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Abstract. Randomized linear solvers randomly compress and solve a linear system with com-
pelling theoretical convergence rates and computational complexities. However, such solvers suffer a
substantial disconnect between their theoretical rates and actual efficiency in practice. Fortunately,
these solvers are quite flexible and can be adapted to specific problems and computing environments
to ensure high efficiency in practice, even at the cost of lower effectiveness (i.e., having a slower
theoretical rate of convergence). While highly efficient adapted solvers can be readily designed by
application experts, will such solvers still converge and at what rate? To answer this, we distill
three general criteria for randomized adaptive solvers, which, as we show, will guarantee a worst-case
exponential rate of convergence of the solver applied to consistent and inconsistent linear systems
irrespective of whether such systems are overdetermined, underdetermined, or rank deficient. As a
result, we enable application experts to design randomized adaptive solvers that achieve efficiency
and can be verified for effectiveness using our theory. We demonstrate our theory on 26 solvers, nine
of which are novel or novel block extensions of existing methods to the best of our knowledge.
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1. Introduction. Solving linear systems and solving least squares problems re-
main critical operations in scientific and engineering applications. As the size of
systems or the sheer number of systems that need to be solved grows, faster and
approximate linear solvers have become essential to scalability. Recently, randomized
linear solvers have become of interest as they can compress the information in the
original system in a problem-blind fashion, which can then be used to inexpensively
and approximately solve the original system [36]. Moreover, by iterating on this pro-
cedure, randomized linear solvers will converge exponentially fast to the solution of
the original system [26]. In fact, a rather simple randomized linear system solver
was recently shown to achieve a wuniversal exponential rate of convergence for any
consistent linear system with high probability [33].

Despite such an incredible result, as we show through a salient example (see
section 2), randomized linear solvers suffer a substantial disconnect between their
convergence rate theory and actual efficiency in practice because they often violate
simple computing principles (e.g., the locality principle [6]). Briefly, in the exam-
ple in section 2, an “oracle” linear solver inspired by [33] is applied to a specific
107 x 100 system such that it only requires 100 arithmetic operations to find a so-
lution with absolute error of 10716, yet it is slower than block Kaczmarz—which,
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in theory, requires over 10'C arithmetic operations to find such a solution—because
of access patterns that violate data locality. Unfortunately, nearly all variations of
such linear solvers that exist [1, 18, 34, 2, 38, 11, 21, 22, 23, 3, 12, 19, 10, 29, 32] can
be shown to suffer from this disconnect between their theoretical convergence rates
and actual efficiency by specific choices of the linear system, software environment, or
hardware.

A pessimistic view of these solvers would imply that they should be wholly aban-
doned. An alternative perspective would suggest a better prognosis: because of the
adaptability of such solvers, they can be highly tailored to specific linear systems,
software environments, and hardware to achieve high efficiency even at the expense of
worse theoretical convergence rates. This latter view is the one adopted in this work.

A bevy of adapted methods can be designed and deployed by atomizing, com-
posing, and customizing key components of randomized linear solvers.! Owing to the
freedom of creating such solvers, understanding whether the efficient highly adapted
method will still converge and at what cost to the rate (e.g., will the solver now con-
verge subexponentially?) becomes integral to a practitioner’s decision to implement
the method.

To address this consideration, a handful of adaptive solvers were shown to re-
tain exponential convergence by [10], but in a limited context: the set of projections
must be finite, and the exactness assumption [30, Assumption 2] must be satisfied,
which is generally difficult to verify in practice.? In our previous work [25, 24], adap-
tive solvers relying on vector operations were shown to retain exponential conver-
gence. While our previous work accounted for a number of existing solvers (e.g.,
[34, 38, 11, 32, 1, 18, 3, 12]), adaptive solvers using high-efficiency block operations
did not fall within our results. As block operations have been critical to achieving
high efficiency in traditional factorizations (e.g., QR [8, Chap. 5]), in classical it-
erative methods (e.g., Krylov Iterations [31, Chap. 6]), in randomized factorization
methods [15, sect. 16.2], and on GPUs [4], adaptive solvers using block operations
must be shown to retain exponential convergence.

Therefore, in this work, we provide generic sufficient conditions that if satisfied
by a randomized block adaptive solver (RBAS) will guarantee a worst-case (i.e., with
probability one) exponential rate of convergence.® In particular, we provide these
generic sufficient conditions and consequent worst-case exponential convergence rates
in two contexts:

1. for row-action RBASs on consistent linear systems, which may be overde-
termined, underdetermined, or rank deficient (see Corollaries 3.8 and 3.10),
and

2. for column-action RBASs for linear least squares problems, which may be
overdetermined, underdetermined, or rank deficient (see Corollaries 3.18
and 3.20).

We then show how to apply these results to 26 different solvers, nine of which—
to the best of our knowledge—are either novel or novel block-operation extensions of
existing methods. Thus, in this work, we give end-users the tools to design effective
solvers for their specific problems and environments.

1We are implementing a software package to enable this approach. See https://github.com/
numlinalg/RLinearAlgebra.jl.

2See subsection SM1.19 on how we can eliminate this assumption for an important class of
methods.

30ther worst-case rates can be provided using similar ideas that we present herein, but we do
not know of a context where such rates are useful.
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The remainder of this work is organized as follows. In section 2, we demonstrate
the disconnect between rates of convergence and efficiency. In section 3, we present
the two archetype RBASs, provide examples for each, state and discuss the refined
properties that such solvers satisfy, and state our convergence results for each type.
In section 4, we provide a common formulation for the two types of RBASs, prove the
convergence of these methods using this common formulation, and interlace numerical
experiments that demonstrate key parts of the theory. In section 5, we show how to
apply our convergence theory to a variety of existing and novel RBASs, and we provide
numerical experiments where appropriate. In section 6, we conclude.

2. Counter example. Here, we demonstrate that the theoretical convergence
rates of randomized solvers can be quite disconnected from their actual efficiency in
practice. Consider a consistent, linear system with n = 107 equations and d = 100 un-
knowns represented with double precision. Owing to the size of the system relative to
the 4 gigabytes of memory available on an Intel i5 8th Generation CPU computer, the
system is split into 0.5 gigabyte chunks, which contain at most 66,666 equations each.

Consider an “oracle” solver inspired by [33], which can randomly replace d equa-
tions in the original system in such a way that the coefficients of the resulting replaced
d equations correspond to the rows of the d x d identity matrix and the system is still
consistent. Then, with knowledge of the index of these d equations, the solver applies
Kaczmarz to these rows to solve the system. As a result, the oracle solver requires d
iterations and O(d) arithmetic operations. For this specific example, the oracle solver
requires about 100 arithmetic operations.

Consider an alternative solver, the random block Kaczmarz solver, which will
randomly choose a chunk from the system and perform a block updated to its iterate.
In our example, a single block Kaczmarz update requires approximately 107 arithmetic
operations, and, with an expected squared error rate of convergence of at least 0.993
[21, Theorem 1.2], it will required over 5,500 iterations and, correspondingly, over
5 x 100 operations to achieve an expected absolute squared error of 10716,

Clearly, from a theoretical perspective, the “oracle” solver is substantially faster
than the random block Kaczmarz solver as the former requires 10-fold fewer iterations
and 108 fewer operations. However, when applied to the system, the “oracle” solver is
trounced by random block Kacmzarz (see Figure 1). To understand this, the “oracle”

A Comparison of an Optimal Algorithm against Randomized Block Kaczmarz
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FiG. 1. A comparison runtime of the “oracle” algorithm against block Kaczmarz for the de-
scribed system. The optimal algorithm achieves an absolute error of 0 in 100 iterations requiring
2.47 seconds. Block Kaczmarz achieves an absolute error of 10~1% in 1 iteration requiring 0.68
seconds.
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solver needs to read in a new chunk (in expectation and in reality) to access the
equations that it has embedded, which is highly expensive as it violates data locality.
On the other hand, the block Kaczmarz solver simply does what it can with the
information that is given in a single chunk, which turns out to contain sufficient
information for finding a high quality solution in one iteration. To summarize, these
solvers behave very differently in their theoretical convergence rates and in practice,
as this example shows.

This observation is motivation to adapt such solvers to ensure that they are
efficient for specific problems and computing environments. In this work, we provide
sufficient conditions that, if satisfied by an adapted solver, will be effective—that is,
the solver will have a worst-case exponential rate of convergence.

3. Randomized block adaptive solvers. Consider solving the consistent lin-
ear system

(3.1) Az =b,

or consider finding the least squares solution for a (possibly) inconsistent system by
solving

(3.2) min || Az —b|,,

where A € R"*? 2 ¢ R4, and b € R". We emphasize we have not required that n < d,
n > d or that A has full rank; in other words, we allow for underdetermined systems,
overdetermined systems, and rank deficient linear systems. To solve these systems, we
will consider two archetypes of RBAS methods: row-action RBAS methods for (3.1)
and column-action RBAS methods for (3.1) and (3.2). We will define each variation
below, provide examples, state the assumptions, and present the main convergence
results.

3.1. Row-action RBASs. For row-action methods, we will need to assume as
follows.

Assumption 3.1. The system (3.1) is consistent. That is, the set H := {x € R¢:
Az = b} is nonempty.

With this assumption, we begin with an iterate zq € R and some prior infor-
mation, encapsulated by (_; € 3, where 3 is finite in some sense (e.g., the product
of a finite set and a finite dimensional linear space). We then generate a sequence of
iterates, {zy : k € N}, according to

(3.3) Tpp1 = o — ATWR(WTAATW,) W] (Axy — D),

where - represents a pseudoinverse, and {W), € R"*"*} are possibly random quan-
tities (i.e., vectors or matrices) generated according to a possibly random, adaptive
procedure, ¢ g, which supplies

(3-4) Wi, G = or(A,0,{w; : j <k} AW, 15 <k} {5 <k}) eR™™ x 3.

We make several comments about this procedure. First, ni can be selected adap-
tively so long as it is known given the arguments of ¢r. Second, (i contains informa-
tion generated from previous iterations that may be essential to the operation of the
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adaptive procedure (see examples below). Third, we can change the inner product
space as is done in [11] without issue (see subsection SM1.19). The next examples
illustrate this formulation of row-action RBASs.

Ezample 3.2 (cyclic vector Kaczmarz). The cyclic vector Kaczmarz method cycles
through the equations of Az =b (without reordering) and updates the current iterate
by projecting it onto the hyperplane that solves the selected equation. To rephrase
the cyclic vector Kaczmarz method in our framework, let {e; : i = 1,...,n} denote
the standard basis elements of R™. Moreover, let 3 ={0}UN, and {_; =0. We then
define g to be

(35) WR(AJ)’ {ij ] < k}’ {WJ ] < k}a {CJ ] < k}) = (erem((:k,l,n)+la Ck—l + 1)

With this choice of (Wy, (i), we readily see that the described cyclic vector Kaczmarz
method is equivalent to

e:-em((k,l,n)+1 (Awk - b)

(3.6) Tra1 =Tk — ATerem(¢,1,n)+1 2
HATerem(Ckflﬂ)‘f‘l H2

which is exactly (3.3). We highlight that g only depends on (x_; and the number
of equations in the linear system, which will be important in our discussion below.

Ezample 3.3 (random permutation block Kaczmarz). The random permutation
block Kaczmarz method partitions the equations of Az = b (not necessarily equal
partitions) into blocks of equations, generates a random permutation of the blocks,
selects a block by cycling through the permutation, updates the current iterate by
projecting it onto the hyperplane that solves all of the equations in the block, and,
if the random permutation is exhausted, generates a new random permutation of the
blocks.

To rephrase this method in our framework, let {F;} be matrices whose columns
are generated by some partitioning of the identity matrix in R”*™, and let e = |{E; }|.
Moreover, let 3 be product of the set of all permutations of {1,..., e} with the empty
set, and {0} UN. Let {Z; : kK + 1 € N} be independent random permutations of
{1,...,€}. Let (_1 =(Zp,0). Then, we can define ¢g to be

(3.7)
@R(Avbv {xj S k}’ {Wj 1< k}, {CJ < k})

_ (ECk—l[u[rem(Ck—l[z];f)“rl]’ (Ck—1[1]7<k—1[2] + 1))’ rem(ck—l[Q]ae) <e—1,
(ECk71[1H€]’ (Zdiv(Ck71[2]+1,e)7Ck—l[Z} + 1))3 rem(ck—lp],e) =e—1,

where (j[1] is the permutation component of (x, (x[1][j] is the jth element of the
permutation, and (;[2] is the iteration counter. With this choice of (W, (), it is
easy to see that the random permutation block Kaczmarz method can be equivalently
written as (3.3). We highlight that g only depends on (;_1, the partitioning of the
identity matrix, and the size of the partition.

Ezample 3.4 (greedy block selection Kaczmarz). This method partitions the equa-
tions of Az = b, computes the residual norm of each block at the given iteration, selects
the block with the largest residual norm, and updates the current iterate by projecting
it onto the hyperplane that solves all of the equations in the block.
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To rephrase this method in our framework, let {F;} be matrices whose columns
are generated by some partitioning of the n x n identity matrix, and let € be the size
of this set. Moreover, let 3 ={0}, (1 =0, and let

(3.8) 7(k) = argmax || Ef (Azy —b)|, -

1=1,...,€

Then, we can define ¢ to be
(3.9) Or(A,b,{z;:j <Kk} AW, 5 <k}, {¢:J <k})=(Erm),0).

With this choice of (W, (), it is easy to see that this method is of the form (3.3). We
emphasize that ¢r only depends on A, b, x_1, and the partitioning of the identity
matrix.

One of the key properties that is apparent in the examples above is that they are
forgetful. In other words, the choice of (Wy,(x) only depends on some finite number
of previous iterations. To state this formally, for all j+1 €N and k€ [1,j+1]NN, let

(310) ‘F]‘Z; = O-(Cj—k‘vxj—k+17Wj—k+1a .. 'aWj—17Cj—1axj)7

that is, the o-algebra generated by the random variables indicated. Note that we
take F{ = o ((j—1,2;) and FJ to be the trivial o-algebra. Then, we can formalize this
forgetfulness property as follows.

DEFINITION 3.5 (Markovian). A row-action RBAS is Markovian if there ezists a
finite M € N such that for any measurable sets W CR"*™ and Z C 3,

(3.11) P[W,eW, (k€ 2| Fipy| =P [Wk EW, (k€ 2| Fliniar kiny | -

Remark 3.6. As discussed in [17, Chap. 3], a Markov process that depends on
some extended period of information can be rewritten into a Markov process that
depends on the most recent information only, which can be achieved by expanding
the state of the Markov process. For a Markovian RBAS, we can do the same by
adding this information in (i, so long as we ensure that 3 is finite. Thus, the value
of M in the preceding definition can always be taken as 1. We also note that if 3 is
finite, then it cannot be used to store all previous iterates.

Another key property of the above examples is that either the iterate will be
updated within some reasonable amount of time or the current iterate is the solution.
For instance, in the random permutation block Kaczmarz method, if xg is not a
solution, then within e iterations from k =0, we will find an ET(Azo —b) #0. As a
result, zg will eventually be updated. We can generalize this property as follows.

DEFINITION 3.7 (N, m-exploratory). A row-action RBAS is N,w-exploratory for
some N €N and 7 € (0,1] if

N-1
(3.12) sup P ﬂ {col(ATW;) L g — Puzo}| F| <1—7.
zoele:zo#PHzg j=0
(-1€3
Here, we come to a bifurcation point in the theory of RBAS methods based on
whether {col(ATW},)} is a finite set or if it is an infinite set. In all of the examples
above, {col(ATW},)} belong to a finite set. In this case, we have the following result.

© 2023 Vivak Patel
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COROLLARY 3.8. Let A € R™? and b € R", satisfying Assumption 3.1. Let
w9 € R? and (_; € 3. Let {x}, : k € N} be a sequence generated by (3.3) and (3.4)
satisfying Definitions 3.5 and 3.7 for some N € N and 7 € (0,1]. If the elements of
{col(ATWy,) : k+ 1 € N} take value in a finite set, then either
1. there exists a stopping time T with finite expectation such that x, = Pyxg, or
2. there exists a sequence of nonnegative stopping times {1; : j+1 € N} for which
E[r;] < j[(rank (A) — 1)(N/m) + 1], and there exist v € (0,1) and a sequence
of random variables {v; : j +1 €N} C (0,7] such that

[e%s) j—1
(813 P ﬂ{|\xrj—PHwo||§<<Hw> ||xo—wo|§} =1

j=0 £=0

Comparing Corollary 3.8 to classical results about the convergence of cyclic
Kaczmarz-type methods (see [5, Thm. 1]), we see that our result is a probabilistic
analogue: rather than guaranteeing a certain amount of convergence within a fixed
number of iterations, we offer a certain amount of convergence within a random num-
ber of iterations whose expectation is controlled by a regularly increasing value (i.e.,
E[7;] < j[(rank (A) — 1)(N/7) 4 1]). Moreover, Corollary 3.8 includes the important
possibility of the procedure terminating in a finite amount of time. Finally, we have
a guaranteed worst-case rate (i.e., with probability one) of convergence for all such
methods. Of course, this rate is pessimistic, but, given the generality of the meth-
ods (e.g., adaptive, deterministic, random) that fall within the scope of our result,
it is quite surprising that such a bound can be found under such few, very general
assumptions.

Now, the alternative case to {col(ATW})} belonging to a finite set is that it
belongs to an infinite set, for which the canonical example is the row-action analogue to
Example 3.14.% Unfortunately, our strategy for proving Corollary 3.8 will break down
for the infinite set case: in the proof of Corollary 3.8, we set v to be the maximum
over a finite set of elements that are all strictly less than one; however, if we attempt
to use the same strategy for the infinite set case, we can find systems and methods
such that the supremum over the same set produces a v =1 (an explicit example is
constructed in subsection 4.5). Thus, rather than looking at the supremum, we can
attempt to control the distribution of {7, : £+ 1 € N}. Surprisingly, we will only
need to control the mean behavior of these random quantities rather than the entire
distribution.

To state this notion of control, we will need some notation. First, for each /+1 € N,
let

L, @1 # @,
3.14 =
( ) e {0 otherwise,

be an indicator of whether we make progress in a given iteration. Moreover, for
each /+1 € N, let 9y denote the collection of sets of vectors that are orthonormal
and are a basis of col(ATWyx,), and define G(Qo,...,Q¢) to be the set of matrices
whose columns are maximal linearly independent subsets of UﬁZOQS where Qs € Q.
With this notation, we have the following definition to control the distribution of
{1 —Ye: Y4 + 1}

41f ng, > rank (A), then col(ATW},) = row(A) with probability one, which is covered by Corol-
lary 3.8.
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DEFINITION 3.9 (uniformly nontrivial). A row-action RBAS is uniformly non-
trivial if for any {Ag : R? x 3 — ffﬂ}kﬂeN such that imy_, oo Infyy .00 £Ps20.¢_1€3
P[Ag(xo,(1)|FY] =1, there exists a ga € (0,1] such that

(3.15)
inf sup E su min det(GTG)1 [Ap(z0, ()| FV| > ga.
mO:xO?ﬁPHIOkENLﬂO} Qsegs GE€G(Qo,--,Qk) ( JHAk(@o, ¢} 71 2 9.4
¢-1€3 s€{0,...,k}

Before stating the result, we point out some important connections and features
of Definition 3.9. First, so long as G € G(Qo, . .., Q%) is nontrivial, det(GTG) > 0 with
probability one. Thus, for each xg such that x¢ # Pxxo and (_1 € 3, there exists a
ke NU{0} such that

(3.16) E min  det(GTG)1 [Ax(wo,(-1)]| F} | > 0.

sup
Q.€n, GeG(Qo;.-,Qkr)

s€{0,...,k}

Unfortunately, when we take the infimum over all allowed values of zy and (_1, we

can no longer guarantee that the lower bound is zero, as supplied by Definition 3.9.

Second, Definition 3.9 is closely related, yet complementary to the foundational
notion of uniformly integrable random wvariables. To be specific, when a family of
random variables is uniformly integrable, then the expected absolute value of the
random variables in the family is uniformly bounded from above. Analogously and
quite roughly, when we satisfy Definition 3.9, then the expected value of the random
variables in the family are uniformly bounded from below.? Thus, we believe Def-
inition 3.9 to be quite a foundational property and will need to be validated on a
case-by-case basis (possibly with the help of tools such as analogues to the theorems
of [27, 7]).

Finally, we are only controlling the expected behavior in Definition 3.9, and we
do not need to make any statements about higher moments, which is surprising as
{7e: €+ 1} is a dependent sequence, and usually dependencies require more complex
moment statements (e.g., covariance relationships as in stationary processes). With
these observations, we are ready for the next statement.

COROLLARY 3.10. Let A€ R™? and b€ R™ satisfy Assumption 3.1. Let xo € R?
and (—1 € 3. Let {xr : k € N} be a sequence generated by (3.3) and (3.4) satisfying
Definition 3.5, Definition 3.7 for some N € N and € (0,1], and Definition 3.9. One
of the following is true.

1. There exists a stopping time T with finite expectation such that x. = Pyxqg.

2. There exists a sequence of nonnegative stopping times {t; : j +1 € N} for
which E[r;] < j[(rank (A) — 1)(N/m) + 1], there exists 7 € (0,1), and there
exists a sequence of random variables {v;:j+1€N} C (0,1) such that

o] j—1
CEUNI ﬂ{uxn—wonis(nw) nwo—wz} -1
Jj=0 £=0

where for any v € (7,1), PUT_o N2, {TTigve <771 =1

5We say this roughly as we ignore the supremum over k to demonstrate the parallels between
uniformly integrable families and a uniformly nontrivial RBAS.
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Remark 3.11. PlUz°_ (N2 {H;;é v <97}] =1 is equivalent to, There exists a
finite random variable, L, such that, for any j > L, H%;é ~v¢ < 77 with probability
one.

3.2. Column-action RBASs. In contrast to row-action RBASs, column-action
RBASs do not need to assume that the system is consistent. Thus, we simply begin
with an iterate o € R? and some prior information, encapsulated by ¢_; € 3, where
3 is finite in some sense. We then generate a sequence of iterates, {zj : k € N},
according to

(3.18) Tpp1 =z — We(W]TATAW,)TW]T AT (Azy, — b),

where -1 represents a pseudoinverse, and {W} € R?*"*} are possibly random quan-
tities (i.e., vectors or matrices) generated according to a possibly random, adaptive
procedure, ¢, which supplies

Note that our remarks about row-action RBASs apply here as well. We now present
several examples.

Ezample 3.12 (cyclic vector coordinate descent). Let {e; :i=1,...d} denote the
standard basis elements of R%. In this method, we update the iterate xj to xx41 by
one coordinate at a time according to zyy1 =z + e;a where oy solves

(3.20) min ||(b — Azy) — Ae;a|y,
a€cR

which produces
TAT(b— A
(3.21) Tha1 :kareiLka).
[ Aesll;

The choice of e; is determined by simply cycling through the basis elements in order.
To rephrase this method within our formulation, we define 3={0} UN, (_; =0, and

(3'22) @C(Av b, {xj :J < k}a {Wj g < k}a {CJ g < k}) = (erem(ck,l,d)-&-thfl + 1)«

With this choice of (W, k), we see that the cyclic vector coordinate descent method
is equivalent to (3.18). We underscore that ¢ only depends on ;1 and the standard
basis elements.

Ezample 3.13 (random permutation block coordinate descent). Let {E; : i =
1,...,€} be matrices whose columns are generated by some partitioning of the d x d
identity matrix. In this method, we have the update xy+; = z) + E;vg, where vy
solves

(3.23) mvinH(b—Amk) —AE|,,
which produces the update
(3.24) Tpy1 =k + Ei(EJATAE)TETAT(b — Axy,).

To choose E;, we begin by randomly permuting {E; :i =1,...,€e}, pass through this
permutation until it is exhausted, select a new random permutation, pass through
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this permutation until it is exhausted, and repeat. By following the column-action
analogue of Example 3.3, we can rephrase this method within our formulation.

Ezample 3.14 (block Gaussian column space descent). Let {Wj : k41 € N} be
matrices with independent, identically distributed standard Gaussian components. In
this method, we use the update zy11 =z + Wivg, where vy solves

(3.25) min ||(b — Azy) — AWy,
which produces the update
(3.26) Tpp1 =g + We(WTATAW,) TW]TAT(b— Axy).

It is clear that this update is exactly in the form of (3.18). Moreover, we can choose
3={0}, (-1 =0, and we can define

(3.27) oc(Ab {x; 1§ <k} W5 <k} A j <k}) = (Wi, 0).

Thus, this method fits within our formulation.

As these examples demonstrate, column-action RBAS methods are also forgetful—
that is, they satisfy the following analogue of Definition 3.5.

DEFINITION 3.15 (Markovian). A column-action RBAS is Markovian if there
exists a finite M € N such that for any measurable sets W C R>*"™ and Z C 3,

(3.28) P[W,eW, G € 2| FE, ] =P [Wk EW, G € 2| FEninr iy |-

Remark 3.16. See Remark 3.6.

Similarly, just as with row-action methods, column-action RBASs are also N, x-
exploratory. To state this definition, define r* = —Pyer(a7)b.

DEFINITION 3.17 (N, m-exploratory). A column-action RBAS is N, m-exploratory
for some N €N and w € (0,1] if

N-1
(3.29) sup P ﬂ {col(AW;) L Azg —b}| FY| <1—m.
moeRd:Axo—b7ér* =0

(-1€3

Note that the block Gaussian column space descent method, Example 3.14, is
1, 1-exploratory.

Just as for row-action methods, we will have a bifurcation of the theory for the
convergence of column-action methods based on whether the elements of {col(AW})}
take value in a finite set. In the case that they do, we have the following analogue of
Corollary 3.8.

COROLLARY 3.18. Let A € R™*? b e R", and r* = —Pyer(anyb. Let 39 € R?
and (—1 € 3. Let {x, : k € N} be a sequence generated by (3.18) and (3.19) satis-
fying Definitions 3.15 and 3.17 for some N € N and w € (0,1]. If the elements of
{col(AW},) : k + 1 € N} take value in a finite set, then either

1. there exists a stopping time T with finite expectation such that Ax,. — b
=r*, or
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2. there exists a sequence of nonnegative stopping times {1; : j+1 € N} for which
E[r;] < j[(rank (A) — 1)(N/m) + 1], and there exist v € (0,1) and a sequence
of random variables {v; : j +1 €N} C (0,7] such that

oo 7—1
(3.30) P ﬂ {HAxT]. - bf'r*H; < (H ’)/[> | Az br*||§} =1.

§=0 £=0

The same comments for Corollary 3.8 apply to Corollary 3.18. Also, just as for
Corollary 3.8, Corollary 3.18 does not cover Example 3.14 if n; < rank (4). For the
infinite set case, we will make use of the same notation as before with the following
modifications. First,

17 AIEHl — b# Axg — b,

3.31 =
( ) e {07 AI5+1 —b= Al‘g —b.

Second, let 9, denote the collection of sets of vectors that are orthonormal and are
a basis of col(AWyxy). We now state the analogues of Definition 3.9 and Corollary
3.10.

DEFINITION 3.19 (uniformly nontrivial). A column-action RBAS is uniformly
nontrivial if for any { Ay ‘R x 3 f]§+1}k+leN such that limy_ o0 Infy: Awe£b,c_1€3
P[Ag(70,(1)|FY] =1, there exists a g4 € (0,1] such that

(3.32)
inf sup E su min det(GTG)1 [Ap(zo, )| FY| > ga.
xo:AxU_b?é’“*keNLEO} O cm, GEGQorQn) (GTO) [Aw(@o, ¢-))| 1| 294
¢-1€3 s€{0,...k}

COROLLARY 3.20. Let A€ R™? beR", and r* = ~Prer(ar)b. Let zg € R? and
-1 € 3. Let {xy : k € N} be a sequence generated by (3.18) and (3.19) satisfying
Definition 3.15, Definition 3.17 for some N € N and 7 € (0,1], and Definition 3.19.
One of the following is true.

1. There exists a stopping time T with finite expectation such that Ax. —b=r".
2. There exists a sequence of nonnegative stopping times {t; : j +1 € N} for
which E[r;] < j[(rank (A) — 1)(N/m) + 1], there exists 7 € (0,1), and there

exists a sequence of random variables {v;:j+1€N} C (0,1) such that

o] j—1
(3.33) P ﬂ {HA:ch - b—’l‘*H; < (H w) [lAzo —b—r*||§} =1,

=0 £=0

where for any v € (7,1), PlUT_, N2, {Hz;é Yo <A =1.
Remark 3.21. See Remark 3.11.

4. Convergence theory. We now prove Corollaries 3.8, 3.10, 3.18, and 3.20 by
the following steps.

1. In subsection 4.1, we will write row-action and column-action methods us-
ing a common form, which reveals that the iterates (in the common form)
are generated by products of orthogonal projections, which raises the ques-
tions, When will this sequence of products of orthogonal projections produce
a reduction in the norms of the iterates and how big will this reduction be?
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2. In subsection 4.2, we will answer this question by proving a generalized block
Meany’s inequality, which states that when the iterate is in a space generated
by a sequence of projection matrices, we are guaranteed a certain amount
of reduction in the norms of the iterates. Of course, this raises the ques-
tion, When will the iterate be in this space?

3. In subsection 4.3, we define a stopping time for each iterate that, when finite,
implies that the iterate will be in the aforementioned space. We show that
when an RBAS is Markovian and N,w-exploratory, then, starting at any
iterate, this stopping time is finite in expectation and we derive an explicit
bound on this expectation.

4. Once we have established the finiteness of this stopping time, we can then
apply our generalized block Meany’s inequality to guarantee a reduction in
the norm of the iterates. However, owing to the possible randomness of
the procedure and the stopping times, we will need to find a deterministic
control over the reduction constant provided by our generalized block Meany’s
inequality. In subsection 4.4, we will find this deterministic value by using
the worst case over a finite set, which will prove Corollaries 3.8 and 3.18. In
subsection 4.5, we will find this deterministic value by using the uniformly
nontrivial property, which will prove Corollaries 3.10 and 3.20.

4.1. Common formulation. Our first step will be to rewrite row-action and
column-action RBASs, and the corresponding definitions using a common formulation.
To this end, we define

1) _ Jap —Pywo  if (3.3) and Assumption 3.1,
' YEZ A —b— 1 if (3.18),

where 7% = —Pyer(ar)b. Owing to this definition, the update yx to y41 is
(4.2) Yer1 =L — Pr)yk,

where Py are orthogonal projection matrices defined by
(4.3) P — ATW,(WTAATW,)TW]T A if (3.3),
' T AW (WTATAW,)TWTAT if (3.18).
Thus, with these definitions, it is enough to prove convergence and rate of convergence
results about {y}.

Remark 4.1. We can change the inner product space as done in [9], and we would
still recover (4.2) with a simple change of variables. See [28].

To focus on {yx}, we can update some of our definitions in terms of {y,} and
{Pr}-

DEFINITION 4.2 (Markovian). An RBAS (see (4.2)) is Markovian if there exists
a finite M € N such that for any measurable sets W and Z C 3,

(4.4) P[Wy €W, (€ 2| FE ] =P [Wk €W, € Z| Flrininr iy |-

DEFINITION 4.3 (N, m-exploratory). An RBAS (see (4.2)) is N, w-exploratory for
some N €N and 7 € (0,1] if

N-1
(4.5) sup P ﬂ {col(P;) Lyo}| FY| <1—m.
yg:yoggo =0
—1
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DEFINITION 4.4 (uniformly nontrivial). An RBAS (see (4.2)) is uniformly non-
trivial if for any {Ap : R x 3 — FF. k4 1€ N} such that limg oo infyy.ye0.c_ €3
P[Ag(xo,(1)|FY] =1, there exists a ga € (0,1] such that

4.6 inf sup E| su min det(GTG)1 [Ap(z0,C_ )| FY | > ga.
(4.6) yOZZJo#OkeNLEo} nggs GeG(Qo,---,Qr) ( JH A (o, ]| 77| 2 9
(-1€3 s€{0,...,k}

4.2. Generalized block Meany’s inequality. From (4.2), we see that {yx}
are updated by applying a sequence of orthogonal projection matrices. We can now
ask whether this application of projection matrices will drive {||yx|/2} to zero and at
what rate. This question was first answered for products of projections of the form
I —qqT in [16], where the ¢’s in the product are linearly independent—a result known
as Meany’s inequality. Meany’s inequality has been generalized in two ways. First,
Meany’s inequality was extended to products of the form I — QQT in [2, Theorem
4.1], where each @ has orthonormal columns and the concatenation of all @’s in the
product form a nonsingular matrix. Second, in [25, Theorem 4.1], Meany’s inequality
was generalized to the case in which there is a loss of independence between the ¢’s.
Here, we generalize all of these results.

To state our result, we will need to update some notation. For any k, let xi be
1 if Pryxr # 0 and zero otherwise, which we see is equivalent to (3.14) and (3.31) for
the two different RBAS types. Let Q; be the set of orthogonal bases of col(P;) for
all j +1 € N. Finally, let C] = col(P;x;) + -+ + col(Pj1rXj+k)-

THEOREM 4.5 (generalized block Meany’s inequality). Let j+1,k+1€N. Then,
for any y € ¢} with |lylla = 1, (I = Pjrxjtr) - (I = Pix;)yll3 is no greater than
1-— SUPQ, €0;,i€{j,....j+k} minGeg(Qj """" Qitr) det(GTG).

Proof. Let n; = dim(colP;). Begin by fixing Q; € Q; for i = j,...,j + k, and
let {gie:¢=1,...,n;,} denote the elements of Q);. We can now follow the strategy
of [2]. Letting the product notation indicate that terms with increasing index are
being multiplied from the left, note that Hfif([—?’ixi) = Hf;”j[ vor (I =dieq] xi))-
Therefore, [25, Thm. 4.1] provides

. T—Piiuxjen) T —=Pix)ylle < (1- i det(GT .
@0 = Pragn) (- Pol < (1= min - aer(@76) ) ol

This statement holds for every choice of @; € ;. Therefore, the result follows. ]

We pause for a moment to explain the importance of the supremum term in
Theorem 4.5. We can first ask whether the choice of @; € Q; will make any tangible
difference. Consider the very simple situation of applying a block row selection method
of a 4 x 3 matrix such that ATW; and ATW, generate

2 10 1 -3 6
(48) [1 2 3} and [0 1 5} !
respectively. We can compute mingeg(g,,0,)det(GTG), which we will refer to as
Meany’s constant, from 10,000 uniformly sampled bases for the row spaces of these
two matrices. The average value of Meany’s constant is 0.12 with a standard deviation
of 0.11, and the quantiles from this experiment are shown in Table 1. The supremum

of Meany’s constant is also included in Table 1. We see that the supremum is at least
8-fold larger than the average, and over 10%-fold larger than the 0.001 quantile. Thus,
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TABLE 1
Supremum and quantiles for randomly sampled Meany’s constant for the example in (4.8).

Quantile 0.001 0.05 0.25 0.5 0.75 0.95 0.999 Sup.
Value 1.9x10~7 6.5 x 10~% 0.02 0.09 0.20 0.34 0.47 0.9995

Comparison of Vector and Block Kaczmarz and their Meany Constants

L BB e
=

£ 08)

=

2 0.6}

é 04l —=— Block Kaczmarz Method

o N R Block Meany’s Constant

5 021 —~— Vector Kaczmarz Method
5 0 . -»- Vector Meany’s Constant

L > >
2 15 18 21 24 27 30 33
Iteration

—Y

Fic. 2. A plot of one less the ratio of norm errors squared between every three iterates for the
vector method, and every two iterates for the block method. The horizontal lines correspond to the
values of Meany’s constant in Theorem 4.5.

the supremum term is extremely important in finding better bounds on the rate of
convergence.

Moreover, the supremum term also underscores the importance of block methods
over vector methods (see [24]) from a theoretical perspective. For vector methods,
there are only two choices in the set ;, and both produce the same value of Meany’s
constant. Thus, for vector methods, Meany’s constant will only differ based on which
vectors are seen. To demonstrate this, we run cyclic Kaczmarz and block cyclic
Kacmzarz on the coefficient matrix in (4.8) until an absolute error of 10~ is achieved.
We plot one minus the ratio in norm error squared for each method and plot the
corresponding Meany’s constants in Figure 2. Clearly, we see that the block method
is substantially superior to the corresponding vector method both in practice and in
theory.

4.3. Stopping times. To apply Theorem 4.5, we need to determine for which
k, y; € C]. Given that Cj is random, we will have to allow the time at which this
occurs to be random, as follows.® For j + 1 €N, let

(4.9) u(j):mm{kzo;yjecg}.

Thus, when v(j) is finite, Theorem 4.5 implies ||y;1,(j+13//|%;|3 is no greater than
1 —SUPg,en,ic (... j+v()} MNGEG(Q;,....Q, 4 .(,y) det(GTG). Hence, we need to deter-
mine whether v(j) is finite for all j, and, ideally, we want to bound it, at the very
least, in expectation. To this end, we will study another stopping time that is an
upper bound on v(j) and will find a bound on this new stopping time’s expectation.
We will begin by specifying this stopping time and showing that it is an upper bound
on v(j).

61t is understood that if the condition fails to occur, then the stopping time is infinite.
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LEMMA 4.6. For any j+1 € N, let v(j) be defined as in (4.9). Then, v(j) <
min{k > 0:y;4,+1 €span[y;,...,yj+r]s Xj+k # 0}

Proof. We begin with a key fact. By (4.2), yrx+1—yx € col(Prxx) for any k+1 € N.
It follows that y; € span[C] U {y,}] for any £,i € [j,...,j+k+1]NN.

Now, let v(j)" = min{k > 0 : y;1x4+1 € span|y;,...,Yj+x], Xj+x # 0}. Then, by
the preceding fact, if y,4,(;) € ij(j),, then y; € Ci(j),‘. Thus, v(j) < v(j) by the
minimality of v(j). So it is enough to show Yitv(i)y € Ci(j)/.

Let r denote the dimension of span[CZ(j), U {yj+y(j)/}]. Then, by the Gram-—
Schmidt procedure, there exist ¢1,...,¢,_1 € Cim, such that the set of vectors
Wity @15, ér—1} are an orthogonal basis for span[Cf,(j), U {Yj4v() t]- Now,
by the definition of v(j)’, there exist scalars co,...,c,—1 such that y;i,y+1 =
CoYj4v(j)y +C1¢1 + - cr_1¢r_1. Plugging this into (4.2),

(4.10) CoYj+v(5) T+ 11+ Cro1p_1 = Yi+v(G) — Pj-l-u(j)/yj-‘rl/(j)'xj‘f‘l’(j)"

which gives rise to two cases. In the first case, we assume that ¢y # 1. Then,
rearranging (4.10), we conclude y; () € span[¢n, ..., ¢r—1] + col(Pji () Xj1u(j)y) =
Ci(j),. In the second case, co = 1. Then, multiplying both sides of (4.10) by yJT+V(j),7
Yoy CiyJTJr,,ij)/(bz‘ = ~1PjrviyYitviy 13X 40y~ By the orthogonality of ¢; and
Yj4+u(j), the left-hand side is zero. The right-hand side can only be zero if x4, =0,
which contradicts the definition of v(j)’. To summarize these two cases, we showed
that y; 1,y € Ci(j),. The result follows. 0

THEOREM 4.7. Let £ be an arbitrary, finite stopping time with respect to {.7-',’:+1 :
k+ 1€ N}, and let .Fgﬂ denote the stopped o-algebra. Given that {yi : k+ 1} are
well-defined (see (4.1)), let y¢ be generated by an N, m-exploratory, Markovian RBAS.
If ye #0, then v(§) is finite, and E[V(f)\}‘é_l] < (rank (A) — 1)(N/x).

Proof. We need only bound the upper bound in Lemma 4.6. At any given k >0,
there are three possible cases, either (Case 1) xeyr = 0; (Case 2) xerr = 1 and
Yerk+1 & span [Ye, ..., Yerrs or (Case 3) xepr = 1 and yeqppi1 € spanfye,... yetr].
We will show that Cases 1 and 2 cannot hold for all £ >0 with probability one.

To this end, define s(j) = min{k > 0: xj4x # 0} and let s; = s(§) and s;41 =
s(€+s1+---+s;) for all j € N. With this notation, the Markovian property, and the
N, m-exploratory property,

P[> N|FE

[N-1 N-1

(4.11) =P | () {xer; =0} Fery | =P | () {eol(Pey;) Lye}| Fey,
| j=0 j=0
[N-1
(4.12) =P | () {col(Peyj) Lye}| Fi | <1—m,
=0

where the last line is a consequence of Remark 3.6. Now, using induction and the
Markovian property, P[sq > N€|}'§+1] < (1 — )" for all £ € N. Therefore, s; is finite
with probability one and E[s; |]-"§f 1] < N/m. Moreover, since £ is an arbitrary stopping
time, it follows that {s;} are finite with probability one and E[s; ‘]:§£+1] < N/z. Thus,
Case 1 cannot occur for all k>0, and Cases 2 or 3 must occur infinitely often.
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Now, the dimension of span [yg, . .,y5+sl+...+sj] is j+ 1. Since {yx} are either
in row(A) or col(A), j +1 < rank(A4). Thus, Case 2 cannot be the only situation
to occur when Xeqr # 0. In conclusion, the largest value of j is rank (A) — 1, which
implies v(§) < 81 + - + Srank(4)—1, Which are the sum of exponentially distributed
random variables. The result follows by using E[s; \}"§+1] < N/m. O

Now, putting together Theorems 4.5 and 4.7 supplies the following result.

COROLLARY 4.8. Suppose A € R"*4 and b€ R™. Given that {yx : k+ 1} are well-
defined (see (4.1)), suppose that they are generated by a Markovian, N,m-exploratory
RBAS. Then, one of the following two cases occurs.

1. There exists a stopping time T with finite expectation such that y- =0.

2. There exist stopping times {7;:j +1 € N} such that E[7;] < j[(rank (A) — 1)
(N/m)+1] for all j+1 €N, and PIN, {llgs, 13 < (TEZ3 7o) lwol3}] = 1, where
Ye = 1- SUPQ, e, ie{re,...,re+v(me)} minGEg(QW7~~-,Q7—£+V(1—1{)) det(GTG) € (07 1)

Proof. The proof proceeds by induction. For j = 0, recall 79 = 0. Now, either
Yr, = 0 or y, # 0. In the former case, the statement of the result is true. In the
latter case, define 71 = v(79) + 1. Then, 7 is finite with probability one and E[r] <
(rank (A) —1)N/7+1 by Theorem 4.7. Moreover, by Theorem 4.5, ||y, |3 < 70 ||¥- |I3-
Thus, we have established the base case.

For the induction hypothesis, suppose that for j € N, Az, _, # b, E[r] <
El(rank (4) — )N/x + 1] for k € [0,j — 1] NN, and |lyr, I3 < lsol BT for
kell,j—1NN.

To conclude, define 7; = 7;_1 + v(7;_1) + 1. By Theorem 4.7, 7; is finite and
E[r;] < (j—1)[(rank (A)—1)N/m+1]+(rank (A)—1)N/7+1 = j[(rank (A)—1)N/7+1].
Finally, either y,, = 0 or y,, # 0. In the latter case, Theorem 4.5 implies ||y, [|3 <
Yj—1lly=,_, I3. The result follows. 0

Our final task is to control the joint behavior of {y,: ¢+ 1 € N} C (0,1) in the
latter case of Corollary 4.8. Depending on our goal, we could require two different
types of control. For instance, to ensure convergence of {y;} to 0, we need to ensure
that liminf, .. v¢ < 1. However, for a rate of convergence, we need to ensure that
limsup, ,.ove < 1. As the latter case is more desirable in practice, we will focus
on ensuring that limsup,_, . v, < 1. This will give rise to two separate cases in our
theory of convergence of RBAS methods, which we now address one at a time.

4.4. Convergence for a finite set. In the first case, we have that {col(Py)}
take value in finite sets, as in Examples 3.2 to 3.4, 3.12 and 3.13.

THEOREM 4.9. Let A€ R" < and b€ R™. Given that {y;. : k+1} are well-defined
(see (4.1)), suppose {yi : k+ 1 € N} are generated by a Markovian, N,w-exploratory
RBAS. If the elements of {col(Py) : k+ 1 € N} take value in a finite set, then either

1. there exists a stopping time T with finite expectation such that y. =0; or

2. there exist stopping times {1; : j +1 € N} such that E[r;] < j[(rank (A) —
1)(N/m) + 1] for all 5+ 1 € N, and there exist v € (0,1) and a sequence
of random variables {v; : j +1 € N} C (0,7] such that P[N52{[ly-, |5 <

(T ) w3} = 1.

Proof. By Corollary 4.8, we can focus on the second case and we need only show
that there exists a v € (0,1) such that v, <. To this end, let {U; : i =1,...,7}
denote the set of linear spaces in which {col(Py)} takes value. For each U;, we can
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define the set of all orthonormal bases of U;, denoted iI;. Let 3 denote the power
set of {&f; : ¢ =1,...,r}. For a given element {&; ,...,8;_ } € P, we can choose a
set {Uj_1U; : U; € 4;, }, and let H denote the set of all matrices whose columns are
maximal linearly independent subsets of {U§:1Uj :Uj €y, }. Finally, define

(4.13) I'=<1- sup min det(HTH) : {84;,,...,4; . €P, s=1,...,r ».
{Us_, U0 e, } HEH

j=1Y3

Now, since {Qj} takes value in {8;:i=1,...,7r}, {Q;:i=7,..., v +v(m)} €P

for all £+ 1 € N. Therefore, v € T for all £+ 1 € N. Thus, v, < max{I'} =:v. By
Hadamard’s inequality, each element of T' is in [0,1), which implies that v € [0,1).
As we are only proving the second case, 7 # 0 (otherwise we would have converged
finitely and would be in the first case), which implies v € (0,1). 0

We make two remarks. First, by substituting the appropriate definitions of {yy :
k+1e€N} and {Py : k+1 € N} into Theorem 4.9, then we have proven Corollaries 3.8
and 3.18. Second, the value of v can vary depending on how the set to which {col(Py)}
belongs is designed, which was a central point of discussion in [21]. For instance,
consider the three unique partitions of the rows of the coefficient matrix

1 -1 1
1 -1 1+4107°
(4.14) s 1 3
0 1 6

such that each partition contains two rows. Now, consider a sampling scheme that
selects a partition and cycles through the blocks in this partition. For such a method,
we can compute 7. The results for each of the three partitions are presented in
Table 2.

From Table 2, we see that to get the same guaranteed relative reduction in error
from Partition I in comparison to Partition II or III requires over sevenfold more
iterations. Indeed, as shown in Figure 3, we observe exactly this behavior when we
implement cyclic block Kaczmarz on (4.14) for the three different partitions up to an
absolute error of 1074,

4.5. Convergence for an infinite set. In the second case, {col(Pj)} can take
value over an infinite set, as in Example 3.14 with n; <rank (A). Suppose we attempt
to prove the convergence result as we did in subsection 4.4. Then, we would need
to prove that sup{T'} < 1. However, when I is infinite, we could potentially have
sup{l'} = 1. For instance, consider a 3 x 2 coefficient matrix whose first two rows are
the first standard basis element of R? and the last row is the second standard basis
element, and a procedure that alternates between either choosing the first row of the
matrix or taking a linear combination of the second row and a product of a standard
Guassian random variable with the third row. If we let N (0,1) denote a standard
Gaussian distribution, then I' is made up of all possible values of (Z2 + 1)~! with

TABLE 2
Estimates of the values of v in Theorem 4.9 for the three unique equally sized partitions of (4.14).

Partition I Partition IT Partition III
0.880 0.372 0.372
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Block Kaczmarz Methods by Partitioning

= 101 T T T T T = =
% —+— Parition I
2 1071 |3 —&— Partition II ||
@ -8l —— Partition III | |
o 1075 | |
=
S 10T 8
< X
< 10-9 & L L L L L L L

20 40 60 80 100 120 140 160

Iteration

F1Gc. 3. A comparison of the absolute errors of cyclic block Kaczmarz methods for the coefficient
matriz in (4.14). Corresponding to the theory, Partition I produces the worst convergence rate.

Z ~N(0,1). Since Z has nonzero density about 0, the supremum of I' would be 1 in
this case.

As this example suggests, it is possible to have arbitrarily poor values for {~, :
¢+ 1 € N}. However, this example also shows that the bulk of values of {~, : ¢ +
1 € N} are well-behaved (i.e., the mean and standard deviation of (Z2 + 1)~! are
approximately 0.66 and 0.26, respectively), which partially motivates Definition 4.4.
Under Definition 4.4, we have the following result, from which Corollaries 3.10 and
3.20 follow immediately.

THEOREM 4.10. Let A€ R" 4 and b€ R™. Given that {yy : k+1} are well-defined
(see (4.1)), suppose {yx : k +1 € N} are generated by a Markovian, N,w-exploratory,
and uniformly nontrivial RBAS. One of the following is true.

1. There exists a stopping time T with finite expectation such that y. =0.

2. There exists a sequence of nonnegative stopping times {7; : j +1 € N} for
which E[r;] < j[(rank (A) — 1)(N/m) + 1], there exists ¥ € (0,1), and there
exists a sequence of random variables {; : j +1 € N} C (0,1) such that
P[5 o{Ily, 13 < ([T7=0 ) I0lI3}] = 1, where for any v € (3,1), P[UF, N5,
{IliZo e <7} =1.

Proof. By Corollary 4.8, we can focus on the second case and we need only prove
that there exists 5 € (0,1) such that for any v € (¥,1), PUZZ N5, {H%;é Yo <A} =
1. To show this, we need to prove E[H;;g ve| FP] <47 for each j, which we will do by
induction. For the base case, j =0,

E[1— 0| F7]
(4.15) =E sup min det(GTG)| FY
QiGQi,ie{‘ro,...,‘ro—o—u(ro)}GGQ(QTO 11111 Q70+u(70))
o0
(4.16) =E 1[v(1o) = K] sup min det(GTG)| FY | .
kZ:O Q:€0Q;,i€{70,...,70+k} GEG(Qrgs--os Qro+k) !

Since mingeg(q.,..... Q- +x) €HGTG) > MiNGeg (@, .....Qr 41.@) det(GTG) for any Q €
Q. 1k+1 and any k + 1 €N, then, for every k+1 €N, E[1 — | F?] is bounded below
by

.....
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(4.17) E | 1[v(r0) <k sup min det(GTG)

A
Qi€N;,i€{70,...,To+k} GEG(Qrys--,Qro+k)

Now, by Theorem 4.7 and Markov’s inequality, for any 3y # 0 and any (_; € 3,
Plv(ro) < k|FY] > 1 — N(rank (A) — 1)/(kw). Hence, we can apply Definition 4.4 to
conclude that there exists a g € (0,1] such that E[1 — o|F}] >g. If we let y=1—g,
then E[yo|F?] < 4. Now, for the induction hypothesis, suppose that E[[[_c ve|F?] <
~43=1. To conclude, we note that by the Markovian property and the base case,
Bl 1177 4,) < 7. Therefore, B[4 7l 79 = EIE[y; 1|77 Tzt 7l 9] <77.
Now, for any v € (,1), the preceding proof and Markov’s inequality provide

o (7Y
Fil < (><oo.
{DVE

By the Borel-Cantelli lemma, PU_ N2, {TT/ 27 <47} = 1. 0

j_

[e’s) 1
(4.18) P [ Yo >
0

j=1 =

Remark 4.11. Our proof readily allows us to bound the convergence rates of the
moments of {yy : k + 1}.

5. Examples. We provide a series of examples to demonstrate how we can apply
our theory to a variety of methods. Of particular practical value, we will show how
to verify the relevant properties (e.g., exploratory). We summarize these examples
and references, and we reference the convergence result for the given method based
on our theory in Table 3.

6. Conclusion. In order to enable broader use of highly tailored randomized
methods for solving linear systems, we began with the challenge of providing a unifying
theory for randomized block adaptive solvers (RBASs) for linear systems—regardless
of whether the linear systems are underdetermined, overdetermined, or rank deficient.
To this end, we studied two archetypes of RBAS solvers—row-action methods for con-
sistent linear systems and column-action methods for arbitrary linear systems—and
showed that under very general conditions both archetypes will converge exponentially
fast to a solution. Specifically, we had two results.

1. When an RBAS is Markovian, N, m-exploratory, and projects either the abso-
lute error (for row-action methods) or residual (for column-action methods)
onto only a finite number of spaces, then the RBAS will converge exponen-
tially fast to a solution of the linear system.

2. When an RBAS is Markovian, N,m-exploratory, and uniformly nontrivial,
then, after some finite number of iterations, the RBAS will converge expo-
nentially fast to a solution of the linear system.

We further provided numerical evidence to elucidate key aspects of theory at
key points. In particular, we demonstrated the value of the supremum in our gen-
eralization of Meany’s inequality (see Theorem 4.5 and Figure 2), and we discussed
the importance of finding appropriate partitions when using block cyclic solvers (see
Figure 3), which was quite carefully studied in [21]. Finally, we provided a host of
examples of how to apply our theory to existing methods and some novel methods,
which we complemented with appropriate numerical experiments.

In completing the above tasks, we have provided practitioners with a powerful
theory and demonstrations of how to use the theory to rigorously analyze a wide
variety of RBASs. Thus, we hope that practitioners will be empowered to use this
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TABLE 3
Summary of worked examples using our theory.

Method References Details Convergence result
Cyclic vector Kaczmarz [14, 13, 5]  Subsection SM1.1 Theorem SM1.3
Gaussian vector Kaczmarz [11,30]  Subsection SM1.2  Theorem SM1.7
Strohmer—Vershynin vector Kaczmarz [34]  Subsection SM1.3  Theorem SM1.11
Steinerberger vector Kaczmarz [32]  Subsection SM1.4  Theorem SM1.14
Motzkin’s method ~ [18,1]  Subsection SM1.5  Theorem SM1.17
Agmon’s method ~ [1]  Subsection SM1.6  Theorem SM1.20
Greedy randomized vector Kaczmarz ~ [3]  Subsection SM1.7  Theorem SM1.23
Sampling Kaczmarz-Motzkin Method [12]  Subsection SM1.8  Theorem SM1.27
Streaming vector Kaczmarz [24]  Subsection SM1.9  Theorem SM1.31
b;/cficivgctiori coordinate descent [§5T ~ Subsection SM1.10  Theorem SM1.34
Gaussian vector column space Descent Subsection SM1.11  Theorem SM1.38
Zouzias—Freris vector coordinate Descent  [38]  Subsection SM1.12  Theorem SM1.41
Max residual coordinate descent Subsection SM1.13  Theorem SM1.44
Max distance coordinate descent Subsection SM1.14  Theorem SM1.47
Random permutation block Kaczmarz ~ [21,19]  Subsection SM1.15  Theorem SM1.50
Steinerberger block Kaczmarz [30, 10]  Subsection SM1.16  Theorem SM1.53
Motzkin’s block Method Subsection SM1.17  Theorem SM1.56
Agmon’s block Method Subsection SM1.18  Theorem SM1.59
Adaptive sketch-and-project [10]  Subsection SM1.19  Theorem SM1.64
Greedy randomized block Kaczmarz Subsection SM1.20  Theorem SM1.67
Streaming block Kaczmarz [11,29]  Subsection SM1.21  Theorem SM1.71
Random permutation block Coordinate ~ [20, 37]  Subsection SM1.22  Theorem SM1.74
descent

Gaussian block column space descent Subsection SM1.23  Theorem SM1.78
Zouzias—Freris block coordinate descent Subsection SM1.24  Theorem SM1.81
Max residual block coordinate descent Subsection SM1.25  Theorem SM1.84
Max distance block coordinate descent Subsection SM1.26  Theorem SM1.87

theory and create novel RBASs that are optimized to their specific applications and
computing environments.
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