50)

In the second case,
Cp(G−2M2

k−λ+1)

M2
k−λ+1

≥ 1
ωM2

k−λ+1

, and in this case we set t= λ
ωM2

k−λ+1

, resulting in

the minimum of the Chernoff bound of the right-hand term of (3.39) being

2λ exp

(

−
(G− 2M2

k−λ+1)

2ωM2
k−λ+1

)

.(3.51)

Combining these two cases gives us that

P

(k
⋃

i=k−λ+1

{∣

∣‖g̃i‖22 + ‖gi‖22
∣

∣>G
}

∣

∣

∣

∣

Fk−λ+1

)

(3.52)

≤ 2λ exp

(

−min

(

Cp(G− 2M2
k−λ+1)

2

2M4
k−λ+1

,
(G− 2M2

k−λ+1)

2ωM2
k−λ+1

))

.(3.53)

By combining the left-hand and right-hand terms of (3.39) we get

P

(

|ι̃λk − ιλk |> ε
∣

∣

∣

∣

Fk−λ+1

)

(3.54)

≤ 2exp

(

−min

(

ε2Cpλ

2G2M4
k−λ+1(1 + log(λ))

,
λε

2GωM2
k−λ+1

))

(3.55)

+ 2λ exp

(

−min

(

(

G− 2M2
k−λ+1

)2
Cp

2M4
k−λ+1

,
G− 2M2

k−λ+1

2M2
k−λ+1ω

))

.

This bound can be tightened by minimizing the bound with respect to G. To do this mini-
mization we first note that when G≥ 2M2

k−λ+1 +
√
λε > 2M2

k−λ+1 it is the case that

exp

(

−min

(

ε2Cpλ

2G2M4
k−λ+1(1 + log(λ))

,
λε

2GωM2
k−λ+1

))

≥ exp

(

−min

(

(

G− 2M2
k−λ+1

)2
Cp

2M4
k−λ+1

,
G− 2M2

k−λ+1

2M2
k−λ+1ω

))

.

(3.56)

We can then upper bound the right side of (3.32) in the following manner:

© 2023 Nathaniel Pritchard

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

4
 t

o
 7

3
.1

9
7
.9

5
.1

3
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

TRACKING AND STOPPING FOR LEAST SQUARES SOLVERS 1013

inf
G>2M2

k−λ+1

2exp

(

−min

(

ε2Cpλ

2G2M4
k−λ+1(1 + log(λ))

,
λε

2GωM2
k−λ+1

))

(3.57)

+ 2λ exp

(

−min

(

(

G− 2M2
k−λ+1

)2
Cp

2M4
k−λ+1

,
G− 2M2

k−λ+1

2M2
k−λ+1ω

))

≤ inf
G>2M2

k−λ+1+
√
λε
2(1 + λ) exp

(

−min

(

ε2Cpλ

2G2M4
k−λ+1(1 + log(λ))

,
λε

2GωM2
k−λ+1

))

(3.58)

= 2(1 + λ) exp

(

−min

(

ε2Cpλ

2(2M2
k−λ+1 +

√
λε)2M4

k−λ+1(1 + log(λ))
,(3.59)

λε

2(2M2
k−λ+1 +

√
λε)ωM2

k−λ+1

))

,

where the last line comes from recognizing that (3.58) is monotonically increasing when G> 0.
We then conclude consistency by taking the expectation and the limit as k→∞ of both sides.
Then by using the dominated convergence theorem to switch the expectation and the limit
we can then use the fact that Theorem 3.7 implies that Mk−λ+1 → 0 as k →∞ to get that
the bound converges to zero. This implies the desired consistency result.

With the consistency and distributional results now established, we conclude that our
estimators are valid; thus, we are now able to derive the credible interval8 corresponding to
Line 28 and the stopping condition9 corresponding to Line 2 of Algorithm 2.1.

Corollary 3.11. Under the conditions of Theorem 3.7, a credible interval of level 1− α for

ρ̃λk , corresponding to line 28 in Algorithm 2.1, is

ρ̃λk ±max

(

√

2 log(2/α)
M4

k−λ+1(1 + log(λ))

Cpλ
,2 log(2/α)

M2
k−λ+1ω

λ

)

.(3.60)

Corollary 3.12. Let ξI , ξII , δI ∈ (0,1), δII > 1, and υ > 0. Under the conditions of Theorem

3.7, the following statements are true:

M2
k−λ+1 ≤min

{

λ(1− δI)2υ2Cp
(1 + log(λ))2 log(1/ξI)M2

k−λ+1

,
λυ(1− δI)
2 log(1/ξI)ω

}

⇒ P

[

ρ̃λk+1 >υ,ρ
λ
k ≤ δIυ

∣

∣

∣

∣

Fk−λ+1

]

< ξI

(3.61)

and

M2
k−λ+1 ≤min

{

λ(δII − 1)2υ2Cp

(1 + log(λ))2 log(1/ξII)M2
k−λ+1

,
λυ(δII − 1)

2 log(1/ξII)ω

}

⇒ P

[

ρ̃λk+1 ≤ υ, ρk > δIIυ
∣

∣

∣

∣

Fk−λ+1

]

< ξII .

(3.62)

8The proof to this corollary can be found in section SM4 of the supplementary material.
9The proof to this corollary can be found in section SM5 of the supplementary material.

© 2023 Nathaniel Pritchard

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

4
 t

o
 7

3
.1

9
7
.9

5
.1

3
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1014 NATHANIEL PRITCHARD AND VIVAK PATEL

3.3. Estimating the credible interval and stopping condition. Corollaries 3.11 and 3.12
provide a well-controlled uncertainty set and stopping condition, yet require knowingMk−λ+1,
which is usually not available. As stated before, Corollaries 3.11 and 3.12 can be operational-
ized by replacing M4

k−λ+1 with ι̃λk . Of course, M4
k−λ+1 and ι̃λk must coincide in some sense in

order for this estimation to be valid. Indeed, by Theorems 3.7 and 3.10, both M4
k−λ+1 and

ι̃λk converge to zero as k→∞, which would allow us to estimate M4
k−λ+1 with ι̃λk to generate

consistent estimators. However, we could also estimate M4
k−λ+1 by 0 to generate consistent

estimators, but these would be uninformative during finite time. Therefore, we must establish
that estimating M4

k−λ+1 by ι̃λk is also appropriate within some finite time. In the next result,

we establish that the relative error between M4
k−λ+1 and ι̃λk is controlled by a constant (in

probability).10

Lemma 3.13. Under the conditions of Theorem 3.7, for ε > 0, Mk−λ+1 as described in

Theorem 3.9, and ι̃λk as defined in (2.10),

P

(∣

∣

∣

∣

∣

M4
k−λ+1 − ι̃λk
M4

k−λ+1

∣

∣

∣

∣

∣

> 1 + ε,M4
k−λ+1 6= 0

∣

∣

∣

∣

Fk−λ+1

)

≤ 2(1 + λ) exp

(

−min

(

ε2Cpλ

2(2 +
√
λε)2(1 + log(λ))

,
λε

2(2 +
√
λε)ω

))

.

(3.63)

Owing to Lemma 3.13, the relative error between ι̃λk and Mk−λ+1 is reasonably well con-
trolled for practical purposes. As a result, we can use ι̃λk as a plug-in estimator for Mk−λ+1 in
the credible interval, (3.60), to produce the estimated credible interval suggested in line 28 of
Algorithm 2.1, and we do the same for the stopping condition controls in (3.61) and (3.62) to
produce the estimated stopping condition in line 2 of Algorithm 2.1.

4. Experimental results. Here, we have two goals. First, we demonstrate the correct-
ness of our theory using numerical simulations. Specifically, we verify the consistency of ρ̃λk
and ι̃λk (see subsection 4.1); we verify the coverage probabilities of the credible intervals (see
subsection 4.2); and we verify the effectiveness and error control for the stopping condition
(see subsection 4.3). Second, we compare our method to state-of-the-art methods on an inner
loop of incremental 4D-Var at very large scales (see subsection 4.4). A summary of these
experiments can be found in Table 3.11

4.1. Consistency of estimators. To verify the consistency of our estimators, we solve 44
least squares problems (512 unknowns, 1024 equations) with coefficient matrices generated
from Matrix Depot [32]. Each of these least squares problems is solved three times, once
for each of the FJLT, Gaussian, and Achlioptas sketching methods, using an embedding
dimension of p = 20, a narrow moving average window width of λ1 = 1, and a wide moving
average window width of λ2 = 100 for 10,000 iterations. At each iteration, for each of the
three different sketching methods and 44 matrix systems, the values of ρ̃λk , ι̃

λ
k , ρ

λ
k , and ι

λ
k are

recorded. Using these values, we compute the relative error for both estimators, ρ̃λk and ι̃λk , by
taking the absolute value of the difference between the value of the estimator and the value of

10The proof of Lemma 3.13 can be found in section SM7 of the supplementary material.
11We are using × here to denote the Cartesian product between sets.

© 2023 Nathaniel Pritchard

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

4
 t

o
 7

3
.1

9
7
.9

5
.1

3
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

TRACKING AND STOPPING FOR LEAST SQUARES SOLVERS 1015

Table 3

Summary of experiments.

Section Question being
addressed

Matrices used Dimensions

subsection 4.1 Are ρ̃λk and ιλk
consistent
estimators?

44 matrices from
Matrix Depot

1024 by 512

subsection 4.2 Are the (1− α)
uncertainty sets of
ρ̃λk actually
capturing (1− α)%
of ρλk?

Wilkinson, Rohess,
and Golub matrices
from Matrix Depot

512 by 256

subsection 4.3 Are we stopping
the algorithm in
accordance with
user defined risks?

44 matrices from
Matrix Depot

1024 by 512

subsection 4.4 How does this
method work at
scale?

Subproblem from
Incremental 4-D
Var for the Shallow
Water Equation

2NcNt by 2Nc, using Nc ×Nt =
{20, . . . ,1280} × {20 . . .640}.
Additionally, we consider a
5120000 by 20480 system.

0 5,000 10,000

10−4

10−3

10−2

10−1

Iteration

R
e
la
t
iv
e
E
r
r
o
r

|ρ̃λ
k
−ρλ

k
|

ρλ
k

Min 50th Max

0 5,000 10,000

10−3

10−2

10−1

100

Iteration

R
e
la
t
iv
e
E
r
r
o
r

|ι̃λ
k
−ιλ

k
|

ιλ
k

Min 50th Max

0 500 1,000
10−16

10−4

108

Iteration

|ρ̃
λ k

−
ρ
λ k
|

10−20

100

|ι̃
λ k

−
ι
λ k
|

Estimation Error for ρ̃
λ
k and ι̃

λ
k for Hadamard matrix system

|ι̃λk − ι
λ
k |

|ρ̃λk − ρ
λ
k |

Figure 2. The top two plots are relative error plots of the min (red), 50th percentile (blue), and max (green)
of the relative error between the estimator and actual value. The top left plot features the relative error of ρ̃λk
across 44 least squares problems solved three times, once using each of the Gaussian, Achlioptas, and FJLT
sketching methods. The top right plot features the relative error of ι̃λk for those same problems. The bottom plot
features the absolute error for ρ̃λk and ι̃λk when applied to the Hadamard matrix system from Matrix Depot.

the quantity being estimated divided by the value of the quantity being estimated. We then
summarize the distribution of these relative errors by computing the min, 50th percentile, and
max for both estimator types. In the top left graph of Figure 2, we plot these statistics for

© 2023 Nathaniel Pritchard

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

4
 t

o
 7

3
.1

9
7
.9

5
.1

3
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1016 NATHANIEL PRITCHARD AND VIVAK PATEL

the relative error of ρ̃λk ,
|ρ̃λ

k−ρλ
k |

ρλ
k

; in the top right graph, we do the same for the relative error

of ι̃λk ,
|ι̃λk−ιλk |

ιλk
. In the bottom graph we show a specific example of the absolute error |ρ̃λk − ρλk |

(orange line), and the absolute error |ι̃λk− ιλk | (black line) for the solver applied to a Hadamard
matrix system from [32]. More detailed results for the max and min of these relative errors
across all sampling types, for each of the 44 systems tested, can be found in Table 4.

As Theorems 3.9 and 3.10 show that ρ̃λk and ι̃λk are consistent estimators, it should be
the case that we see constant relative error at all percentiles of the distribution. This is
exactly what we obtain when we look at the top two plots in Figure 2 with all the percentiles
corresponding to relative errors that fluctuate around a particular constant. This is confirmed
in more detail when looking at Table 4 and observing that, aside from the Foxgood and Ursell
matrices, all 44 systems see roughly the same minimum and maximum relative errors for each
estimator. Looking at the bottom graph, which uses the Hadamard matrix system as an
illustrative example, we can see that when ρλk converges, the absolute error of ρ̃λk converges
as well. The same is true when ιλk converges. Overall we can see that our estimators for ρλk
and ιλk are quite good, performing similarly in terms of relative error of estimators across all
systems, and clearly consistent when the value being estimated converges.

4.2. Coverage probability. To verify that our credible intervals have the correct coverage
probabilities, we perform a two-phase experiment where we solve three linear systems (256
unknowns, 512 equations) with coefficient matrices generated from the Golub, Rohess, and
Wilkinson matrices found in Matrix Depot [32]. These matrices are chosen owing to the range
of their condition numbers, with the Golub, Rohess, and Wilkinson systems having condi-
tion numbers of (81575,1,603), respectively, which should help reveal the interplay between
the coverage of our intervals and the conditioning of the system. In the first phase of the
experiment, we solve each system once for 500 iterations using a Gaussian sketching matrix
with an embedding dimension of p = 25 and a constant moving average window width of
λ1 = λ2 = 15. At each iteration during this phase, we save the iterate, {xk}, ρ̃λk , and the 95%
credible interval. Once the first phase is complete we move onto the second phase. The goal
of the second phase is to approximate the possible variation in ρλk+15 given the first phase’s
iterate, xk, as starting points as dictated by the conditioning in Theorem 3.9. To accomplish
this goal for each saved iterate xk from the first phase, the second phase starts at that xk and
runs Algorithm 2.1 for 15 iterations. At each of those 15 iterations, the second phase saves
the true norm squared of the gradient, ‖gk‖22. At the end of those 15 iterations the second
phase uses the fifteen ‖gk‖22’s to compute ρλk+15. This process is repeated 1000 independent
times for each iterate saved in the first phase. This process results in 1000 observations of
ρλk for each iteration greater than 14. Upon the completion of the second phase, we test the
coverage of the credible intervals by examining across all iterations how many times the second
phase’s ρλk ’s exceeded the estimated credible interval from the first phase for its corresponding
iteration.

In Figure 3, we display for each iteration, k, the credible interval bound shifted by sub-
tracting the first phase’s ρ̃λk , resulting in an interval centered at zero (see the black lines).
Additionally, for each iteration, we display ρλk − ρ̃λk for each of the second phase’s 1000 dif-
ferent ρλk ’s. If this difference is within the credible interval bound, the observation is colored
green; otherwise it is colored red. In the left-hand plots of Figure 3 we display the results

© 2023 Nathaniel Pritchard

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

4
 t

o
 7

3
.1

9
7
.9

5
.1

3
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

TRACKING AND STOPPING FOR LEAST SQUARES SOLVERS 1017

Table 4

Max and min relative errors (RE) for ι̃λk and ρ̃λk and condition number for each of the 44 systems across
each of the three sampling methods.

Matrix Condition Max RE ρ̃λk Min RE ρ̃λk Max RE ι̃λk Min RE ι̃λk

rohess 1 0.63 2.6e-06 0.93 3.6e-05
hadamard 1 0.43 1.2e-05 0.82 1.7e-05
grcar 3.6 0.61 2.6e-05 1.3 3.4e-05
rosser 3.8 0.96 1.3e-06 2.8 7.9e-07
dingdong 4 0.63 1.7e-06 1.6 3.5e-05
parter 4 0.69 8.4e-06 1.6 1.7e-05
randcorr 4.8 0.69 7.8e-06 0.9 2.8e-05
kms 9 0.6 3.3e-06 1.1 4.7e-06
gilbert 10 0.8 2e-06 2.3 3.6e-06
oscillate 12 0.78 5.8e-07 1.6 4.5e-06
smallworld 34 0.59 1.3e-06 1.3 7.8e-06
rando 76 0.71 2.1e-06 1.2 1.1e-05
circul 5.1e+ 02 0.5 4.4e-06 1.2 5.6e-06
pei 5.1e+ 02 0.61 2.6e-05 1.6 9.2e-05
hankel 5.2e+ 02 0.5 1.9e-07 1.2 5.9e-06
wilkinson 1.2e+ 03 0.47 3.8e-08 1.2 1e-05
randsvd 4.1e+ 04 0.74 6.7e-07 2 2.2e-05
tridiag 1.1e+ 05 1.1 7e-07 3.3 3.3e-06
prolate 1.1e+ 05 0.61 1.7e-06 1.2 5.5e-07
golub 1.1e+ 05 0.52 2e-07 1.3 1.4e-05
fiedler 1.8e+ 05 0.76 1.4e-06 2.1 2.8e-07
toeplitz 1.8e+ 05 0.76 4.9e-07 2.1 1.9e-06
lehmer 2.8e+ 05 0.7 3.6e-07 1.9 1.4e-05
deriv2 3.2e+ 05 0.52 7.1e-07 1.3 4.6e-06
minij 4.3e+ 05 0.65 3.5e-07 1.7 6e-06
phillips 1.8e+ 09 0.68 9.9e-07 1.8 1.6e-06
chebspec 2.2e+ 14 0.68 1.6e-06 1.8 1e-05
ursell 1.1e+ 15 0.47 0.002 1.2 0.011
chow 1.2e+16 0.6 8.6e-07 1.5 3.5e-06
sampling 2e+16 0.8 1.1e-06 2.2 2.5e-05
moler 3.2e+ 17 0.57 2.4e-07 1.5 4.5e-06
kahan 3.8e+ 17 0.42 6.6e-07 0.92 4.3e-06
baart 4.1e+ 17 0.55 5.2e-07 1.7 3.3e-06
cauchy 4.6e+ 18 0.8 6.2e-06 2.2 7.8e-06
hilb 5.8e+ 18 0.88 1.6e-06 2.5 3.5e-05
spikes 1.4e+ 19 0.79 3.6e-06 2.2 8.8e-06
frank 1.6e+ 19 0.67 2.5e-06 1.8 1.4e-06
lotkin 4.2e+ 19 0.7 8.1e-06 2.2 6.3e-06
shaw 1.7e+ 20 1.1 2.1e-06 3.4 5.1e-06
triw 2.6e+ 20 0.75 3.9e-06 1 4.6e-06
gravity 3e+20 0.68 1.2e-05 1.8 0.00025
magic 5.2e+ 20 0.75 6.6e-06 2.9 5.1e-07
foxgood 1e+21 0.54 0.074 0.79 0.15
heat 8.7e+ 124 0.31 4.8e-06 0.8 5.3e-06

© 2023 Nathaniel Pritchard

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

4
 t

o
 7

3
.1

9
7
.9

5
.1

3
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1018 NATHANIEL PRITCHARD AND VIVAK PATEL

101.5 102 102.5

1

0.5

0

0.5

1

·1018

Iteration

N
o
rm

S
q
u
a
re

d

Golub (η = 1)

101.5 102 102.5
1

0.5

0

0.5

·1018

Iteration

N
o
rm

S
q
u
a
re

d

Golub (η = 3)

101.5 102 102.5

50

0

50

Iteration

N
o
rm

S
q
u
a
re

d

Rohess (η = 1)

101.5 102 102.5
50

0

50

Iteration
N
o
rm

S
q
u
a
re

d

Rohess (η = 3)

101.5 102 102.5
1

0

1

·109

Iteration

N
o
rm

S
q
u
a
re

d

Wilkinson (η = 1)

101.5 102 102.5

0.5

0

0.5

1

·109

Iteration

N
o
rm

S
q
u
a
re

d

Wilkinson (η = 3)

Figure 3. Coverage results for credible intervals with α = 0.05. The plots on the left display the coverage
when the credible interval is calculated with η= 1, while those on the right are computed with η chosen according
to Table 2. The green points display all the values of ρλk that remain within the interval, while the red points
are the values of ρλk that fall outside the interval. The failure rates when η = 1 for the Golub, Rohess, and
Wilkinson matrices are (0.00548,0.00000617,0.00121) respectively, while when the η parameter is set according
to Table 2 these values change to (0.125,0.0162,0.0428).

for when the credible interval is computed with η = 1, while the right-hand plots display the
results for a credible interval computed with η according to Table 2.

From Figure 3, we can observe that with η = 1 the credible intervals are conserva-
tive, with the coverage failure rates of the Golub, Rohess, and Wilkinson systems being
(0.00548,0.00000617,0.00121), respectively—all less than the 0.05 failure rate for which the
intervals were designed. With the η parameter chosen according to Table 2, we observe failure
rates across the different matrix systems that are substantially more aligned with the 0.05 fail-
ure rate for which the intervals are designed. The coverage failure rates for the Golub, Rohess,
and Wilkinson matrices become (0.0765,0.00565,0.0202), respectively. Considering that the
condition number for the Golub, Rohess, and Wilkinson matrices are (81575,1,603), these
results seem to suggest that the choice in η value can be made more or less severe depending
on the conditioning of the system, with poorer conditioned systems requiring an η value closer
to 1, while better conditioned systems probably require higher η values than what is suggested

© 2023 Nathaniel Pritchard

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

4
 t

o
 7

3
.1

9
7
.9

5
.1

3
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

TRACKING AND STOPPING FOR LEAST SQUARES SOLVERS 1019

by Table 2 in order for the intervals to have appropriate coverage rates. Overall, these results
demonstrate that, while somewhat conservative, these intervals perform as designed.

4.3. Stopping condition. To determine the effectiveness of the stopping condition we
again consider 44 least squares problems (512 unknowns, 1024 equations) with coefficient
matrices generated fromMatrix Depot [32]. Each of these least squares problems is solved three
times for each of the FJLT, Gaussian, and Achlioptas sketching methods with an embedding
dimension of p = 20, a narrow moving average window width of λ1 = 1, and a wide moving
average window width of λ2 = 100 for 10,000 iterations. After solving these systems, we then
consider the frequency at which stopping errors of the form of (3.61) and (3.62) occur when
the condition

√

ι̃λk ≤min

{

λ(1− δI)2υ2Cp
(1 + log(λ))2 log(1/ξI)

√

ι̃λk

,
λυ(1− δI)
2 log(1/ξI)ω

,

λ(δII − 1)2υ2Cp

(1 + log(λ))2 log(1/ξII)
√

ι̃λk

,
λυ(δII − 1)

2 log(1/ξII)ω

}(4.1)

is satisfied. We do this by considering all iterations where (4.1) is satisfied, then determining
the frequency that (3.61)—stopping too late—occurs in these iterations, as well as how often
(3.62)—stopping too early—occurs in this set of iterations. The parameters (υ, δI , δII , ξI , ξII)
are set to be (100,0.9,1.1,0.01,0.01).

Looking at Figure 4, we observe that when (4.1) is satisfied, no error of the form (3.61)
or (3.62) occurs, and this continues to be the case even with η set according to Table 2. This
low failure rate indicates that overall (4.1) accurately stops the algorithm. Thus, if we stop
when both ρ̃λk ≤ υ and (4.1) occur, we will make a stopping decision with a magnitude and
error rate acceptable to the user.

4.4. 4D-Variational Data Assimilation. To demonstrate the utility of Algorithm 2.1 at
scale, we consider the Incremental 4D-Variational Data Assimilation problem, 4D-Var [4].
This problem is solved by iteratively updating an initial estimate by minimizing the distance
between noisy observations at different time points and predictions of these observations made
by evolving an estimate of the initial state to the same points in time as the observations. To

Early Correct Late

0

0.5

1

Error Type

P
r
o
p
o
r
t
io
n

Failure Rates for Stopping Criterion

Figure 4. Graph depicting the stopping decision results by error type. The late category describes an error
of the form (3.61), while early describes an error of the form (3.62). These results are displayed with η = 1;
however, they remain unchanged even if η is chosen according to Table 2.

© 2023 Nathaniel Pritchard

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

4
 t

o
 7

3
.1

9
7
.9

5
.1

3
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1020 NATHANIEL PRITCHARD AND VIVAK PATEL

evolve the initial state for our experiment, we use the dynamics defined by the one-dimensional
Shallow Water Equations, which are

∂φ(x, t)

∂t
=− ∂

∂x
φ(x, t)u(x, t) and(4.2)

∂u(x, t)

∂t
=− ∂

∂x

(

φ(x, t) +
u(x, t)2

2

)

,(4.3)

where x is the spatial coordinate, t is the time point; φ(x, t) is the potential energy, and u(x, t)
is the velocity [6].

To solve the 4D-Var problem with these shallow water dynamics, rather than directly
considering Algorithm 2.1, we consider a modified version of Algorithm 2.1, Algorithm SM8.1
in the supplementary material, specifically tailored to the 4D-Var problem in a way that
minimizes memory usage, and we compare it to the LSQR solver [18] applied to the same
system. For this comparison, we first demonstrate on small problems, i.e., those less than
32GB in size, how Algorithm SM8.1 produces the same quality of solution as LSQR, has the
same runtime scaling as LSQR, and uses substantially less memory than LSQR, when we vary
either the number of time points or the number of coordinate points and keep the other at a
constant size. We then show that the capabilities of Algorithm SM8.1 exceed those of LSQR
by solving a 4D-Var problem where the system size at 0.78 TB far exceeds the 32GB memory
constraint.

To perform both experiments, we generate a set of observations of the potential energy
and velocity states for the shallow water equations with the desired number of time and
coordinate points. This is done using Euler’s method with the initial condition of potential
energy being set to (i−100)2

10000 , where i is the index of the location, and the initial condition on
velocity being set to 0.5 for all coordinates. Each time point is set to be 10−11 units apart,
and each coordinate point is 100 units apart to ensure that the system can be stably simulated
when the number of coordinates and time points is large. Since in most practical instances
one would only observe either the potential energy or velocity at a particular location, we set
all velocity components of the observations to zero. We then add a vector with mean zero,
variance one, and Gaussian entries to the potential energy states at each time point, which
results in our noisy observations.12

With these observations, we then solve a single inner iteration of the Incremental 4D-Var
problem with an initial state estimate of (j−100)4

10000 , where j is the entry index of the state
vector, once with LSQR and once with Algorithm SM8.1. For Algorithm SM8.1, we use
the Achlioptas sketching method with an embedding dimension of p = 20, a narrow moving
average window width of λ1 = 1, and a wide moving average window width of λ2 = 100. In
order to account for the floating point errors associated with solving large matrix systems, the
threshold for stopping is set to be υ= 10−9(Nc(Nt+1)), where Nc is the number of coordinates
and Nt is the number of time points. The other stopping parameters, (δI , δII , ξI , ξII), are set
to be (.9,1.1, .95, .95). For both solvers we use a single thread of an Intel Xeon E5-2680 v3 @
2.50GHz with a memory constraint of 32GB. We consider systems with the number of time

12Precise formulations of the equations used for Euler’s method can be found in Algorithm SM8.1 of the
supplementary material.

© 2023 Nathaniel Pritchard

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

4
 t

o
 7

3
.1

9
7
.9

5
.1

3
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

TRACKING AND STOPPING FOR LEAST SQUARES SOLVERS 1021

points varying from 20 to 640 by way of doubling, as well as with the number of coordinate
points varying from 20 to 1280 by way of doubling. This results in matrix systems that range
in size from 250KB to 31.25GB. The LSQR algorithm is stopped once a norm of the gradient
of
√
υ is achieved, and Algorithm SM8.1 is stopped according to line 2 of Algorithm 2.1. Once

stopped, we compare the runtime scaling, memory usage, and norm squared of the residual
of final solution for both methods in the cases where the number of coordinates changes, but
the number of time points stays constant, and vice versa.

The results for keeping the number of time points constant at 640 and varying the number
of coordinates are displayed on the left of Figure 5, and the results for keeping the number
of coordinates constant at 1280 and varying the number of time points are displayed on the
right of Figure 5. In all instances, the minimum residual found by both methods is the same.
When considering runtime, the runtime for the LSQR method is faster than Algorithm SM8.1,
as long as the matrix system size is less than the memory constraint, and if the system size
is greater than the memory constraint, the LSQR method fails. Since we care most about

0 500 1,000

0

2

4

6

·1010

Coord Points

R
e
si
d
u
a
l

Residual (640 TP)

Sketch

LSQR

0 200 400 600
5.9

5.95

6

6.05

·1010

Time Points

R
e
si
d
u
a
l

Residual (1280 CP)

Sketch

LSQR

0 500 1,000

0

1

2

3

·104

Coord Points

M
e
m
o
ry

U
sa

g
e
(M

B
)

Memory (640 TP)

Sketch

LSQR

0 200 400 600

0

1

2

3

·104

Time Points

M
e
m
o
ry

U
sa

g
e
(M

B
)

Memory (1280 CP)

Sketch

LSQR

0 500 1,000

0

20

40

60

Coord Points

M
u
lt
ip

le
o
f
P
re

v
io
u
s
R
u
n
ti
m
e Scaling (640 TP)

Sketch

LSQR

0 200 400 600

0

10

20

30

40

Time Points

M
u
lt
ip

le
o
f
P
re

v
io
u
s
R
u
n
ti
m
e Scaling (1280 CP)

Sketch

LSQR

Figure 5. Displays how residual (top), memory (middle), and slowdown (bottom) compare between LSQR
and Algorithm SM8.1. The left graphs show scaling when the time points (TP) are set at 640 and the number
of coordinates are allowed to vary. The right graphs show scaling when the coordinate points (CP) are set at
1280 and number of time points are allowed to vary. The blue curve shows the results for the LSQR solver,
while the red line shows the results for our solver implemented with Algorithm SM8.1.

© 2023 Nathaniel Pritchard

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

4
 t

o
 7

3
.1

9
7
.9

5
.1

3
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1022 NATHANIEL PRITCHARD AND VIVAK PATEL

how the methods scale with changes in the number of coordinates or number of time points,
we present how many times longer the runtime of the solver is at a particular system size,
compared to the runtime of the same solver applied to a system with half as many coordinate
or time points.

Looking at both sets of plots, we see that for a fixed time point, the LSQR method and
Algorithm SM8.1 increase at close to the same rate, with LSQR taking on average 4.57 times
longer to solve a problem with twice as many coordinates, and Algorithm SM8.1 taking 5
times longer to solve a problem with twice as many coordinates. This trend continues until
we reach the system with 1280 coordinate points, at which point the LSQR runtime is 70
times longer than it was at 640 coordinate points, while Algorithm SM8.1 only takes 4.46
times longer. Evidence for why Algorithm SM8.1 does not experience the same scaling issues
as LSQR is found in the memory frame of Figure 5, where we observe the memory usage
for Algorithm SM8.1 remains relatively constant at every value of the number of coordinate
points, while the memory usage for LSQR grows quadratically over the same span, reaching a
maximum of 31.5GB of memory used. A similar story can be observed if we vary the number
of time points, with Algorithm SM8.1 and the LSQR algorithm both doubling in runtime for
every doubling in the number of time points, until 640 time points are reached, at which point
the scaling for LSQR becomes 37 times that of the previous system size, but remains constant
for Algorithm SM8.1. Overall, we can conclude that to generate the same solution quality,
Algorithm SM8.1 scales as well as LSQR, but with a longer overall runtime. Further, we can
say that Algorithm SM8.1 is significantly more memory efficient than LSQR and is therefore
able to avoid the poor scaling effects from memory usage for substantially longer than LSQR.

We finally consider the sketched residual and credible interval for a Shallow Water problem
with 250 time points and 10,240 spatial coordinates, which equates to a system with a storage
requirement of 0.78 TB. We use Achlioptas sketching with an embedding dimension of p= 20,
a narrow moving average window width of λ1 = 1, and a wide moving average window width
of λ2 = 100. As with the previous problem we solve this system using a single thread of an
Intel Xeon E5-2680 v3 @ 2.50GHz with a memory constraint of 32GB of which Algorithm
SM8.1 uses 194.68MB.

We observe in Figure 6 that most of the progress is made within the first 100,000 iterations
progressing from a ρ̃λk value of 1.466019×1032 to a value of 6520.793. The likely cause for this

0 1 2

·10
5

10
2

10
18

10
34

Iteration

ρ̃
λ k

Credible interval for ρ
λ

k

5 5.05 5.1

·10
4

10
10.4

10
10.6

Iteration

ρ̃
λ k

Credible interval for ρ
λ

k

Figure 6. Displays ρ̃λk and the credible interval for the single inner iteration solve of the large 4D-Var
system which has 10,240 spatial coordinates and 250 time points. For better viewing of the interval, the left plot
represents all iterations; the right plot is simply iterations 50,000 through 51,000.

© 2023 Nathaniel Pritchard

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

4
 t

o
 7

3
.1

9
7
.9

5
.1

3
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

TRACKING AND STOPPING FOR LEAST SQUARES SOLVERS 1023

stalled progress is the conditioning of the system, since even at larger sample sizes, ρ̃λk does
not improve beyond 6520.793. This leads us to claim we have solved the system sufficiently,
and have done so under constraints for which LSQR fails to work.

5. Conclusions. To efficiently solve the large-scale least squares subproblems that arise
in uncertainty quantification, such as 4D-Var, we have proposed an iterative method that
leverages random sketching to solve these least squares problems with minimal memory load.
The iterative nature of our solution leads to a need to track and stop our method with minimal
computational cost, a goal we achieve by utilizing the moving average of the sketched gradients.
Through our rigorous proofs, we are then able to verify not only that our algorithm converges,
but also that our estimators are consistent and have a quantifiable uncertainty despite their
dependent structure. We perform numerous numerical experiments to verify that this theory
holds in practice. In addition to the practical verification of our theory, we make clear the
advantages of our method over one like LSQR by comparing both solvers on a 0.78 TB system.
Through this comparison, we find that while the LSQR method fails because it reaches the
32GB memory bound, our method can solve the system utilizing only 195MB of memory.
Our future work will involve improving the practicality of our methodology for solving large-
scale scientific problems by examining the effects of the choice of embedding dimension on
convergence rate and considering parallelization opportunities to reduce runtime.

REFERENCES

[1] D. Achlioptas, Database-friendly random projections: Johnson-Lindenstrauss with binary coins, J. Com-
put. Syst. Sci., 66 (2003), pp. 671–687, https://doi.org/10.1016/S0022-0000(03)00025-4.

[2] N. Ailon and B. Chazelle, The fast Johnson–Lindenstrauss transform and approximate nearest neigh-
bors, SIAM J. Comput., 39 (2009), pp. 302–322, https://doi.org/10.1137/060673096.

[3] S. Chen, X. Hong, and C. J. Harris, Sparse kernel regression modeling using combined locally regular-
ized orthogonal least squares and D-optimality experimental design, IEEE Trans. Automat. Control,
48 (2003), pp. 1029–1036.

[4] P. Courtier, J.-N. Thépaut, and A. Hollingsworth, A strategy for operational implementation of
4D-Var, using an incremental approach, Q. J. Roy. Meteorol. Soc., 120 (1994), pp. 1367–1387.

[5] S. Dasgupta and A. Gupta, An elementary proof of a theorem of Johnson and Lindenstrauss, Random
Structures Algorithms, 22 (2003), pp. 60–65.

[6] F.-X. L. DIMET and O. TALAGRAND, Variational algorithms for analysis and assimila-
tion of meteorological observations: Theoretical aspects, Tellus A, 38A (1986), pp. 97–110,
https://doi.org/10.1111/j.1600-0870.1986.tb00459.x.

[7] R. Durrett, Probability: Theory and Examples, Cambridge University Press, 2013.
[8] R. M. Gower and P. Richtárik, Randomized iterative methods for linear systems, SIAM J. Matrix

Anal. Appl., 36 (2015), pp. 1660–1690, https://doi.org/10.1137/15m1025487.
[9] S. Gurol, A. Weaver, A. Moore, A. Piaccentini, H. Arango, and S. Gratton, B-preconditioned

minimization algorithms for variational data assimilation with the dual formulation, Q. J. Roy. Me-
teorol. Soc., 140 (2013), pp. 539–556, https://doi.org/10.1002/qj.2150.

[10] K. Hayami, J.-F. Yin, and T. Ito, GMRES methods for least squares problems, SIAM J. Matrix Anal.
Appl., 31 (2010), pp. 2400–2430, https://doi.org/10.1137/070696313.

[11] P. Indyk and R. Motwani, Approximate nearest neighbors: Towards removing the curse of dimension-
ality , in STOC ’98: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing,
1998, pp. 604–613, https://doi.org/10.1145/276698.276876.

[12] W. Johnson and J. Lindenstrauss, Extensions of Lipschitz maps into a Hilbert space, in Con-
ference on Modern Analysis and Probability, Contemp. Math. 26, AMS, 1984, pp. 189–206,
https://doi.org/10.1090/conm/026/737400.

© 2023 Nathaniel Pritchard

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

4
 t

o
 7

3
.1

9
7
.9

5
.1

3
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1024 NATHANIEL PRITCHARD AND VIVAK PATEL

[13] A. Krishnan, L. J. Williams, A. R. McIntosh, and H. Abdi, Partial least squares (PLS) methods
for neuroimaging: A tutorial and review , NeuroImage, 56 (2011), pp. 455–475.

[14] J. Lacotte and M. Pilanci, Faster Least Squares Optimization, https://arxiv.org/abs/1911.02675,
2021.

[15] M. S. Lam, E. E. Rothberg, and M. E. Wolf, The cache performance and optimizations of blocked
algorithms, ACM SIGPLAN Not., 26 (1991), pp. 63–74.

[16] J. Matoušek, On variants of the Johnson-Lindenstrauss lemma, Random Structures Algorithms, 33
(2008), pp. 142–156.

[17] A. J. Miller, Algorithm as 274: Least squares routines to supplement those of Gentleman, J. R. Stat.
Soc. Ser. C (Appl. Stat.), 41 (1992), pp. 458–478, https://doi.org/10.2307/2347583.

[18] C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse least
squares, ACM Trans. Math. Softw., 8 (1982), pp. 43–71, https://doi.org/10.1145/355984.355989.

[19] V. Patel, M. Jahangoshahi, and D. A. Maldonado, Convergence of Adaptive, Randomized, Iterative
Linear Solvers, preprint, https://arxiv.org/abs/2104.04816, 2021.

[20] V. Patel, M. Jahangoshahi, and D. A. Maldonado, An implicit representation and iterative so-
lution of randomly sketched linear systems, SIAM J. Matrix Anal. Appl., 42 (2021), pp. 800–831,
https://doi.org/10.1137/19M1259481.

[21] V. Patel, M. Jahangoshahi, and D. A. Maldonado, Randomized Block Adaptive Linear System
Solvers, preprint, https://arxiv.org/abs/2204.01653, 2022.

[22] M. Pilanci and M. J. Wainwright, Iterative Hessian sketch: Fast and accurate solution approximation
for constrained least-squares, J. Mach. Learn. Res., 17 (2016), pp. 1842–1879.

[23] N. Pritchard and V. Patel, Residual Tracking and Stopping for Solving Consistent Linear Inverse
Problems with Finite Domains, https://arxiv.org/abs/2201.05741, 2022.

[24] G. Raskutti and M. Mahoney, A statistical perspective on randomized sketching for ordinary least-
squares, J. Mach. Learn. Res., 17 (2014), pp. 1–31.

[25] P. Richtárik and M. Takác, Stochastic reformulations of linear systems: Algorithms and convergence
theory , SIAM J. Matrix Anal. Appl., 41 (2020), pp. 487–524, https://doi.org/10.1137/18M1179249.

[26] I. Selesnick, Least squares with examples in signal processing , Connexions, 4 (2013), pp. 1–25.
[27] K. Singh, A. Sandu, M. Jardak, K. W. Bowman, and M. Lee, A practical method to estimate

information content in the context of 4D-Var data assimilation, SIAM/ASA J. Uncertain. Quantif.,
1 (2013), pp. 106–138, https://doi.org/10.1137/120884523.

[28] H. C. So and L. Lin, Linear least squares approach for accurate received signal strength based source
localization, IEEE Trans. Signal Process., 59 (2011), pp. 4035–4040.

[29] O. Talagrand and P. Courtier, Variational assimilation of meteorological observations with the adjoint
vorticity equation. I: Theory , Q. J. R. Meteorol. Soc., 113 (1987), pp. 1311–1328.

[30] A. Tarakanov and A. H. Elsheikh, Regression-based sparse polynomial chaos for uncer-
tainty quantification of subsurface flow models, J. Comput. Phys., 399 (2019), 108909,
https://doi.org/10.1016/j.jcp.2019.108909.

[31] M. J. Wainwright, High-Dimensional Statistics: A Non-Asymptotic Viewpoint , Cambridge Ser. Statist.
Probab. Math., Cambridge University Press, 2019, https://doi.org/10.1017/9781108627771.

[32] W. Zhang and N. Higham, Matrix Depot: An extensible test matrix collection for Julia, PeerJ. Comput.
Sci., 2 (2016), e58, https://doi.org/10.7717/peerj-cs.58.

© 2023 Nathaniel Pritchard

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

4
 t

o
 7

3
.1

9
7
.9

5
.1

3
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

	Introduction
	Problem formulation and algorithm
	Validity of the credible interval and stopping condition
	Convergence of the iterates
	Theoretical values for the credible interval and stopping condition
	Estimating the credible interval and stopping condition

	Experimental results
	Consistency of estimators
	Coverage probability
	Stopping condition
	4D-Variational Data Assimilation

	Conclusions
	References

