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Learning and Leveraging Conventions in the Design of Haptic Shared
Control Paradigms for Steering a Ground Vehicle
Vahid Izadi and Amir H. Ghasemi* �

Abstract: The main objective of this paper is to establish a framework to study the co-adaptation between humans
and automation systems in a haptic shared control framework. We specifically used this framework to design control
transfer strategies between humans and automation systems to resolve a conflict when co-steering a semi-automated
ground vehicle. The proposed framework contains three main parts. First, we defined a modular structure to separate
partner-specific strategies from task-dependent representations and use this structure to learn different co-adaption
strategies. In this structure, we assume the human and automation steering commands can be determined by opti-
mizing cost functions. For each agent, the costs are defined as a combination of a set of hand-coded features and
vectors of weights. The hand-coded features can be selected to describe task-dependent representations. On the
other hand, the weight distributions over these features can be used as a proxy to determine the partner-specific
conventions. Second, to leverage the learned co-adaptation strategies, we developed a map connecting different
strategies to the outputs of human-automation interactions by employing a collaborative-competitive game concept.
Finally, using the map, we designed an adaptable automation system capable of co-adapting to human driver’s
strategies. Specifically, we designed an episode-based policy search using the deep deterministic policy gradients
technique to determine the optimal weights vector distribution of automation’s cost function. The simulation results
demonstrate that the handover strategies designed based on co-adaption between human and automation systems
can successfully resolve a conflict and improve the performance of the human automation teaming.

Keywords: Conventions and co-adaption, haptic shared control, human-robot interaction, semi-automated vehicles.

1. INTRODUCTION

Given that both humans and robots are subject to faults,
the hand-off problem – how to exchange control between
a human and robot— plays a critical role in ensuring
the performance of a human-robot teaming [1,2]. Humans
seamlessly resolve conflicts by co-adapting to each other
through repeated interactions. A hypothesis behind the
seamless human-human collaboration is that humans can
adaptively form conventions [3]. A convention is defined
as low-dimensional shared representations that capture the
interaction and can change over time [3]. In other words,
in a multi-agent repeated game context, there can be sev-
eral equilibria, with some more preferable than others. The
conventions narrow to a subset of these equilibria to which
the team might more naturally gravitate. Conventions can
encompass information such as team member roles, spe-
cific expertise, tacit knowledge, nomenclature and com-
munication, and other dimensions [4,5]. Forming conven-
tions in humans-robots teams is tricky because the human
partner is a non-stationary agent meaning that each human

partner may gravitate to a different equilibrium than the
other human partner. Also, these equilibria may change
over time for a human partner [6,7]. Therefore, to form
conventions in humans-robots teams, two main questions
shall be answered: 1) How to learn forms of conventions
2) How to influence the agents (driver and automation) to
form a desirable convention?

To answer these questions, specific challenges shall be
considered. For instance, the existing approaches for mod-
eling human reasoning either suffer from tractability is-
sues (e.g., theory of mind) or detect the emergence of
cooperative behaviors qualitatively in an offline manner
[8-11]. To leverage conventions, frameworks that separate
partner-specific conventions from task-dependent repre-
sentations shall be designed [3,12]. Algorithms developed
within these frameworks are required to address uncer-
tainty in human-automation dynamics, the spatiotemporal
constraints imposed by the nature of the task (e.g., steering
control), and the computational scalability for real-time
implementation.

Furthermore, to adaptively form conventions, an au-
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tomation system should be able to learn complex policies
automatically. While model-predictive-based approaches
are powerful tools to deal with the uncertainty and com-
plexity of human-automation teaming, they lack the learn-
ing capability [13-15]. On the other hand, traditional end-
to-end learning algorithms require significant amounts
of data (hundreds or even thousands of experiments) to
achieve a desired level of performance that may not be fea-
sible in the context of human-automation teaming prob-
lems. Therefore, for the automation system to effectively
learn complex policies, algorithms shall be developed that
leverage the advantages of both model-based and data-
driven techniques [13,16].

This paper describes our solution to these challenges.
In particular, we propose a framework wherein the human
and automation actions are defined based on optimizing
cost functions. Here, we model the human and automa-
tion cost function for driving a semi-automated vehicle
(e.g., obstacle avoidance) as a weighted linear combina-
tion of a set of features that a human and automation care
about (e.g., collision avoidance, staying on the road, or
distance to the final goal). While these features represent
the task, we argue that the distribution of the weights asso-
ciated with these features and how they may evolve in time
can be used as a proxy to learn and leverage the conven-
tions formed between the human driver and the automa-
tion system. Additionally, by defining the concept of co-
operative and competitive cost functions, we create a map
to characterize human-automation interaction outputs un-
der different conventions. Using such a map, an adaptable
automation system is designed to adapt its behavior and
form a desirable convention with a human driver. Specif-
ically, we implement a deep deterministic policy gradi-
ents (DDPG)-based reinforcement learning method to se-
lect appropriate weights for the automation’s cost function
such that the automation can adapt its desired steering pol-
icy if needed. Finally, we test our convention formation
framework’s performance in resolving a human driver and
automation conflict.

In summary, the main contributions of this paper are

(i) creating a modular structure that separates partner-
specific conventions from task-dependent representa-
tions;

(ii) characterizing a map that can connect the space of
conventions to outcomes of a human-automation in-
teraction for resolving the reverse intent conflict;

(iii) development of an adaptable automation system that
can reach to a desirable form of a convention with a
human driver.

The outline of this paper is as follows: Section 2 presents
the model of the adaptive haptic shared control paradigm.
Section 3 presents the principles of convention formation
in a haptic shared control paradigm. This section proposes

a modular structure that can separate partner-specific con-
ventions from task-dependent representations. Using this
structure, we create a map to connect different forms of
the conventions with the outputs of the human-automation
interaction. We further develop a reinforcement learning
(RL)-based model predictive controller (MPC) for the au-
tomation system to enable it to reach a desirable con-
vention dynamically. Section 4 presents numerical results,
followed by Section 5, which presents the conclusions and
plan.

2. ADAPTIVE HAPTIC SHARED CONTROL
FRAMEWORK

Fig. 1 shows a schematic of an adaptive haptic shared
control paradigm. Three entities each impose a torque on
the steering wheel: a driver through his arm and hand, an
automation system through a motor, and the road through
the steering linkage.

We adopt identical structures to model human and au-
tomation systems. We model the driver as a hierarchi-
cal two-level controller. The upper-level control repre-
sents the cognitive controller, and its output, θH, repre-
sents the driver’s intent. The lower level represents the
human’s biomechanics, zH = [kH bH], and is considered
back-drivable [17]. Here kH and bH are the stiffness and
damping of the driver’s biomechanics. To indicate that
driver’s biomechanic parameters vary with changes in grip
on the steering wheel, use of one hand or two, muscle co-
contraction, or posture changes, we have drawn an arrow
through human zH. Similarly, the automation system is
modeled as a higher-level artificial intelligence (AI) with
an intent θA coupled with a lower-level impedance con-
troller. The automation system is also considered back-

Fig. 1. A schematic of a haptic shared control paradigm.
The human and automation are modeled as a
two-level controller; their dynamics are coupled
through the steering wheel.
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drivable, and the gains of the impedance controller, zA =
[kA bA], are designed to be modest rather than infinite. In
other words, the automation is not intended to behave as
an ideal torque source; instead, the automation imposes
its command torque τA through an impedance zA that is
approximately matched to the human impedance zH.

By combining the vehicle dynamics and the dynamics
of the human-machine interaction on the steering wheel,
the equation of motion for a haptic shared control can be
expressed as

ẋ(t) = f (x(t), p(t),w(t))+BA(p(t))uA(t)

+BH(p(t))uH(t), (1)

where x = [θSW θ̇SW θS θ̇S xT
V]

T, are the state of the inte-
grated system including the angle and angula velocity of
the steering wheel, th angle and angular velocity of the
steering shaft, and the state’s of vehicle, uA = [θA θ̇A]

T,
and uH = [θH θ̇H]

T are the automation system and the hu-
man driver’s control commands, p(t) = [zT

H zT
A]

T are the
time-varying parameters of the system, and w(t) = τV is
exogenous signals, and

f =


θ̇SW

−bHθ̇SW−kH−θSW−KT(θSW−θS)
JSW+JH

θ̇S

−
(

rS
rM

)2
bAθ̇S−

(
rS
rM

)2
kAθS+KT(θSW−θS)+τv)

JS+
(

rS
rM

)2
JM

 , (2a)

BH(p(t)) =
1

JSW + JH


0 0 0 0
kH bH 0 0
0 0 0 0
0 0 0 0

 , (2b)

BA(p(t)) =
rS
rM

JS +
(

rS
rM

)2
JM


0 0 0 0
0 0 0 0
0 0 kA bA

0 0 0 0

 , (2c)

where rS/rM is the mechanical advantages of a timing belt
connecting the motor to the steering wheel, kT is the stiff-
ness of the torque sensor, JH, JM, Jsw, and Js are the iner-
tia of human’s bio-mechanics, motor, steering wheel, and
steering shaft, respectively. The details of the model are
given in [18].

3. CONVENTION FORMATION THROUGH
INTENTION NEGOTIATION

In a haptic shared control paradigm, there can be sce-
narios where a human and automation face a conflict. For
instance, Fig. 2 shows a scenario when both human and
automation systems see an obstacle and select a differ-
ent path to avoiding it. In such a scenario, if both the hu-
man and automation select the same impedance (zH = zA),
their control commands cancel out each other, and the ve-
hicle hit an obstacle. In addition, to reverse intents, the

Fig. 2. Demonstration of a scenario when both human
and automation systems select a different path for
avoiding obstacle.

other forms of conflicts can be considered when (i) one
agent does not provide any control inputs (e.g., one agent
does not detect an obstacle), (ii) too much or too few in-
puts (e.g., two agents have different perceptions from the
size/position of an obstacle), (iii) control inputs arrive too
early or too late, and (iv) additional inputs cause conflict
(e.g., disturbance feedback from the road).

To potentially resolve a conflict such as having a re-
verse intent, the human and automation can adapt their
control strategies by modulating their impedance parame-
ters [18] and also by updating their steering commands θH

and θA. While there might be multiple strategies for re-
solving a conflict (e.g., updating their steering commands
or modulating their impedance parameters), some of these
strategies may be preferable to the human driver. The idea
behind the convention formation is to narrow the possible
strategies for collaboration into a subset of these strategies
to which the human partner might naturally be more grav-
itated. Below, we discuss the required steps for designing
a set of adaptable and convention-based control transfer
strategies to enhance joint driving performance.

3.1. Distinguishing partner-specific conventions from
task-dependent representations

To learn and leverage conventions, we must create a mod-
ular structure separating partner-specific conventions from
task-dependent representations. To this end, in this pa-
per, we consider a structure where the human and au-
tomation’s steering commands at the higher level can be
determined by optimizing cost functions JH, and JA, re-
spectively. These cost functions are defined as a combina-
tion of a set of hand-coded features φH = [φH,1 · · · φH,nH ]

T

and φA = [φA,1 · · · φA,nA ]
T and vectors of the weights

wH = [wH,1 · · · wH,nH ] and wA = [wA,1 · · · wA,nA ]. In partic-
ular, JH = φHwH and JA = φAwA. The hand-coded features
can be defined as possible maneuvering paths and the con-
trol effort for each agent.

This paper focuses on developing a platform wherein
the concept of conventions can be utilized for resolving
a conflict between a human driver and an automation sys-
tem. To this end, we select an example of conflict as shown
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in Fig. 2. In this scenario, both humans and automation
may see an obstacle, and they have two possible maneu-
vering trajectories rR from the right side and rL from the
left side of the obstacle. To determine their steering com-
mands, they both solve an optimization problem as fol-
lows:

min
θH

JH (x,u) =
Np

∑
k=1

(
‖y(k)− rR(k)‖2

wHR

+‖y(k)− rL(k)‖2
wHL

+‖θH(k)‖2
wHθ

)
,

(3a)

min
θA

JA (x,w) =
Np

∑
k=1

(
‖y(k)− rR(k)‖2

wAR

+‖y(k)− rL(k)‖2
wAL

+‖θA(k)‖2
wAθ

)
,

(3b)

s.t. xd(k+1) = fd(xd(k), p(k),d(k))

+Bd,H(p(k)d)uH(k)

+Bd,A(p(k))uA(k), (3c)

where y is the lateral position of the vehicle around
the obstacle, rR and rL are desired reference trajectories
around the obstacle (determined at a path planning level).
Equation (3c) describes the discrete dynamics of the hap-
tic shared control framework. In this paper, we derived
the discrete dynamics using zero-order hold on the in-
puts and a sample time of Ts and Np is a horizon time.
Here φH,1 = φA,1 = ‖y− rR‖ and φH,2 = φA,2 = ‖y− rL‖
represent possible strategies for maneuvering the vehicle
from the right or left of the obstacles. The last term (i.e.,
φH,3 = ‖θH‖ and φA,3 = ‖θA‖) represent the control effort
value. The weight distribution over these features deter-
mines the interaction behavior between humans and au-
tomation. Three examples of these behaviors are discussed
below.

First, let define εcomp, εcoop,and εundecided to be three de-
sign parameters. Also, let assume wHθ = wAθ = ε, where ε
is a positive constant. Furthermore, assume wAR = 1−wAL

and wHR = 1−wHL. Then, for a fixed wH = [wHR wHLwHθ ],
the automation systems can adopt different levels of co-
operativeness by assigning how weight vectors wA =
[wAR wALwAθ ] shall be distributed. If the driver selects
one of the two paths (|wHR−wHL|> εundecided), then three
human-automation interaction behavior at the higher-level
can be defined as

1) Uncooperative automation: When automation selects
a different path than the human driver. This behav-
ior can be described when |wHR−wAL| ≤ εcomp. Sim-
ilarly, it can be described when |wHL−wAR| ≤ εcomp.

2) Undecided automation: The automation assigns sim-
ilar weights to the two paths around the obstacle.
This behavior can be described when |wAR−wAL| ≤
εundecided.

3) Cooperative automation: When automation selects a
path similar to the human driver. This behavior can
be described when |wHR − wAR| ≤ εcoop. Similarly,
|wHL−wAL| ≤ εcoop.

Note, the driver can also be undeceived, meaning |wHR−
wHL| ≤ εundecided but for the sake of brevity, we do not con-
sider such a case in this paper.

3.2. Design an adaptable automation system
To form desirable conventions, the automation system

shall be able to update the distribution of its weight vec-
tor wA [19] and search for the optimal strategy. Here, we
consider adjusting automation’s strategies by solving

wA = argmax
wA∈WA

(
RA,1(wA,wH,x), · · · ,

RA,n(wA,wH,x)
)
, (4)

where RA,i(wH,wA,x), for i = 1, · · · , n, is a reward func-
tion describing the goodness of the formed convention. It
should be noted that RA = [RA,1, · · · , RA,n]

T is not nec-
essarily the same as JA. Instead, RA shall be selected to
consider human and automation’s joint costs. To solve (4),
we developed an episode-based policy search using deep
deterministic policy gradients (DDPG) technique to de-
termine automation’s optimal policies (i.e., automation’s
model-predictive weights vector wA– See Fig. 3). We se-
lected DDPG since it is deemed particularly powerful in
handling continuous action spaces and its relative simplic-
ity. Our action space is naturally continuous, as the choice
of the automation’s weight vector can take any real value
in a constrained range.

Fig. 3 shows the structure of the DDPG approach that
includes two neural networks named critic and actor net-
works. At each time-step k, the DDPG algorithm receives
a system states feedback Sk = [xT(k) pT(k)]T as its obser-
vation, and generates action Ak = {ωAR,i, ωAL,k} from the
action set A according to a policy π (Sk). The undertaken
action Ak (penalty weights) results in a scalar reward rk,
and the updated system state Sk+1.
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Fig. 3. Schematic diagram of the DDPG with the system
states as the input for actor and critic networks.
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A DDPG algorithm aims to determine an optimal pol-
icy such that the aggregated discounted future reward de-
fined as RA,i = ∑

∞

i=0 γ i rk+i is maximized. Here, γ = (0,
1] is the discount factor. To this end, the DDPG algorithm
uses the Q-value function Q(S,A) and the deterministic
policy π (S). Here, S and A are state and action spaces.
In the learning phase, the DDPG algorithm updates the
actor and critic network properties at each time step and
stores the experiences in the previous time steps by a cir-
cular buffer. A mini-batch of randomly sampled experi-
ences from the circular buffer updates the actor and critic
[20]. The DDPG algorithm at each training step perturbs
the action the policy selects using stochastic noise.

The DDPG agent contains four function approxima-
tors name: actor π (S;ρ), target actor πtrg (S;ρtrg), critic
Q(S,A;%), and target critic Qtrg(S,A;%trg) to estimate the
value function and policy. Here {ρ , ρtrg, %, %trg} are the
parameters of the networks. At the actor network, the pol-
icy π (S;ρ) generates action A to maximize the long-term
reward based on the states S. At the critic network, the
Q(S,A;%) function generates the long-term reward expec-
tation based on the states S and action A. The target actor
and target critics with the same structure and parameteri-
zation as the actor and critics, respectively, are employed
to improve the stability of the optimization. During the
training phase, the DDPG agent adjusts the parameter val-
ues in {ρ , ρtrg, %, %trg} and these parameters remain at
their tunned value after the training phase. Algorithm 1
described the training of the DDPG network at each time
step [20]. The DDPG algorithm updates the critics’ net-
work parameters % by minimizing the following loss func-
tion

L =
1
M

M

∑
k=1

(Q(Sk,Ak;%)− `k)
2 , (5)

where M is the number of DDPG’s training episodes.

`k = r(Sk,Ak)+ γQ(Sk+1,κ (Sk+1) ;%) ,

κ (Sk+1) = argmax
A

Q(S,A). (6)

Here, κ(S) is a greedy policy from the Q-learning algo-
rithm. The sampled policy gradient OpJ for maximizing
the discounted rewardR is

OpJ =
1
M

M

∑
i=1

(
OAQ(Si,A;%)+Oρ π (Si;ρ)

)
. (7)

Here, OAQ and Oρ π are gradients of the critic and ac-
tor, respectively, for the action computed by the actor A
and the actor parameters ρ . These gradients are evaluated
for states Sk. The sampled policy gradient OpJ updates
the actors’ network parameters ρ . The target actor ρtrg

and critic, %trg parameters in the DDPG agent are updated
based on the smoothing method at every time sample with
a smoothing factor K .

%trg = K %+(1−K )%trg, (8a)

Algorithm 1: DDPG agents training algorithm.

• Initialization of actor π(S;ρ) and critic Q(S,A;ϑ) net-
works with random weights ρ and %.
• Initializing target networks πtrg(S;ρtrg) and critic

Qtrg(S,A;%trg) with weights ρtrg = ρ and %trg = %.
• Set up an empty experience buffer R.

for episode= 1 to M do

1: Begin with an Ornstein-Uhelnbeck (OU) noise
N for exploration.

2: Receive initial observation state.
3: Apply action A, Observe the reward R and next

observation S′.
4: Store transitions (Si, Ai, Ri, Si+1) into experi-

ence buffer R.
5: Sample a random mini-batch of M experiences

from the experience buffer.
6: Value function target yi = Ri + γQtrg(S′i,

πtrg(S′i;ρtrg);%trg).
7: Update the critic parameters by minimizing the

loss L across all sampled experiences.
8: Update the actor policy using the sampled pol-

icy gradient ∇ρ J.
9: Update the target networks by smoothing factor

K .

end

ρtrg = K ρ +(1−K )ρtrg. (8b)

The aggregated reward and the state errors are stored in
their dedicated buffer in each episode. These buffers sup-
ply the observation and the reward value to the DDPG
algorithm. The update rate of the automation systems’
penalty weights in the training phase on the DDPG agent
is the same as the episode length. In this paper, the nonlin-
ear MPC of the automation system is executed 100 times
for each set of weights. In each execution time, the model
is propagated to cover the view horizon.

3.3. Characterization of convention maps
To determine the desirable RA, it can be argued that

a desirable convention forms when humans and automa-
tion adapt their behaviors to minimize their combined cost
functions. Therefore,RA shall be selected to consider hu-
man and automation’s joint costs. However, solving an
optimization such as, minθH,θA

(
JH(θH,θA)+ JA(θH,θA)

)
may result in solutions that may favor one agent much
more than the other (JA(θ

#
H,θ

#
A)� JH(θ

#
H,θ

#
A)) which may

not be agreeable to one agent. To address this issue, the
cooperative-competitive (co-co) solution concept has been
established [21]. The co-co concept models a situation
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where one agent pays/receives an incentive to implement
a strategy that minimizes the combined cost function.
Specifically, employing a co-co game, the original game
can be split as the sum of a purely cooperative game,
where both players have the same cost function, and a
purely competitive (i.e., zero-sum) game, where the play-
ers have opposite cost functions. An issue regarding the
traditional form of the cooperative-competitive game is
that the incentive amount shall be known or iteratively
calculated, which may not be practical or computationally
tractable.

To address this issue, in this paper, instead of solving
the co-co game, we split the combined cost function of
the human and automation systems into two competitive
Jcomp and cooperative Jcoop cost functions and calculate
their values at their Nash equilibrium [22]. In particular,

Jcoop(θ
∗
H,θ

∗
A) =

JH(θ
∗
H,θ

∗
A)+ JA(θ

∗
H,θ

∗
A)

2
, (9a)

Jcomp(θ
∗
H,θ

∗
A) =

JH(θ
∗
H,θ

∗
A)− JA(θ

∗
H,θ

∗
A)

2
. (9b)

It follows from (9) that JH = Jcoop+Jcomp and JA = Jcoop−
Jcomp. The steering angle pair θH and θA is a Nash solution
if the following holds.

1) The control θ ∗H solves the optimal control problem of
the human driver’s cost function. Specifically, θ ∗H =

argmax
θH

(
JH(x,θH,θ

∗
A)
)

, where θ ∗A is the optimal so-

lution of automation’s cost function.
2) The control θ ∗A provides a solution to the optimal con-

trol problem of the automation’s cost. Specifically,
θ ∗A = argmax

θA

(
JA(x,θ ∗H,θA)

)
, where θ ∗H is the optimal

solution of automation’s cost function.

The two optimization problems will be solved itera-
tively until the Nash optimal solution (θ ∗H,θ

∗
A) is reached.

Specifically, JH(θ
∗
H,θ

∗
A) ≤ JH(θ

∗
H,θA) and JA(θ

∗
H,θ

∗
A) ≤

JA(θH,θ
∗
A) We solve the two optimization problem us-

ing the C-GMRES technique [23]. The details of the C-
GMRES are described in the [18].

The values of θ ∗H and θ ∗A depends on the distribution
of human’s weight vector (wH = [wHR wHL wHθ ]) and au-
tomation’s weight vector (wA = [wAR wAL wAθ ]). To be
able to design an adaptable automation system such that a
desirable convention is formed (i.e., the cooperative cost is
minimum and the competitive cost is zero), a map should
be created that shows the values of Jcomp and Jcoop as a
function of adopted weights by human wH and automation
wA. To this end, we created the convention map by eval-
uating the values of Jcoop and Jcomp for a range of weights
wH and wA.

4. NUMERICAL SIMULATIONS AND
DISCUSSION

In this section, we present a series of simulation stud-
ies demonstrating the effectiveness of convention forma-
tion for resolving a conflict between a human driver and
an automation system. The following simulations con-
sider a scenario where the human driver and the automa-
tion system detect an obstacle and negotiate on control-
ling the steering wheel to avoid the obstacle safely. We
consider the two cost functions in (3) for the human
driver and automation system. Table 1 shows the numer-
ical values used in the simulation. Here, we select differ-
ent values for the parameters of the human driver and au-
tomation’s impedance controllers to demonstrate different
lower-level interaction modes (e.g., active safety vs. assis-
tive mode).

Fig. 4 shows the competitive-cooperative cost functions
values for a range of wA and wH in three lower-level in-
teraction modes named active safety, neutral and assistive
modes. Specifically, we define active safety mode when
the parameters of the automation’s impedance controller
are larger than the parameters of the human driver’s bio-
mechanics (zA− zH > ε1), where ε1 is a positive constant.
The assistive mode is when the parameters of the automa-
tion’s impedance controller are smaller than the parame-
ters of the human driver’s bio-mechanics (zH− zA > ε1).
Finally, the neutral is when the human and automation’s
impedance parameters are almost the same (|zH− zA| <
ε1). Here, we considered zA = 0.1zH in the assisitve mode,
zA = zH in the neutral and zA = 10zH in the active-safety
mode. To create the conventions map, we considered
wHR = 1−wHL and wHθ = 1. Similarly, we considered
wAR = 1−wAL and wAθ = 1.

Fig. 4 shows that the cooperative surfaces’ convention
maps have two maximum points. These two maximum
points are when [wHR wAR] = [0 0] representing a scenario
when both agents choose the left path to avoid the obsta-
cle or when [wHR wAR] = [1 1] representing a scenario
when both agents choose the right path to avoid the ob-
stacle. The competitive cost surfaces also have two max-
imum points. Specifically, the competitive cost value is
maximum when [wHR wAR] = [0 1] representing a scenario
when the human driver chooses the left path, but automa-
tion chooses the right path to avoid the obstacle or when
[wHR wAR] = [1 0] representing a scenario when the hu-
man driver chooses the right path but automation choose
the left path to avoid the obstacle.

Comparing the shape of cooperative and competitive
surfaces for the three lower-level interaction modes, it
can be seen that by changing the lower-level interaction
mode, the flatness of the convention map for the coopera-
tive/competitive value surfaces and the direction of curva-
ture of the competitive value surface varies. Furthermore,
it should be noted that since the competitive surface de-
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Table 1. Numerical values for the system parameters in the simulation.

Parameters Description Haptic interaction mode Units
Active-safety Assistive

kH Driver arm’s stiffness 0.5 3 N.m/rad
bH Driver arm’s damping 0.2 0.5 N.m.s/rad
kA Automation’s initial value of the arm’s stiffness 0.5 3 N.m/rad

bA Automation’s initial value of the arm’s damping 0.2 0.5 N.m.s/rad

βkA Activation coefficient of kA 1 -
βbA Activation coefficient of bA 1 -
αkA Memory coefficient of kA -1 -
αbA Memory coefficient of bA -1 -
JH Driver arm’s inertia 1×10−3 kg.m2

JSW Steering wheel inertia 1×10−2 kg.m2

JS Steering column inertia 1×10−2 kg.m2

JM Motor’s inertia 1×10−3 kg.m2

KrmT Torque sensor stiffness 1000 N.m/rad
rS/rM Timing belt mechanical advantage 1 -

m Total mass of vehicle 1385 kg
Iz Vehicle yaw moment of inertia 2065 kg.m2

lf Distance from CG to front axle 1.114 m
lr Distance from CG to rear axle 1.436 m

rsw Steering ratio 15
Cf Front cornering stiffness 85,000 N/rad
Ct Rear cornering stiffness 123,000 N/rad
vx Vehicle longitudinal velocity 20 m/sec

NPImp Prediction horizon for impedance control 10 -

NPH_L Prediction horizon for higher-level controller 100 -

NCImp Control horizon for impedance control 2 -

NCH_L Control horizon for higher-level controller 20 -

Ts Simulation time step 0.002 sec
Imax_out Maximum index for outer iteration C/GMRES algorithm 5 -

Imax_in Maximum index for inner iteration C/GMRES algorithm 10 -

δ KKT vector norm range 1×10−2 -
λrate Learning rate 0.001 -

γ Discount factor 0.9 -
- Mini-Batch size 128 -
- Reply buffer size 1×105 -
- Reply start size 300 -
k Target update smoothing factor 0.01 -

Msub Time steps for fixe weights 200 -

fines the payoff of one agent to the other (zero-game part),
zero competition is desirable in the interaction between
two agents. Therefore, in defining the reward function for
the RL agent (10), the second norm of the aggregated com-
petitive value is employed in addition to the differential
torque and the cooperative value.

Fig. 4 can be used as a map to connect forms of con-
ventions to the outputs of human-automation interaction.
For instance, Fig. 5 shows the human and automation in-
teraction outputs associated with the three points shown

with red, blue, and orange circles in Fig. 4 when both hu-
man and automation have similar impedance parameters.
These three circles demonstrate three interaction modes
where the automation is cooperative (red circle), unde-
cided (orange circle), and uncooperative (blue circle), as
discussed in Subsection 3.1. For all these three cases, the
human’s desired path for maneuvering the obstacle is from
the right of the obstacle (i.e., wHR = 1). Therefore, the red
circle represents a case where automation’s desired path
is from the left side (i.e., wAL = 1). The orange circle rep-
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Fig. 4. Competitive-Cooperative cost functions values for
lower-level interaction modes. The columns rep-
resent the interaction mode, and the rows de-
pict the cooperative/competitive cost values from
the Nash solution. In each surface has wH, wH

and VCoop/VComp coordinates axis. The color bars
demonstrate the range for each surface based on its
minimum and maximum values.

 

Fig. 5. The outputs of the human and automation interac-
tion associated with the three points shown with
red, blue, and orange circles in the neutral inter-
action mode (ZH = ZA). The surfaces represent
the convention map’s cooperative (middle-top) and
competitive (middle-bottom) surfaces. The plots
on the second column represent the lateral de-
viation of the vehicle from the centerline of the
road. The last column represents the differential
torque between the human driver and the automa-
tion system. The human drivers’ behavior identi-
fies each row based on their weight for the right
directionwHR.

resents a case where the automation’s wights both right
and left paths the same (i.e., wAR = wAL = 0.5). Finally,
the blue circle represents a case where the automation’s
desired path is also from the right side (i.e., wAR = 1).

The first column of Fig. 5 shows the two possible paths
for avoiding the obstacles and the vehicle’s rR and rL and
the vehicle’s lateral position yV. The second column shows
the differential torque measured by the torque sensor τT.

 

Fig. 6. The outputs of the human and automation interac-
tion associated with the three points shown with
red, blue, and orange circles in the assistive inter-
action mode (ZH = 10ZA). The surfaces represent
the convention map’s cooperative (right-top) and
competitive (right-bottom) surfaces. The plots on
the second column represent the lateral deviation of
the vehicle from the centerline of the road. The last
column represents the differential torque between
the human driver and the automation system. The
human drivers’ behavior identifies each row based
on their weight for the right direction wHR.

It is demonstrated that when humans and automation have
opposite paths since their impedance is the same, their
control commands cancel out, and the vehicle hits the ob-
stacle. To avoid such a conflict, two possible solutions
can be presented. First, we can modulate the automation’s
impedance controller’s parameters to yield or gain control
as studied in our previous work [18]. Also, the automa-
tion’s intent can be adapted to select a path similar to the
human driver, as demonstrated in Fig. 5. In this paper, we
focus on the latter approach.

When the human driver and the automation system have
the same intent (wAR = wHR = 1 shown in the third row
of Fig. 5), the differential torque is much smaller com-
pared to the other two cases (the uncooperative automa-
tion shown and undecided automation). It should be noted
that even though the competitive value for the blue and
orange points are approximately the same since the co-
operative value is different, the differential torque for the
undecided automation is not zero. Also, the vehicle’s lat-
eral position is not the same as the right reference path for
the undecided automation system.

Fig. 6 shows the outputs of the human and automa-
tion interaction in the assistive mode (zA = 0.1zH). Fig.
6 shows that for the three cases of uncooperative automa-
tion, undecided automation, and cooperative automation,
the vehicle path is close to the human’s desired path.
Also, the differential torque is relatively small for all three
cases. This is because automation’s impedance is rela-
tively small, meaning it only applies a low torque on the
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Fig. 7. The outputs of the human and automation interac-
tion associated with the three points shown with
red, blue, and orange circles in the active-safety
interaction mode (ZH = 0.1ZA). The surfaces rep-
resent the convention map’s cooperative (left-top)
and competitive (left-bottom) surfaces. The plots
on the second column represent the lateral devia-
tion of the vehicle from the centerline of the road.
The last column is for the differential torque be-
tween the human driver and the automation sys-
tem. The human drivers’ behavior identifies each
row based on their weight for the right direction
wHR.

steering wheel. In this scenario, the human driver mainly
controls the vehicle.

Fig. 7 shows the outputs of the human and automation
interaction in the assistive mode (zA = 10zH). Fig. 7 shows
that the vehicle path is close to the automation for the three
cases of uncooperative automation, undecided automa-
tion, and cooperative automation’s desired path. When hu-
mans and automation have a reverse intent, the differential
torque is relatively high in the active safety mode. This is
because automation’s impedance is relatively high, mean-
ing it applies a high torque in the opposite direction as the
human driver, which can cause discomfort to the driver but
it ensures the safety of the vehicle.

As demonstrated in Figs. 5-7, the interaction between
the human driver and automation system depends on the
weights of the nonlinear MPC for each of them. A point
in the convention maps demonstrates the agent’s decision
to choose the preferred path in the obstacle avoidance
task. Based on human behavior, the automation system
can adapt wAR and wAL to minimize the conflict in the
interaction. To resolve a conflict between the automation
system and the human driver, impedance modulation in
the lower-level controller or intent adaption of the automa-
tion system in the higher-level controller can be used as a
solution. The impedance modulation was studied in detail
in [18]. In this paper, we discuss intent adaptation for re-
solving a conflict.

Fig. 8 shows how the weights of the nonlinear model
predictive controller in the automation system are adjusted

Fig. 8. Schematic diagram of the DDPG-based intent
adaptation approach. The DDPG agents receive
the observations from the model, lower-level, and
higher-level controller, generating updated wA.

dynamically with the DDPG agent to minimize the con-
flict. For the DDPG agent, each actor and critic network
has an input layer, an output layer, and three hidden lay-
ers of 100 units. In the hidden layer, the rectified linear
unit (ReLU) is employed as the activation function, which
projects the input to the output signal. The reward func-
tion in the DDPG algorithm is defined to minimize the
integrated differential torque and cooperative value while
maintaining the competitive value to zero:

rk =
1

Msub

(
Msub

∑
k=1

(−100
∥∥Jcoop

∥∥−100
∥∥Jcomp

∥∥
−‖τT‖)

)
, (10)

which Msub is the number of time steps with fixed weights
in the cost function of the automation system. In the
DDPG agent training phase, the number of the time step
in each episode includes 100Msub. Jcoop and Jcomp are the
equilibrium point’s cooperative and competitive cost val-
ues. The hyperparameters of the DDPG agent are pre-
sented in Table 1.

Fig. 9 demonstrates the performance of the RL-based
intent adaptation approach when the human driver wants
to go more in the left direction to avoid the obsta-
cle with weight [wHR wHL] = [0.2 0.8] and they have
equal impedance. On the contrary, the automation sys-
tem preferred the right direction for avoiding the obsta-
cle ([wAR wAL] = [0.8 0.2]). The human driver’s and au-
tomation system’s initial weight value is depicted by a red
circle on the cooperative and competitive surfaces of the
convention map (the first column). The lateral deviation of
the vehicle (yV) and the reference paths for the right (rR)
and left (rL) sides are depicted in the first row of the sec-
ond column. The measured differential torque is depicted
in the second row of the second column, and the units of
the y-axis are N.m. The weight value of the human driver
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Fig. 9. RL-based intent adaptation for the case that the
human and automation system have the same
impedance. The first column demonstrates the con-
vention map with the cooperative and competitive
cost values. The second column shows the lateral
deviation, differential torque, and the cost weights
ωAR and ωHL. The red circle on the convention
map is the initial weight value, and the green circle
is the adapted weight value.

and the automation system is demonstrated in the second
column of the last row. By approaching the obstacle, the
trained DDPG agent adopts the weight in the cost function
of the automation system to minimize conflict between
the automation and the human driver. The red dashed line
demonstrates the start of the intent adaptation, and the
green dashed line depicts the green circle on the conven-
tion map as the terminal weight of the automation system.
After this line, the conflict is minimized. The value of the
differential torque retained approximately zero after the
intent adaption, which shows zero fight. Also, the com-
petitive cost function value is zero. Therefore, the DDPG
agent handled the intent adaptation to minimize the con-
flict while the vehicle avoided the obstacle.

Fig. 10 demonstrates the performance of the non-
adaptive, adaptive with a predefined rule and the pro-
posed convention-based intent adaptation for Active-
Safety (ZH = 0.1 ZA), Neutral (ZH = ZA) and assis-
tive (ZH = 10 ZA) cases. In the non-adaptive case, the
cost weights of the automation system are constantly set
to predefined values. In the adaptive with a predefined rule
method, the cost weights are tuned based on the measured
differential torque on the steering, which projects the mea-
sured torque to the six equally divided ranges [0, 2] N.m
of the τT,adap (11).

ωA,R,adap =

{
1−
[
3|τT,adap|

]
/6, |τT,adap|< 2 N.m,

0, |τT,adap|> 2 N.m.
(11)

In the first column, the references rL, rR and lateral po-

 

Fig. 10. RL-based intent adaptation for the different
cases between the human and automation sys-
tem. Each row represents the interaction mode
(automation’s impedance level). The first col-
umn is for references rL, rR and lateral po-
sitions for the non-adaptive ynonadap, adaptive
with a predefined rule yadap and the proposed
convention-based intent adaptation yconv. The sec-
ond and third columns represent the differential
torques τT,nonadap, τT,adap, τT,conv and the weights
ωA,R,nonadap, ωA,R,adap, ωA,R,conv, respectively.

sitions for the non-adaptive ynonadap, adaptive with a pre-
defined rule yadap and the proposed convention-based in-
tent adaptation yconv are demonstrated. In the second col-
umn, the differential torques between the human driver
and the automation system cases with/without adaptive
intent adaptions (τT,nonadap, τT,adap, τT,conv) are demon-
strated. In the last column, the weight for the human cost
ωH,L, non-adaptive automation cost ωA,R,nonadap, automa-
tion system with predefined adaptive weights ωA,R,adap,
and adaptive convention-based intent adaptions ωA,R,conv

are demonstrated. In the case without the adaptive intent
adaptions, the automation’s weight ωA,R,nonadap is the same
as the ωH,L. Based on the results for the lateral deviation
of the vehicle, the proposed RL-based intent adaption re-
sults in better cooperation between the human driver and
the automation system. By approaching the obstacle, the
trained DDPG agent adopts weights [ωA,R, ωA,L] in the
cost function of the automation system to minimize con-
flict between the automation and the human driver. The
differential torque in the transition period is decreased sig-
nificantly in the active-safety and neutral modes. The er-
ror between the vehicle’s lateral position and the refer-
ence path is decreased in the Assistive mode. Therefore,
RL-based intent adaption by changing the automation’s
cost weights improves the performance of cooperation be-
tween the human driver and the automation system for all
interaction modes.
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5. CONCLUSIONS

This paper established a platform that allows studying
the principles of co-adaptation (i.e., convention forma-
tion) between a human and automation system in a hap-
tic shared control framework wherein both humans and
automation collaboratively control the steering of a semi-
automated ground vehicle to determine optimal handover
strategies in uncertain circumstances. The framework con-
sists of three main parts. The first part is focused on estab-
lishing a modular structure that can be used for separations
of partner-specific conventions and task-dependent repre-
sentations. Using this structure, the second section focuses
on creating a map that can connect different forms of con-
ventions to the output of the human-automation system.
Finally, the third part focuses on designing an RL-based
model predictive controller to search for automation’s op-
timal strategy so that a desired form of convention can be
reached. We applied the proposed platform to the problem
of intent negotiation for resolving a conflict in a haptic
shared control paradigm. The simulation results demon-
strate that the handover strategies designed based on co-
adaption can successfully resolve a conflict and improve
the performance of the human automation teaming.

In future studies, to test and validate the performance
of the proposed platform, the first step is to employ in-
verse reinforcement learning approaches to capture the
distribution of the human weight vectors in performing a
task. By capturing the human weight vector, we can re-
alize whether the weight vector distribution can be used
as a proxy for identifying the partner-specific conven-
tions. In addition to validating this hypothesis, we plan to
improve the automation system capability by employing
Bayesian optimization (BO) to determine automation’s
optimal policies. Moreover, we plan to employ a transfer
learning approach, such as a meta-inverse algorithm, so
that knowledge of learned conventions can be used for in-
teracting with new users or on new tasks. Finally, we plan
to test this platform with human subjects in the loop.

CONFLICT OF INTEREST

The authors declare that there is no competing financial
interest or personal relationship that could have appeared
to influence the work reported in this paper.

REFERENCES

[1] F. Flemisch, M. Heesen, T. Hesse, J. Kelsch, A. Schieben,
and J. Beller, “Towards a dynamic balance between hu-
mans and automation: Authority, ability, responsibility and
control in shared and cooperative control situations,” Cog-
nition, Technology and Work, vol. 14, no. 1, pp. 3-18,
2012.

[2] J. C. F. De Winter and D. Dodou, “Preparing drivers for
dangerous situations: A critical reflection on continuous

shared control,” Proc. of IEEE International Conference on
Systems, Man and Cybernetics, pp. 1050-1056, 2011.

[3] A. Shih, A. Sawhney, J. Kondic, S. Ermon, and D. Sadigh,
“On the critical role of conventions in adaptive human-ai
collaboration,” arXiv preprint arXiv:2104.02871, 2021.

[4] S. Muggleton and N. Chater, Human-like Machine Intelli-
gence, Oxford University Press, 2021.

[5] H. C. Siu, J. Pe na, E. Chen, Y. Zhou, V. Lopez, K. Palko,
K. Chang, and R. Allen, “Evaluation of human-AI teams
for learned and rule-based agents in hanabi,” Advances
in Neural Information Processing Systems, vol. 34, pp.
16183-16195, 2021.

[6] W. Z. Wang, A. Shih, A. Xie, and D. Sadigh, “Influencing
towards stable multi-agent interactions,” Proc. of Confer-
ence on Robot Learning, pp. 1132-1143, PMLR, 2022.

[7] A. Xie, D. P. Losey, R. Tolsma, C. Finn, and D. Sadigh,
“Learning latent representations to influence multi-agent
interaction,” arXiv preprint arXiv:2011.06619, 2020.

[8] E. Gkeredakis, “The constitutive role of conventions in ac-
complishing coordination: Insights from a complex con-
tract award project,” Organization Studies, vol. 35, no. 10,
pp. 1473-1505, 2014.

[9] D. Meutsch and S. J. Schmidt, “On the role of conventions
in understanding literary texts,” Poetics, vol. 14, no. 6, pp.
551-574, 1985.

[10] C. L. Baker, J. Jara-Ettinger, R. Saxe, and J. B. Tenen-
baum, “Rational quantitative attribution of beliefs, desires
and percepts in human mentalizing,” Nature Human Be-
haviour, vol. 1, no. 4, pp. 1-10, 2017.

[11] C. Brooks and D. Szafir, “Building second-order men-
tal models for human-robot interaction,” arXiv preprint
arXiv:1909.06508, 2019.

[12] R. D. Hawkins, M. Kwon, D. Sadigh, and N. D. Good-
man, “Continual adaptation for efficient machine commu-
nication,” arXiv preprint arXiv:1911.09896, 2019.

[13] Y. Song and D. Scaramuzza, “Learning high-level poli-
cies for model predictive control,” Proc. of IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS), IEEE, pp. 7629-7636, 2020.

[14] Q. Lu, R. Kumar, and V. M. Zavala, “Mpc controller tuning
using bayesian optimization techniques,” arXiv preprint
arXiv:2009.14175, 2020.

[15] Z. Lu and W. Lou, “Bayesian approaches to variable se-
lection: a comparative study from practical perspectives,”
The International Journal of Biostatistics, vol. 18, no. 1,
pp. 83-108, 2022.

[16] P. T. Jardine, M. Kogan, S. N. Givigi, and S. Yousefi,
“Adaptive predictive control of a differential drive robot
tuned with reinforcement learning,” International Journal
of Adaptive Control and Signal Processing, vol. 33, no. 2,
pp. 410-423, 2019.

[17] P. Boehm, A. H. Ghasemi, S. O’Modhrain, P. Jayakumar,
and R. B. Gillespie, “Architectures for shared control of
vehicle steering,” IFAC-PapersOnLine, vol. 49, no. 19, pp.
639-644, 2016.

https://doi.org/10.1007/s10111-011-0191-6
https://doi.org/10.1007/s10111-011-0191-6
https://doi.org/10.1007/s10111-011-0191-6
https://doi.org/10.1007/s10111-011-0191-6
https://doi.org/10.1007/s10111-011-0191-6
https://doi.org/10.1007/s10111-011-0191-6
https://doi.org/10.1109/ICSMC.2011.6083813
https://doi.org/10.1109/ICSMC.2011.6083813
https://doi.org/10.1109/ICSMC.2011.6083813
https://doi.org/10.1109/ICSMC.2011.6083813
https://doi.org/10.48550/arXiv.2104.02871
https://doi.org/10.48550/arXiv.2104.02871
https://doi.org/10.48550/arXiv.2104.02871
https://doi.org/10.48550/arXiv.2107.07630
https://doi.org/10.48550/arXiv.2107.07630
https://doi.org/10.48550/arXiv.2107.07630
https://doi.org/10.48550/arXiv.2107.07630
https://doi.org/10.48550/arXiv.2107.07630
https://doi.org/10.48550/arXiv.2110.08229
https://doi.org/10.48550/arXiv.2110.08229
https://doi.org/10.48550/arXiv.2110.08229
https://doi.org/10.48550/arXiv.2011.06619
https://doi.org/10.48550/arXiv.2011.06619
https://doi.org/10.48550/arXiv.2011.06619
https://doi.org/10.1177/0170840614539309
https://doi.org/10.1177/0170840614539309
https://doi.org/10.1177/0170840614539309
https://doi.org/10.1177/0170840614539309
https://doi.org/10.1016/0304-422X(85)90018-X
https://doi.org/10.1016/0304-422X(85)90018-X
https://doi.org/10.1016/0304-422X(85)90018-X
https://doi.org/10.1038/s41562-017-0064
https://doi.org/10.1038/s41562-017-0064
https://doi.org/10.1038/s41562-017-0064
https://doi.org/10.1038/s41562-017-0064
https://doi.org/10.48550/arXiv.1909.06508
https://doi.org/10.48550/arXiv.1909.06508
https://doi.org/10.48550/arXiv.1909.06508
https://doi.org/10.48550/arXiv.1911.09896
https://doi.org/10.48550/arXiv.1911.09896
https://doi.org/10.48550/arXiv.1911.09896
https://doi.org/10.1109/IROS45743.2020.9340823
https://doi.org/10.1109/IROS45743.2020.9340823
https://doi.org/10.1109/IROS45743.2020.9340823
https://doi.org/10.1109/IROS45743.2020.9340823
https://doi.org/10.48550/arXiv.2009.14175
https://doi.org/10.48550/arXiv.2009.14175
https://doi.org/10.48550/arXiv.2009.14175
https://doi.org/10.1515/ijb-2020-0130
https://doi.org/10.1515/ijb-2020-0130
https://doi.org/10.1515/ijb-2020-0130
https://doi.org/10.1515/ijb-2020-0130
https://doi.org/10.1002/acs.2882
https://doi.org/10.1002/acs.2882
https://doi.org/10.1002/acs.2882
https://doi.org/10.1002/acs.2882
https://doi.org/10.1002/acs.2882
https://doi.org/10.1016/j.ifacol.2016.10.637
https://doi.org/10.1016/j.ifacol.2016.10.637
https://doi.org/10.1016/j.ifacol.2016.10.637
https://doi.org/10.1016/j.ifacol.2016.10.637


Learning and Leveraging Conventions in the Design of Haptic Shared Control Paradigms for Steering a Ground ... 3335

[18] V. Izadi and A. H. Ghasemi, “Modulation of control author-
ity in adaptive haptic shared control paradigms,” Mecha-
tronics, vol. 78, 102598, 2021.

[19] V. Izadi and A. H. Ghasemi, “Intent negotiation in a shared
control paradigm with cooperative-competitive game,”
Proc. of American Control Conference (ACC), IEEE.

[20] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, “Continuous con-
trol with deep reinforcement learning,” arXiv preprint
arXiv:1509.02971, 2015.

[21] M. Stryszowski, S. Longo, D. D’Alessandro, E. Velenis,
G. Forostovsky, and S. Manfredi, “A framework for self-
enforced optimal interaction between connected vehicles,”
IEEE Transactions on Intelligent Transportation Systems,
vol. 22, no. 10, pp. 6152-6161, 2020.

[22] N. Mehr, M. Wang, and M. Schwager, “Maximum-entropy
multi-agent dynamic games: Forward and inverse solu-
tions,” arXiv preprint arXiv:2110.01027, 2021.

[23] T. Ohtsuka, “A continuation/gmres method for fast compu-
tation of nonlinear receding horizon control,” Automatica,
vol. 40, no. 4, pp. 563-574, 2004.

Vahid Izadi received a B.S. degree in
electrical engineering and electronics from
Hamedan University of Technology in
2012, an M.S. degree in electrical engi-
neering and electronics from Iran Uni-
versity of Science and Technology, and
a Ph.D. Student from the University of
North Carolina at Charlotte. His research
interests include control systems, robotics,

and optimization.

Amir H. Ghasemi received a B.S. de-
gree in mechanical engineering from the
Ferdowsi University of Mashhad in 2005,
an M.S. degree in mechanical engineering
from Amirkabir University in 2008, and
a Ph.D. degree in mechanical engineering
from the University of Kentucky in 2012.
He is currently an Assistant Professor in
the Department of Mechanical Engineer-

ing and Engineering Science at the University of North Car-
olina at Charlotte. His research interests include control systems,
robotics, and human-machine interactions.

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

https://doi.org/10.1016/j.mechatronics.2021.102598
https://doi.org/10.1016/j.mechatronics.2021.102598
https://doi.org/10.1016/j.mechatronics.2021.102598
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.1109/TITS.2020.2988150
https://doi.org/10.1109/TITS.2020.2988150
https://doi.org/10.1109/TITS.2020.2988150
https://doi.org/10.1109/TITS.2020.2988150
https://doi.org/10.1109/TITS.2020.2988150
https://doi.org/10.48550/arXiv.2110.01027
https://doi.org/10.48550/arXiv.2110.01027
https://doi.org/10.48550/arXiv.2110.01027
https://doi.org/10.1016/j.automatica.2003.11.005
https://doi.org/10.1016/j.automatica.2003.11.005
https://doi.org/10.1016/j.automatica.2003.11.005

