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Abstract
Far-from-equilibrium phenomena are critical to all natural and engineered systems, and essential to biological processes responsible for 
life. For over a century and a half, since Carnot, Clausius, Maxwell, Boltzmann, and Gibbs, among many others, laid the foundation for our 
understanding of equilibrium processes, scientists and engineers have dreamed of an analogous treatment of nonequilibrium systems. But 
despite tremendous efforts, a universal theory of nonequilibrium behavior akin to equilibrium statistical mechanics and thermodynamics 
has evaded description. Several methodologies have proved their ability to accurately describe complex nonequilibrium systems at the 
macroscopic scale, but their accuracy and predictive capacity is predicated on either phenomenological kinetic equations fit to 
microscopic data or on running concurrent simulations at the particle level. Instead, we provide a novel framework for deriving stand- 
alone macroscopic thermodynamic models directly from microscopic physics without fitting in overdamped Langevin systems. The only 
necessary ingredient is a functional form for a parameterized, approximate density of states, in analogy to the assumption of a uniform 
density of states in the equilibrium microcanonical ensemble. We highlight this framework’s effectiveness by deriving analytical 
approximations for evolving mechanical and thermodynamic quantities in a model of coiled-coil proteins and double-stranded DNA, 
thus producing, to the authors’ knowledge, the first derivation of the governing equations for a phase propagating system under general 
loading conditions without appeal to phenomenology. The generality of our treatment allows for application to any system described 
by Langevin dynamics with arbitrary interaction energies and external driving, including colloidal macromolecules, hydrogels, and 
biopolymers.
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mains. In this work, we provide a framework for constructing macroscopic nonequilibrium thermodynamic models from microscopic 
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Introduction
Understanding and predicting far-from-equilibrium behavior is of 
critical importance for advancing a wide range of research and 

technological areas including dynamic behavior of materials, 

(1, 2), complex energy systems (3), as well as geological and living 

matter (4, 5). Although our understanding of each of these diverse 

fields continues to grow, a universal theory of nonequilibrium 

processes has remained elusive. The past century, however, has 

seen numerous significant breakthroughs toward this ultimate 

goal, of which we detail only a few below. At the macroscopic 

scale, classical irreversible thermodynamics leverages the local 
equilibrium assumption to allow classical thermodynamic quan
tities to vary over space and time, enabling one to describe well- 
known linear transport equations such as Fourier’s and Fick’s laws 
(6). Extended irreversible thermodynamics further promotes the 
fluxes of these quantities to the level of independent variables in or
der to capture more general transport laws (7). Further extensions to 
allow for arbitrary state variables (not just fluxes), or history depend
ence take the names of thermodynamics with internal variables 
(TIV) or rational thermodynamics, respectively (8–11). More re
cently, the General Equation for Nonequilibrium Reversible- 
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Irreversible Coupling (GENERIC) framework and Onsager’s vari
ational formalism have proven to be successful enhancements of 
the more classical methods (12–15). On the other hand, linear re
sponse theory and fluctuation–dissipation relations constitute the 
first step toward a theory of statistical physics away from equilib
rium. In the last few decades, interest in microscopic far-from- 
equilibrium processes has flourished due to the unforeseen discov
ery of the Jarzynski equality and other fluctuation theorems, as 
well as the advent of stochastic thermodynamics (16–20), and the 
application of large deviation theory to statistical physics (21–23). 
These advances have changed the way scientists view thermody
namics, entropy, and the second law particularly at small scales.

More specific to this work is the challenge of uniting scales. 
Given the success of the aforementioned macroscopic thermo
dynamic theories, how can one derive and inform the models 
within them using microscopic physics? Describing this connec
tion constitutes the key challenge in formulating a unified 
far-from-equilibrium theory. As of yet, the GENERIC framework 
possesses the strongest microscopic foundation. Starting from a 
Hamiltonian system, one can either coarse grain using the projec
tion operator formalism (24) or a statistical lack-of-fit optimiza
tion method (25, 26) in order to derive the GENERIC equations. 
However, these methods are either challenging to implement, 
analytically or numerically, or contain fitting parameters which 
must be approximated from data. Alternatively, one can begin 
from a special class of stochastic Markov processes and use fluc
tuation–dissipation relations or large deviation theory to the 
same effect (27, 28). So far, numerical implementations of these 
methods have only been formulated for purely dissipative sys
tems, with no reversible component.

For this work, we shall utilize the less stringent framework of 
TIV, but recover GENERIC in an important case utilized in the ex
amples. We will show how to leverage a variational method pro
posed by Eyink (29) for evolving approximate nonequilibrium 
probability distributions to derive the governing equations of 
TIV for systems whose microscopic physics is well described by 
Langevin dynamics. Furthermore, in the approach proposed 
here, the variational parameters of the probability density are in
terpreted as macroscopic internal variables, with dynamical 
equations fully determined through the variational method. 
Once the approximate density is inserted into the stochastic ther
modynamics framework, the equations for the classical macro
scopic thermodynamics quantities including work rate, heat 
rate, and entropy production appear naturally, and possess the 
TIV structure. For example, the internal variables do not explicitly 
appear in the equation for the work rate, and the entropy produc
tion factors into a product of fluxes and their conjugate affinities, 
which themselves are given by the gradient of a nonequilibrium 
free energy. Moreover, we show that when the approximating 
density is assumed to be Gaussian, the internal variables obey a 
gradient flow dynamics with respect to the nonequilibrium free 
energy, and so the resulting rate of entropy production is guaran
teed to be nonnegative. This direct link between microscopic 
physics and TIV has not been elaborated elsewhere, and we refer 
to this method as stochastic thermodynamics with internal vari
ables (STIV).

To illustrate and highlight the effectiveness of this method, we 
provide the results of two examples. The first is a paradigmatic ex
ample from stochastic thermodynamics: a single colloidal particle 
acted on by a linear external force, mimicking a macromolecule in 
an optical trap. It demonstrates all of the key features of the meth
od while being simple enough to allow for comparison to exact sol
utions. The second example features a model system for studying 

phase transitions of biomolecules, for example, in coiled-coil pro
teins (30, 31) (depicted in Fig. 1)  or double-stranded DNA (32, 33): a 
colloidal mass–spring–chain system with double-well interac
tions between neighboring masses. By comparing to Langevin 
simulations, we show that STIV not only produces accurate ana
lytical approximations to relevant thermodynamic quantities 
but also predicts the speed of a traveling phase front induced by 
external driving.

Theory
Stochastic thermodynamics
We begin by outlining the key ideas of stochastic thermodynamics 
which defines classical thermodynamic quantities at the trajec
tory level for systems obeying Langevin dynamics, such as those 
embedded in an aqueous solution. These quantities include work, 
heat flow, and entropy production among others, and these new 
definitions allow for an expanded study of far-from-equilibrium 
behavior at the level of individual, fluctuating trajectories. 
Stochastic thermodynamics is a highly active area of study, 
and has been developed far beyond what is detailed here, as we 
have limited our presentation to only what we need for introducing 
STIV. We primarily follow the presentation of Seifert (19) through
out. Further details can be found in that work and in the references 
therein.

The paradigmatic example within stochastic thermodynamics 
is a colloidal particle in a viscous fluid at constant temperature, T, 
acted on by an external driving protocol (we present the theory for 
a single particle in one dimension, as the generalization to many 
particles in multiple dimensions is straightforward). This system 
is well described by an overdamped Langevin equation, which 
can be written as a stochastic differential equation of the form

dx(t) = −
1
η

∂e
∂x

(x, λ) dt +
���
2d

√
db(t), 

where x(t) denotes the particle’s position at time t ∈ [ti, tf ], η is the 

drag coefficient of the particle in the fluid, − ∂e
∂x (x, λ) is the force act

ing on the particle coming from a potential energy, e, λ(t) is a pre

scribed external control protocol, d =
1
ηβ 

is the diffusion 

coefficient, β = 1/kBT is the inverse absolute temperature in energy 
units, and b(t) is a standard Brownian motion. We note that one 
may also include nonconservative interactions and external 
forces to model active noise within stochastic thermodynamics, 
but we do not use this feature in the current framework.

Given this system, stochastic thermodynamics enables one to 
define the internal energy, work, heat, and entropy at the level 
of the trajectory. Naturally, e(x(t), λ(t)) defines the internal energy 
of the system. One does work on the system by changing e via the 
external control, λ. Thus, the incremental work reads

dw =
∂e
∂λ

λ̇ dt. (1) 

Using the first law of thermodynamics, we conclude that the in
cremental heat flowing out of the system is

dq = dw − de.

An additional important quantity is the total entropy, stot. From 
the second law of thermodynamics, its macroscopic counterpart, 

Stot (to be defined), should be nondecreasing and describes the lev
el of irreversiblity of the trajectory. To that end, the change in total 
entropy is defined using the log of the (Raydon–Nikodym) deriva
tive of the probability of observing the given trajectory, P[x(t) ∣ λ], 
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with respect to the probability of observing the reversed trajectory 

under the time reversed external protocol, P̃[x̃(t) ∣ λ̃]

Δstot[x(t)] = kB log
dP[x(t) ∣ λ]

dP̃[x̃(t) ∣ λ̃]

􏼠 􏼡

, 

where x̃(t) = x(tf − t) and likewise for λ̃ (34). Upon taking the expect
ation with respect to all possible trajectories (and any probabilistic 
initial conditions),

ΔStot = 〈Δstot〉paths = ∫Δstot[x(t)] dP[x(t) ∣ λ] 

is recognized as kB times the Kullback–Leibler divergence between 
the distributions of forward and backwards trajectories. As such, 

ΔStot must be nonnegative. It is also useful to break up the total en
tropy change into the change in the entropy of the system (19),

Δs[x(t)] = −kB log
p(x(tf ), tf ∣ λ)
p(x(ti), ti ∣ λ)

􏼒 􏼓

, 

where p(x, t ∣ λ) is the probability density of observing the particle 
at position x at time t, and the change in the entropy of the me
dium

Δsm = Δstot − Δs. (2) 

Finally, one defines the microscopic nonequilibrium free energy in 
terms of the potential and entropy as aneq = e − Ts (35). Using the 

path integral representation of P[x(t) ∣ λ] and P̃[x̃(t) ∣ λ̃], one finds 
that the incremental heat dissipated into the medium equals 
the incremental entropy change in the medium Tdsm = dq (36). 
This allows one to relate the change in nonequilibrium free energy 
to the work done and the change in total entropy

daneq = de − Tds

= dw − dq − Tds

= dw − Tdstot.

(3) 

As we saw with ΔStot, each microscopic quantity has a macro
scopic counterpart defined by taking the expectation with 

respect to all possible paths. Throughout, we use the convention 
that macroscopic (averaged) quantities are written in capital, 
and microscopic quantities are written in lower case, e.g. 
Aneq = 〈aneq〉paths.

Thermodynamics with internal variables
Now we turn to the macroscopic description, and give a brief over
view of TIV. TIV has enjoyed decades of application as an import
ant tool of study for irreversible processes in solids, fluids, 
granular media, and viscoelastic materials (37–41). Originally for
mulated as an extension to the theory of irreversible processes, 
TIV posits that nonequilibrium description without history de
pendence requires further state variables beyond the classical tem
perature, number of particles, and applied strain (in the canonical 
ensemble, for example) in order to determine the system’s evolu
tion (8, 42). These additional variables, the internal variables, 
encode the effects of the microscopic degrees of freedom on the ob
servable macrostate. Thus, the relevant state functions take both 
classical and internal variables as input. The flexibility of the 
theory is apparent from the wide range of material behavior it 
can describe. The challenge, however, is in selecting descriptive in
ternal variables, and in defining their kinetic equations in a way 
which is consistent with microscopic physics. Here, we take on 
the latter challenge.

Variational method of Eyink
The key mathematical tool we utilize for connecting TIV to 
stochastic thermodynamics is a variational method for approxi
mating nonequilibrium systems laid out by Eyink (29). This 
method generalizes the Rayleigh–Ritz variational method of 
quantum mechanics to non-Hermitian operators. The method 
assumes the system in question can be described by a probabil
ity density function governed by an equation of the form ∂

∂t p = Lp 
(e.g. a Fokker–Planck equation associated with Langevin 
particle dynamics). Since the operator L is not Hermitian, 
L ≠ L†, one must define a variational method over both 

Fig. 1. The stochastic thermodynamics with internal variables (STIV) framework proposed here provides kinetic and thermodynamic equations for a 
broad class of systems described by Langevin dynamics, including the coiled-coil protein depicted in these snapshots. Taken from molecular dynamics 
simulations, atomic level structures are depicted in C) and E), while the unfolding due to an externally applied load becomes clear in the secondary 
structures shown in D) and F). The reference atomic structure and secondary structures are shown in A) and B). Vital for the coiled-coil protein’s function, 
we study the dynamics of this transition from folded to unfolded configuration as a demonstration of the power of the STIV framework. Reproduced from 
Torres-Sánchez et al. (31) with permission from the Royal Society of Chemistry.
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probability densities p and test functions ψ. Begin by defining 
the nonequilibrium action functional

Γ[ψ, p]= ∫∞0 ∫X ψ
∂
∂t

− L

􏼒 􏼓

pdxdt.

Under the constraint that

∫Xψ pdx
􏼌
􏼌
t=∞=∫Xψ pdx

􏼌
􏼌
t=0, 

this action is stationary, δΓ[ψ∗, p∗] = 0, if and only if ( ∂
∂t − L)p∗ = 0 

and ( ∂
∂t + L†)ψ∗ = 0. By defining the nonequilibrium “Hamiltonian” 

H[ψ, p]= ∫X ψ Lp dx, one can recast the variational equation 
δΓ[ψ∗, p∗] = 0 in Hamiltonian form

∂
∂t

p∗ =
δ

δψ
H[ψ∗, p∗] (4) 

∂
∂t

ψ∗ = −
δ

δp
H[ψ∗, p∗]. (5) 

As it stands, the variation is taken over two infinite dimensional 
function spaces, and as such, it is only possible to find exact solutions 
for a handful of systems. However, one can still make use of these 
dynamical equations to find a variational approximation to the 
true solution which lies within some fixed subspace. To do so, one be
gins by assuming the true density, p∗(x, t), and test function ψ∗(x, t), 
can be approximated by a parameterized density p̂(x, α(t)) and test 
function ψ̂(x, α(t)), respectively, so that all of the time dependence 
is captured by the variables α(t) = (α1(t), . . . , αN(t)). For example, a 
standard method for choosing a parameterization is to pick an expo
nential family (43), or specifically a collection of quasiequilibrium 
distributions (25). In this case, one selects a finite number of linearly 

independent functions of the state {ϕi(x)}N
i=1 to serve as observables 

describing the system. The parameterized densities p̂(x, α(t)) are de
fined as (for time dependent “natural” parameters α(t))

p̂(x, α(t)) = exp
􏽘N

i=1

αi(t)ϕi(x) + F (α(t))

􏼠 􏼡

, 

where F (α) = − log ( ∫ exp (
􏽐N

i=1 αiϕi(x))dx) is a log-normalizing 
constant. The primary reason for using this parameterization 
is that for each α, this p̂(x, α) has maximum Shannon entropy 
with respect to all other probability densities subject to the 
constraint that the averages 〈ϕi(x)〉p̂ take on prescribed values. 

In the quasiequilibrium case, ϕ1(x) is almost always taken as 
the system energy, and hence α1(t) becomes –β.

Given any parameterization, quasiequilibrium or otherwise, 
the dynamical equations (Eqs. 4 and 5) reduce to a coupled system 
of ordinary differential equations

􏽘N

j=1

{αi, αj}
dαj

dt
=

∂H

∂αi
, (6) 

where

{αi, αj}= ∫X
∂ψ̂
∂αi

∂p̂
∂αj

−
∂ψ̂
∂αj

∂p̂
∂αi

dx.

The solution to Eq. 6, α∗(t), offers the best approximations to the 
true solution p∗(x, t) ≈ p̂(x, α∗(t)), ψ∗(x, t) ≈ ψ̂(x, α∗(t)), lying within 
the parameterized subspace.

Stochastic thermodynamics with internal 
variables
Finally, we fuse stochastic thermodynamics with this variational 
framework to provide a general method for constructing TIV 

models. Stochastic thermodynamics provides the appropriate 
thermodynamic definitions, while the variational formalism of 
Eyink will allow us to derive dynamical equations for the internal 
variables consistent with the microscopic physics.

We return to the colloidal particle system with governing sto
chastic differential equation

dx(t) = −
1
η

∂e
∂x

(x, λ) dt +
���
2d

√
db(t).

If p(x, t ∣ λ) is the probability density of observing the system in 
state x at time t given a prespecified external protocol, λ(t), then 
p(x, t ∣ λ) obeys the Fokker–Planck equation

∂p
∂t

= L p =
1
η

∂
∂x

·
∂e
∂x

p
􏼒 􏼓

+ dΔxp.

When λ(t) is held constant, the true density tends toward the 
equilibrium Boltzmann distribution, p∗(x, t ∣ λ) ∝ exp ( − βe(x, λ)). 
Away from equilibrium, p∗(x, t ∣ λ) may be highly complex, and 
in that case, we would like to find a low-dimensional represen
tation which captures the physical phenomena of interest. To 
do so, we choose a class of parameterized densities p̂(x, α) to 
use in the variational method of Eyink, keeping in mind that 
the variables α(t) are to become the internal variables in the 
macroscopic description. This is in direct analogy with the as
sumption of a uniform probability density in the microcanoni
cal ensemble, or the Maxwellian distribution in the canonical 
ensemble. Note that since displacement (or strain) is controlled 
rather than force (or stress), we assume no explicit dependence 
on the external protocol λ in p̂(x, α). This will prove necessary 
mathematically in what follows. Finally, we do not explicitly 
consider the dependence of p̂ on β, as we have assumed that 
temperature is constant.

We next define the approximate entropy ŝ(x, α) = −kB log (p̂(x, α)) 
and use its derivatives with respect to the internal variables to de
fine the test function in the variational formalism

ψ̂(x, α, γ) = 1 + γ ·
∂ŝ
∂α

.

Since the true solution to the adjoint equation ∂ψ∗

∂t = −L†ψ∗ is 

ψ∗ ≡ const., the variables γ serve as expansion coefficients about 
the true solution ψ∗ ≡ 1. In SI Appendix, we show that they essen
tially function as dummy variables, as the variational solution fixes 
γ(t) ≡ 0 for all time. Hence, the vector α(t) will be the only relevant 
variable. Assuming this choice of density and test function, the 
variational formalism of Eyink yields the dynamical equation

〈
∂ŝ
∂α

∂ŝ
∂α

T

〉p̂ · α̇ = −kB〈L† ∂ŝ
∂α

〉p̂, (7) 

where 〈g〉p̂= ∫ g(x)p̂(x, α)dx denotes averaging with respect to p̂. This 

equation reveals the utility of our choice of ψ̂. The matrix on the 

left-hand side Fij = 〈 ∂ŝ
∂αi

∂ŝ
∂αj

〉p̂ is k2
B times the Fisher information matrix 

of the density p̂(x, α) (25). This matrix is always symmetric and is 

positive definite so long as the functions { ∂ŝ
∂αi

(x, α)}N
i=1 are linearly in

dependent as functions of x for all α. Picking α(0) such that 
p̂(x, α(0)) ≈ p∗(x, 0 ∣ λ), and using Eq. 7 to solve for α(t) gives us the 
variational solution for p̂(x, α(t)) ≈ p∗(x, t ∣ λ) for all time.

Having approximated the density using the internal variables, 
we turn to stochastic thermodynamics to impose the thermo
dynamic structure. In order to make use of the approximate dens
ity, p̂, we simply use the stochastic thermodynamics definitions of 
thermodynamic quantities at the macroscale, but make the 
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substitution p∗(x, t ∣ λ) → p̂(x, α(t)). Following this rule, we generate 
the thermodynamic quantities as

Ê(α, λ) = 〈e〉p̂

Ŝ(α) = −kB〈 log (p̂)〉p̂

Âneq(α, λ) = Ê − TŜ

d
dt

Ŵ(α, λ) = 〈
∂e
∂λ

λ̇〉p̂

(8) 

T
d
dt

Ŝtot(α, λ) =
d
dt

Ŵ −
d
dt

Âneq (9) 

d
dt

Ŝm(α, λ) =
d
dt

Ŝtot −
d
dt

Ŝ, (10) 

where Eqs. 8–10 are derived from Eqs. 1 and 2, respectively, as 
shown in SI Appendix. Since we have assumed a constant bath 
temperature for the governing Langevin equation, we do not expli
citly write the dependence of the quantities above on β. Recall, a 
key assumption is that the approximate density should be inde

pendent of λ for fixed α. Hence, the approximate entropy, Ŝ, is a 
function of α alone. This means that the partial derivative with re

spect to λ can be factored out of the expectation in Eq. 8. Since Ŝ 
does not depend on λ, we may write

d
dt

Ŵ =
∂Ê
∂λ

λ̇ =
∂
∂λ

Ê − TŜ
􏼐 􏼑

λ̇ =
∂Âneq

∂λ
λ̇ ≡ F̂exλ̇, 

so that the approximate external force is given by the gradient of 

Âneq with respect to the external protocol, F̂ex ≡ ∂Âneq

∂λ . Moreover, 

Eqs. 9 and 10 simplify to

T
d
dt

Ŝtot = −
∂Âneq

∂α
· α̇

d
dt

Q̂ = −
∂Ê
∂α

· α̇.

Thus, the approximate work rate and the approximate rate of en

tropy production of the medium are given by the derivatives of Ê 
and the approximate work rate and the approximate rate of total 

entropy production are given by the derivatives of Âneq. In particu
lar, the rate of total entropy production takes the form of a prod

uct of fluxes, α̇, and affinities, Aα = − ∂Âneq

∂α . Likewise, the internal 

variables do not explicitly enter into the equation for the work 
rate, just as in TIV. Moreover, in SI Appendix, we prove that for 
an arbitrary interaction energy e(x, λ), internal variables obey the 
stronger GENERIC structure (44), obeying a gradient flow equation 
with respect to the nonequilibrium free energy, whenever the ap
proximate probability density is assumed to be Gaussian. In this 
case, the internal variables are the mean and inverse covariance 

( α = (μ, Σ−1)) of the probability density of the state, x ∈ RN. 
Symbolically, we define

p̂(x, μ, Σ−1) =

������������

det
Σ−1

2π

􏼒 􏼓
􏽳

exp −
1
2

(x − μ)TΣ−1(x − μ)
􏼒 􏼓

. (11) 

This choice of form for the approximate density is a standard 
choice in popular approximation methods including Gaussian 
phase packets (45, 46) and diffusive molecular dynamics (47, 48) 
primarily for its tractable nature.

As mentioned, the dynamics of μ and Σ−1 are given in terms of 
gradients with respect to the nonequilibrium free energy

μ̇ = −
1
η

∂Âneq

∂μ
, Σ̇−1 = −M(Σ−1):

∂Âneq

∂Σ−1 (12) 

for a positive semidefinite dissipation tensor M(Σ−1), and hence, 
the total rate of entropy production is guaranteed to be non
negative

T
d
dt

Ŝtot =
1
η

∂Âneq
∂μ

􏼍
􏼍
􏼍
􏼍
􏼍

􏼍
􏼍
􏼍
􏼍
􏼍

2

+
∂Âneq
∂Σ−1 :M:

∂Âneq
∂Σ−1 . (13) 

Thus, we see that the thermodynamic structure emerges natural
ly by utilizing the variational method of Eyink within the context 
of stochastic thermodynamics, and that we are not forced to pos
tulate phenomenological equations for α(t). They emerge directly 
from the variational structure.

Results
A single colloidal particle
To illustrate the STIV framework, we apply it to a toy model: an 
overdamped, colloidal particle acted on by an external force 
that is linear in the extension of a spring connected to the particle. 
Despite its simplicity, this model is often used to describe a mol
ecule caught in an optical trap. In one dimension, the governing 
Langevin equation for the particle’s position is given by 

dx = −
1
η

∂e
∂x (x, λ)dt +

���
2d

√
db, where e(x, λ) = k

2 (λ − x)2 is the energy of 

the spring or the trapping potential, and λ(t) is an arbitrary exter
nal protocol. The corresponding Fokker–Planck operator is 

L p =
1
η

∂
∂x ( ∂e

∂x p) + d ∂2

∂x2 p. The true solution is an Ornstein– 

Uhlenbeck (OU) process, thus, providing an exactly solvable model 
for comparison (49). Since the probability density of the OU process 
is Gaussian for all time (assuming a Gaussian initial distribution), 
we use a Gaussian approximate distribution with mean μ and 
standard deviation σ as internal variables (Eq. 11 with Σ−1 = 1/σ2). 
It is straightforward to input this density into the variational for
malism of Eyink and compute the dynamics. The details of the der
ivation are written out in SI Appendix. The resulting dynamical 
equations recover the analytical solution for the OU process

μ̇ = −
k
η

(μ − λ), σ̇ = −
k
η

σ 1 −
1

kβσ2

􏼒 􏼓

.

Analysis of the phase diagram for these equations reveals that μ ex
ponentially relaxes toward the external protocol λ, and σ tends to 

1
���
kβ

􏽰 whenever σ(t = 0) > 0.

Now that we have the dynamics, we turn to computing the 
thermodynamics quantities. Of particular interest is the fact 
that the fluxes of the internal variables are linear in the affinities, 
− ∂Âneq

∂μ = ημ̇, − ∂Âneq

∂σ = ησ̇, hence ensuring a nonnegative entropy pro
duction. We can also find the approximate work rate, heat rate, 
and rate of total entropy production explicitly

d
dt

Ŵ = ημ̇λ̇,
d
dt

Q̂ = ημ̇2 − kσσ̇, T
d
dt

Ŝtot = ημ̇2 + ησ̇2.

Although a toy system, this example highlights the fact that when 
the true solution to the governing partial differential equation (PDE) 
for the probability density lies in the subspace spanned by the trial 
density, the true solution is recovered and relevant thermodynamic 
quantities can be exactly computed via the nonequilibrium free en
ergy, as can be seen in Fig. 2.

Double-well colloidal mass–spring–chain
For our primary example, we study a colloidal mass–spring–chain 
system with double-well interaction between masses. Depicted in 
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the inset of Fig. 3E, this model of phase front propagation in 
coiled-coil proteins and double-stranded DNA contains several 
metastable configurations corresponding to the different springs 
occupying one of the two minima in the interaction energy, and 
exhibits phase transitions between them. A key test for the 
STIV framework is whether or not the phase can accurately be 
predicted, and more importantly, whether the kinetics and ther
modynamics of phase transitions can be captured without phe
nomenological kinetic equations. An almost identical model to 
the one studied here is considered in Truskinovsky and 
Vainchtein (50), but in a Hamiltonian setting rather than as a col
loidal system. Here, the authors make use of the piecewise lin
earity of the force, − ∂e

∂x, to derive an exact solution for the strain 
in the presence of a phase front traveling at constant velocity, 
and the kinetic relation for this phase front without the use of 
phenomenological assumptions. Our solution, on the other 
hand, is inherently approximate (though accurate), but does 
not depend on either the assumptions of constant velocity of 
the phase front, or the specific piecewise linear form of the force. 
The choice of interaction potential is simply convenience, and 
the STIV method could be easily applied to quartic or other 
double-well interaction potentials.

We assume each spring has internal energy described by the 
following double-well potential:

u(z) =

k1

2
(z + l1)2 x ≤ 0

k2

2
(z − l2)2 + h2 x > 0,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

where h2 is chosen so that u(z) is continuous (i.e. 

h2 = (k1l21 − k2l22)/2). For simplicity, we have placed one well on 
each side of the origin so that the transition point falls at z = 0. 
Letting x = (x1, . . . , xN) be the positions of the N interior masses, 
the total energy, given an external protocol λ, is 

e(x, λ) =
􏽐N

i=1 u(xi − xi−1) + u(λ − xN), where x0 ≡ 0.
We begin by assuming that the positions of the masses can be 

well described using a multivariate Gaussian distribution, and set 
the internal variables to be the mean μ and the inverse covariance 
Σ−1 as in Eq. 11. The exact form of the dynamical equations for the 

internal variables induced by the STIV framework can be found in 
the SI Appendix. As expected, the equations obey the gradient flow 
structure given by Eq. 12, where in this case, we have 

Mij,kl =
1
η

(Σ−1
ik Σ−2

jl + Σ−2
ik Σ−1

jl + Σ−1
il Σ−2

jk + Σ−2
il Σ−1

jk ). The rate of total en

tropy production, given by Eq. 13, is thus nonnegative. It is inter
esting to note that the dynamical equations for μ and Σ−1 are 
coupled through an approximation of the phase fraction of 
springs occupying the right well

Φ̂i(x, t) ≡∫∞−∞ 1(xi−xi−1>0)p̂(x, μ(t), Σ−1(t))dx.

As an important special case, fixing the interaction parameters to 
produce a quadratic interaction, l1 = −l2 and k1 = k2 = k, causes the 

dependence on Φ̂ to drop out, and the equations from μ and Σ−1 

decouple.
In Fig. 4, we show a comparison of the probability densities pro

duced by the STIV framework for a two mass system to those ob
tained from Langevin simulations of the governing stochastic 
differential equation. Although fine details of the multimodal 
structure are missed (as is to be expected when using a 
Gaussian model), the size and location of the dominant region of 
nonzero probability is captured, making it possible to compute 
the relevant macroscopic thermodynamic quantities, as we dis
cuss next.

Since the STIV framework requires an approximation to the 
true density of states using internal variables, we verify the ac
curacy of the Gaussian model for the double-well mass–spring– 
chain system using macroscopic thermodynamic quantities in
cluding the phase fraction, external force, and total rate of en
tropy production. As the exact form of the true solution 
p∗(x, t ∣ λ) is unknown, we compare the results to Langevin simu
lations of a system with eight free masses in Fig. 3. Despite the 
fact that the true solution is multimodal due to the existence 
of several metastable configurations, it is clear that the approx
imations of the mean mass position (A), phase fraction (B), exter
nal force ( ∂E

∂λ ≈ ∂Ê
∂λ = ∂Âneq

∂λ ) (C), and total rate of entropy production 
(D) are all highly accurate. This holds true for a variety of pulling 
protocols including linear (1), sinusoidal (2), and a step displace
ment (3, 4), as well as for symmetric (1, 2, 3) and asymmetric (4) 
interaction potentials. Returning to (B), we see that for a system 

A

B

C

D

Fig. 2. A comparison of the STIV method (black solid line) to Langevin simulations (red short dashes, 100,000 simulations) for a single colloidal particle in 
a harmonic optical trap. A) The mean mass position, μ ≈ 〈x〉, as well as the external pulling protocol, λ(t), in blue long danshes. B) The standard deviation, 

σ ≈
��������������

〈(x − 〈x〉)2〉
􏽱

, of mass positions. C) The external force on the optical trap. D) The total rate of entropy production.
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with an initial configuration in which all the springs begin in 
the left well we can observe a propagating phase front as the 
springs, one by one, transition from the left to the right well. 
This transition is captured by the internal variable model with 
high accuracy allowing one to directly approximate the velocity 
of the phase front. We note, however, that the quantitative accur
acy of the method appears to hold most strongly in the case that the 
thermal energy is significantly larger or smaller than the scale of 
the energy barrier separating the two potential energy wells in 
the spring interaction. When the thermal energy and potential en
ergy barriers are at the same scale, the true density of states is high
ly multimodal, and not well approximated by a multivariate 
Gaussian, see Movie S1. In this case, the STIV approximation cap
tures the behavior of only the dominant mode. When the thermal 
energy is large relative to the barrier, the thermal vibrations 
cause the modes to collapse into a single “basin” which can be 
well approximated by the STIV density, see Movie S2. Finally, 
when the thermal energy is small, the true density is unimodal, 
and undergoes rapid jumps between the different energy min
ima. In this regime, the Gaussian STIV density, again, becomes 
an effective choice for approximation.

The dynamical equations for the internal variables take the 
form of a discretized PDE. Assuming we properly rescale the pa
rameters of the interaction potential, the viscosity, and tempera
ture so that the equilibrium system length, energy, entropy, and 
quasistatic viscous dissipation are independent of the number 
of masses ( li = l0i /N, ki = Nk0

i , η = η0/N, β = Nβ0 ( i ∈ {1, 2})) then, in 
the limit as the number of masses tends to infinity, the internal 
variables μi and Σ−1

ij become functions of continuous variables x ∈ 
[0, 1] and x, y ∈ [0, 1] × [0, 1], respectively. Since it is challenging to 
invert a continuum function Σ−1(x, y, t), we make use of the iden
tity Σ̇ij = −(ΣΣ̇−1Σ)ij to derive the following limiting PDE for μ(x, t), 

Σ(x, y, t), the strain, ϵ(x, t) ≡ ∂μ
∂x (x, t), and the covariance of the 

strain, E(x, y, t) ≡ ∂2Σ
∂x∂y (x, y, t)

∂μ
∂t

=
1
η0

∂
∂x

k0
1 ϵ + l01
 􏼁

(1 − Φ̂) + k0
2 ϵ − l02
 􏼁

Φ̂ + (k0
2 − k0

1)E
∂Φ̂
∂ϵ

􏼚 􏼛

∂Σ
∂t

= 2ΔwΣ

μ(x = 0, t) = 0, μ(x = l0, t) = λ(t)

Σ(x = 0, y, t) = Σ(x = l0, y, t) = 0

Σ(x, y = 0, t) = Σ(x, y = l0, t) = 0, 

with the approximate phase fraction defined through

Φ̂(x, t) = Φ̂(ϵ, E) = Φ
ϵ(x, t)
����������
E(x, x, t)

􏽰

􏼠 􏼡

.

Here, Δw = ∂
∂x w(x, t) ∂

∂x + ∂
∂y w(y, t) ∂

∂y, w(x, t) = k0
1

η0 (1 − Φ̂) + k0
2

η0 Φ̂ −
1
η0 

(k0
1l01 + k0

2l02) ∂Φ̂
∂ϵ , and Φ(ξ) is the cumulative distribution function 

of a standard Gaussian (mean zero, variance one). Both equations 

for ∂μ
∂t and ∂Σ

∂t contain contributions from the left well (the terms multi

plying (1 − Φ̂)), the right well (the terms multiplying Φ̂), and the 

phase boundary (the terms multiplying ∂Φ̂
∂ϵ ), and in SI Appendix, we 

give assumptions on the continuum limit for Σ(x, y, t) such that 
these dynamical equation maintain the gradient flow structure

∂μ
∂t

= −
1
η

δÂneq
δμ

∂σ
∂t

= − ∫10∫10 M(x, y, z, w, t)
δÂneq

δΣ
(z, w, t)dzdw.

In Fig. 5A, we demonstrate that the continuum response of the sys
tem can be well approximated through the STIV framework with 

A

B

E

C1 C2

C3 C4

D1 D2

D3 D4

Fig. 3. A) A comparison of the predicted mean mass locations using STIV (black solid lines) and empirical mean of 100,000 Langevin simulations (red 
short dashes) for the 8 mass colloidal mass–spring–chain with double-well interactions and a linear external protocol (external protocol shown in blue 
long dahses throughout). Except in C4) and D4), the parameters of the symmetric interaction potential are k1 = k2 = l1 = l2 = 1. B) The predicted and 
simulated phase fractions of springs in the right well for the same system as A). C) The predicted vs. simulated external force for four different pulling 
protocols: (1) linear, (2) sinusoidal, (3) step, (4) step with an asymmetric interaction potential between masses (k1 = 1, l1 = 1, k2 = 2, l2 = 1/2). D) The 
predicted vs. simulated rate of total entropy production for the same four pulling protocols as in C). The external protocols used are shown in the insets of 
C), D). E) Cartoon of the mass–spring–chain configuration. One side is held fixed, while the other is controlled by the external protocol.
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finitely many masses. We see agreement between the mean mass 
positions observed in Langevin simulations and those predicted us

ing the STIV framework for both 17 and 62 masses, verifying that 

both discretizations capture the continuum response. This allows 

us to use the 17 mass system to accurately predict important con

tinuum level quantities such as the external force as a function of 

extension, λ, Fig. 5B, the phase front speed, Fig. 5C, for different ap

plied strain rates, and finally, the rate of entropy production due to 

the phase front, Fig. 5D, as a function of the system extension for 

each of the strain rates shown in (C). Methods for computing the 

front speed and the rate of entropy production due to the phase front 

can be found in SI Appendix.

Finally, in the continuum limit, one can differentiate in time 
the defining equation for the location of the phase front in the ref

erence configuration, Φ̂(Î(t), t) ≡
1
2 

to yield the following ordinary 

differential equation for the location of the phase front

d
dt

Î(t) = −

∂2

∂x2

δÂneq

δϵ
(x, t)

η
∂2μ
∂x2 (x, t)

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌
􏼌
􏼌
x=Î(t)

.

This equation reveals that the phase front velocity is directly pro
portional to the ratio of the curvature of the thermodynamic affin

ity conjugate to the strain Aϵ ≡ − δÂneq

δϵ and the curvature of μ at the 

location of the phase front.

Fig. 4. A comparison of the probability density for the spring lengths for a two mass mass–spring–chain system with double-well spring energies. The 
colored histograms depict densities collected from 100,000 Langevin simulations of the solution to the governing stochastic differential equation, while 
the colored contour lines show the approximation using STIV. On each panel, the horizontal axis gives the length of the first spring, x1, and the vertical 
axis gives the length of second, x2 − x1. Panels from left to right show equal increments in time. We see that despite missing the details of the multimodal 
behavior apparent in the Langevin simulations, the STIV approximation successfully tracks the location and size of the dominant region of nonzero 
probability.

A

C

B

D

Fig. 5. A) Mean mass positions for Langevin and STIV approximations to a 17 mass (Langevin: red short dashes, STIV: solid black) and a 62 mass 
(Langevin: pink short dashes, STIV: gray long dashes) double-well mass–spring–chain system, with parameters rescaled for the same effective 
behavior. For both systems, only the eight masses expected to overlap are plotted. Throughout (B, C, D), darker colors, dashed lines, and + scatter 
points denote results from Langevin simulations, whereas lighter colors, solid lines, and × scatter points denote results from the STIV 
approximation. B) The external force as a function of extension for the 17 mass system at 10 different strain rates (shown in C). C) The phase front 
speed as a function of strain rate in the 17 mass system. D) The rate of entropy production due to the phase front as a function of extension for each 
of the strain rates shown in C).
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Discussion
Our results demonstrate the utility and accuracy of the STIV 
framework as a method for constructing TIV models which are 
consistent with microscopic physics. After assuming a functional 
form for a set of parameterized probability densities which serve 
to approximate the true density of states, inserting this approxi
mation into the thermodynamic definitions taken from stochastic 
thermodynamics directly yields the internal variables structure, 
and the dynamics of these internal variables are fully determined 
by the variational method of Eyink. The resulting macroscopic 
model encodes the microscopic features of the system to the de
gree allowed within the provided probability density without 
any need for further reference back to smaller scales. Moreover, 
in the important case of a Gaussian form for the approximate 
probability density, p̂(x, α), we recover the gradient flow dynamics 
and the GENERIC structure which is commonly assumed without 
direct microscopic justification. In this work, we have focused on 
examples yielding analytically tractable approximations. 
However, it is equally possible to extend the method beyond 
such constraints by creating a numerical implementation based 
on sampling techniques using modern statistical and machine- 
learning techniques. Furthermore, extensions to Hamiltonian sys
tems, active noise, and models exhibiting significant coarse grain
ing constitute important future steps for the STIV framework.
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Supplementary material is available at PNAS Nexus online.
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