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Abstract

Far-from-equilibrium phenomena are critical to all natural and engineered systems, and essential to biological processes responsible for
life. For over a century and a half, since Carnot, Clausius, Maxwell, Boltzmann, and Gibbs, among many others, laid the foundation for our
understanding of equilibrium processes, scientists and engineers have dreamed of an analogous treatment of nonequilibrium systems. But
despite tremendous efforts, a universal theory of nonequilibrium behavior akin to equilibrium statistical mechanics and thermodynamics
has evaded description. Several methodologies have proved their ability to accurately describe complex nonequilibrium systems at the
macroscopic scale, but their accuracy and predictive capacity is predicated on either phenomenological kinetic equations fit to
microscopic data or on running concurrent simulations at the particle level. Instead, we provide a novel framework for deriving stand-
alone macroscopic thermodynamic models directly from microscopic physics without fitting in overdamped Langevin systems. The only
necessary ingredient is a functional form for a parameterized, approximate density of states, in analogy to the assumption of a uniform
density of states in the equilibrium microcanonical ensemble. We highlight this framework’s effectiveness by deriving analytical
approximations for evolving mechanical and thermodynamic quantities in a model of coiled-coil proteins and double-stranded DNA,
thus producing, to the authors’ knowledge, the first derivation of the governing equations for a phase propagating system under general
loading conditions without appeal to phenomenology. The generality of our treatment allows for application to any system described
by Langevin dynamics with arbitrary interaction energies and external driving, including colloidal macromolecules, hydrogels, and
biopolymers.

Keywords: thermodynamics with internal variables, stochastic thermodynamics, variational approximation

Significance Statement

The beautiful connection between statistical mechanics and equilibrium thermodynamics is one of the crowning achievements in
modern physics. Significant efforts have extended this connection into the nonequilibrium regime. Impactful, and in some cases sur-
prising, progress has been achieved at both the macroscopic and microscopic scales, but a key challenge of bridging these scales re-
mains. In this work, we provide a framework for constructing macroscopic nonequilibrium thermodynamic models from microscopic
physics without relying on phenomenology, fitting to data, or concurrent particle simulations. We demonstrate this methodology on a
model of coiled-coil proteins and double-stranded DNA, producing the first analytical approximations to the governing equations for a
phase transforming system without phenomenological assumptions.

Introduction scale, classical irreversible thermodynamics leverages the local
equilibrium assumption to allow classical thermodynamic quan-
tities to vary over space and time, enabling one to describe well-
known linear transport equations such as Fourier’s and Fick's laws
(6). Extended irreversible thermodynamics further promotes the
fluxes of these quantities to the level of independent variables in or-
der to capture more general transport laws (7). Further extensions to

allow for arbitrary state variables (not just fluxes), or history depend-

Understanding and predicting far-from-equilibrium behavior is of
critical importance for advancing a wide range of research and

technological areas including dynamic behavior of materials,
(1, 2), complex energy systems (3), as well as geological and living
matter (4, 5). Although our understanding of each of these diverse
fields continues to grow, a universal theory of nonequilibrium

processes has remained elusive. The past century, however, has
seen numerous significant breakthroughs toward this ultimate
goal, of which we detail only a few below. At the macroscopic

ence take the names of thermodynamics with internal variables
(TIV) or rational thermodynamics, respectively (8-11). More re-
cently, the General Equation for Nonequilibrium Reversible-
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Irreversible Coupling (GENERIC) framework and Onsager’s vari-
ational formalism have proven to be successful enhancements of
the more classical methods (12-15). On the other hand, linear re-
sponse theory and fluctuation—-dissipation relations constitute the
first step toward a theory of statistical physics away from equilib-
rium. In the last few decades, interest in microscopic far-from-
equilibrium processes has flourished due to the unforeseen discov-
ery of the Jarzynski equality and other fluctuation theorems, as
well as the advent of stochastic thermodynamics (16-20), and the
application of large deviation theory to statistical physics (21-23).
These advances have changed the way scientists view thermody-
namics, entropy, and the second law particularly at small scales.

More specific to this work is the challenge of uniting scales.
Given the success of the aforementioned macroscopic thermo-
dynamic theories, how can one derive and inform the models
within them using microscopic physics? Describing this connec-
tion constitutes the key challenge in formulating a unified
far-from-equilibrium theory. As of yet, the GENERIC framework
possesses the strongest microscopic foundation. Starting from a
Hamiltonian system, one can either coarse grain using the projec-
tion operator formalism (24) or a statistical lack-of-fit optimiza-
tion method (25, 26) in order to derive the GENERIC equations.
However, these methods are either challenging to implement,
analytically or numerically, or contain fitting parameters which
must be approximated from data. Alternatively, one can begin
from a special class of stochastic Markov processes and use fluc-
tuation-dissipation relations or large deviation theory to the
same effect (27, 28). So far, numerical implementations of these
methods have only been formulated for purely dissipative sys-
tems, with no reversible component.

For this work, we shall utilize the less stringent framework of
TIV, but recover GENERIC in an important case utilized in the ex-
amples. We will show how to leverage a variational method pro-
posed by Eyink (29) for evolving approximate nonequilibrium
probability distributions to derive the governing equations of
TIV for systems whose microscopic physics is well described by
Langevin dynamics. Furthermore, in the approach proposed
here, the variational parameters of the probability density are in-
terpreted as macroscopic internal variables, with dynamical
equations fully determined through the variational method.
Once the approximate density is inserted into the stochastic ther-
modynamics framework, the equations for the classical macro-
scopic thermodynamics quantities including work rate, heat
rate, and entropy production appear naturally, and possess the
TIV structure. For example, the internal variables do not explicitly
appear in the equation for the work rate, and the entropy produc-
tion factors into a product of fluxes and their conjugate affinities,
which themselves are given by the gradient of a nonequilibrium
free energy. Moreover, we show that when the approximating
density is assumed to be Gaussian, the internal variables obey a
gradient flow dynamics with respect to the nonequilibrium free
energy, and so the resulting rate of entropy production is guaran-
teed to be nonnegative. This direct link between microscopic
physics and TIV has not been elaborated elsewhere, and we refer
to this method as stochastic thermodynamics with internal vari-
ables (STIV).

Toillustrate and highlight the effectiveness of this method, we
provide the results of two examples. The firstis a paradigmatic ex-
ample from stochastic thermodynamics: a single colloidal particle
acted on by a linear external force, mimicking a macromolecule in
anoptical trap. It demonstrates all of the key features of the meth-
od while being simple enough to allow for comparison to exact sol-
utions. The second example features a model system for studying

phase transitions of biomolecules, for example, in coiled-coil pro-
teins (30, 31) (depicted in Fig. 1) or double-stranded DNA (32, 33): a
colloidal mass-spring-chain system with double-well interac-
tions between neighboring masses. By comparing to Langevin
simulations, we show that STIV not only produces accurate ana-
lytical approximations to relevant thermodynamic quantities
but also predicts the speed of a traveling phase front induced by
external driving.

Theory
Stochastic thermodynamics

We begin by outlining the key ideas of stochastic thermodynamics
which defines classical thermodynamic quantities at the trajec-
tory level for systems obeying Langevin dynamics, such as those
embedded in an aqueous solution. These quantities include work,
heat flow, and entropy production among others, and these new
definitions allow for an expanded study of far-from-equilibrium
behavior at the level of individual, fluctuating trajectories.
Stochastic thermodynamics is a highly active area of study,
and has been developed far beyond what is detailed here, as we
have limited our presentation to only what we need for introducing
STIV. We primarily follow the presentation of Seifert (19) through-
out. Further details can be found in that work and in the references
therein.

The paradigmatic example within stochastic thermodynamics
is a colloidal particle in a viscous fluid at constant temperature, T,
acted on by an external driving protocol (we present the theory for
a single particle in one dimension, as the generalization to many
particles in multiple dimensions is straightforward). This system
is well described by an overdamped Langevin equation, which
can be written as a stochastic differential equation of the form

ax(t) = - 2% (x, 2) dt + v/2d db(t),
n ox
where x(t) denotes the particle’s position at time t € [t;, t¢], #1s the
drag coefficient of the particle in the fluid, — % (x, 1) is the force act-

ing on the particle coming from a potential energy, e, A(t) is a pre-
. 1 . . .
scribed external control protocol, d= . is the diffusion

coefficient, 8 = 1/kpT1is the inverse absolute temperature in energy
units, and b(t) is a standard Brownian motion. We note that one
may also include nonconservative interactions and external
forces to model active noise within stochastic thermodynamics,
but we do not use this feature in the current framework.

Given this system, stochastic thermodynamics enables one to
define the internal energy, work, heat, and entropy at the level
of the trajectory. Naturally, e(x(t), A(t)) defines the internal energy
of the system. One does work on the system by changing e via the
external control, 2. Thus, the incremental work reads

de .
dw =5 jdt. (1)

Using the first law of thermodynamics, we conclude that the in-
cremental heat flowing out of the system is

dq= dw —de.

An additional important quantity is the total entropy, s*t. From
the second law of thermodynamics, its macroscopic counterpart,
St (to be defined), should be nondecreasing and describes the lev-
el of irreversiblity of the trajectory. To thatend, the change in total
entropy is defined using the log of the (Raydon-Nikodym) deriva-
tive of the probability of observing the given trajectory, P[x(t) | 4],
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Fig. 1. The stochastic thermodynamics with internal variables (STIV) framework proposed here provides kinetic and thermodynamic equations for a
broad class of systems described by Langevin dynamics, including the coiled-coil protein depicted in these snapshots. Taken from molecular dynamics
simulations, atomic level structures are depicted in C) and E), while the unfolding due to an externally applied load becomes clear in the secondary
structures shown in D) and F). The reference atomic structure and secondary structures are shown in A) and B). Vital for the coiled-coil protein’s function,
we study the dynamics of this transition from folded to unfolded configuration as a demonstration of the power of the STIV framework. Reproduced from
Torres-Sanchez et al. (31) with permission from the Royal Society of Chemistry.

with respect to the probability of observing the reversed trajectory
under the time reversed external protocol, P[X(t) | /]

dP[x(t) m)

A x(t)] = ks IOg(d[ﬁ)[fc(t) 7]

where X(t) = x(t; — t) and likewise for 1 (34). Upon taking the expect-
ation with respect to all possible trajectories (and any probabilistic
initial conditions),

AS™ = () s = IS [x(0)] AP[x(t) | £

is recognized as kg times the Kullback-Leibler divergence between
the distributions of forward and backwards trajectories. As such,
AS™* must be nonnegative. Itis also useful to break up the total en-
tropy change into the change in the entropy of the system (19),

_ p(x(ty), tf 14)
st =—te s Gy i)
where p(x, t | 4) is the probability density of observing the particle
at position x at time t, and the change in the entropy of the me-
dium

As™ = Astot — As. )

Finally, one defines the microscopic nonequilibrium free energy in
terms of the potential and entropy as a"*? =e — Ts (35). Using the
path integral representation of P[x(t) | 4] and P[x(t) | 1], one finds
that the incremental heat dissipated into the medium equals
the incremental entropy change in the medium Tds™ =dq (36).
This allows one torelate the change in nonequilibrium free energy
to the work done and the change in total entropy

da"® =de - Tds
=dw -dq-Tds (3)
=dw - Tds"™".

As we saw with AS®™!, each microscopic quantity has a macro-
scopic counterpart defined by taking the expectation with

respect to all possible paths. Throughout, we use the convention
that macroscopic (averaged) quantities are written in capital,
and microscopic quantities are written in lower case, e.g.
AT =(a" ) paths-

Thermodynamics with internal variables

Now we turn to the macroscopic description, and give a brief over-
view of TIV. TIV has enjoyed decades of application as an import-
ant tool of study for irreversible processes in solids, fluids,
granular media, and viscoelastic materials (37-41). Originally for-
mulated as an extension to the theory of irreversible processes,
TIV posits that nonequilibrium description without history de-
pendence requires further state variables beyond the classical tem-
perature, number of particles, and applied strain (in the canonical
ensemble, for example) in order to determine the system'’s evolu-
tion (8, 42). These additional variables, the internal variables,
encode the effects of the microscopic degrees of freedom on the ob-
servable macrostate. Thus, the relevant state functions take both
classical and internal variables as input. The flexibility of the
theory is apparent from the wide range of material behavior it
can describe. The challenge, however, is in selecting descriptive in-
ternal variables, and in defining their kinetic equations in a way
which is consistent with microscopic physics. Here, we take on
the latter challenge.

Variational method of Eyink

The key mathematical tool we utilize for connecting TIV to
stochastic thermodynamics is a variational method for approxi-
mating nonequilibrium systems laid out by Eyink (29). This
method generalizes the Rayleigh-Ritz variational method of
quantum mechanics to non-Hermitian operators. The method
assumes the system in question can be described by a probabil-
ity density function governed by an equation of the form 4p = Lp
(e.g. a Fokker-Planck equation associated with Langevin
particle dynamics). Since the operator £ is not Hermitian,
L£# LY, one must define a variational method over both
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probability densities p and test functions y. Begin by defining
the nonequilibrium action functional

Iy, pl=15 Ix w(% - £>pdxdt.

Under the constraint that

bew pdx|_ =ly pdx|,_q,
this action is stationary, I'[y*, p*] =0, if and only if (- £)p* =0
and (£ + L£M)y* = 0. By defining the nonequilibrium “Hamiltonian”

H[w, p]=x w Lp dx, one can recast the variational equation
OT[w*, p*] = 0 in Hamiltonian form

J *_{7)‘ F ok
5P —6WH[w,p] (4)
4 k é Kok
pradie 5p7-l[v/,p]~ ()

As it stands, the variation is taken over two infinite dimensional
function spaces, and as such, itis only possible to find exact solutions
for a handful of systems. However, one can still make use of these
dynamical equations to find a variational approximation to the
true solution which lies within some fixed subspace. To do so, one be-
gins by assuming the true density, p*(x, t), and test function y*(x, t),
can be approximated by a parameterized density p(x, a(t)) and test
function ¥(x, a(t)), respectively, so that all of the time dependence
is captured by the variables a(t) = (a1(t), ..., an(t)). For example, a
standard method for choosing a parameterization is to pick an expo-
nential family (43), or specifically a collection of quasiequilibrium
distributions (25). In this case, one selects a finite number of linearly
independent functions of the state {¢;(x)}, to serve as observables
describing the system. The parameterized densities p(x, a(t)) are de-
fined as (for time dependent “natural” parameters a(t))

N
P(x, a(t)) =exp (Z ai(t)g;(x) + F (a(t)))y
i=1
where F(o)=—-log(lexp (XN, a¢(x))dx) is a log-normalizing
constant. The primary reason for using this parameterization
is that for each «, this p(x, @) has maximum Shannon entropy
with respect to all other probability densities subject to the
constraint that the averages (¢;(x)), take on prescribed values.

In the quasiequilibrium case, ¢,(x) is almost always taken as
the system energy, and hence a4 (t) becomes -5.

Given any parameterization, quasiequilibrium or otherwise,
the dynamical equations (Egs. 4 and 5) reduce to a coupled system
of ordinary differential equations

N doy oM
o9
>l ) G =G ®
j=1
where
oy op oy op

{ai, )= Ix 305005 o5 90
The solution to Eq. 6, a*(t), offers the best approximations to the
true solution p*(x, t) = D(X, o* (1)), v*(, t) = (%, o*(t)), lying within
the parameterized subspace.

Stochastic thermodynamics with internal
variables

Finally, we fuse stochastic thermodynamics with this variational
framework to provide a general method for constructing TIV

models. Stochastic thermodynamics provides the appropriate
thermodynamic definitions, while the variational formalism of
Eyink will allow us to derive dynamical equations for the internal
variables consistent with the microscopic physics.

We return to the colloidal particle system with governing sto-
chastic differential equation

ax(t) = — 2% (x, 1) dt + +/2d db(y).
7 ox

If p(x, t]4) is the probability density of observing the system in
state x at time t given a prespecified external protocol, A(t), then
p(x, t ] Z) obeys the Fokker-Planck equation

ap 10 [oe
E=£p=Z&~ (& p) + dAxp.
When A(t) is held constant, the true density tends toward the
equilibrium Boltzmann distribution, p*(x, t | 1) «exp (— Be(x, 4)).
Away from equilibrium, p*(x, t | 4) may be highly complex, and
in that case, we would like to find a low-dimensional represen-
tation which captures the physical phenomena of interest. To
do so, we choose a class of parameterized densities p(x, a) to
use in the variational method of Eyink, keeping in mind that
the variables «(t) are to become the internal variables in the
macroscopic description. This is in direct analogy with the as-
sumption of a uniform probability density in the microcanoni-
cal ensemble, or the Maxwellian distribution in the canonical
ensemble. Note that since displacement (or strain) is controlled
rather than force (or stress), we assume no explicit dependence
on the external protocol 4 in p(x, ). This will prove necessary
mathematically in what follows. Finally, we do not explicitly
consider the dependence of p on B, as we have assumed that
temperature is constant.

We next define the approximate entropy §(x, o) = —kg log (p(x, a))
and use its derivatives with respect to the internal variables to de-
fine the test function in the variational formalism

08
0 =14y.2,
P, 0 9) =14y o

Since the true solution to the adjoint equation %:—ﬂy/* is

w* = const., the variables y serve as expansion coefficients about
the true solution y* = 1. In SI Appendix, we show that they essen-
tially function as dummy variables, as the variational solution fixes
y(t) = 0 for all time. Hence, the vector «(t) will be the only relevant
variable. Assuming this choice of density and test function, the
variational formalism of Eyink yields the dynamical equation

5asT .08
<%£ >p'a——kB<£ %)@ (7)
where (g),= [ 9(x)p(x, a)dx denotes averaging with respect to p. This
equation reveals the utility of our choice of . The matrix on the

left-hand side Fyj = ( £ £); is k times the Fisher information matrix
i 90

of the density p(x, @) (25). This matrix is always symmetric and is
positive definite so long as the functions {I;’—i (x, @)}, are linearly in-
dependent as functions of x for all a. Picking «(0) such that
P(x, a(0)) ~ p*(x, 0] 4), and using Eq. 7 to solve for a(t) gives us the
variational solution for p(x, a(t)) ~ p*(x, t | 4) for all time.

Having approximated the density using the internal variables,
we turn to stochastic thermodynamics to impose the thermo-
dynamic structure. In order to make use of the approximate dens-
ity, p, we simply use the stochastic thermodynamics definitions of
thermodynamic quantities at the macroscale, but make the

20z Aenuer gz uo 1senb Aq Gzog/v/// Lypebd/z L /z/e1ome/snxauseud/wod dno-olwapede//:sdjy wolj papeojumoq


http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad417#supplementary-data

Leadbetteretal. | 5

substitution p*(x, t | ) - p(x, a(t)). Following this rule, we generate
the thermodynamic quantities as

Ela, ) = (e);
8(a) = —ks(log (p));
Area(g, jy=F T3 ®)
d .. oe .
aw(a, 2= (5
d A _ds d Aneq
T gStotle, )= 3 W- A ©)
d d d A
geSmlen ) =3 Stot = 228, (10)

where Egs. 8-10 are derived from Egs. 1 and 2, respectively, as
shown in SI Appendix. Since we have assumed a constant bath
temperature for the governing Langevin equation, we do not expli-
citly write the dependence of the quantities above on g. Recall, a
key assumption is that the approximate density should be inde-
pendent of 2 for fixed a. Hence, the approximate entropy, S, is a
function of o alone. This means that the partial derivative with re-
spect to A can be factored out of the expectation in Eq. 8. Since §
does not depend on 4, we may write

—W=—21=—(E-T
dt oA 04 S

d. oF, a<A )

so that the approximate external force is given by the gradient of
Ared with respect to the external protocol, Fe* = % Moreover,
Egs. 9 and 10 simplify to

oF

d. .
G= o

da 0Ared
TgStot=———
Thus, the approximate work rate and the approximate rate of en-
tropy production of the medium are given by the derivatives of £
and the approximate work rate and the approximate rate of total
entropy production are given by the derivatives of A”®?. In particu-
lar, the rate of total entropy production takes the form of a prod-

uct of fluxes, &, and affinities, A, = -2 Likewise, the internal
variables do not explicitly enter into the equation for the work
rate, just as in TIV. Moreover, in SI Appendix, we prove that for
an arbitrary interaction energy e(x, 4), internal variables obey the
stronger GENERIC structure (44), obeying a gradient flow equation
with respect to the nonequilibrium free energy, whenever the ap-
proximate probability density is assumed to be Gaussian. In this
case, the internal variables are the mean and inverse covariance
( a=(u, =Y) of the probability density of the state, x € RV,
Symbolically, we define

Plx,u, T = det(z—l) exp(-5 (=T k=) (11
2r 2
This choice of form for the approximate density is a standard
choice in popular approximation methods including Gaussian
phase packets (45, 46) and diffusive molecular dynamics (47, 48)
primarily for its tractable nature.
As mentioned, the dynamics of x and ! are given in terms of
gradients with respect to the nonequilibrium free energy

10Am

= . Y =-M(E
n o (

» aAneq
Toxt

(12)

for a positive semidefinite dissipation tensor M(z™?), and hence,

the total rate of entropy production is guaranteed to be non-
negative

d, 1

T_stot ——

dt n

0Aneq
ou

2 N ~
0Aneq M 0Aneq

M: . 1
ozt ozt (13)

Thus, we see that the thermodynamic structure emerges natural-
ly by utilizing the variational method of Eyink within the context
of stochastic thermodynamics, and that we are not forced to pos-
tulate phenomenological equations for a(t). They emerge directly
from the variational structure.

Results

A single colloidal particle

To illustrate the STIV framework, we apply it to a toy model: an
overdamped, colloidal particle acted on by an external force
thatis linear in the extension of a spring connected to the particle.
Despite its simplicity, this model is often used to describe a mol-
ecule caught in an optical trap. In one dimension, the governing
Langevin equation for the particle’s position is given by

dx = —% % (x, 2)dt + +/2ddb, where e(x, 2) =£ (1 — x)” is the energy of

the spring or the trapping potential, and A(t) is an arbitrary exter-
nal protocol. The corresponding Fokker-Planck operator is
Lp= %aix (Zp) + d%p. The true solution is an Ornstein—
Uhlenbeck (OU) process, thus, providing an exactly solvable model
for comparison (49). Since the probability density of the OU process
is Gaussian for all time (assuming a Gaussian initial distribution),
we use a Gaussian approximate distribution with mean x and
standard deviation ¢ as internal variables (Eq. 11 with =1 = 1/6?).
It is straightforward to input this density into the variational for-
malism of Eyink and compute the dynamics. The details of the der-
ivation are written out in SI Appendix. The resulting dynamical
equations recover the analytical solution for the OU process

e Ry s=_Ral(1- 1
a 77(’u A " (1 kﬁ02>'

Analysis of the phase diagram for these equations reveals that u ex-
ponentially relaxes toward the external protocol 4, and ¢ tends to

ik whenever o(t = 0) > 0.

Now that we have the dynamics, we turn to computing the
thermodynamics quantities. Of particular interest is the fact
that the fluxes of the internal variables are linear in the affinities,
- ‘”z% =i, — ”ﬁ% =56, hence ensuring a nonnegative entropy pro-
duction. We can also find the approximate work rate, heat rate,
and rate of total entropy production explicitly

%W =i, %Q =i — koo, T%émt =nil® + no’.
Although a toy system, this example highlights the fact that when
the true solution to the governing partial differential equation (PDE)
for the probability density lies in the subspace spanned by the trial
density, the true solution is recovered and relevant thermodynamic
quantities can be exactly computed via the nonequilibrium free en-
ergy, as can be seen in Fig. 2.

Double-well colloidal mass-spring-chain

For our primary example, we study a colloidal mass-spring—chain
system with double-well interaction between masses. Depicted in
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Fig. 2. A comparison of the STIV method (black solid line) to Langevin simulations (red short dashes, 100,000 simulations) for a single colloidal particle in
a harmonic optical trap. A) The mean mass position, x ~ (x), as well as the external pulling protocol, A(t), in blue long danshes. B) The standard deviation,

o~/ ((x = (x))?), of mass positions. C) The external force on the optical trap. D) The total rate of entropy production.

the inset of Fig. 3E, this model of phase front propagation in
coiled-coil proteins and double-stranded DNA contains several
metastable configurations corresponding to the different springs
occupying one of the two minima in the interaction energy, and
exhibits phase transitions between them. A key test for the
STIV framework is whether or not the phase can accurately be
predicted, and more importantly, whether the kinetics and ther-
modynamics of phase transitions can be captured without phe-
nomenological kinetic equations. An almost identical model to
the one studied here is considered in Truskinovsky and
Vainchtein (50), butin a Hamiltonian setting rather than as a col-
loidal system. Here, the authors make use of the piecewise lin-
earity of the force, —%, to derive an exact solution for the strain
in the presence of a phase front traveling at constant velocity,
and the kinetic relation for this phase front without the use of
phenomenological assumptions. Our solution, on the other
hand, is inherently approximate (though accurate), but does
not depend on either the assumptions of constant velocity of
the phase front, or the specific piecewise linear form of the force.
The choice of interaction potential is simply convenience, and
the STIV method could be easily applied to quartic or other
double-well interaction potentials.

We assume each spring has internal energy described by the
following double-well potential:

z+1)? x<0
u(z) =

IR

z-1) +h; x>0,

where h, 1is chosen so that u(z) is continuous (i.e.
hy = (k112 = k13)/2). For simplicity, we have placed one well on
each side of the origin so that the transition point falls at z=0.
Letting x = (x4, ..., xn) be the positions of the N interior masses,
the total energy, given an external protocol 4, is
e(x, ) = YN, u(x; — Xi_1) + u(2 — xn), where xo = 0.

We begin by assuming that the positions of the masses can be
well described using a multivariate Gaussian distribution, and set
the internal variables to be the mean 4 and the inverse covariance

>~'asin Eq. 11. The exact form of the dynamical equations for the

internal variables induced by the STIV framework can be found in
the SI Appendix. As expected, the equations obey the gradient flow
structure given by Eq. 12, where in this case, we have

1
M = ;(2;;2)52 + 2755 + 27157 + £7°53)). The rate of total en-

tropy production, given by Eq. 13, is thus nonnegative. It is inter-
esting to note that the dynamical equations for 4 and ! are
coupled through an approximation of the phase fraction of
springs occupying the right well

Di(x, 1) =17, V50D, (t), Z7 (1) dx.

As an important special case, fixing the interaction parameters to
produce a quadratic interaction, l; = —l, and k; =k, =k, causes the
dependence on & to drop out, and the equations from x and £~*
decouple.

In Fig. 4, we show a comparison of the probability densities pro-
duced by the STIV framework for a two mass system to those ob-
tained from Langevin simulations of the governing stochastic
differential equation. Although fine details of the multimodal
structure are missed (as is to be expected when using a
Gaussian model), the size and location of the dominant region of
nonzero probability is captured, making it possible to compute
the relevant macroscopic thermodynamic quantities, as we dis-
cuss next.

Since the STIV framework requires an approximation to the
true density of states using internal variables, we verify the ac-
curacy of the Gaussian model for the double-well mass-spring-
chain system using macroscopic thermodynamic quantities in-
cluding the phase fraction, external force, and total rate of en-
tropy production. As the exact form of the true solution
p*(x, t | 2) is unknown, we compare the results to Langevin simu-
lations of a system with eight free masses in Fig. 3. Despite the
fact that the true solution is multimodal due to the existence
of several metastable configurations, it is clear that the approx-
imations of the mean mass position (A), phase fraction (B), exter-
nal force (£ ~ 3—§ = ‘)A[%) (C), and total rate of entropy production
(D) are all highly accurate. This holds true for a variety of pulling
protocols including linear (1), sinusoidal (2), and a step displace-
ment (3, 4), as well as for symmetric (1, 2, 3) and asymmetric (4)
interaction potentials. Returning to (B), we see that for a system
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Fig. 3. A) A comparison of the predicted mean mass locations using STIV (black solid lines) and empirical mean of 100,000 Langevin simulations (red
short dashes) for the 8 mass colloidal mass-spring-chain with double-well interactions and a linear external protocol (external protocol shown in blue

long dahses throughout). Except in C4) and D4), the parameters of the symmetric interaction potential are k; =k,
simulated phase fractions of springs in the right well for the same system as A).
protocols: (1) linear, (2) sinusoidal, (3) step, (4) step with an asymmetric interaction potential between masses (k1 =1,11 =1, k, =

=1l =1, =1. B) The predicted and
C) The predicted vs. simulated external force for four different pulling
2,1, =1/2). D) The

predicted vs. simulated rate of total entropy production for the same four pulling protocols as in C). The external protocols used are shown in the insets of
C), D). E) Cartoon of the mass-spring-chain configuration. One side is held fixed, while the other is controlled by the external protocol.

with an initial configuration in which all the springs begin in
the left well we can observe a propagating phase front as the
springs, one by one, transition from the left to the right well.
This transition is captured by the internal variable model with
high accuracy allowing one to directly approximate the velocity
of the phase front. We note, however, that the quantitative accur-
acy of the method appears to hold most strongly in the case that the
thermal energy is significantly larger or smaller than the scale of
the energy barrier separating the two potential energy wells in
the spring interaction. When the thermal energy and potential en-
ergy barriers are at the same scale, the true density of states is high-
ly multimodal, and not well approximated by a multivariate
Gaussian, see Movie S1. In this case, the STIV approximation cap-
tures the behavior of only the dominant mode. When the thermal
energy is large relative to the barrier, the thermal vibrations
cause the modes to collapse into a single “basin” which can be
well approximated by the STIV density, see Movie S2. Finally,
when the thermal energy is small, the true density is unimodal,
and undergoes rapid jumps between the different energy min-
ima. In this regime, the Gaussian STIV density, again, becomes
an effective choice for approximation.

The dynamical equations for the internal variables take the
form of a discretized PDE. Assuming we properly rescale the pa-
rameters of the interaction potential, the viscosity, and tempera-
ture so that the equilibrium system length, energy, entropy, and
quasistatic viscous dissipation are independent of the number
of masses (I, =1°/N, ki =Nk?, n=4°/N, p=Np° (i € {1, 2))) then, in
the limit as the number of masses tends to infinity, the internal
variables y; and 251 become functions of continuous variables x €
[0, 1]and x, y € [0, 1] x [0, 1], respectively. Since it is challenging to
invert a continuum function £7(x, y, t), we make use of the iden-
tity 3 = —(zi‘lz)i}- to derive the following limiting PDE for u(x, t),

(x,v,t), the stram e(x,t) =2(x,t), and the covariance of the

strain, £(x, y, t) = my Z(x,y,1)

du 10 )
E=%&{k§(e+l)(l @) + K (c — ) + (2 — KO£ }
=

EZZAZ

ux=0,0=0, ulx=lo, t)=A()

(x=0,y,t)=2(x ont) 0

I(x,y=0,1)=3(xy=l, t)=0,

with the approximate phase fraction defined through
b(x, 1) = (e, &) = XD ).
Ex, %, t)

wo 1
X &+2wl, 02 wKH=H1-6)+ ”5@_’70

(K919 +k919) 22, and ®(¢) is the cumulative distribution function
of a standard Gaussian (mean zero, variance one). Both equations

for % and £ contain contributions from the left well (the terms multi-

w_ 9
Here, A"=gw

plying (1 — @), the right well (the terms multiplying ®), and the
phase boundary (the terms multiplying oﬂ;’), and in SI Appendix, we
give assumptions on the continuum limit for £(x, y, t) such that

these dynamical equation maintain the gradient flow structure

o_ 1 (SAneq
ot~ g du
do

—Iolo M(x, y, z, w, t)(%t52 4z, w, t)dzdw.

ot

In Fig. 5A, we demonstrate that the continuum response of the sys-
tem can be well approximated through the STIV framework with
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—

Fig. 4. A comparison of the probability density for the spring lengths for a two mass mass-spring-chain system with double-well spring energies. The
colored histograms depict densities collected from 100,000 Langevin simulations of the solution to the governing stochastic differential equation, while
the colored contour lines show the approximation using STIV. On each panel, the horizontal axis gives the length of the first spring, x,, and the vertical
axis gives the length of second, x, — x1. Panels from left to right show equal increments in time. We see that despite missing the details of the multimodal
behavior apparent in the Langevin simulations, the STIV approximation successfully tracks the location and size of the dominant region of nonzero

probability.
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Fig. 5. A) Mean mass positions for Langevin and STIV approximations to a 17 mass (Langevin: red short dashes, STIV: solid black) and a 62 mass
(Langevin: pink short dashes, STIV: gray long dashes) double-well mass-spring-chain system, with parameters rescaled for the same effective
behavior. For both systems, only the eight masses expected to overlap are plotted. Throughout (B, C, D), darker colors, dashed lines, and + scatter
points denote results from Langevin simulations, whereas lighter colors, solid lines, and x scatter points denote results from the STIV
approximation. B) The external force as a function of extension for the 17 mass system at 10 different strain rates (shown in C). C) The phase front
speed as a function of strain rate in the 17 mass system. D) The rate of entropy production due to the phase front as a function of extension for each

of the strain rates shown in C).

finitely many masses. We see agreement between the mean mass
positions observed in Langevin simulations and those predicted us-
ing the STIV framework for both 17 and 62 masses, verifying that
both discretizations capture the continuum response. This allows
us to use the 17 mass system to accurately predict important con-
tinuum level quantities such as the external force as a function of
extension, 4, Fig. 5B, the phase front speed, Fig. 5C, for different ap-
plied strain rates, and finally, the rate of entropy production due to
the phase front, Fig. 5D, as a function of the system extension for
each of the strain rates shown in (C). Methods for computing the
front speed and the rate of entropy production due to the phase front
can be found in SI Appendix.

Finally, in the continuum limit, one can differentiate in time
the defining equation for the location of the phase front in the ref-

erence configuration, d(i(t), t) = % to yield the following ordinary

differential equation for the location of the phase front

52 6Aneq
dy__ a2 oc &Y
&=, ——
_'“(X t)
Tox2 '™ x=i(t)

This equation reveals that the phase front velocity is directly pro-
portional to the ratio of the curvature of the thermodynamic affin-
ity conjugate to the strain A, = — ‘”ﬂj% and the curvature of x at the
location of the phase front.
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Discussion

Our results demonstrate the utility and accuracy of the STIV
framework as a method for constructing TIV models which are
consistent with microscopic physics. After assuming a functional
form for a set of parameterized probability densities which serve
to approximate the true density of states, inserting this approxi-
mation into the thermodynamic definitions taken from stochastic
thermodynamics directly yields the internal variables structure,
and the dynamics of these internal variables are fully determined
by the variational method of Eyink. The resulting macroscopic
model encodes the microscopic features of the system to the de-
gree allowed within the provided probability density without
any need for further reference back to smaller scales. Moreover,
in the important case of a Gaussian form for the approximate
probability density, p(x, a), we recover the gradient flow dynamics
and the GENERIC structure which is commonly assumed without
direct microscopic justification. In this work, we have focused on
examples yielding analytically tractable approximations.
However, it is equally possible to extend the method beyond
such constraints by creating a numerical implementation based
on sampling techniques using modern statistical and machine-
learning techniques. Furthermore, extensions to Hamiltonian sys-
tems, active noise, and models exhibiting significant coarse grain-
ing constitute important future steps for the STIV framework.

Supplementary Material

Supplementary material is available at PNAS Nexus online.
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