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ABSTRACT. We study the asymptotic Plateau problem
in H? X R for area-minimizing surfaces, and give a fairly
complete solution for finite curves.

1. INTRODUCTION

The Asymptotic Plateau Problem in H? X R studies the existence of a minimal
surface = in H? X R for a given curve I' in 0o (H? X R) with 0.2 = I'. In past years,
the existence, uniqueness, and regularity of solutions to the asymptotic Plateau
problem in H? x R have been studied extensively by the leading researchers of the
field (e.g., [CR, CMT, Da, FMMR, KM, MMR, MoR, MRR, NR, PR, RT, ST1,
ST2]).

Unlike H3, the asymptotic Plateau problem in H? X R is quite interesting and
challenging as there are several families of curves in S%, x R, which do not bound
any minimal surface in H? X R [ST1]. In this paper, we finish off an important
case by classifying strongly fillable, finite curves in SL x R as follows.

Theorem 1.1. Let T be a finite collection of disjoint Jordan curves in SL, x R
with h(T') = 1. IfT is a tall curve, there exists an embedded area-minimizing surface
S in H? X R with 0% = T. Conversely, if T is a short C1"* non-exceptional curve,
then there is no area-minimizing surface X in H? X R with 0% = T.

The organization of the paper is as follows. In the next section, we give some
definitions, and introduce the basic tools which we use in our construction. In
Section 3, we introduce tall curves, and study their properties. In Section 4, we
prove our main result above. In Section 5, we show that the asymptotic Plateau
problem for minimal surfaces and area-minimizing surfaces are quite different,
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and we construct some explicit examples. Finally, in Section 6, we give some
concluding remarks, and mention some interesting open problems in the subject.
We postpone some technical steps to Appendix A at the end.

2. PRELIMINARIES

In this section, we give the basic definitions, and a brief overview of the past results
which will be used in the paper.

Throughout the paper, we use the product compactification of H? x R. In
particular, H2 X R = H2 X R = H? X R U 9« (H? X R) where 3« (H? X R) consists
of three components: the infinite open cylinder SL X R, and the closed caps at
infinity H2 X {+o0}, H2 x {—o}. Hence, H2 X R is a solid cylinder under this
compactification.

Let = be an open, complete surface in H? X R, and 0.2 represent the asymp-
totic boundary of ¥ in dc (H? X R). Then, if 3 is the closure of £ in H2 X R, then
00X = £ 0 (H? X R).

Definition 2.1. A surface is minimal if the mean curvature H vanishes every-
where. A compact surface with boundary X is called an area-minimizing surface it
3 has the smallest area among the surfaces with the same boundary. A noncom-
pact surface is called an area-minimizing surface if any compact subsurface is an
area-minimizing surface.

Remark 2.2 (Rectifiable Currents with Z-coefficients and Orientation of
Surfaces). Throughout the paper, all the surfaces will be orientable, and we use
rectifiable currents with Z-coefficients to represent them. In particular, in the def-
inition above, when we say “X has the smallest area among the surfaces with the
same boundary,” we mean any competitor surface S has the same boundary and
the same induced orientation, i.e., 0S = 0% and 0S matches with the orientation
of 0X. A very important point here is that when we say orientable for a non-
connected surface S = [Ji"; Si, we mean all its components {S;} have consistent
orientation, particularly since H? X R has trivial topology, and any proper, com-
plete surface S is separating. Then, § = i, separate H? X R into two types
of regions, say blue Q*, and black Q~. These blue and black regions may not
be connected, but for every component S, its one side is a black region, and the
other is a blue region. Further, that § has consistent orientation means that at
each component we chose the normal direction towards, say, blue regions. This
convention is crucial when we get the area bound for the sequence {S}'} via [0A]
in Lemma 2.8.

In this paper, we study the Jordan curves in 9. (H? x R) which bound com-
plete, embedded, minimal surfaces in H? x R. Throughout the paper, when we
say @ curve in 0w (H? X R) we mean a finite collection of pairwise disjoint Jordan
curves in 0o (H? X R).

Definition 2.3 (Fillable Curves). Let T be a curve in 0. (H? X R). We call
[ fillable if T bounds a complete, embedded, minimal surface S in H? X R, that
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is, 0S = I'. We call T strongly fillable if T bounds a complete, embedded, area-
minimizing surface X in H? X R, that is, 0= =T

Notice that a strongly fillable curve is fillable since any area-minimizing sur-
face is minimal.

Definition 2.4 (Finite and Infinite Curves). LetT be a curve in 0, (H? X R).
DecomposeI' =Tt ul'™ UT such that T* = TN (H2x {+o0}) and [ = TN (SL xR).
In particular, I'* is a collection of closed arcs and points in the closed caps at
infinity, while T is a collection of open arcs and closed curves in the infinite open
cylinder. With this notation, we call a curve I finite if " =T~ = &. We call T
infinite otherwise.

Problem (Asymptotic Plateau Problem for H? x R). Which (finite or infinite)
I in 0o (H? X R) is fillable or strongly fillable?

As the question suggests, there are mainly four versions of the problem: the
classifications of “fillable finite curves,” “fillable infinite curves,” “strongly fillable
finite curves,” and “strongly fillable infinite curves.” Unfortunately, we are cur-
rently far from classification of the fillable (finite or infinite) curves [FMMR].

Recently, we gave a classification for strongly fillable, infinite curves in [Co2].
In this paper, we give a fairly complete solution for the classification of strongly
fillable, finite curves in 0o (H? X R).

One of the most interesting properties of the asymptotic Plateau problem in
H? X R is the existence of non-fillable curves. While any curve A in SZ (H?) is
strongly fillable in H3 [An], Sa Earp and Toubiana showed there exist some 70n-
fillable curves in 3. (H? x R) [ST1].

Definition 2.5 (Thin Tail). LetT be a Jordan curve in e (H? X R), and let
T be an arc in I'. Assume there is a vertical straight line Lo in S1, X R such that the

following hold:

o TﬂLo?':@andaTﬂL():@.
e T stays in one side of Ly.
e TCSL x(c,c+ ) for some c € R.

Then, we call T a thin tail inT.

Lemma 2.6 (Non-fillable Curves [ST1]). LetT be a curve in 0o (H? X R). If
T contains a thin tail, then there is no properly immersed minimal surface S in H? X R
with 0,2 =T.

This nonexistence result makes the asymptotic Plateau problem quite interest-
ing. In particular, to address the fillability question, we need to understand which
curves have no thin tails. In Section 3, we introduce a notion called #2// curves to
recognize them. Note also that we recently gave the first examples of non-fillable
curves with no thin tails [Co3].

To construct our sequence of compact area-minimizing surfaces in our main
result, we need the following classical result of geometric measure theory.
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Lemma 2.7 (Existence and Regularity of Area-Minimizing Surfaces [Fe],
Theorems 5.1.6 and 5.4.7). Let M be a homogeneously regular, closed (or mean
convex) 3-manifold. Let'y be a nullhomologous smooth curve in M. Then, y bounds
an area-minimizing surface 3 in M. Furthermore, any such area-minimizing surface

is smoothly embedded.

Now, we state the convergence theorem for area-minimizing surfaces, which
will be used throughout the paper. Note that we use convergence in the sense
of geometric measure theory, that is, the convergence of rectifiable currents with
Z-coeflicients in the flat metric.

Lemma 2.8 (Convergence). Let {3} be a sequence of complete area-minimizing
surfaces in H? X R where Iy = 03 is a finite collection of closed curves in Sk, x R.
If T converges to a finite collection of closed curves [ in SL X R, then there exists a
subsequence {Zy, N such that 3, | converges to an area-minimizing surface s (possibly

empty) with 3> C . In particular, the convergence is smooth on compact subsets of
H? x R.

Proof. Let Ay = B, (0) X [-C, C] be convex domains in H? x R where B, (0)
is the closed disk of radius # in H? with center 0, and [' ¢ SL x (=C, C). For
n sufficiently large, consider the surfaces S;* = X; N A,,. We claim that the area
of the surfaces {S]' C A} is uniformly bounded by [0A|. Recall that 3; is an
orientable surface, and area minimizing. Then, as X; is oriented, 0S]* C 0A;, has
the induced orientation coming from the orientation of =;. Notice that H? x R
is a topological ball, and X; separates H* X R. Let H? x R\ =; = Q] U Q; (see
Remark 2.2). Let Q" = A, n Qf. Then, Ay \ Z; = Q" U Q. In particular, if
Zinint(Ay) # &, X separates Ay.

Now, we have 0QI'"" = S U T/"". Hence, S]* U T/* is a closed oriented

surface 0Q]"". This means 0T" and 0S]* are oppositely oriented. Hence, S}
and 0(—T;") have the same orientation as rectifiable currents. This shows that
0S]" (with the induced orientation) bounds a surface (—T/) C 0A,. As S]' is
area minimizing, |S]'| < |T['| < |Ayl. This gives a uniform bound |Ay| on the
sequence {S]'}.

Similarly, 0S}* can be bounded by using standard techniques. Hence, if {S*}
is an infinite sequence, we get a convergent subsequence of {S/'} in A, with
nonempty limir S™. S™ is an area-minimizing surface in A, by the compactness
theorem for rectifiable currents (codimension-1) with the flat metric of geometric
measure theory [Fe]. By the regularity theory, the limit $™ is a smoothly embed-
ded area-minimizing surface in A™.

If the sequence {S'} is an infinite sequence for infinitely many n, we get
an infinite sequence of compact area-minimizing surfaces {S™}. Then, by using
the diagonal sequence argument, we can find a subsequence of {X;} converging
to an area-minimizing surface 3 with 9.3 C [asT; — I. Note also that for
fixed n, the curvatures of {S/'} are uniformly bounded by curvature estimates for
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area-minimizing surfaces. Hence, with the uniform area bound, we get smooth
convergence on compact subsets of H? x R. (See [MW, Theorem 3.3] for further
details.) O

Remark 2.9 (Empty Limit). In the proof above, there might be cases like
{S!'} is a finite sequence for any n. In particular, assume that if, for every n, there
exists K, > 0 such that for every i > Ky, i N Ay, = @. In such a case the limit
is empty, and we say {2;} escapes to infinity. An example to this case is a sequence
of rectangles R; in S, X R with h(R;) ~ 7 and R; — R where R is a rectangle
of height 1r. Then, the sequence of area-minimizing surfaces P; with 0P = R;
escapes to infinity, as there is no area-minimizing surface = with 3,3 = [. In
Theorem 4.1, we will prove that if [ is a tall curve, the sequence {;} does not
escape to infinity, and a subsequence X;; converges to an area-minimizing surface
3 with 02 c I

Remark 2.10 (Asymptotic Regularity). Unfortunately, there is no general
asymptotic regularity result for minimal surfaces in H? X R in the literature so far.
However, for the horizontal parts of the minimal surface, Kloeckner-Mazzeo gave
Ck& regularity [KM, Proposition 3.1]. In particular, they show that if y is a Ck*
horizontal arc in SL X R (vertical graph over a segment in SL X {0}), then the
minimal surface bounding y is also C* regular up to the boundary.

3. TALL CURVES IN S} x R

After the Sa Earp-Toubiana nonexistence result (Lemma 2.6), one needs to un-
derstand the curves with no thin tails in order to solve the asymptotic Plateau
problem. In this section, we introduce a notion called za// curves to easily identify
such curves. First, we study the tall rectangles. Then, by using these, we define
the tall curves.

3.1. Tall rectangles.

Definition 3.1 (Tall Rectangles). Consider the asymptotic cylinder SL, x R
with the coordinates (0,t) where 0 € [0,21) and t € R. We call a rectangle
R = [91, 92] X [ty,t2] C S&o X R ta//rectang/e ifl'z —t; > TI.

In [ST1], for the boundaries of tall rectangles, Sa Earp and Toubiana further
proved the following result.

Lemma 3.2 ([ST1]). IfR is a tall rectangle in S, xR, then there exists a minimal
surface P in H? X R with 3P = OR. In particular, P is a graph over R.

Furthermore, the authors in [ST1] gave a very explicit description of P as
follows. Without loss of generality, let R = [-01,0,] x [—¢,c] in SL, X R where
¢ > /2 and 6; € (0,7). Let @; be the hyperbolic isometry of H? fixing the
geodesic y with 0ey = {—01, 01} with translation length t. Let ¢ be the isometry
of H2 xR with ¢¢(q,2z) = (9¢(q), z). The authors here proved that P is invariant
under @; forany t. Let T be geodesic in H? with 06T = {0, 7T} C 0H?. Let x =
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PN (TXxR). Then, o is the generating curve for P where 0o x = {(0, ¢), (0, —C)},
that is, P = U; @¢ ().

On the other hand, let P, be the minimal plane with 0Py = 0Rj where
the height of the rectangle Ry, is h, i.e., 2c = h. The invariance of Py under
the isometry @ shows that y; = P, N H? x {0} is an equidistant curve from the
geodesic y = y x {0} in H? X {0}. Let d, = dist(yn,¥). Then, the authors also
show that if h » o then dj, ~ 0 and if h \ 71 then dj, ~ . In other words,
when h — oo, Py, gets closer to the vertical geodesic plane y x R. When h \ 11, Py
escapes to infinity. Moreover, the upper half of P, Py N H? x [0, c], is a vertical
graph over the component of H? X {0} \ yp, in the R C SL x R side.

Now, we show that tall rectangles are indeed quite special. They bound a
unique area-minimizing surface which is area minimizing.

Lemma 3.3 (Tall Rectangles are Strongly Fillable). If R is a tall rectangle in
SL X R, then there exists a unique minimal surface P in H* X R with 0P = OR.
Furthermore, P is also an area-minimizing surface in H* X R.

Proof. The outline of the proof is as follows. By using rectangles Ry, ¢ SL xR,
we foliate a convex region A in H? x R by minimal planes Py, with 0P, = 0Rp,.
As our minimal plane P = Py, is a leaf in this foliation, it is the unique minimal
surface bounding Ty, = dRp,, and hence is area minimizing.

Step I: Defining the convex region A. The convex region A will be a component of
the complement of a vertical geodesic plane in H? x R, that is, H2 X R\ (7 X R).
The setup is as follows. Let Ry, = [— 61, 011x[—h, h] be a tall rectangle in SL, xR,
thatis, h > 11/2 and 0 < 0; < 1. By Lemma 3.2, for any h > 17/2, there exists a
minimal surface Py with 0Py = Iy = 0Rp,. Moreover, by the construction [ST1],
{Pp} is a continuous family of complete minimal planes with Py, N Py = @ for
h=+h'. NOW, fix h,o > T17/2, and let Rho = [—91, 91] X [—ho,ho].

Let T be geodesic in H? with 8T = {0, 7T} C 8 H?. Let @ be the hyperbolic
isometry of H? that fixes T, where ¢ is the translation parameter along T. In partic-
ular, in the upper half plane model H? = {(x,») | ¥ > 0}, T = {(0,») | ¥ > 0}
and @ (x) = tx. Then, let 0; = Y¢(01). Then, for 0 <t < 00, 0 < 0; < .
Hence, 0; < 01 when 0 <t < 1,and 0; > 6; when 1 < t < co. In particular, this
implies [-01,01] € [-6,0¢] fort > 1, and [-601,60,] D [0, 0] for t < 1.
For notation, let 8y = 0 and let O, = 7.

Now, define a continuous family of rectangles Ry, which foliates an infinite
vertical strip in S X R as follows. Let s : (17/2,0) — (0,2) be a smooth mono-
tone increasing function such that s(h) ~ 2 when h ~ o, and s(h) N 0 when
h ~ 11/2. Furthermore, let s(hgy) = 1.

Now, define R}, as the rectangle in S, xR with Ry = [0, Osy Ix[—h, h].
Hence, Ry, = Rp,, and for any h € (71/2, ), Ry is a tall rectangle with height
2h > 1. Let [j, = 0Ry,. Then, the family of simple closed curves {Ti,} foliates the
vertical infinite strip Q = ((—=02, 62) x R) \ ({0} X [-71/2,71/2]) in S, X R.
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Recall that Ry = [-01,0:] X [—h, h] for any h > 11/2, and the planes Py
are minimal surfaces with 0Py = Tp. Let ¢ be the isometry of H? X R with
Ji(p,s) = (Pi(p),s) where p € H? and s € R. Then, clearly Ry = Usn)(Rp).
In other words, Rj, and Ry, have the same height, but Ry, is “widened Rj,” in the
horizontal direction via isometry . Similarly, define Py = Ysny (Pr). Hence, Py,
is a complete minimal plane with 9o Py = T = ORy,.

Notice that Py is the geodesic plane n x R in H? x R where 1 is a geodesic in
H2 with 3. = {—63, 0,}. Let A be the component of H2x R\ P, containing P,
that is, 9A = Py and 0,A = Q. We claim that the family of complete minimal
planes {Py | h € (11/2, )} foliates A.

Step 2: Foliating A by minimal planes {P,}. Notice that as {Py} is a continuous
family of minimal planes, and {g¢} is a continuous family of isometries, then
by construction Pn = Gy (Pp) is a continuous family of minimal planes, and
A = Uner/2,0) Pp,. Hence, all we need to show is that P, N Py = @ forh < h'.
First, notice that P, N Ppr = @ by [ST1]. Hence, Ysn)(Pn) N Ysn)(Pn) = D.
Lets" =s(h')/s(h) > 1.

Notice that both planes (s(n)(Pn) and (Jsn)(Ppr) are graphs over rectan-
gles [—95(;1), es(h)] X [—h,h] and [—95(;1),95(;1)] X [—h',h'], respectively. For
any ¢ € (=h,h), the line % = {spu)(Pw) N (H? x {c}) is on the far side
(1t € SL side) of the line €% = @) (Pr) N H? X {c} in H? x {c}. Hence, for
any ¢, Yy (E%) N € = @ since Yy pushes H? toward ™ € dH? as s’ > 1. As
Py o lflf(h) = Yy sty = Wsin), then Py (Pp) n Ushy(Pp) = @. In other
words, P, N P = & for h < h'. In particular, {Pp} is a pairwise disjoint fam-
ily of planes, with A = sy, Pu. This shows that the family of minimal planes
{Py | h e (1m/2,0)} foliates A.

Step 3: P, is the unique minimal surface with asymptotic boundary Tn, = ORp, in
SL X R, that is, dPn, = In,. Assume the contrary. If there were another minimal
surface = in H? X R with 0% = 0Rp,, then = would necessarily belong to the
convex region A by the convex hull principle. In particular, one can easily see this
fact by foliating H? x R \ A by the geodesic planes {{(Ps) | t > 1}. Hence,
if ¥ ¢ A, then for ty = sup,{Zn Pt (Po) # @}, T would intersect the geodesic
plane Jy, (P) tangentially with lying in one side. This contradicts the maximum
principle as both are minimal surfaces.

Now, as £ C A and A is foliated by by, ifs Py,, then 2N Py + O for
some h # h,. Then, we have either h; = supth > h, | £ n Pp + @} or
hi =inffh <h, | =N P, + @} exists. In either case, S would intersect ﬁhl or lshfl
tangentially by lying in one side. Again, this contradicts the maximum principle
as both are minimal surfaces. Hence, such a = cannot exist, and the uniqueness
follows.
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Step 4: Pp, is indeed an area-minimizing surface in H*> X R. Now, we finish the
proof by showing that Py, is indeed an area-minimizing surface in H? x R. Let
By, be the n-disk in H? with the center origin O in the Poincaré disk model, that
is, By = {x € H? | d(x,0) < n}. Let B, = By x [~hg, ho] in H? x R. We
claim that P{LLO = Pp, N B, is an area-minimizing surface, that is, that P{LLO has
the smallest area among the surfaces S in H? x R with the same boundary (i.e.,
BPZLLO =0S = IPZLLOI < |S| where | - | represents the area).

Let O = B, nAbea compact, convex subset of H? X R. Let B, = BPZL‘O
be a simple closed curve in 0Qy. Notice that by the existence theorem of area-
minimizing surfaces (Lemma 2.7), there exists an area-minimizing surface X in
H2 x R with 02 = B,. Furthermore, as Q, is convex, = C Q,. However, as
{Pp | h € (11/2, )} foliates A, {Py N Qp} foliates Q. Much as in the above
argument, if X is not a leaf of this foliation, there must be a last point of con-
tact with the leaves, which gives a contradiction with the maximum principle.
Hence, ¥ = P, and P} is an area-minimizing surface. This shows that any
compact subsurface of Pp, is an area-minimizing surface, as it must belong to P},
for sufficiently large n > 0. This proves Py, is an area-minimizing surface with
0o Pn, = Tn,, and it is the unique minimal surface in H? x R with asymptotic
boundary 0Rp, in SL X R. As any tall rectangle in L X R is the isometric image
of Ry, for some 11/2 < h < oo, the proof follows. O

3.2. Tall curves. After defining, and studying tall rectangles in S, x R
(Section 3.1), we are now ready to define tall curves in SL x R.

Definition 3.4 (Tall Curves). We call a finite collection of disjoint simple
closed curves T in SL, X R a tall curve if the region T¢ = SL, x R\ T can be written
as a union of open tall rectangles R; = (0, 03) x (t!,t}), thatis, T¢ = [J; R; (see
Figure 3.1). If T has more than one component, then we assume I' has consistent
orientation (see Remark 2.2).

We call a region Q in SL, X R a tall region, if Q can be written as a union of
tall rectangles, that is, Q = ; R; where R; is a tall rectangle.

On the other hand, by using the idea above, we can define a notion called #he
height of a curve as follows.

Definition 3.5 (Height of a Curve). Let T be a collection of simple closed
curves in S, X R, and let Q@ = SL, x R\T. Forany 0 € [0,27), let Ly = {0} xR be
the vertical line in S, X R. Let Lo n Q = £ U - - - U £ where £} is a component
of Lo N Q. Define the height h(I') = info {|£}|}.

Notice that I is a tall curve if and only if h(I') > 1. Now, we say I' is a short
curve if W(T') < TT.

Remark 3.6. Note that if T is a finite collection of disjoint simple closed
curves in S§, X R, then we can always write [ = Q" U Q™ where Q* are (possibly
disconnected) tall regions with 0Q* = 0Q~ = I'. Notice that if T has more than
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FIGURE 3.1. In the left, T is a tall curve with two components.
In the right, there are three nonexamples of tall curves. Shaded
regions describe the Q; where SL, x R\ T; = Qf U Q; .

one component, than QO or Q™ may not be connected. Throughout the paper,
we assume I has the orientation induced by Q.

Note also that any curve containing a thin tail is a short curve by definition.
However, there are some short curves with no thin tails, like I3 in Figure 3.1-right
and Figure 5.1-right.

Notice also that for each nullhomotopic component y; of a tall curve T, if
0/ (0;) is a local maximum (minimum) of horizontal coordinates of y;, then by
Lemma 2.6, Lo: N y; must be a pair of vertical line segments of length greater than
10 (See Figure 3.1 left). Also, in Figure 3.1 right, three non-tall curves I, I, and
I3 are pictured as examples. If we name the shaded regions as Q7 , I is not tall as
Q7 is not tall because of the small cove. Also, I has two components, and it is
not tall because Q7 is not tall (the two components are very close to each other).
Finally, T3 is not tall, since Q3 is not a tall region because of the short neck.

Note also that recently in [KMR], Klaser, Menezes, and
Ramos generalized the !/ curve and height of @ curve notions
to the other E(—1, T) homogeneous spaces, and so obtained
several existence and nonexistence results for the asymptotic
Plateau problem in these spaces.

Remark 3.7 (Exceptional Curves). We call a short curve
[ exceptional in the following case. Assume I is short. Then, 4 T
there is a pair of points {p*,p~} C I where p* = (0,c") e
and p~ = (0,¢7) where 0 < ¢* — ¢~ < m. Call such a pair
of points a short pair. 1f there are points g* = (0,d") and a1
qg = (0,d)withd <c¢c <ct <d" <d +1such
that {g*,q} C SL X R\ T, then we call {p~,p*} a regular
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short pair. Otherwise, we call it an exceptional short pair. 1f all

short pairs are exceptional in a curve, we call it an exceprional

curve. In other words, if a short curve contains at least one

regular pair, it is not exceptional. (See the figure in the right.)

This condition is only used in the nonexistence part of Theorem 1.1 (Step 2).
Thus, throughout the paper, we will assume that closed curves in S1 x R are not
exceptional unless otherwise stated.!

4. ASYMPTOTIC PLATEAU PROBLEM IN H? x R

In this section, we prove our main result. Note that the converse side of the
theorem is true for more general curves (See Remark 4.2).

Theorem 4.1. Let T be a finite collection of disjoint Jordan curves in SL, x R
with h(T') = 1. IfT is a tall curve, there exists an embedded area-minimizing surface
3 in H? X R with 03 = . Conversely, if T is a short C* non-exceptional curve,
then there is no area-minimizing surface X in H? X R with 0% = T.

Outline of the proof: We use the standard techniques for the asymptotic Plateau
problem [An]. In particular, we construct a sequence of compact area-minimizing
surfaces {Z,} in H? x R with 0%, — T, and in the limit, we aim to obtain an
area-minimizing surface X with 0,2 = I'. Notice that the main issue here is not to
show that X is an area-minimizing surface, but to show that X is not escaping to
infinity, thatis, £ # @ and 0> =T (see Remark 2.9). Recall that by Lemma 2.6 if
a simple closed curve y in S1, X R has a thin tail, then there is no minimal surface
S in H? x R with 0S = y. This means that if one similarly constructs area-
minimizing surfaces Sy, with 0S, — y, then either § = lim S, = & or 0.5 # y;
that is, the sequence Sy, escapes to infinity completely (S = @), or some parts of
the sequence Sy, escape to infinity (0eS # y).

In particular, in the following, we aim to show that for a tall curve I, the limit
surface 3 does not escape to infinity, and 0= = I'. We achieve this by constructing
barriers near infinity preventing escaping to infinity.

Proof. We split the proof into two parts. In the first part, we show the “if”
part. In the second part, we prove the converse.

Step 1: [Existence] If T is tall (h(I') > 1), then there exists an area-minimizing
surface T in H2 X R with 0,2 =T.

Step 1A: Construction of the barrier X near L X R.

Proof of Step 1A. In this part, we construct a barrier X which prevents the
limit escape to infinity.

Since I is a tall curve, by definition, I = SL, x R\T = Q" U Q™ where Q* is
a tall open region with 0Q* =T. Notice that if T has more than one component,

IWe thank the referee for pointing out these exceptional curves.
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Q7 or Q™ may not be connected. Note also that for any component of T', one side
belongs to O, and the other side belongs to Q~ by assumption.

Cover QF by tall rectangles {Ry} in SL X R such that Q* = Ugca: Ra-
Further assume that for any Ry = [0, 051X, the width |05 — 0| < 1r. For each
tall rectangle R, by Lemma 3.3, there exists a unique area-minimizing surface Py
with 0c Py = 0R«. Let Ay be the component of H? X R \ Py with 0eAx = Ry
Define X* = Uyea+ Ax. Then, by construction 0, X* = Q*. Let X = XTuX .
We call X a barrier near infinity. 0O

Step 1B: Construction of the sequence {X,}.

Proof of Step 1B. Let C > 0 be sufficiently large that I' € 0H? x (=C,C).
Let By, be the n-disk in H? with the center origin, and B, = B, X [-C,C] be an
compact solid cylinder in H? x R. Let I); be the radial projection of I into the
cylinder 8B, x [-C,C]. We define radial projection ¢y, : SL, x [-C,C] — 0B,
for (0,t) € SL x[-2m,2m] as follows. For H? X [-C, C], use polar coordinates
where g = (7, 0,t) represents q is a point the plane H2 x {t} with d(q,0¢) =
¥ where O; is the origin in the plane H2 x {t}. Then, we define @, (0,t) =
(n,0,t) € By, and thenT,, = Wn(I). Fora given I', we can choose Ny sufhiciently
large so that for any & and n > Ny, Ax N 0B, C Wn(Ry) as we assume the width
of any Ry is < TT.

Now, I, is a finite union of disjoint Jordan curves in 0B,,. Notice that for any
x € A*, Py is a graph over Ry by Section 3. Hence, as Ru N T = & in SL xR,
their radial projections are also disjoint, that is, ¢, (Ry) N Yu(T) = @ in 3B,,.
Again, by construction, Ay N 0B, C Wn(Ry). This implies I, N X = @ for any
n.

Let =, be the area-minimizing surface in H2XR with 0%, = I}, by Lemma 2.7.
Then, as By, is convex, 3, C By,. O

Step 1C: Forany n, 2, N X = @.

Proof of Step 1C. Recall that X* = Uyea+ Ax. Hence, if we can show that
forany « € A+, 5, N Ay = @, we are done. Notice that for any «, A is foliated
by tall rectangles by Lemma 3.3 (Step 2). This means if X, nAy # &, =, will have
a last point of touch in the minimal foliation, and tangential intersection with a
minimal leaf. This contradicts the maximum principle. Step 1C follows. O

Step 1D: The limit of area-minimizing surface X with 0% =T.

Proof of Step 1D. Let X be the limit of {=,} in H? x R given by Lemma 2.8.
Notice that the limit might be empty. When showing that 0,3 =T, we also prove
that X is not an empty limit.

First, we show that 0,% C I'. By Step 1C, £, n X = &. We claim that
02 C I. Let p be a point in SL, x R\ T. Then, by construction, py belongs to
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the interior of Ry, C SL X R. Since Ay, N3, = @ for any n. Hence, p cannot
be in 0. This proves 0,2 C T. O

We finish the proof by showing that 0% D I. Let p € I'. We will show that
p € 2. Let p be in the component y in . AsT¢ = Q" U Q7 let {p} C QF be
two sequences in opposite sides of y with limp; = p. Let «; be a small circular
arc in H2 x R with 0a; = {p{, p; } and &; LSL X R. Then, for any i, there exists
Nj such that for any n > Nj, I, links «;, that is, I, is not nullhomologous in
H? x R\ «;. Hence, for any n > N;, &; N =y #= @. This implies £ N &; = @ for
any i by construction. As above, let R;” C Q* be the tall rectangle with p;* C R;".
Similarly, let P;" be the unique area-minimizing surface with 0P = OR;". Let
« C & be a subarc with 0« C P; U P;". Hence, «; is a compact arc in H? X R.
Moreover, as = N P;" = &, then there exists a point x; in X N ] for any i. Then,
limx; = p. Hence, p € 3, and 0, = I'. Notice that this shows the limit does not
escape to infinity, and the area-minimizing surface X is not empty, either. Step 1
follows. O

Step 2: [Nonexistence] If T is a short C1'* curve, then there is no area-minimizing
surface = in H? X R with 02 = T.

Proof. Assume there is an area-minimizing surface = in H? X R with 0% =T.
Recall that, here, I' being short means h(I') < 1. Since I is a non-exceptional
short curve in SL X R, there is a regular short pair g* = (6y,d*) € I' where
0 <d"—d < —2¢forsome e > 0. Since g* is a regular short pair, there
exists p* ¢ I with p* = (6p,c*) and ¢~ <d~ <d* <c* < ¢~ + 1 along the
line {0g} x R € SL x R (see Remark 3.7).

Let O* be an open neighborhood of p* in H2 X R such that 0* N % = @.
Let D* = (H? x {c¢*}) n O*. By construction, D* contains a half plane in the
hyperbolic plane H? x {c*}.

By Lemma A.1 and Lemma A.3 in the Appendix, for any h < 1, there exists
an area-minimizing compact catenoid S of height h. For h = ¢* — ¢~ < m, let
S be the area-minimizing compact catenoid with dS ¢ H? x {¢~,c¢"}. In other
words, 0S consists of two curves y* and y~ where y* is a round circle of radius
p(d) in H? x {c*} centered at the origin. Let 0; be the antipodal point of 0y in
SL. Let ¢ be the hyperbolic isometry fixing the geodesic between 6y and 6. In
particular, @ corresponds to @ (x,y) = (tx,ty) in the upper half space model
where 0 corresponds to the origin, and 6y corresponds to the point at infinity.
Let )¢ : H2XR — H2xR be the isometry of H% x R where Pe(p,z) = (Pe(p), 2).

Let S¢ = (+(S) be the isometric image of the area-minimizing catenoid S in
H? X R. Let 3St = y; U y; where y;" = ¢¢(y*). Notice that y; ¢ H? x {c*}.
Let N, > 0 be sufficiently large that y; ¢ D" and y; € D~ for any t > N,.
Then, forany t > Ny, 0S; C D" UD~, and 05; N X = <.

Recall 06 (H2 X R)\T = QT U Q™ where 0Qt =0Q~ =T. Let H2 xR\ X =
AT UA™ where 0,A* = QF. Let B = {09} x (d",d ™) be the vertical line segment
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in S, X R, and let B C Q*. Since A" is an open subset in H2 X R and B C A*,
then an open neighborhood Og of B in H? X R must belong to A*. Then, by
construction, we can choose t, > N, sufficiently large that S;, N Og + @ and
St, N Og is connected. As I is C1%, X is C1¥ regular up to the boundary by
[KM, Proposition 3.1]. As I’ is not exceptional, we can choose Sy, such that
0St, N2 = @. Therefore, St, N2 + .

Let D* be the caps of the compact catenoid Sy,. Let U be the compact region
enclosed by S;, u D* UD™. Let St, N £ = «. Notice that as both X and Sy, are
area-minimizing surfaces and 0S; N X = &, « is a collection of closed curves, and
contains no isolated points because of the maximum principle.

Let E = U N X. Then, E is a compact subsurface of ¥ with 0E = «. In
other words, Sy, separates E from X. Similarly, let T be the subsurface of S, with
0T = «. In particular, T = S;, NA*. Since S, and X are area-minimizing surfaces,
soare T and E. As 0T = 0F = «, and both are area-minimizing surfaces, both
have the same area, that is, |E| = |T].

Let S" = (St, \ T) U E. Then, clearly S;, = 8S" and |S;,| = |S’]. Hence, as
St, is an area-minimizing surface, so is §’. However, §’ has singularity along «.
This contradicts the regularity of area-minimizing surfaces (Lemma 2.7). Step 2
follows. O

Remark 4.2 (Generalization to C° Curves). Note that in the proof of the
converse, we use the C1'® condition only in the neighborhood of the short seg-
ment, that is, near {g~,g"} € I'. Thus, one can generalize the statement to C°
curves containing a pair of C!'* segments y* which are vertically close (< 7).

Remark 4.3 (The h(T') = 1 Case). Notice that the theorem finishes off the
asymptotic Plateau problem for H? X R except the case h(I') = 7. Note that
this case is delicate as there are strongly fillable and strongly non-fillable curves
of height 1. For example, if I} is a rectangle in S, x R with height 11, then
the discussion in Remark 2.9 shows that I'1 bounds no minimal surface; hence,
such a T is nonfillable. On the other hand, in Theorem 5.1, if we take hy = 1T
and use the parabolic catenoid ([Da]), it is not hard to show that the constructed
surface is also area minimizing in H? X R since the parabolic catenoid is also area
minimizing. (See Figure 5.1-right.) These two examples show the case h(T') = 1
is very delicate. Note also that Sa Earp and Toubiana studied a relevant problem
in [ST1, Corollary 2.1].

Remark 4.4 (Minimal vs. Area Minimizing). Notice that the theorem
above does not say that If'y is a short curve, then there is no minimal surface S
in H? X R with 8,S = y. There are many examples of complete embedded mini-
mal surfaces S in H? X R where the asymptotic boundary y is a short curve (e.g.,
butterfly curves). We postpone this question to Section 5 to discuss in detail.

4.1. Convex hull property for tall curves. In this part, we give a natural
generalization of the convex hull property for the asymptotic Plateau problem in
H? x R.
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Definition 4.5 (Mean Convex Hull). Let T be a tall curve in S, xR. Consider
the barrier X constructed in Step 1A in the proof of Theorem 4.1. Define the
mean convex hull of T as MCH(T') = H? x R\ X. Notice that MCH(T) is a mean
convex region in H? X R by construction. Furthermore, d.c MCH(I') =T.

Analogous to the convex hull property in H?, we have the following property
in H? x R.

Corollary 4.6 (Convex Hull Property). LetT be a tall curve in S, X R. Let S
be a complete, embedded minimal surface in H? X R with 0.S = T. Then, we have
S ¢ MCH(I).

Proof. The proof is similar to the convex hull property in other homogeneous
ambient spaces. We use the same notation as in the proof of Theorem 4.1. In that
proof, we proved that for our special sequence {X,} and the limit 3, ¥ n X = @.
However, the same proof works for any area-minimizing surface S with 0§ =T

Recall that T¢ = JRy where Ry are tall rectangles. Let Py be the unique
area-minimizing surfaces in H? X R with 0w Py = 0R«. Let A be the components
of H? X R \ Py with 0Aq = int(Ry). Then, X = Uy Ax.

Assume S ¢ MCH(I') = X¢. Then, S N Ay # @ for some «. However,
by the proof of Lemma 3.3, we know that Ay is foliated by minimal surfaces
{Py | t €[0,00)}. Let tg = sup, {Pr NZ = J}. Again, by maximum principle, this
is a contradiction as both = and Py, are minimal surfaces. The proof follows. O

One can visualize MCH(T) as follows. Assume I' € SL x [c;,c>] for the
smallest [¢1, ¢2] possible. Then, MCH(T) is the region in H? X [¢1, ¢2] where we
carve out all Ay defined by rectangles R C I'.

5. ASYMPTOTIC PLATEAU PROBLEM FOR MINIMAL SURFACES

So far, we only dealt with the strong fillability question, that is, detecting curves
in SL, x R bounding area-minimizing surfaces in H*> x R. If we relax the question
from “strong fillability” to only “fillability,” the picture completely changes. In
other words, we will see that detecting curves in S1, x R bounding embedded
minimal surfaces is much more complicated than detecting the curves bounding
embedded area-minimizing surfaces. In Theorem 4.1, we gave a fairly complete
answer to the asymptotic Plateau problem in the strong fillability case. In this
section, we will see that the classification of fillable curves is highly different.

A simple example to show the drastic change in the problem is the following.
Let T = y; Uy, where y; = S, X {ci} and |¢; — ¢2| < 1. Then clearly, T is a
short curve and it bounds a complete minimal catenoid C4 by [NSST] (See also
Appendix A for further discussion on catenoids.) On the other hand, the pair
of geodesic planes H? X {c1} U H? X {c3} also bounds I' = y; U y,. However,
there is no area-minimizing surface = with 0% = y1 U ¥, by Theorem 4.1. This
means neither the catenoid, nor pair of geodesic planes are area minimizing, but
just minimal surfaces. Hence, the following version of the problem becomes very
interesting.
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Problem (Asymptotic Plateau Problem for Minimal Surfaces in H* x R).
For which curves T in SL, X R, there exists an embedded minimal surface S in H> X R
with 0,S =T.

In other words, which curves in SL, x R are fillable? (Note that here we only
discuss the finite curve case ([ ¢ SL x R). For infinite curves case for the same
question, see [Co2].)

Recall that by Lemma 2.6, for any short curve y in S, X R containing a thin
tail, there is no complete minimal surface § in H? X R with 3.5 = y. Thus,
this result suggests that the minimal surface case is similar to the area-minimizing
surface case.

On the other hand, unlike the area-minimizing surface case, it is quite easy
to construct short curves with more than one component, bounding minimal
surfaces in H? X R. Let I = y; U -+ - U yy, be a finite collection of disjoint tall
curves y;. Even though every component y; is tall, because of the vertical distances
between the components y; and y;, the height h(I') can be very small. Thus, T
itself might be a short curve, even though every component is a tall curve. For
each component y;, our existence theorem (Theorem 4.1) already gives an area-
minimizing surface 3; with 0.X; = y;. Hence, the surface S=3uU---U3,
is automatically a minimal surface with 3.8 = I'. By using this idea, for any
height hy > 0, we can trivially produce short curves I' with height h(I') = hg
by choosing the components sufficiently close, for example, the pair of horizontal
geodesic planes H? x {c1} U H? X {2} with |¢1 — ¢2] = hy.

Naturally, the next question would be what if T' has only one component.
DoesT need to be a tall curve to bound a minimal surface in H? x R? The answer is
again no. Now, we also construct simple closed short curves which bound complete
minimal surfaces in H? x R. The following result with the observation above
shows that the asymptotic Plateau problem for minimal surfaces is very different
from the asymptotic Plateau problem for area-minimizing surfaces.

Theorem 5.1. For any hy > 0, there exists a nullhomotopic simple closed curve
T with height h(Y) = ho such that there exists a minimal surface S in H? X R with
00oS =T.

Proof. For hy > 11, we have tall rectangles with height ho. Thus, we assume
0 < ho = m. Consider the rectangles R* = [s,7/2] X [-m,m] and R~ =
[-1/2,—s] X [-m, m] with s > 0 sufficiently small, and m > 0 sufficiently
large, which will be fixed later. Consider another rectangle Q = [—s,s] % [0, ho].
Consider the area-minimizing surfaces P* and P~ with 0oP* = 0R*. Let T =
(OR*T UOR™)A0Q where A represents the symmetric difference (see Figure 5.1).
Notice that h(I) = hy. We claim there exists a complete embedded minimal
surface S in H? X R with 05,5 =T.

Consider now the minimal catenoid Cj, that has an asymptotic boundary
SLx {0} USL x {ho}. If hy = 11, take C,, to be the Daniel’s parabolic catenoid
where 00 Crr = (SL X {—11/2,+77/2}) U ({1t} x [-71/2, +717/2]). Let @¢ be the
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isometry of H? x R which keeps R coordinates the same, and fixes the geodesic
€ in H? with 0o ¥ = {0, 71} with translation length logt. In particular, we have
@tlnexic) : H?2 X {c} — H? x {c}. Furthermore, for any p € H? x {c}, we have
@i(p) = (0,c) € SLxRast ~0and ¢ (p) — (m,¢) € SLxRast \ . Now,
we can choose t > 0 and s > 0 sufficiently small, and m > 0 sufhiciently large, so
that P* U P~ separates @ (Cp,) = C;tlo into four disks (see Figure 5.1). In other
words, there is a component A in H2 X R\ (P* UP~ U Cﬁo) such that 0 A = Q.

Now, let Q" be the component of H>xXR\P* such that 0,Q" = R*. Similarly,
let O~ be the component of H? X R \ P~ such that 8,Q~ = R™~. Let X =
H? x R\ (QT UQ~ UA). Hence, X is a mean convex domain in H? X R with
00X = 0 (H2 x R) \ int(R* UR™ U Q). Hence, T C 0..X.

Now, let B;,;(0) be the ball of radius 7 in H? with center 0. Let also D, =
B, (0) x [-2m,2m]. Let D,, = D,, N X. Let Iy be the radial projection of T to
oD,,. In particular, we define radial projection @y, : SL, x [-2m,2m] — oD, for
(0,t) € SL, x[-2m,2m] as follows. For H? X [-2m, 2m], use polar coordinates
where q = (7, 0, t) represents g as a point in the plane H?x {t} with d(q, O;) = r
where O is the origin in the plane H? x {t}. Define

Rn(60,t0) = sup{r € R* | (r,00,t0) € Dy} < n.

Then, define @, (0,t) = (R, (0),0,t). Then, I}, = Yy, ().
Let Sy, be the area-minimizing surface in D,, with 8S,, = I,. Since D,, is mean

convex, Sy is a smooth embedded surface in Dy,. Again, by using Lemma 2.8, we
get an area-minimizing surface S in X. By using similar ideas in Theorem 4.1

FIGURE 5.1. In the left, the horizontal slice H? x {hy/2} is
given. In the right, I € SL x R is pictured.
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(Step 1), it can be shown that 0,,S = I'. While S is an area-minimizing surface in
X, it is only a minimal surface in H? X R. The proof follows. O

Remark 5.2. Notice that for smaller choice of hg > 0 in the theorem above,
one needs to choose the height 2m of the rectangles large, and the distance s of
the rectangles small by the construction (see Figure 5.1).

Recently, Kloeckner and Mazzeo have also studied these curves more exten-
sively in [KM], where they call these curves butterfly curves. In [KM], they also
constructed different families of complete minimal surfaces in H? x R. Further-
more, they studied the asymprotic behavior of the minimal surfaces in H? x R.

Remark 5.3. Recently, we showed that when we choose hg < 1T and 2m >
sufficiently close, the butterfly curve T}! constructed above does not bound any
minimal surface, either. This example is the first non-fillable example in S, x R

with no thin tail [Co3].

6. FINAL REMARKS

6.1. Infinite curves. In this paper, we only dealt with the finite curves, that
is, I € S, x R. On the other hand, the infinite curve case is also very interesting
(TN (H2 x {+o0}) # @). In [Co2], we studied this problem, and gave a fairly
complete solution in the strongly fillable case. Kloeckner and Mazzeo studied this
problem in [KM], and constructed a rich and interesting family of fillable infinite
curves.

On the other hand, strong fillability questions and fillability questions are
quite different in both finite and infinite curve case. While we gave a classification
result for strongly fillable infinite curves in [Co2], the examples in Section 4 of
[Co2] show that there are many fillable and non-fillable infinite curve families,
and we are far from classification of these infinite curves in the fillable case.

6.2. Fillable curves. In Section 5, when we relax the question from “exis-
tence of area-minimizing surfaces” to “existence of minimal surfaces,” we see that
the picture completely changes. While Theorem 4.1 shows that if h(T') < 1, there
is no area-minimizing surface  in H? X R with 0,3 = I', we constructed many
examples of short fillable curves I' in SL, X R for any height in Section 5.

Again, by the Sa Earp and Toubiana nonexistence theorem (Lemma 2.6), if T
contains a thin tail, then there is no minimal surface S in H? X R with 0eS =T.
Hence, the following classification problem is quite interesting and wide open.

Problem (Classification of Fillable Curves in H?> X R). For which curvesT in
0oo (H? X R) does there exist a minimal surface S in H? X R with 0.,S = I'?

Note that Kloeckner and Mazzeo have studied this problem, and constructed
many families of examples. They have also studied the asymptotic behavior of
these complete minimal surfaces in H? x R in [KM]. Further, in [FMMR], the
authors have recently studied the existence of vertical minimal annuli in H? X R,
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and given a very interesting classification. Note also that we constructed the first
examples of non-fillable finite curves with no thin tail in [Co3].

APPENDIX A.
In this part, we give some technical lemmas used in the proof of the main theorem.

1.1. Area minimizing catenoids in H*> X R. In this section, we study the
family of minimal catenoids C4 described in [NSST], and show that for suffi-
ciently large d > 0, a compact subsurface Sg C Cq near girth of the catenoid Cg
is an area-minimizing surface.

First, we recall some results on the rotationally symmetric minimal catenoids
Ca [NSST, Proposition 5.1]. Let (p, 0, z) represent the coordinates on H? x R

with the metric ds? = dp? + sinh? p 402 + dz2. Then,
Ca=1{(p,0,+Aa(p)) | p = sinh™' d}

p
with Ag(p) = J d

-1 .
sinh™" d \/smh2 x —d?

The catenoid Cg is obtained by rotating the generating curve y; about z-axis
where yq = {(p,0,xA4(p)) | p = sinh ' d}. Here, sinh ' d is the distance of
the rotation axis to the catenoid Cy, that is, the necksize of C4.

On the other hand, the asymptotic boundary of the catenoid Cg is the pair of
circles of height £h(d), that is, 0Cq = SL, X {—h(d), +h(d)} C S, x R. Here,
h(d) = limy_ Ag(p). By [NSST], h(d) is a monotone-increasing function with
h(d) ~ 0 when d ~ 0, and h(d) ~ 11/2 when d 7 co. Hence, for any d > 0, the
catenoid Cq has height 2h(d) < 11 (See Figure A.1).

By Theorem 4.1, we know that the minimal catenoid C4 is not area mini-
mizing as 0,Cq is a short curve. However, we claim that for sufficiently large
d > 0, the compact subsurfaces near the girth of Cy are indeed area minimizing.
In particular, we prove the following result.

Lemma A.1. Let Sg =Ca NH? X [-Aa(p), +Aa(p)] be a compact subsurface
of Ca. Then, for sufficiently large d > 0, there isa p(d) = %logd > sinh ™' d such

5(d) T
that S 5 @ s an area-minimizing surface.

dx.

Proof. Consider now the upper half of the minimal catenoid Cg with the para-

metrization @4(p, 0) = (p, 0,A4(p)) where p > sinh ' d. Hence, the area ong
can be written as

21 rpo ) dz
1S5 :2J J sinhx, |1+ ——5———dxdo.
0 Jsinh'd sinh” x — d?

Notice that 0S5 = y;,, U ¥z, is a pair of round circles of radius p, in
Ca where yZ, = 1(po, 0, +Aa(po)) | 0 < 0 < 21}, By [NSSTJ, only minimal
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surfaces bounding y,; , Uy, , in H* x R are subsurfaces of minimal catenoids
Ca and a pair of closed horizontal disks Dj , U D , where

Di,, =1(p,0,+24(po)) | 0 < p < po, 0 <0 <2m}.

In other words, here D; oo is a hyperbolic disk of radius py with z = +A4(p,) in

H? x R. Recall the area of a hyperbolic disk of radius p is equal to 277 (cosh p — 1).
Hence, if we can show that

1S9] < 2|D,| = 41t (coshp — 1)

for some p > sinh™' d, this implies S§ C Cy is an area-minimizing surface in
. . R -1
H2 x R, and we are done. Hence, we claim there is a p(d) > sinh™ " d such that

IS(‘;I < 2|Dp| = 41 (coshp — 1) where sinh 'd < p < p(d). In other words, we
claim the following inequality:

P ) 42
I=J sinhx, /1 + —————dx <coshp - 1.
sinh™'d sinh” x — d?

Now, we separate the integral into two parts:

p sinh™! (d+1) p
S o o
sinh™' d sinh™' d sinh™! (d+1)

that is, I=1+1,.

SE!

A2

Al

ol

FIGURE A.l. For d; < di1, A; represents the graphs of
functions Ag, (p) which are generating curves for the minimal
catenoids Cy4. If h(d) = lim,_« Ag(p), then h(d) is monotone
increasing with h(d) 7 /2 as d — .
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For the first part, clearly
sinh™! (d+1) 42
II:J sinh x 1+fdx
sinh™' d sinh” x — d?
sinh ™' @+ ginh x dx

-1 i "
sinh " d \/sinh? x — d2

Recall that cosh” x — sinh® x = 1. By substituting u = cosh x, we get

/1+(d+1)? du
JI+d? Ju? — (1 +d?)

= @+ Dloglu +u? — (1+a2)1| T

i+ @+1D)2+2d+1
V1 +d?

<d+1

ILi<(d+1)

This implies

I < F(d) = (d+1)log

Now, let F(d) = Vd + 1 - G(d). Consider

. L VI+(@d+1D)2+V2d +1
éljl:oG(d)—allgxgovd+llog T

ad 7 2
—llm\/—l d+ \/_l Wd+1/v2)° d+1/v2)

- Ja a
>2f

1
—iglog<l+m = 2.

Hence, G(d) < 2 for d > Cy where Cy is sufliciently large. Then, we have
I < F(d) <2+/d ford > Co.

For the second integral, we have

P . dZ
12=J sinhx, [1+ —————dx
sinh™ (d+1) sinh” x — d?

Notice that the integrand

2 S 12
sinh x\/l + d = sinh” x

sinh? x — d2 \sinh2 x — dz-

Hence, as sinh x < eX/2 and (sinh® x > e2* — 2)/4, we obtain

J sinh? x b < J e b = VeX — (2 + 4d2)
finh? x — d2 2./e2x — (2 + 4d2) 2 '
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Assinh™'y = log (y +4/1 + »?), after cancellations, we obtain

20 _ 2y 20 _ 2
12<\/ep (2+4§i) 8d+2<\/€p (22+4d)—\/ﬁ

This implies, for d > Co,

T g

1:11+12<2JE+< e (22+4d2)—\/2d
-

RN

Now, by taking p = %logd for d > Cy, we obtain

Va3 — (2 +4d%)
@ (§ S NN YN

3/2 _
<d272ﬁ+<2—ﬁ)&

3/2
- W2-va

1<

On the other hand,

3/2 -3/2
coshp — 1 = cosh <%logd> -1= % -1

This shows that for p(d) = 3 logd, we have I < cosh p. Therefore, the total
area of the compact catenoid ISg (d)l < 2|Dp(ayl. Hence, the compact catenoid

H(d) - e e .
sy @ is an area-minimizing surface in H? X R. O

Remark A.2. Notice that in the lemma above, for p(d) about % times the

. . . epld) .
neck radius of the catenoid C, we showed that the compact slice $5“ in C, is an

area-minimizing surface. However, the comparison between e’ — (2 + 4d?)/2
and cosh p indicates that if py is greater than twice the neck radius of the catenoid

Ca (i.e., po > 2log(d)), the estimates above become very delicate, and S5° is no
longer area minimizing. (See Remark A.5 for further discussion.) Note also that
any subsurface of an area-minimizing surface is automatically area minimizing.

Thus, the for any sinh '(d) < p < p(d), S# is also an area-minimizing surface.
Now, we show that as d — oo, the height 2/1(d) of the compact area mini-
mizing catenoids Sg(d) goes to 1T, that is, i (d) — /2.
Lemma A.3. Let h(d) = Aa(p(d)). Then, limg_ h(d) = 17/2.
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Proof. By [NSST, Proposition 5.1],

_ . s(p(d)) dt
6%2130 h(d) = Jo cosht’
By the same proposition, s(p) = cosh™! (coshp//1+d?). Asp(d) = %log d,
then s(p(d)) ~ +/d. This implies

— O

11mﬁ(d):J 1=

~odr J“’ u
o cosht B 0

Remark A.4. Notice this lemma implies that, for any height h, € (0, 1),
there is an area-minimizing compact catenoid S of height h,. In other words,
for any h, € (0, 17), there exists d > 0 with h(d) > h, such that

Ca N H? X [~ho/2,ho /2]

is an area-minimizing compact catenoid in H? X R. Recall also that any subsurface
of a area-minimizing surface is also area minimizing.

Remark A.5 (Pairwise Intersections of Minimal Catenoids {C,}). With
these results on the area-minimizing subsurfaces S in the minimal catenoids Cy in
the previous part, a very interesting point deserves a brief discussion. Notice that
by definition [NSST], for di < d», the graphs of the monotone increasing func-
tions Ag, : [sinh ™' d;, ) — [0,h(d))) and Ag, : [sinh ™ da, ) — [0,h(d2))
intersect at a unique point p, € (sinh ™' d,, o), that is, Ad, (po) = Aa, (po) (see
Figure A.1).

This implies the minimal catenoids C4, and C, intersect at two round circles
o™ of radius p,, where &* = (p,, 0, +A4,(po)), thatis, Cq, N Cq, = &t U ™.

Recall the well-known fact that two area-minimizing surfaces with disjoint
boundaries cannot “separate” a compact subsurface from interiors of each other. In
other words, let =; and X, be two area-minimizing surfaces with disjoint bound-
aries. If X1 \ X, has a compact subsurface S; with 051 N 0% = & and similarly
3, \ 2 has a compact subsurface S, with 05, N 0%, = &, then 2] = (£;\ 1) US>
is an area-minimizing surface with a singularity along 0S5, which contradicts the
regularity of area-minimizing surfaces (Lemma 2.7).

This argument shows that if both C4, and Cg4, were area-minimizing surfaces,
then they would have to be disjoint. Hence, both C4, and Cg4, cannot be area-
minimizing surfaces at the same time. In particular, the compact area-minimizing
surfaces 553 C Cg4, and ng C Cq, must be disjoint, too.

This observation suggest an upper bound for p(d) we obtained in the previous
part. Let t(d) be the intersection number for C4 defined as follows:

ud) = tiﬂg{l)t [ Aa(pr) = Ae(pe)} = supipe | Aa(pr) = Ae(pe)}.
> t<d
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The discussion above implies that p(d) < t(d), as the area-minimizing sur-
faces S} C Ca, and S§* C Cy4, must be disjoint.
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