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ABSTRACT. We study the asymptotic Plateau problem
in H2 ×R for area-minimizing surfaces, and give a fairly
complete solution for finite curves.

1. INTRODUCTION

The Asymptotic Plateau Problem in H2 × R studies the existence of a minimal
surface Σ inH2×R for a given curve Γ in ∂∞(H2×R) with ∂∞Σ = Γ . In past years,
the existence, uniqueness, and regularity of solutions to the asymptotic Plateau
problem in H2 ×R have been studied extensively by the leading researchers of the
field (e.g., [CR, CMT, Da, FMMR, KM, MMR, MoR, MRR, NR, PR, RT, ST1,
ST2]).

Unlike H3, the asymptotic Plateau problem in H2×R is quite interesting and
challenging as there are several families of curves in S1∞ ×R, which do not bound
any minimal surface in H2 × R [ST1]. In this paper, we finish off an important
case by classifying strongly fillable, finite curves in S1∞ ×R as follows.

Theorem 1.1. Let Γ be a finite collection of disjoint Jordan curves in S1∞ × R
with h(Γ ) ≠ π . If Γ is a tall curve, there exists an embedded area-minimizing surfaceΣ in H2 × R with ∂∞Σ = Γ . Conversely, if Γ is a short C1,α non-exceptional curve,
then there is no area-minimizing surface Σ in H2 ×R with ∂∞Σ = Γ .

The organization of the paper is as follows. In the next section, we give some
definitions, and introduce the basic tools which we use in our construction. In
Section 3, we introduce tall curves, and study their properties. In Section 4, we
prove our main result above. In Section 5, we show that the asymptotic Plateau
problem for minimal surfaces and area-minimizing surfaces are quite different,
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and we construct some explicit examples. Finally, in Section 6, we give some
concluding remarks, and mention some interesting open problems in the subject.
We postpone some technical steps to Appendix A at the end.

2. PRELIMINARIES

In this section, we give the basic definitions, and a brief overview of the past results
which will be used in the paper.

Throughout the paper, we use the product compactification of H2 × R. In
particular, H2 ×R = H2 ×R = H2 ×R∪ ∂∞(H2 ×R) where ∂∞(H2 ×R) consists
of three components: the infinite open cylinder S1∞ × R, and the closed caps at
infinity H2 × {+∞}, H2 × {−∞}. Hence, H2 ×R is a solid cylinder under this
compactification.

Let Σ be an open, complete surface in H2 ×R, and ∂∞Σ represent the asymp-
totic boundary of Σ in ∂∞(H2×R). Then, if Σ̄ is the closure of Σ in H2 ×R, then
∂∞Σ = Σ̄∩ ∂∞(H2 ×R).

Definition 2.1. A surface is minimal if the mean curvature H vanishes every-
where. A compact surface with boundary Σ is called an area-minimizing surface ifΣ has the smallest area among the surfaces with the same boundary. A noncom-
pact surface is called an area-minimizing surface if any compact subsurface is an
area-minimizing surface.

Remark 2.2 (Rectifiable Currents with Z-coefficients and Orientation of
Surfaces). Throughout the paper, all the surfaces will be orientable, and we use
rectifiable currents with Z-coefficients to represent them. In particular, in the def-
inition above, when we say “Σ has the smallest area among the surfaces with the
same boundary,” we mean any competitor surface S has the same boundary and
the same induced orientation, i.e., ∂S = ∂Σ and ∂S matches with the orientation
of ∂Σ. A very important point here is that when we say orientable for a non-
connected surface S = ⋃mi=1 Si, we mean all its components {Si} have consistent
orientation, particularly since H2 × R has trivial topology, and any proper, com-
plete surface S is separating. Then, S = ⋃m

i=1 separate H2 × R into two types
of regions, say blue Ω+, and black Ω−. These blue and black regions may not
be connected, but for every component Si, its one side is a black region, and the
other is a blue region. Further, that S has consistent orientation means that at
each component we chose the normal direction towards, say, blue regions. This
convention is crucial when we get the area bound for the sequence {Sni } via |∂Δn|
in Lemma 2.8.

In this paper, we study the Jordan curves in ∂∞(H2 × R) which bound com-
plete, embedded, minimal surfaces in H2 × R. Throughout the paper, when we
say a curve in ∂∞(H2 × R) we mean a finite collection of pairwise disjoint Jordan
curves in ∂∞(H2 ×R).

Definition 2.3 (Fillable Curves). Let Γ be a curve in ∂∞(H2 × R). We callΓ fillable if Γ bounds a complete, embedded, minimal surface S in H2 × R, that
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is, ∂∞S = Γ . We call Γ strongly fillable if Γ bounds a complete, embedded, area-
minimizing surface Σ in H2 ×R, that is, ∂∞Σ = Γ .

Notice that a strongly fillable curve is fillable since any area-minimizing sur-
face is minimal.

Definition 2.4 (Finite and Infinite Curves). Let Γ be a curve in ∂∞(H2×R).
Decompose Γ = Γ+∪Γ−∪ Γ̃ such that Γ± = Γ∩(H2×{±∞}) and Γ̃ = Γ∩(S1∞×R).
In particular, Γ± is a collection of closed arcs and points in the closed caps at
infinity, while Γ̃ is a collection of open arcs and closed curves in the infinite open
cylinder. With this notation, we call a curve Γ finite if Γ+ = Γ− = ∅. We call Γ
infinite otherwise.

Problem (Asymptotic Plateau Problem forH2×R). Which (finite or infinite)Γ in ∂∞(H2 ×R) is fillable or strongly fillable?

As the question suggests, there are mainly four versions of the problem: the
classifications of “fillable finite curves,” “fillable infinite curves,” “strongly fillable
finite curves,” and “strongly fillable infinite curves.” Unfortunately, we are cur-
rently far from classification of the fillable (finite or infinite) curves [FMMR].

Recently, we gave a classification for strongly fillable, infinite curves in [Co2].
In this paper, we give a fairly complete solution for the classification of strongly
fillable, finite curves in ∂∞(H2 ×R).

One of the most interesting properties of the asymptotic Plateau problem in
H2 × R is the existence of non-fillable curves. While any curve Λ in S2∞(H3) is
strongly fillable in H3 [An], Sa Earp and Toubiana showed there exist some non-
fillable curves in ∂∞(H2 ×R) [ST1].

Definition 2.5 (Thin Tail). Let Γ be a Jordan curve in ∂∞(H2 ×R), and let
τ be an arc in Γ . Assume there is a vertical straight line L0 in S1∞×R such that the
following hold:

• τ ∩ L0 ≠∅ and ∂τ ∩ L0 = ∅.
• τ stays in one side of L0.
• τ ⊂ S1∞ × (c, c +π) for some c ∈ R.

Then, we call τ a thin tail in Γ .
Lemma 2.6 (Non-fillable Curves [ST1]). Let Γ be a curve in ∂∞(H2 ×R). IfΓ contains a thin tail, then there is no properly immersed minimal surface Σ inH2×R

with ∂∞Σ = Γ .
This nonexistence result makes the asymptotic Plateau problem quite interest-

ing. In particular, to address the fillability question, we need to understand which
curves have no thin tails. In Section 3, we introduce a notion called tall curves to
recognize them. Note also that we recently gave the first examples of non-fillable
curves with no thin tails [Co3].

To construct our sequence of compact area-minimizing surfaces in our main
result, we need the following classical result of geometric measure theory.
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Lemma 2.7 (Existence and Regularity of Area-Minimizing Surfaces [Fe],
Theorems 5.1.6 and 5.4.7). Let M be a homogeneously regular, closed (or mean
convex) 3-manifold. Let γ be a nullhomologous smooth curve in M . Then, γ bounds
an area-minimizing surface Σ in M . Furthermore, any such area-minimizing surface
is smoothly embedded.

Now, we state the convergence theorem for area-minimizing surfaces, which
will be used throughout the paper. Note that we use convergence in the sense
of geometric measure theory, that is, the convergence of rectifiable currents with
Z-coefficients in the flat metric.

Lemma 2.8 (Convergence). Let {Σi} be a sequence of complete area-minimizing
surfaces in H2 × R where Γi = ∂∞Σi is a finite collection of closed curves in S1∞ × R.
If Γi converges to a finite collection of closed curves Γ̂ in S1∞ × R, then there exists a
subsequence {Σnj} such that Σnj converges to an area-minimizing surface Σ̂ (possibly
empty) with ∂∞Σ̂ ⊂ Γ̂ . In particular, the convergence is smooth on compact subsets of
H2 ×R.

Proof. Let Δn = Bn(0)× [−C,C] be convex domains in H2×R where Bn(0)
is the closed disk of radius n in H2 with center 0, and Γ̂ ⊂ S1∞ × (−C,C). For
n sufficiently large, consider the surfaces Sni = Σi ∩ Δn. We claim that the area
of the surfaces {Sni ⊂ Δn} is uniformly bounded by |∂Δn|. Recall that Σi is an
orientable surface, and area minimizing. Then, as Σi is oriented, ∂Sni ⊂ ∂Δn has
the induced orientation coming from the orientation of Σi. Notice that H2 × R
is a topological ball, and Σi separates H2 × R. Let H2 × R \ Σi = Ω+i ∪ Ω−i (see
Remark 2.2). Let Ωn±i = Δn ∩Ω±i . Then, Δn \ Σi = Ωn+i ∪Ωn−i . In particular, ifΣi ∩ int(Δn) ≠∅, Σi separates Δn.

Now, we have ∂Ωn±i = Sni ∪ Tn±i . Hence, Sni ∪ Tni is a closed oriented
surface ∂Ωn±i . This means ∂Tni and ∂Sni are oppositely oriented. Hence, ∂Sni
and ∂(−Tni ) have the same orientation as rectifiable currents. This shows that
∂Sni (with the induced orientation) bounds a surface (−Tni ) ⊂ ∂Δn. As Sni is
area minimizing, |Sni | ≤ |Tni | < |Δn|. This gives a uniform bound |Δn| on the
sequence {Sni }.

Similarly, ∂Sni can be bounded by using standard techniques. Hence, if {Sni }
is an infinite sequence, we get a convergent subsequence of {Sni } in Δn with
nonempty limit Sn. Sn is an area-minimizing surface in Δn by the compactness
theorem for rectifiable currents (codimension-1) with the flat metric of geometric
measure theory [Fe]. By the regularity theory, the limit Sn is a smoothly embed-
ded area-minimizing surface in Δn.

If the sequence {Sni } is an infinite sequence for infinitely many n, we get
an infinite sequence of compact area-minimizing surfaces {Sn}. Then, by using
the diagonal sequence argument, we can find a subsequence of {Σi} converging
to an area-minimizing surface Σ̂ with ∂∞Σ̂ ⊂ Γ̂ as Γi → Γ̂ . Note also that for
fixed n, the curvatures of {Sni } are uniformly bounded by curvature estimates for
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area-minimizing surfaces. Hence, with the uniform area bound, we get smooth
convergence on compact subsets of H2 ×R. (See [MW, Theorem 3.3] for further
details.) �

Remark 2.9 (Empty Limit). In the proof above, there might be cases like
{Sni } is a finite sequence for any n. In particular, assume that if, for every n, there
exists Kn 
 0 such that for every i > Kn, Σi ∩Δn = ∅. In such a case the limit
is empty, and we say {Σi} escapes to infinity. An example to this case is a sequence
of rectangles Ri in S1∞ × R with h(Ri) ↘ π and Ri → R̂ where R̂ is a rectangle
of height π . Then, the sequence of area-minimizing surfaces Pi with ∂∞Pi = Ri
escapes to infinity, as there is no area-minimizing surface Σ with ∂∞Σ = Γ̂ . In
Theorem 4.1, we will prove that if Γ̂ is a tall curve, the sequence {Σi} does not
escape to infinity, and a subsequence Σij converges to an area-minimizing surfaceΣ̂ with ∂∞Σ̂ ⊂ Γ̂ .

Remark 2.10 (Asymptotic Regularity). Unfortunately, there is no general
asymptotic regularity result for minimal surfaces in H2 ×R in the literature so far.
However, for the horizontal parts of the minimal surface, Kloeckner-Mazzeo gave
Ck,α regularity [KM, Proposition 3.1]. In particular, they show that if γ is a Ck,α
horizontal arc in S1∞ × R (vertical graph over a segment in S1∞ × {0}), then the
minimal surface bounding γ is also Ck,α regular up to the boundary.

3. TALL CURVES IN S1∞ ×R
After the Sa Earp-Toubiana nonexistence result (Lemma 2.6), one needs to un-
derstand the curves with no thin tails in order to solve the asymptotic Plateau
problem. In this section, we introduce a notion called tall curves to easily identify
such curves. First, we study the tall rectangles. Then, by using these, we define
the tall curves.

3.1. Tall rectangles.
Definition 3.1 (Tall Rectangles). Consider the asymptotic cylinder S1∞ × R

with the coordinates (θ, t) where θ ∈ [0,2π) and t ∈ R. We call a rectangle
R = [θ1, θ2]× [t1, t2] ⊂ S1∞ ×R tall rectangle if t2 − t1 > π .

In [ST1], for the boundaries of tall rectangles, Sa Earp and Toubiana further
proved the following result.

Lemma 3.2 ([ST1]). If R is a tall rectangle in S1∞×R, then there exists a minimal
surface P in H2 ×R with ∂∞P = ∂R. In particular, P is a graph over R.

Furthermore, the authors in [ST1] gave a very explicit description of P as
follows. Without loss of generality, let R = [−θ1, θ1] × [−c, c] in S1∞ ×R where
c > π/2 and θ1 ∈ (0, π). Let ϕt be the hyperbolic isometry of H2 fixing the
geodesic γ with ∂∞γ = {−θ1, θ1} with translation length t. Let ϕ̂ be the isometry
ofH2×R with ϕ̂t(q, z) = (ϕt(q), z). The authors here proved that P is invariant
under ϕ̂t for any t. Let τ be geodesic inH2 with ∂∞τ = {0, π} ⊂ ∂∞H2. Let α =
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P∩(τ×R). Then, α is the generating curve for P where ∂∞α = {(0, c), (0,−c)},
that is, P = ⋃t ϕ̂t(α).

On the other hand, let Ph be the minimal plane with ∂∞Ph = ∂Rh where
the height of the rectangle Rh is h, i.e., 2c = h. The invariance of Ph under
the isometry ϕ̂ shows that γh = Ph ∩H2 × {0} is an equidistant curve from the
geodesic γ̂ = γ × {0} in H2 × {0}. Let dh = dist(γh, γ̂). Then, the authors also
show that if h ↗ ∞ then dh ↘ 0 and if h ↘ π then dh ↗ ∞. In other words,
when h→∞, Ph gets closer to the vertical geodesic plane γ×R. When h ↘ π , Ph
escapes to infinity. Moreover, the upper half of Ph, Ph ∩H2 × [0, c], is a vertical
graph over the component of H2 × {0} \ γh in the R ⊂ S1∞ ×R side.

Now, we show that tall rectangles are indeed quite special. They bound a
unique area-minimizing surface which is area minimizing.

Lemma 3.3 (Tall Rectangles are Strongly Fillable). If R is a tall rectangle in
S1∞ × R, then there exists a unique minimal surface P in H2 × R with ∂∞P = ∂R.
Furthermore, P is also an area-minimizing surface in H2 ×R.

Proof. The outline of the proof is as follows. By using rectangles R̂h ⊂ S1∞×R,
we foliate a convex region Δ in H2 ×R by minimal planes P̂h with ∂∞P̂h = ∂R̂h.
As our minimal plane P = P̂h0 is a leaf in this foliation, it is the unique minimal
surface bounding Γh0 = ∂R̂h0 , and hence is area minimizing.

Step 1: Defining the convex region Δ. The convex region Δ will be a component of
the complement of a vertical geodesic plane in H2 ×R, that is, H2 ×R \ (η×R).
The setup is as follows. Let Rh = [−θ1, θ1]×[−h,h] be a tall rectangle in S1∞×R,
that is, h > π/2 and 0 < θ1 < π . By Lemma 3.2, for any h > π/2, there exists a
minimal surface Ph with ∂∞Ph = Γh = ∂Rh. Moreover, by the construction [ST1],
{Ph} is a continuous family of complete minimal planes with Ph ∩ Ph′ = ∅ for
h ≠ h′. Now, fix h0 > π/2, and let Rh0 = [−θ1, θ1]× [−h0, h0].

Let τ be geodesic inH2 with ∂∞τ = {0, π} ⊂ ∂∞H2. Letψt be the hyperbolic
isometry ofH2 that fixes τ, where t is the translation parameter along τ. In partic-
ular, in the upper half plane model H2 = {(x,y) | y > 0}, τ = {(0, y) | y > 0}
and ψt(x) = tx. Then, let θt = ψt(θ1). Then, for 0 < t < ∞, 0 < θt < π .
Hence, θt < θ1 when 0 < t < 1, and θt > θ1 when 1 < t < ∞. In particular, this
implies [−θ1, θ1] ⊂ [−θt, θt] for t > 1, and [−θ1, θ1] ⊃ [−θt, θt] for t < 1.
For notation, let θ0 = 0 and let θ∞ = π .

Now, define a continuous family of rectangles R̂h which foliates an infinite
vertical strip in S1∞ ×R as follows. Let s : (π/2,∞) → (0,2) be a smooth mono-
tone increasing function such that s(h) ↗ 2 when h ↗ ∞, and s(h) ↘ 0 when
h ↘ π/2. Furthermore, let s(h0) = 1.

Now, define R̂h as the rectangle in S1∞×Rwith R̂h = [−θs(h), θs(h)]×[−h,h].
Hence, R̂h0 = Rh0 , and for any h ∈ (π/2,∞), R̂h is a tall rectangle with height
2h > π . Let Γ̂h = ∂R̂h. Then, the family of simple closed curves {Γ̂h} foliates the
vertical infinite strip Ω = ((−θ2, θ2)×R) \ ({0} × [−π/2, π/2]) in S1∞ ×R.
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Recall that Rh = [−θ1, θ1] × [−h,h] for any h > π/2, and the planes Ph
are minimal surfaces with ∂∞Ph = Γh. Let ψ̂t be the isometry of H2 × R with
ψ̂t(p, s) = (ψt(p), s) where p ∈ H2 and s ∈ R. Then, clearly R̂h = ψ̂s(h)(Rh).
In other words, R̂h and Rh have the same height, but R̂h is “widened Rh” in the
horizontal direction via isometry ψ̂. Similarly, define P̂h = ψ̂s(h)(Ph). Hence, P̂h
is a complete minimal plane with ∂∞P̂h = Γ̂h = ∂R̂h.

Notice that P̂∞ is the geodesic plane η×R in H2 ×R where η is a geodesic in
H2 with ∂∞η = {−θ2, θ2}. Let Δ be the component ofH2×R\P̂∞ containing Ph0 ,
that is, ∂Δ̄ = P̂∞ and ∂∞Δ̄ = Ω̄. We claim that the family of complete minimal
planes {P̂h | h ∈ (π/2,∞)} foliates Δ.

Step 2: Foliating Δ by minimal planes {P̂h}. Notice that as {Ph} is a continuous
family of minimal planes, and {ψ̂t} is a continuous family of isometries, then
by construction P̂h = ψ̂s(h)(Ph) is a continuous family of minimal planes, andΔ = ⋃h∈(π/2,∞) P̂h. Hence, all we need to show is that P̂h ∩ P̂h′ = ∅ for h < h′.
First, notice that Ph ∩ Ph′ = ∅ by [ST1]. Hence, ψ̂s(h)(Ph) ∩ ψ̂s(h)(Ph′) = ∅.
Let s′ = s(h′)/s(h) > 1.

Notice that both planes ψ̂s(h)(Ph) and ψ̂s(h)(Ph′) are graphs over rectan-
gles [−θs(h), θs(h)] × [−h,h] and [−θs(h), θs(h)] × [−h′, h′], respectively. For
any c ∈ (−h,h), the line �h′c = ψ̂s(h)(Ph′) ∩ (H2 × {c}) is on the far side
(π ∈ S1∞ side) of the line �hc = ψ̂s(h)(Ph) ∩ H2 × {c} in H2 × {c}. Hence, for
any c, ψs′(�h

′
c ) ∩ �hc = ∅ since ψs′ pushes H2 toward π ∈ ∂∞H2 as s′ > 1. As

ψ̂s′ ◦ ψ̂s(h) = ψ̂s′.s(h) = ψ̂s(h′), then ψ̂s(h)(Ph) ∩ ψ̂s(h′)(Ph′) = ∅. In other
words, P̂h ∩ P̂h′ = ∅ for h < h′. In particular, {P̂h} is a pairwise disjoint fam-
ily of planes, with Δ = ⋃∞

π/2 P̂h. This shows that the family of minimal planes
{P̂h | h ∈ (π/2,∞)} foliates Δ.

Step 3: Ph0 is the unique minimal surface with asymptotic boundary Γh0 = ∂Rh0 in
S1∞ ×R, that is, ∂∞Ph0 = Γh0 . Assume the contrary. If there were another minimal
surface Σ in H2 × R with ∂∞Σ = ∂Rh0 , then Σ would necessarily belong to the
convex region Δ by the convex hull principle. In particular, one can easily see this
fact by foliating H2 × R \ Δ by the geodesic planes {ψ̂t(P̂∞) | t > 1}. Hence,
if Σ � Δ, then for t0 = supt{Σ ∩ ψ̂t(P̂∞) ≠ ∅}, Σ would intersect the geodesic
plane ψ̂t0(P̂∞) tangentially with lying in one side. This contradicts the maximum
principle as both are minimal surfaces.

Now, as Σ ⊂ Δ and Δ is foliated by P̂h, if Σ ≠ Pho , then Σ ∩ Ph ≠ ∅ for
some h ≠ ho. Then, we have either h1 = sup{h > ho | Σ ∩ P̂h ≠ ∅} or
h′1 = inf{h < ho | Σ∩ P̂h ≠∅} exists. In either case, Σ would intersect P̂h1 or P̂h′1
tangentially by lying in one side. Again, this contradicts the maximum principle
as both are minimal surfaces. Hence, such a Σ cannot exist, and the uniqueness
follows.
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Step 4 : Ph0 is indeed an area-minimizing surface in H2 × R. Now, we finish the
proof by showing that Ph0 is indeed an area-minimizing surface in H2 × R. Let
Bn be the n-disk in H2 with the center origin O in the Poincaré disk model, that
is, Bn = {x ∈ H2 | d(x,O) < n}. Let B̂n = Bn × [−h0, h0] in H2 × R. We
claim that Pnh0

= Ph0 ∩ B̂n is an area-minimizing surface, that is, that Pnh0
has

the smallest area among the surfaces S in H2 × R with the same boundary (i.e.,
∂Pnh0

= ∂S ⇒ |Pnh0
| ≤ |S| where | · | represents the area).

Let Ωn = B̂n ∩ Δ̄ be a compact, convex subset of H2 × R. Let βn = ∂Pnh0

be a simple closed curve in ∂Ωn. Notice that by the existence theorem of area-
minimizing surfaces (Lemma 2.7), there exists an area-minimizing surface Σ in
H2 × R with ∂Σ = βn. Furthermore, as Ωn is convex, Σ ⊂ Ωn. However, as
{P̂h | h ∈ (π/2,∞)} foliates Δ, {P̂h ∩ Ωn} foliates Ωn. Much as in the above
argument, if Σ is not a leaf of this foliation, there must be a last point of con-
tact with the leaves, which gives a contradiction with the maximum principle.
Hence, Σ = Pnh0

, and Pnh0
is an area-minimizing surface. This shows that any

compact subsurface of Ph0 is an area-minimizing surface, as it must belong to Pnh0

for sufficiently large n > 0. This proves Ph0 is an area-minimizing surface with
∂∞Ph0 = Γh0 , and it is the unique minimal surface in H2 × R with asymptotic
boundary ∂Rh0 in S1∞ ×R. As any tall rectangle in S1∞ × R is the isometric image
of Rh for some π/2 < h < ∞, the proof follows. �

3.2. Tall curves. After defining, and studying tall rectangles in S1∞ × R
(Section 3.1), we are now ready to define tall curves in S1∞ ×R.

Definition 3.4 (Tall Curves). We call a finite collection of disjoint simple
closed curves Γ in S1∞ ×R a tall curve if the region Γ c = S1∞ ×R \ Γ can be written
as a union of open tall rectangles Ri = (θi1, θi2) × (ti1, ti2), that is, Γ c = ⋃i Ri (see
Figure 3.1). If Γ has more than one component, then we assume Γ has consistent
orientation (see Remark 2.2).

We call a region Ω in S1∞ × R a tall region, if Ω can be written as a union of
tall rectangles, that is, Ω = ⋃i Ri where Ri is a tall rectangle.

On the other hand, by using the idea above, we can define a notion called the
height of a curve as follows.

Definition 3.5 (Height of a Curve). Let Γ be a collection of simple closed
curves in S1∞×R, and let Ω = S1∞×R\Γ . For any θ ∈ [0,2π), let Lθ = {θ}×R be
the vertical line in S1∞ ×R. Let Lθ ∩Ω = �1

θ ∪· · ·∪ �iθθ where �iθ is a component
of Lθ ∩Ω. Define the height h(Γ ) = infθ{|�iθ|}.

Notice that Γ is a tall curve if and only if h(Γ ) > π . Now, we say Γ is a short
curve if h(Γ ) < π .

Remark 3.6. Note that if Γ is a finite collection of disjoint simple closed
curves in S1∞ ×R, then we can always write Γ c = Ω+ ∪Ω− where Ω± are (possibly
disconnected) tall regions with ∂Ω+ = ∂Ω− = Γ . Notice that if Γ has more than
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Ω+
Ω−1

Ω+2

Ω−3

FIGURE 3.1. In the left, Γ is a tall curve with two components.
In the right, there are three nonexamples of tall curves. Shaded
regions describe the Ω−i where S1∞ ×R \ Γi = Ω+i ∪Ω−i .

one component, than Ω+ or Ω− may not be connected. Throughout the paper,
we assume Γ has the orientation induced by Ω±.

Note also that any curve containing a thin tail is a short curve by definition.
However, there are some short curves with no thin tails, like Γ3 in Figure 3.1-right
and Figure 5.1-right.

Notice also that for each nullhomotopic component γi of a tall curve Γ , if
θ+i (θ−i ) is a local maximum (minimum) of horizontal coordinates of γi, then by
Lemma 2.6, Lθ±i ∩γi must be a pair of vertical line segments of length greater than
π (See Figure 3.1 left). Also, in Figure 3.1 right, three non-tall curves Γ1, Γ2 andΓ3 are pictured as examples. If we name the shaded regions as Ω−i , Γ1 is not tall asΩ+1 is not tall because of the small cove. Also, Γ2 has two components, and it is
not tall because Ω+2 is not tall (the two components are very close to each other).
Finally, Γ3 is not tall, since Ω−3 is not a tall region because of the short neck.

< π

> π

q+

q−

Note also that recently in [KMR], Klaser, Menezes, and
Ramos generalized the tall curve and height of a curve notions
to the other E(−1, τ) homogeneous spaces, and so obtained
several existence and nonexistence results for the asymptotic
Plateau problem in these spaces.

Remark 3.7 (Exceptional Curves). We call a short curveΓ exceptional in the following case. Assume Γ is short. Then,
there is a pair of points {p+, p−} ⊂ Γ where p+ = (θ, c+)
and p− = (θ, c−) where 0 < c+ − c− < π . Call such a pair
of points a short pair. If there are points q+ = (θ,d+) and
q− = (θ,d−) with d− < c− < c+ < d+ < d− + π such
that {q+, q−} ⊂ S1∞ × R \ Γ , then we call {p−, p+} a regular
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short pair. Otherwise, we call it an exceptional short pair. If all
short pairs are exceptional in a curve, we call it an exceptional
curve. In other words, if a short curve contains at least one
regular pair, it is not exceptional. (See the figure in the right.)
This condition is only used in the nonexistence part of Theorem 1.1 (Step 2).
Thus, throughout the paper, we will assume that closed curves in S1∞ × R are not
exceptional unless otherwise stated.1

4. ASYMPTOTIC PLATEAU PROBLEM IN H2 ×R
In this section, we prove our main result. Note that the converse side of the
theorem is true for more general curves (See Remark 4.2).

Theorem 4.1. Let Γ be a finite collection of disjoint Jordan curves in S1∞ × R
with h(Γ ) ≠ π . If Γ is a tall curve, there exists an embedded area-minimizing surfaceΣ in H2 × R with ∂∞Σ = Γ . Conversely, if Γ is a short C1,α non-exceptional curve,
then there is no area-minimizing surface Σ in H2 ×R with ∂∞Σ = Γ .
Outline of the proof: We use the standard techniques for the asymptotic Plateau
problem [An]. In particular, we construct a sequence of compact area-minimizing
surfaces {Σn} in H2 × R with ∂Σn → Γ , and in the limit, we aim to obtain an
area-minimizing surface Σ with ∂∞Σ = Γ . Notice that the main issue here is not to
show that Σ is an area-minimizing surface, but to show that Σ is not escaping to
infinity, that is, Σ ≠∅ and ∂∞Σ = Γ (see Remark 2.9). Recall that by Lemma 2.6 if
a simple closed curve γ in S1∞ ×R has a thin tail, then there is no minimal surface
S in H2 × R with ∂∞S = γ. This means that if one similarly constructs area-
minimizing surfaces Sn with ∂Sn → γ, then either S = limSn = ∅ or ∂∞S ≠ γ;
that is, the sequence Sn escapes to infinity completely (S = ∅), or some parts of
the sequence Sn escape to infinity (∂∞S ≠ γ).

In particular, in the following, we aim to show that for a tall curve Γ , the limit
surface Σ does not escape to infinity, and ∂∞Σ = Γ . We achieve this by constructing
barriers near infinity preventing escaping to infinity.

Proof. We split the proof into two parts. In the first part, we show the “if ”
part. In the second part, we prove the converse.

Step 1: [Existence] If Γ is tall (h(Γ ) > π), then there exists an area-minimizing
surface Σ in H2 ×R with ∂∞Σ = Γ .
Step 1A: Construction of the barrier X near S1∞ ×R.

Proof of Step 1A. In this part, we construct a barrier X which prevents the
limit escape to infinity.

Since Γ is a tall curve, by definition, Γ c = S1∞ ×R \ Γ = Ω+ ∪Ω− where Ω± is
a tall open region with ∂Ω± = Γ . Notice that if Γ has more than one component,

1We thank the referee for pointing out these exceptional curves.
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Ω+ or Ω− may not be connected. Note also that for any component of Γ , one side
belongs to Ω+, and the other side belongs to Ω− by assumption.

Cover Ω± by tall rectangles {Rα} in S1∞ × R such that Ω± = ⋃
α∈A± Rα.

Further assume that for any Rα = [θα1 , θα2 ]×I, the width |θα2 −θα1 | < π . For each
tall rectangle Rα, by Lemma 3.3, there exists a unique area-minimizing surface Pα
with ∂∞Pα = ∂Rα. Let Δα be the component of H2 × R \ Pα with ∂∞Δα = Rα.
DefineX± = ⋃α∈A± Δα. Then, by construction ∂∞X± = Ω±. LetX = X+∪X−.
We call X a barrier near infinity. �

Step 1B: Construction of the sequence {Σn}.
Proof of Step 1B. Let C > 0 be sufficiently large that Γ ⊂ ∂∞H2 × (−C,C).

Let Bn be the n-disk in H2 with the center origin, and B̂n = Bn × [−C,C] be an
compact solid cylinder in H2 × R. Let Γn be the radial projection of Γ into the
cylinder ∂Bn × [−C,C]. We define radial projection ψn : S1∞ × [−C,C]→ ∂B̂n
for (θ, t) ∈ S1∞×[−2m,2m] as follows. ForH2 × [−C,C], use polar coordinates
where q = (r , θ, t) represents q is a point the plane H2 × {t} with d(q,Ot) =
r where Ot is the origin in the plane H2 × {t}. Then, we define ψn(θ, t) =
(n, θ, t) ∈ B̂n, and then Γn = ψn(Γ ). For a given Γ , we can choose N0 sufficiently
large so that for any α and n > N0, Δα ∩ ∂B̂n ⊂ ψn(Rα) as we assume the width
of any Rα is < π .

Now, Γn is a finite union of disjoint Jordan curves in ∂B̂n. Notice that for any
α ∈ A±, Pα is a graph over Rα by Section 3. Hence, as Rα ∩ Γ = ∅ in S1∞ × R,
their radial projections are also disjoint, that is, ψn(Rα) ∩ ψn(Γ ) = ∅ in ∂B̂n.
Again, by construction, Δα ∩ ∂B̂n ⊂ ψn(Rα). This implies Γn ∩X = ∅ for any
n.

Let Σn be the area-minimizing surface inH2×Rwith ∂Σn = Γn by Lemma 2.7.
Then, as B̂n is convex, Σn ⊂ B̂n. �

Step 1C : For any n, Σn ∩X = ∅.

Proof of Step 1C. Recall that X± = ⋃
α∈A± Δα. Hence, if we can show that

for any α ∈A±, Σn∩Δα = ∅, we are done. Notice that for any α, Δα is foliated
by tall rectangles by Lemma 3.3 (Step 2). This means if Σn∩Δα ≠∅, Σn will have
a last point of touch in the minimal foliation, and tangential intersection with a
minimal leaf. This contradicts the maximum principle. Step 1C follows. �

Step 1D: The limit of area-minimizing surface Σ with ∂∞Σ = Γ .
Proof of Step 1D. Let Σ be the limit of {Σn} in H2 × R given by Lemma 2.8.

Notice that the limit might be empty. When showing that ∂∞Σ = Γ , we also prove
that Σ is not an empty limit.

First, we show that ∂∞Σ ⊂ Γ . By Step 1C, Σn ∩ X = ∅. We claim that
∂∞Σ ⊂ Γ . Let p be a point in S1∞ × R \ Γ . Then, by construction, p0 belongs to



884 BARIS COSKUNZER

the interior of Rα0 ⊂ S1∞ × R. Since Δα0 ∩ Σn = ∅ for any n. Hence, p cannot
be in ∂∞Σ. This proves ∂∞Σ ⊂ Γ . �

We finish the proof by showing that ∂∞Σ ⊃ Γ . Let p ∈ Γ . We will show that
p ∈ Σ̄. Let p be in the component γ in Γ . As Γ c = Ω+ ∪Ω−, let {p±i } ⊂ Ω± be
two sequences in opposite sides of γ with limp±i = p. Let αi be a small circular
arc in H2 ×R with ∂αi = {p+i , p−i } and αi⊥S1∞ ×R. Then, for any i, there exists
Ni such that for any n > Ni, Γn links αi, that is, Γn is not nullhomologous in
H2 ×R \αi. Hence, for any n > Ni, αi ∩ Σn ≠ ∅. This implies Σ∩ αi ≠∅ for
any i by construction. As above, let R±i ⊂ Ω± be the tall rectangle with p±i ⊂ R±i .
Similarly, let P±i be the unique area-minimizing surface with ∂∞P±i = ∂R±i . Let
α′i ⊂ αi be a subarc with ∂α′i ⊂ P+i ∪ P−i . Hence, α′i is a compact arc in H2 ×R.
Moreover, as Σ∩ P±i = ∅, then there exists a point xi in Σ∩ α′i for any i. Then,
limxi = p. Hence, p ∈ Σ̄, and ∂∞Σ = Γ . Notice that this shows the limit does not
escape to infinity, and the area-minimizing surface Σ is not empty, either. Step 1
follows. �

Step 2: [Nonexistence] If Γ is a short C1,α curve, then there is no area-minimizing
surface Σ in H2 ×R with ∂∞Σ = Γ .

Proof. Assume there is an area-minimizing surface Σ in H2×R with ∂∞Σ = Γ .
Recall that, here, Γ being short means h(Γ ) < π . Since Γ is a non-exceptional
short curve in S1∞ × R, there is a regular short pair q± = (θ0, d±) ∈ Γ where
0 < d+ − d− < π − 2ε for some ε > 0 . Since q± is a regular short pair, there
exists p± �∈ Γ with p± = (θ0, c±) and c− < d− < d+ < c+ < c− + π along the
line {θ0} ×R ∈ S1∞ ×R (see Remark 3.7).

Let O± be an open neighborhood of p± in H2 ×R such that O± ∩ Σ̄ = ∅.
Let D± = (H2 × {c±}) ∩ O±. By construction, D± contains a half plane in the
hyperbolic plane H2 × {c±}.

By Lemma A.1 and Lemma A.3 in the Appendix, for any h < π , there exists
an area-minimizing compact catenoid S of height h. For h = c+ − c− < π , let
S be the area-minimizing compact catenoid with ∂S ⊂ H2 × {c−, c+}. In other
words, ∂S consists of two curves γ+ and γ− where γ± is a round circle of radius
ρ̂(d) in H2 × {c±} centered at the origin. Let θ1 be the antipodal point of θ0 in
S1∞. Let ψt be the hyperbolic isometry fixing the geodesic between θ0 and θ1. In
particular, ψt corresponds to ψt(x,y) = (tx, ty) in the upper half space model
where θ1 corresponds to the origin, and θ0 corresponds to the point at infinity.
Let ψ̂t : H2×R → H2×R be the isometry ofH2×R where ψ̂t(p, z) = (ψt(p), z).

Let St = ψ̂t(S) be the isometric image of the area-minimizing catenoid S in
H2 × R. Let ∂St = γ+t ∪ γ−t where γ±t = ψt(γ±). Notice that γ±t ⊂ H2 × {c±}.
Let No > 0 be sufficiently large that γ+t ⊂ D+ and γ−t ⊂ D− for any t > No.
Then, for any t > No, ∂St ⊂ D+ ∪D−, and ∂St ∩ Σ = ∅.

Recall ∂∞(H2 ×R) \ Γ = Ω+ ∪Ω− where ∂Ω+ = ∂Ω− = Γ . Let H2 ×R \ Σ̄ =Δ+∪Δ− where ∂∞Δ± = Ω±. Let β = {θ0}×(d+, d−) be the vertical line segment
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in S1∞ × R, and let β ⊂ Ω+. Since Δ+ is an open subset in H2 ×R and β ⊂ Δ+,
then an open neighborhood Oβ of β in H2 × R must belong to Δ+. Then, by
construction, we can choose to > No sufficiently large that Sto ∩ Oβ ≠ ∅ and
Sto ∩ Oβ is connected. As Γ is C1,α, Σ is C1,α regular up to the boundary by
[KM, Proposition 3.1]. As Γ is not exceptional, we can choose St0 such that
∂St0 ∩ Σ = ∅. Therefore, Sto ∩ Σ ≠∅.

Let D± be the caps of the compact catenoid St0 . Let U be the compact region
enclosed by St0 ∪ D+ ∪ D−. Let Sto ∩ Σ = α. Notice that as both Σ and Sto are
area-minimizing surfaces and ∂St ∩ Σ = ∅, α is a collection of closed curves, and
contains no isolated points because of the maximum principle.

Let E = U ∩ Σ. Then, E is a compact subsurface of Σ with ∂E = α. In
other words, Sto separates E from Σ. Similarly, let T be the subsurface of Sto with
∂T = α. In particular, T = Sto∩Δ+. Since Sto and Σ are area-minimizing surfaces,
so are T and E. As ∂T = ∂E = α, and both are area-minimizing surfaces, both
have the same area, that is, |E| = |T |.

Let S′ = (Sto \ T)∪ E. Then, clearly ∂Sto = ∂S′ and |Sto | = |S′|. Hence, as
Sto is an area-minimizing surface, so is S′. However, S′ has singularity along α.
This contradicts the regularity of area-minimizing surfaces (Lemma 2.7). Step 2
follows. �

Remark 4.2 (Generalization to C0 Curves). Note that in the proof of the
converse, we use the C1,α condition only in the neighborhood of the short seg-
ment, that is, near {q−, q+} ∈ Γ . Thus, one can generalize the statement to C0

curves containing a pair of C1,α segments γ± which are vertically close (< π).
Remark 4.3 (The h(Γ ) = π Case). Notice that the theorem finishes off the

asymptotic Plateau problem for H2 × R except the case h(Γ ) = π . Note that
this case is delicate as there are strongly fillable and strongly non-fillable curves
of height π . For example, if Γ1 is a rectangle in S1∞ × R with height π , then
the discussion in Remark 2.9 shows that Γ1 bounds no minimal surface; hence,
such a Γ is nonfillable. On the other hand, in Theorem 5.1, if we take h0 = π
and use the parabolic catenoid ([Da]), it is not hard to show that the constructed
surface is also area minimizing in H2 ×R since the parabolic catenoid is also area
minimizing. (See Figure 5.1-right.) These two examples show the case h(Γ ) = π
is very delicate. Note also that Sa Earp and Toubiana studied a relevant problem
in [ST1, Corollary 2.1].

Remark 4.4 (Minimal vs. Area Minimizing). Notice that the theorem
above does not say that If γ is a short curve, then there is no minimal surface S
in H2 ×R with ∂∞S = γ. There are many examples of complete embedded mini-
mal surfaces S in H2 ×R where the asymptotic boundary γ is a short curve (e.g.,
butterfly curves). We postpone this question to Section 5 to discuss in detail.

4.1. Convex hull property for tall curves. In this part, we give a natural
generalization of the convex hull property for the asymptotic Plateau problem in
H2 ×R.
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Definition 4.5 (Mean Convex Hull). Let Γ be a tall curve in S1∞×R. Consider
the barrier X constructed in Step 1A in the proof of Theorem 4.1. Define the
mean convex hull of Γ as MCH(Γ ) = H2×R\X. Notice that MCH(Γ ) is a mean
convex region in H2 ×R by construction. Furthermore, ∂∞ MCH(Γ ) = Γ .

Analogous to the convex hull property in H3, we have the following property
in H2 ×R.

Corollary 4.6 (Convex Hull Property). Let Γ be a tall curve in S1∞ ×R. Let S
be a complete, embedded minimal surface in H2 ×R with ∂∞S = Γ . Then, we have
S ⊂ MCH(Γ ).

Proof. The proof is similar to the convex hull property in other homogeneous
ambient spaces. We use the same notation as in the proof of Theorem 4.1. In that
proof, we proved that for our special sequence {Σn} and the limit Σ, Σ∩X = ∅.
However, the same proof works for any area-minimizing surface S with ∂∞S = Γ .

Recall that Γ c = ⋃
Rα where Rα are tall rectangles. Let Pα be the unique

area-minimizing surfaces inH2×R with ∂∞Pα = ∂Rα. Let Δα be the components
of H2 ×R \ Pα with ∂∞Δα = int(Rα). Then, X = ⋃αΔα.

Assume S � MCH(Γ ) = Xc. Then, S ∩ Δα ≠ ∅ for some α. However,
by the proof of Lemma 3.3, we know that Δα is foliated by minimal surfaces
{Pt | t ∈ [0,∞)}. Let t0 = supt{Pt∩Σ ≠∅}. Again, by maximum principle, this
is a contradiction as both Σ and Pt0 are minimal surfaces. The proof follows. �

One can visualize MCH(Γ ) as follows. Assume Γ ⊂ S1∞ × [c1, c2] for the
smallest [c1, c2] possible. Then, MCH(Γ ) is the region in H2 × [c1, c2] where we
carve out all Δα defined by rectangles Rα ⊂ Γ c .

5. ASYMPTOTIC PLATEAU PROBLEM FOR MINIMAL SURFACES

So far, we only dealt with the strong fillability question, that is, detecting curves
in S1∞ ×R bounding area-minimizing surfaces in H2 ×R. If we relax the question
from “strong fillability” to only “fillability,” the picture completely changes. In
other words, we will see that detecting curves in S1∞ × R bounding embedded
minimal surfaces is much more complicated than detecting the curves bounding
embedded area-minimizing surfaces. In Theorem 4.1, we gave a fairly complete
answer to the asymptotic Plateau problem in the strong fillability case. In this
section, we will see that the classification of fillable curves is highly different.

A simple example to show the drastic change in the problem is the following.
Let Γ = γ1 ∪ γ2 where γi = S1∞ × {ci} and |c1 − c2| < π . Then clearly, Γ is a
short curve and it bounds a complete minimal catenoid Cd by [NSST] (See also
Appendix A for further discussion on catenoids.) On the other hand, the pair
of geodesic planes H2 × {c1} ∪ H2 × {c2} also bounds Γ = γ1 ∪ γ2. However,
there is no area-minimizing surface Σ with ∂∞Σ = γ1 ∪ γ2 by Theorem 4.1. This
means neither the catenoid, nor pair of geodesic planes are area minimizing, but
just minimal surfaces. Hence, the following version of the problem becomes very
interesting.
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Problem (Asymptotic Plateau Problem for Minimal Surfaces in H2 × R).
For which curves Γ in S1∞ ×R, there exists an embedded minimal surface S in H2×R
with ∂∞S = Γ .

In other words, which curves in S1∞ × R are fillable? (Note that here we only
discuss the finite curve case (Γ ⊂ S1∞ × R). For infinite curves case for the same
question, see [Co2].)

Recall that by Lemma 2.6, for any short curve γ in S1∞ ×R containing a thin
tail, there is no complete minimal surface S in H2 × R with ∂∞S = γ. Thus,
this result suggests that the minimal surface case is similar to the area-minimizing
surface case.

On the other hand, unlike the area-minimizing surface case, it is quite easy
to construct short curves with more than one component, bounding minimal
surfaces in H2 × R. Let Γ = γ1 ∪ · · · ∪ γn be a finite collection of disjoint tall
curves γi. Even though every component γi is tall, because of the vertical distances
between the components γi and γj , the height h(Γ ) can be very small. Thus, Γ
itself might be a short curve, even though every component is a tall curve. For
each component γi, our existence theorem (Theorem 4.1) already gives an area-
minimizing surface Σi with ∂∞Σi = γi. Hence, the surface Ŝ = Σ1 ∪ · · · ∪ Σn
is automatically a minimal surface with ∂∞Ŝ = Γ . By using this idea, for any
height h0 > 0, we can trivially produce short curves Γ with height h(Γ ) = h0
by choosing the components sufficiently close, for example, the pair of horizontal
geodesic planes H2 × {c1} ∪H2 × {c2} with |c1 − c2| = h0.

Naturally, the next question would be what if Γ has only one component.
Does Γ need to be a tall curve to bound a minimal surface inH2×R? The answer is
again no. Now, we also construct simple closed short curves which bound complete
minimal surfaces in H2 × R. The following result with the observation above
shows that the asymptotic Plateau problem for minimal surfaces is very different
from the asymptotic Plateau problem for area-minimizing surfaces.

Theorem 5.1. For any h0 > 0, there exists a nullhomotopic simple closed curveΓ with height h(Γ ) = h0 such that there exists a minimal surface S in H2 × R with
∂∞S = Γ .

Proof. For h0 > π , we have tall rectangles with height h0. Thus, we assume
0 < h0 ≤ π . Consider the rectangles R+ = [s,π/2] × [−m,m] and R− =
[−π/2,−s] × [−m,m] with s > 0 sufficiently small, and m 
 0 sufficiently
large, which will be fixed later. Consider another rectangle Q = [−s, s]× [0, h0].
Consider the area-minimizing surfaces P+ and P− with ∂∞P± = ∂R±. Let Γ =
(∂R+ ∪ ∂R−)�∂Q where � represents the symmetric difference (see Figure 5.1).
Notice that h(Γ ) = h0. We claim there exists a complete embedded minimal
surface S in H2 ×R with ∂∞S = Γ .

Consider now the minimal catenoid Ch0 that has an asymptotic boundary
S1∞ × {0} ∪ S1∞ × {h0}. If h0 = π , take Ch0 to be the Daniel’s parabolic catenoid
where ∂∞Cπ = (S1∞ × {−π/2,+π/2})∪ ({π} × [−π/2,+π/2]). Let ϕt be the
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isometry of H2 × R which keeps R coordinates the same, and fixes the geodesic
� in H2 with ∂∞� = {0, π} with translation length log t. In particular, we have
ϕt|H2×{c} : H2 × {c} → H2 × {c}. Furthermore, for any p ∈ H2 × {c}, we have
ϕt(p)→ (0, c) ∈ S1∞×R as t ↘ 0 andϕt(p)→ (π, c) ∈ S1∞×R as t ↘ ∞. Now,
we can choose t > 0 and s > 0 sufficiently small, and m > 0 sufficiently large, so
that P+ ∪ P− separates ϕt(Ch0) = Cth0

into four disks (see Figure 5.1). In other
words, there is a component Δ in H2 ×R \ (P+ ∪ P− ∪ Cth0

) such that ∂∞Δ =Q.
Now, letΩ+ be the component ofH2×R\P+ such that ∂∞Ω+ = R+. Similarly,

let Ω− be the component of H2 × R \ P− such that ∂∞Ω− = R−. Let X =
H2 × R \ (Ω+ ∪ Ω− ∪ Δ). Hence, X is a mean convex domain in H2 × R with
∂∞X = ∂∞(H2 ×R) \ int(R+ ∪ R− ∪Q). Hence, Γ ⊂ ∂∞X.

Now, let Bn(0) be the ball of radius n in H2 with center 0. Let also Dn =
Bn(0) × [−2m,2m]. Let D̂n = Dn ∩ X. Let Γn be the radial projection of Γ to
∂D̂n. In particular, we define radial projection ψn : S1∞ × [−2m,2m]→ ∂D̂n for
(θ, t) ∈ S1∞×[−2m,2m] as follows. ForH2×[−2m,2m], use polar coordinates
where q = (r , θ, t) represents q as a point in the planeH2×{t}with d(q,Ot) = r
where Ot is the origin in the plane H2 × {t}. Define

Rn(θ0, t0) = sup{r ∈ R+ | (r , θ0, t0) ∈ D̂n} ≤ n.

Then, define ψn(θ, t) = (Rn(θ), θ, t). Then, Γn = ψn(Γ ).
Let Sn be the area-minimizing surface in D̂n with ∂Sn = Γn. Since D̂n is mean

convex, Sn is a smooth embedded surface in D̂n. Again, by using Lemma 2.8, we
get an area-minimizing surface S in X. By using similar ideas in Theorem 4.1

Cth0

P+P−

�

R+ R−

Γ Cth0

FIGURE 5.1. In the left, the horizontal slice H2 × {h0/2} is
given. In the right, Γ ⊂ S1∞ ×R is pictured.
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(Step 1), it can be shown that ∂∞S = Γ . While S is an area-minimizing surface in
X, it is only a minimal surface in H2 ×R. The proof follows. �

Remark 5.2. Notice that for smaller choice of h0 > 0 in the theorem above,
one needs to choose the height 2m of the rectangles large, and the distance s of
the rectangles small by the construction (see Figure 5.1).

Recently, Kloeckner and Mazzeo have also studied these curves more exten-
sively in [KM], where they call these curves butterfly curves. In [KM], they also
constructed different families of complete minimal surfaces in H2 × R. Further-
more, they studied the asymptotic behavior of the minimal surfaces in H2 ×R.

Remark 5.3. Recently, we showed that when we choose h0 < π and 2m> π
sufficiently close, the butterfly curve Γmh0

constructed above does not bound any
minimal surface, either. This example is the first non-fillable example in S1∞ × R
with no thin tail [Co3].

6. FINAL REMARKS

6.1. Infinite curves. In this paper, we only dealt with the finite curves, that
is, Γ ⊂ S1∞ ×R. On the other hand, the infinite curve case is also very interesting
(Γ ∩ (H2 × {±∞}) ≠ ∅). In [Co2], we studied this problem, and gave a fairly
complete solution in the strongly fillable case. Kloeckner and Mazzeo studied this
problem in [KM], and constructed a rich and interesting family of fillable infinite
curves.

On the other hand, strong fillability questions and fillability questions are
quite different in both finite and infinite curve case. While we gave a classification
result for strongly fillable infinite curves in [Co2], the examples in Section 4 of
[Co2] show that there are many fillable and non-fillable infinite curve families,
and we are far from classification of these infinite curves in the fillable case.

6.2. Fillable curves. In Section 5, when we relax the question from “exis-
tence of area-minimizing surfaces” to “existence of minimal surfaces,” we see that
the picture completely changes. While Theorem 4.1 shows that if h(Γ ) < π , there
is no area-minimizing surface Σ in H2 × R with ∂∞Σ = Γ , we constructed many
examples of short fillable curves Γ in S1∞ ×R for any height in Section 5.

Again, by the Sa Earp and Toubiana nonexistence theorem (Lemma 2.6), if Γ
contains a thin tail, then there is no minimal surface S in H2 × R with ∂∞S = Γ .
Hence, the following classification problem is quite interesting and wide open.

Problem (Classification of Fillable Curves in H2×R). For which curves Γ in
∂∞(H2 ×R) does there exist a minimal surface S in H2 ×R with ∂∞S = Γ ?

Note that Kloeckner and Mazzeo have studied this problem, and constructed
many families of examples. They have also studied the asymptotic behavior of
these complete minimal surfaces in H2 × R in [KM]. Further, in [FMMR], the
authors have recently studied the existence of vertical minimal annuli in H2 ×R,
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and given a very interesting classification. Note also that we constructed the first
examples of non-fillable finite curves with no thin tail in [Co3].

APPENDIX A.

In this part, we give some technical lemmas used in the proof of the main theorem.

1.1. Area minimizing catenoids in H2 × R. In this section, we study the
family of minimal catenoids Cd described in [NSST], and show that for suffi-
ciently large d > 0, a compact subsurface Sd ⊂ Cd near girth of the catenoid Cd
is an area-minimizing surface.

First, we recall some results on the rotationally symmetric minimal catenoids
Cd [NSST, Proposition 5.1]. Let (ρ, θ, z) represent the coordinates on H2 × R
with the metric ds2 = dρ2 + sinh2 ρ dθ2 + dz2. Then,

Cd = {(ρ, θ,±λd(ρ)) | ρ ≥ sinh−1 d}

with λd(ρ) =
∫ ρ

sinh−1 d

d√
sinh2 x − d2

dx.

The catenoid Cd is obtained by rotating the generating curve γd about z-axis
where γd = {(ρ,0,±λd(ρ)) | ρ ≥ sinh−1 d}. Here, sinh−1 d is the distance of
the rotation axis to the catenoid Cd, that is, the necksize of Cd.

On the other hand, the asymptotic boundary of the catenoid Cd is the pair of
circles of height ±h(d), that is, ∂∞Cd = S1∞ × {−h(d),+h(d)} ⊂ S1∞ ×R. Here,
h(d) = limρ→∞ λd(ρ). By [NSST], h(d) is a monotone-increasing function with
h(d) ↘ 0 when d ↘ 0, and h(d) ↗ π/2 when d ↗ ∞. Hence, for any d > 0, the
catenoid Cd has height 2h(d) < π (See Figure A.1).

By Theorem 4.1, we know that the minimal catenoid Cd is not area mini-
mizing as ∂∞Cd is a short curve. However, we claim that for sufficiently large
d > 0, the compact subsurfaces near the girth of Cd are indeed area minimizing.
In particular, we prove the following result.

Lemma A.1. Let Sρd = Cd ∩H2 × [−λd(ρ),+λd(ρ)] be a compact subsurface
of Cd. Then, for sufficiently large d > 0, there is a ρ̂(d) ≥ 3

2 logd > sinh−1 d such
that Sρ̂(d)d is an area-minimizing surface.

Proof. Consider now the upper half of the minimal catenoid Cd with the para-
metrization ϕd(ρ, θ) = (ρ, θ, λd(ρ)) where ρ ≥ sinh−1 d. Hence, the area of Sρd
can be written as

|Sρ0
d | = 2

∫ 2π

0

∫ ρ0

sinh−1 d
sinhx

√
1+ d2

sinh2x − d2
dx dθ.

Notice that ∂Sρod = γ+d,ρo ∪ γ−d,ρo is a pair of round circles of radius ρo in
Cd where γ±d,ρo = {(ρo, θ,±λd(ρo)) | 0 ≤ θ ≤ 2π}. By [NSST], only minimal
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surfaces bounding γ+d,ρo ∪ γ−d,ρo in H2 × R are subsurfaces of minimal catenoids
Cd and a pair of closed horizontal disks D+d,ρo ∪D−d,ρo where

D±d,ρo = {(ρ, θ,±λd(ρo)) | 0 ≤ ρ ≤ ρo, 0 ≤ θ ≤ 2π}.

In other words, here D±d,ρo is a hyperbolic disk of radius ρ0 with z = ±λd(ρo) in
H2 ×R. Recall the area of a hyperbolic disk of radius ρ is equal to 2π(coshρ−1).

Hence, if we can show that

|Sρd | < 2|Dρ| = 4π(coshρ − 1)

for some ρ > sinh−1 d, this implies Sρd ⊂ Cd is an area-minimizing surface in
H2 × R, and we are done. Hence, we claim there is a ρ̂(d) > sinh−1 d such that
|Sρd | < 2|Dρ| = 4π(coshρ − 1) where sinh−1 d < ρ < ρ̂(d). In other words, we
claim the following inequality:

I =
∫ ρ

sinh−1 d
sinhx

√
1+ d2

sinh2x − d2
dx < coshρ − 1.

Now, we separate the integral into two parts:

∫ ρ
sinh−1 d

=
∫ sinh−1 (d+1)

sinh−1 d
+
∫ ρ

sinh−1 (d+1)
,

that is, I = I1 + I2.

π
2

−π
2

λ1

λ2

λ3
λ4

ρ

FIGURE A.1. For di < di+1, λi represents the graphs of
functions λdi(ρ) which are generating curves for the minimal
catenoids Cd. If h(d) = limρ→∞ λd(ρ), then h(d) is monotone
increasing with h(d) ↗ π/2 as d →∞.
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For the first part, clearly

I1 =
∫ sinh−1 (d+1)

sinh−1 d
sinhx

√
1+ d2

sinh2 x − d2
dx

< d+ 1
∫ sinh−1 (d+1)

sinh−1 d

sinhx dx√
sinh2

x − d2
.

Recall that cosh2x − sinh2 x = 1. By substituting u = coshx, we get

I1 < (d+ 1)
∫√1+(d+1)2

√
1+d2

du√
u2 − (1+ d2)

= (d+ 1) log [u+
√
u2 − (1+ d2)]

∣∣∣√1+(d+1)2

√
1+d2

.

This implies

I1 < F(d) = (d+ 1) log
√

1+ (d+ 1)2 +√2d+ 1√
1+ d2

.

Now, let F(d) = √d+ 1 ·G(d). Consider

lim
d→∞

G(d) = lim
d→∞

√
d+ 1 log

√
1+ (d+ 1)2 +√2d+ 1√

1+ d2

= lim
d→∞

√
d log

d+√2d√
d

= lim
d→∞

√
d log

(
√
d+ 1/

√
2)2

d

= lim
d→∞

log
(

1+ 1√
2d

)2
√
d

=
√

2.

Hence, G(d) < 2 for d > C0 where C0 is sufficiently large. Then, we have
I1 < F(d) ≤ 2

√
d for d > C0.

For the second integral, we have

I2 =
∫ ρ

sinh−1 (d+1)
sinhx

√
1+ d2

sinh2 x − d2
dx.

Notice that the integrand

sinhx

√
1+ d2

sinh2x − d2
= sinh2x√

sinh2 x − d2
.

Hence, as sinhx < ex/2 and (sinh2 x > e2x − 2)/4, we obtain∫
sinh2 x√

sinh2x − d2
dx <

∫
e2x

2
√
e2x − (2+ 4d2)

dx =
√
e2x − (2+ 4d2)

2
.
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As sinh−1y = log (y +
√

1+y2), after cancellations, we obtain

I2 <

√
e2ρ − (2+ 4d2)−√8d+ 2

2
<

√
e2ρ − (2+ 4d2)

2
−
√

2d.

This implies, for d > C0,

I = I1 + I2 < 2
√
d+

(√
e2ρ − (2+ 4d2)

2
−
√

2d

)

=
√
e2ρ − (2+ 4d2)

2
+ (2−

√
2)
√
d.

Now, by taking ρ = 3
2 logd for d > C0, we obtain

I <

√
d3 − (2+ 4d2)

2
+ (2−

√
2)
√
d

<
d3/2 − 2

√
d

2
+ (2−

√
2)
√
d

= d3/2

2
− (
√

2− 1)
√
d.

On the other hand,

coshρ − 1 = cosh
(

3
2

logd
)
− 1 = d

3/2 + d−3/2

2
− 1.

This shows that for ρ̂(d) = 3
2 logd, we have I < cosh ρ̂. Therefore, the total

area of the compact catenoid |Sρ̂(d)d | < 2|Dρ̂(d)|. Hence, the compact catenoid
S
ρ̂(d)
d is an area-minimizing surface in H2 ×R. �

Remark A.2. Notice that in the lemma above, for ρ̂(d) about 3
2 times the

neck radius of the catenoid Cd, we showed that the compact slice Sρ̂(d)d in Cd is an
area-minimizing surface. However, the comparison between

√
e2ρ − (2+ 4d2)/2

and coshρ indicates that if ρ0 is greater than twice the neck radius of the catenoid
Cd (i.e., ρ0 > 2 log(d)), the estimates above become very delicate, and Sρ0

d is no
longer area minimizing. (See Remark A.5 for further discussion.) Note also that
any subsurface of an area-minimizing surface is automatically area minimizing.
Thus, the for any sinh−1(d) < ρ < ρ̂(d), Sρd is also an area-minimizing surface.

Now, we show that as d → ∞, the height 2ĥ(d) of the compact area mini-
mizing catenoids Sρ̂(d)d goes to π , that is, ĥ(d)→ π/2.

Lemma A.3. Let ĥ(d) = λd(ρ̂(d)). Then, limd→∞ ĥ(d) = π/2.
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Proof. By [NSST, Proposition 5.1],

lim
d→∞

ĥ(d) =
∫ s(ρ̂(d))

0

dt

cosh t
.

By the same proposition, s(ρ)= cosh−1(coshρ/
√

1+ d2). As ρ̂(d) = 3
2 logd,

then s(ρ̂(d)) ∼ √d. This implies

lim ĥ(d) =
∫∞

0

dt

cosh t
=
∫∞

0

du

u2 + 1
= π

2
. �

Remark A.4. Notice this lemma implies that, for any height ho ∈ (0, π),
there is an area-minimizing compact catenoid Sρd of height ho. In other words,
for any ho ∈ (0, π), there exists d > 0 with h(d) > ho such that

Cd ∩H2 × [−ho/2, ho/2]

is an area-minimizing compact catenoid inH2×R. Recall also that any subsurface
of a area-minimizing surface is also area minimizing.

Remark A.5 (Pairwise Intersections of Minimal Catenoids {Cd}). With
these results on the area-minimizing subsurfaces Sρd in the minimal catenoids Cd in
the previous part, a very interesting point deserves a brief discussion. Notice that
by definition [NSST], for d1 < d2, the graphs of the monotone increasing func-
tions λd1 : [sinh−1 d1,∞) → [0, h(d1)) and λd2 : [sinh−1 d2,∞) → [0, h(d2))

intersect at a unique point ρo ∈ (sinh−1 d2,∞), that is, λd1(ρo) = λd2(ρo) (see
Figure A.1).

This implies the minimal catenoids Cd1 and Cd2 intersect at two round circles
α± of radius ρo, where α± = (ρo, θ,±λd1(ρo)), that is, Cd1 ∩ Cd2 = α+ ∪α−.

Recall the well-known fact that two area-minimizing surfaces with disjoint
boundaries cannot “separate” a compact subsurface from interiors of each other. In
other words, let Σ1 and Σ2 be two area-minimizing surfaces with disjoint bound-
aries. If Σ1 \ Σ2 has a compact subsurface S1 with ∂S1 ∩ ∂Σ1 = ∅ and similarlyΣ2 \Σ1 has a compact subsurface S2 with ∂S2∩∂Σ2 = ∅, then Σ′1 = (Σ1 \S1)∪S2
is an area-minimizing surface with a singularity along ∂S1, which contradicts the
regularity of area-minimizing surfaces (Lemma 2.7).

This argument shows that if both Cd1 and Cd2 were area-minimizing surfaces,
then they would have to be disjoint. Hence, both Cd1 and Cd2 cannot be area-
minimizing surfaces at the same time. In particular, the compact area-minimizing
surfaces Sρ1

d1
⊂ Cd1 and Sρ2

d2
⊂ Cd2 must be disjoint, too.

This observation suggest an upper bound for ρ̂(d)we obtained in the previous
part. Let ι(d) be the intersection number for Cd defined as follows:

ι(d) = inf
t>d
{ρt | λd(ρt) = λt(ρt)} = sup

t<d

{ρt | λd(ρt) = λt(ρt)}.
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The discussion above implies that ρ̂(d) < ι(d), as the area-minimizing sur-
faces Sρ1

d1
⊂ Cd1 and Sρ2

d2
⊂ Cd2 must be disjoint.
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[MoR] F. MORABITO AND M. M. RODRÍGUEZ, Saddle towers and minimal k-noids in H2 ×
R, J. Inst. Math. Jussieu 11 (2012), no. 2, 333–349. https://dx.doi.org/10.1017/
S1474748011000107. MR2905307.



896 BARIS COSKUNZER
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