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Abstract
Inference is a term that encompasses many techniques including statistical data assim-
ilation (SDA). Unlikemachine learning, which is designed to harness predictive power
from extremely large data sets, SDA is designed for sparsely-sampled systems. This
is the realm of study of nonlinear dynamical systems in nature. Formulated as an
optimization procedure, SDA can be considered a path-integral approach to state and
parameter estimation. Within this formulation, we can use the physical principle of
least action to identify optimal solutions: solutions that are consistent with both mea-
surements and a dynamicalmodel assumed to give rise to thosemeasurements. I review
examples from neurobiology and an epidemiological model tailored to the coronavirus
SARS-CoV-2, to demonstrate the versatility of SDAacross the sciences, and how these
distinct applications possess commonalities that can inform one another.

Keywords Inference · Neurobiology

1 Introduction

Dynamical models of physical systems in nature are fiercely nonlinear beasts. They
may possessmultiple timescales andmany degrees of freedom, usually a small fraction
of which are physically measurable quantities. These characteristics render the task of
state and parameter estimation a formidable challenge. Fortunately, while dynamical
systems across disciplines are extraordinarily diverse in terms of their context and
scale, they possess one commonality: they all obey the principle of least action.

This principle, attributed to de Maupertuis (1750), Euler (1744), and Kabitz (1913)
and Gerhardt (1898) (early 1700’s), is a variational principle in physics that can be
used to derive the Newtonian, Lagrangian, and Hamiltonian equations of motion of a
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dynamical system. It is both a deep and a profoundly useful statement: that among an
infinite number of possible paths that a system can take in a state space, the path that
the system takes is that which minimizes one scalar quantity: the “action" along that
path. In other words, for any physical problem, there exists a scalar quantity that can
be used as a metric for identifying optimal solutions. In physics, this quantity is the
action. Meanwhile, within the context of inference, this quantity is a “cost function."
In this paper, we shall examine—and exploit—the powerful equivalency between the
two terms.

The principle of least action underlies path integral approaches to statistical data
assimilation (SDA) (Abarbanel 2013; Quinnand and Abarbanel 2011; Restrepo 2008).
SDA is an inference procedure (Tarantola 2005) wherein a dynamical system is
assumed to underlie any measured quantities. Invented for numerical weather pre-
diction (Kimura 2002; Kalnay 2003; Evensen 2009; Betts 2010; Whartenby et al.
2013; An et al. 2017), SDA differs from many machine learning (ML) techniques
in that it is designed specifically for cases wherein measurements of the system are
sparse—the opposite of the “big data" wave at work in theML community. This makes
SDA well suited for solving realistic dynamical models of physical systems.

The SDA methodology asks: Which measurements must be made in order to esti-
mate unknown model components, so that the completed model can predict events
that occur outside locations at which the measurements were made? SDA identifies
not only which measurements are required, but also properties of those measurements
such as the sampling frequency and the degree of contamination that can be tolerated.
Moreover, SDA reveals how Shannon entropy (Fano 1961) flows in a dynamical sys-
tem, from measured to unmeasured state variables, so that the complete system can
be known. The inherent simplicity and power of path-integral-based methods of SDA
can tremendously impact the study of dynamical systems across diverse disciplines.

In neurobiology, the technique has gained traction over the past 15years (Schiff
2009; Toth et al. 2011; Kostuk et al. 2012; Hamilton et al. 2013; Meliza etal. 2014;
Nogaret et al. 2016), it was in that field that I first applied SDA to small biological neu-
ronal network models (Armstrong 2020; Abarbanel et al. 2017; Kadakia et al. 2016;
Breen etal. 2016). Then inMarch 2020, the rise of the novel coronavirus SARS-CoV-2
prompted me to learn that SDA was largely unknown in epidemiology. It was pre-
sented roughly 10years ago as a means for epidemiological forecasting (Bettencourt
etal. 2007; Rhodesand and Hollingsworth 2009), and there had been two employments
of SDA for examining COVID-19 specifically (Sesterhenn 2020; Nadler etal. 2020),
neither of which examined the sensitivity of state and parameter estimates to contam-
ination in measurements, which at the time was a severe problem. To explore this, I
formed a collaboration with epidemiologists at Northwestern University to apply SDA
to a population model tailored to COVID-19 (Armstrong et al. 2021).

This paper is intended to demonstrate the versatility of SDA across biology-related
disciplines, by reviewing my work in both neurobiology and epidemiology. First we
shall examine the mechanics of the SDA procedure (Sect. 2), and then apply it to
two sets of state variables: neurons (Sect. 3) and human beings (Sect. 4). Table 1 and
Fig. 1 offer a summary statement that a path-integral-based approach to SDA distills
the essence of inference to a governing principle across disciplines, and in this way,
disjoint disciplines in fact possess commonality and can inform one another.
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2 The SDA Technique

A path-integral formulation of SDA, beginning with the definition of a model and ulti-
mately writing an action on a path in the state space of that model, can be summarized
in four equations. One can then cast the estimation as an optimization, wherein the
action is a cost function—a succinct and powerful equivalency.

Let us take a dynamical model F to be written as a set of D ordinary differential
equations that evolve in some continuous parameterization t as:

dxa(t)

dt
= Fa(x(t), p(t), η(t)); a = 1, 2, . . . , D, (1)

where the components xa are the model state variables. The array p(t) contains p
unknown parameters to be estimated, and η(t) is some stochastic component. A sub-
set L of the D variables is associated with measured quantities. One seeks to estimate
the unknown parameters and the evolution of all state variables that is consistent with
measurements, to predict model evolution at parameterized locations where measure-
ments are not available.

The path integral is an integral representation of themaster equation for the stochas-
tic process that is represented by Eq. 1. We seek the probability of obtaining a path X
in the model’s state space given observations Y , or: P(X|Y). If we write:

P(X|Y) = e−A0(X,Y), (2)

we are stating: the path X for which the probability—given Y—is greatest is the path
that minimizes the quantity A0, which we call our action. A formulation for A0 will
permit us to obtain the expectation value of any function
G(X) on a path X :

G(X) = 〈G(X)〉 =
∫
dXG(X)e−A0(X,Y)

∫
dXe−A0(X,Y)

. (3)

Expectation values are the quantities of interest when the problem is statistical in
nature. That is, G(X) can be expressed as a weighted sum over all possible paths,
where the weights are exponentially sensitive to A0. For many estimation problems,
the quantity of interest is the path itself: G(X) = X .

When discretized in times tn for computational implementation, the action iswritten
in two general terms:

A0(X,Y) = −
∑

log[P(x(n + 1)|x(n))]
−

∑
CMI(x(n), y(n)|Y(n − 1)). (4)

The first (“model error") term describes Markov-chain transition probabilities gov-
erning the model dynamics. Extremizing this term imposes adhesion of the solutions
to model dynamics. The second (“measurement error") term is the conditional mutual

123



Predicting the Behavior of Sparsely-Sampled Systems… Page 5 of 22 91

Fig. 1 State estimates and predictions from SDA across two models, with correct solutions corresponding
to the path of least action. Top: A biological network. Left: Estimates (green) yield predictions (red) of
timings of voltage bursts, compared to the true model (blue), for three neurons. Right: Representative
action surfaces with (upper) and without (lower) annealing (reproduced from Armstrong 2020). Bottom:
Estimate of COVID-19 population model, with low noise in the recovered population R. Left: Population
estimates are: asymptomatics As versus mild and severe symptomatics Sym and Sys, undetected versus
detected (denoted by “det”), one hospitalized population H1, Recovered R, and Dead D. Right: action
(β) showing zero model error at high β, a reflection of the well-matched state (the significance of β is
explained at the end of Sect. 2.) Additive 10% noise precludes an estimate of transmission rate (not shown),
highlighting the need for accurate record-keeping (reproduced from Armstrong et al. 2021) (Color figure
online)

information (Fano 1961) (CMI), which quantifies the amount of information, in
bits, transferred from measurements to model. The expression asks, “How much is
learned about event x(n) upon observing event y(n), conditioned on having previously
observed event(s) Y(n − 1)?”. Extremizing this term imposes the solutions’ adhesion
to any existing measurements.1 For a concise derivation of Eq. 4, see Appendix A of
Ref. Armstrong etal. (2017); for a complete derivation, see Ref. Abarbanel (2013).

The two terms contained in Eq. 4 are evaluated simultaneously, and it is in this
way that information contained in the measurements is transferred to the incom-
plete model, to estimate unknown parameters. For a sparsely-sampled system, the
main question becomes: whether the available measurements contain sufficient infor-
mation to succeed in this endeavour. Simplifications are then made to write a
computationally-functional form of A0, and equality constraints may be added, which

1 This “measurement error" term can be considered a synchronization term, which are often introduced
artificially into control problems. Here, however, themeasurement term arises naturally through considering
the effects of the information those measurements contain. Absent measurements, we live in a state space
restricted only by the model’s degrees of freedom. Measurements guide us to a subspace in which such
measurements are possible.
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91 Page 6 of 22 E. Armstrong

are model-specific. A complete specific computational implementation of A0 is given
in “Appendix A”.

The SDA problem is then cast as an optimization, where the cost function A0
of the optimizer is equivalent to the action on paths in the state space that is
searched. The ((D + p) × (N + 1))-dimensional action surface is searched via
the variational method (Odenand and Reddy 2012), where N is the number of dis-
cretized model locations, taken to be independent dimensions. One seeks the path
X0 = x(0), . . . , x(N ), p(0), . . . p(N ) in state space on which A0 attains a minimum
value.

Now, because these dynamical models are nonlinear, the action surface will be non-
convex. To identify a global minimum, a method of simulated annealing is employed
(Ye et al. 2015). It is important for the reader to understand this procedure, in order to
see how the action formulation can be used as a metric to identify optimal solutions
(Armstrong et al. 2020).

The measurement and model error terms have covariance matrices Rm and R f ,
respectively. We define them to be diagonal, and render them coefficients. Rm is taken
to be 1.0, and R f is written as: R f = R f ,0α

β , where R f ,0 is a number much less
than 1, α is slightly greater than 1, and β – the "annealing parameter" is initialized at
zero. When β = 0, R f is small: the action is relatively free from model constraints,
and so there exists one minimum of the variational problem that is consistent with
the measurements. An estimate of that minimum is obtained. Then R f is increased
slightly, via an integer increment in β, and the action is recalculated. This step is per-
formed recursively, toward the deterministic limit of R f � Rm . The aim is to remain
sufficiently near to the global minimum so as not to become trapped in a local mini-
mum as the surface becomes resolved. It will be shown, in Sect. 4 on COVID-19, that
this method offers a systematic method to identify the lowest minimum, in a specific
region of state-and-parameter space, of a non-convex cost function. Specifically: in
the deterministic limit (i.e. for high values of β), the optimal solutions are those that
correspond to the path of least action.

All “data" used in this paper are simulations generated via forward integration,
which serve as consistency checks on the SDA solutions. Having this check is a
vital first step, in advance of “flying blind” with real experimental data. Further, in
simulations one may use whichever measurements one desires, regardless of whether
such measurements are currently possible to take in a laboratory. It is in this way that
SDA lends itself readily to informing experimental design. In References Toth et al.
(2011), Kostuk et al. (2012) and Meliza etal. (2014), for example, a simulated SDA
procedure identified which forms of experimentally-injected electrical currents would
yield parameter estimations of a desired precision, and the real laboratory design was
amended accordingly.

3 Neurobiology

Biological circuits can generate patterned electrical outputs that manifest in rhyth-
mic motor behaviors vital for survival, such as respiration and heartbeat. The means
by which neurons within such a circuit act in coordination to yield reliable output
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is a largely open problem. Progress has been made chiefly via the examination of
small (fewer than ten-cell) networks that are functional even when isolated from the
animal (Marder and Calabrese 1996; Kristan et al. 2005; Marder et al. 2005, 2007;
Mulloneyand and Hall 2007; Smarandache et al. 2009; Grashow et al. 2009, 2010;
Turrigiano 2011;Marder andGutierrez 2016; Gunaratne et al. 2017), circuits known as
“central pattern generators.” Those references just cited have shown that relationships
among cellular and synapse parameters are co-dependent. For example, couplings have
been identified between two particular circuit parameters, where a change in the value
of one is associated with a change in the value of the second, such that circuit output
is maintained [e.g. Ref (Grashow et al. 2010)]. One major obstacle to dissecting these
relationships is the difficulty of estimating more than just a few parameters simultane-
ously. This problem has been tackled extensively within the context of neurobiology,
as the references above indicate.

With this context in mind, the question for SDA is: within a small biological circuit,
can we use simulated measurements of cellular properties—that is, simulations of
quantities that are currently obtainable in a laboratory—to simultaneously estimate
cellular and synaptic properties of the circuit? At the time of publication, inference-
based procedures had been applied to estimate electrophysiology of single neurons
(e.g. Toth et al. 2011; Kostuk et al. 2012; Meliza etal. 2014; Nogaret et al. 2016;
Abarbanel et al. 2017; Kadakia et al. 2016; Breen etal. 2016), but not yet to circuits.

3.1 Model

The model is a small network that yields a specific pattern of electrical output depend-
ing on certain values of electrophysiological and synaptic parameters. Itwas set forth in
ArmstrongandandAbarbanel (2016),wherein it corresponded to a functional represen-
tation of the avian song-related nucleus HVC. For the purposes of state-and-parameter
estimation with SDA, the important aspects of the model are twofold. First, it is bio-
logically relevant in that it exhibits distinct modes of circuit output, depending on
parameter values. Second, it offers a means to quantify the success of the SDA pro-
cedure: in the predictive phase, the parameter estimates must reproduce the pattern of
electrical circuit activity that is associated with the known parameter values.

The model is a three-neuron network with all-to-all inhibitory chemical synapses.
Figure2 depicts the twomodes of circuit output that emergewhen the circuit is exposed
to a steady background current. Left and right panels show, respectively, simultaneous
firing—for the case of low coupling strengths among neurons, and sequential firing—
for higher values of couplings.

The neurons are Hodgkin-Huxley-type (Hodgkin et al. 1952), wherein a neuron is
represented as a capacitor. Its membrane voltage as a function of time, V (t), evolves
in terms of currents entering and leaving the cell. The specific model is based on the
electrophysiological studies of HVC inhibitory interneurons (Daou et al. 2013). The
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Fig. 2 Two functional modes of circuit activity, which can be expressed by the three-neuron structure
when it receives a low-amplitude background current. Each triangle represents one inhibitory neuron, and
they are connected all-to-all. Darkened and white shapes correspond to neurons that are currently active and
inactive above spike threshold, respectively. Left: simultaneous firing of the three nodes, for sufficiently low
coupling. Right: sequential firing, for a higher range of coupling strengths. (Reproduced from Armstrong
2020)

time course of membrane voltage for each neuron i is written as:

Ci
dVi (t)

dt
= IL,i (t) + INa,i (t) + IK ,i (t) + ICaT ,i

+
∑

j �=i

Isyn,i j (t) + Iin j,i . (5)

Parameter C is the membrane capacitance. On the right, the first four terms are ion
channel currents, Isyn represent synaptic input currents to Neuron i from Neurons j ,
and Iin j is a current injected by the experimenter. The ion channel currents for the i th
neuron are:

IL,i (t) = gL,i (EL,i − Vi (t))

INa,i (t) = gNa,imi (t)
3hi (t)(ENa,i − Vi (t))

IK ,i (t) = gK ,i ni (t)
4(EK ,i − Vi (t))

ICaT ,i (t) = gCaT ,i ai (t)
3bi (t)

3GHK (Vi (t), [Ca]i (t)), (6)

for leak, sodium, potassium, and calcium currents, respectively. See “Appendix B” for
details.

The synapse dynamics follow the formalism for chemically-delivered neurotrans-
mitter pulses (Destexhe and Sejnowski 2001; Destexhe et al. 1994):

Isyn,i j = gi j si j (t)(Esyn,i − Vi (t)), (7)

where Isyn,i j is the current entering cell i from cell j . The gi j are the synapsemaximum
conductances – these are the quantities whose values determine the specific mode of
firing (Fig. 2). Esyn,i is the synaptic reversal potential of Cell i , and si j (t) is the synaptic
gating variable. All state variables and parameters to be estimated in this study are
contained in the equations shown above; for the interested reader, “Appendix B” gives
further detail.
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Fig. 3 Estimates and predictions of voltage time series for gi j values corresponding to series activity (Fig. 2,
Right), where the injected current during the prediction window is a step current that yields sequential-
bursting activity in the known model. Injected currents during prediction, not shown, are: 0.4, 0.5, and 0.3
nA for each neuron, respectively. Top three rows: Prediction (red) is shown alongwith true simulation (blue).
Bottom three rows: To aid the eye in discerning the series activity, prediction is shown alone. Forty out of
forty randomly-initialized paths converged to this solution (reproduced from Armstrong 2020). (The step
current was used to represent ambient input current to the circuit. More generally, for parameter estimation,
it can be useful to instead use a more complex waveform as input current, which forces the system to explore
its full dynamical range (Meliza etal. 2014)) (Color figure online)

3.2 SDA Procedure

The aim is to infer the six inhibitory maximum conductances gi j (Eq. 7) required to
reproduce the particular mode of firing, the synaptic reversal potentials Esyn, j (Eq. 7),
and the maximum conductances of ion channels on the three cells: gL,i , gNa,i , gK ,i ,
gCaT ,i (Eq. 6). The question is: which measurements—if any—will allow us to do
this? For details of the procedure, see “Appendix B”.

3.3 Result

When the SDA procedure was given as measurements the time course of membrane
voltage V (t) for each neuron (at 50 kHz over 0.8 s), the parameter estimation worked
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well. Out of a total of forty randomly-initialized trials, those that corresponded to
the minimum value of the action reliably yielded state and parameter estimates cor-
responding to a strong prediction, while trials corresponding to higher values of the
action contained various estimate errors. This has important implications for a labora-
tory setting, as it is possible to simultaneously measure V (t) from all cells in a three-
or four-neuron circuit (Sakuraiand and Katz (2016) and the references to the Marder
laboratory cited in the beginning of this Section).

Figure 3 shows the resulting predictions ofV(t) for eachneuron, for the sequentially-
bursting mode (Fig. 2, right). It shows two triads of voltage traces. The top triad shows
estimation (green), prediction (red), and true model evolution (blue) for all three cells.
Importantly, the estimations window is that in which the measurements were pro-
vided to the procedure, and the predictions window is that in which no measurements
were provided. The metric for an optimal solution is that it not only fit the measure-
ments within the estimations window, but also possess predictive power outside of
that window. Here, the prediction was obtained by replacing the parameters in the
forward-integration model with the estimated parameter values. To aid the eye in
identifying the sequential-firing activity, the bottom triad shows the estimation and
prediction alone—with true simulation removed. The neuron order, stability of that
order, constancy of the relative phases, spikes per burst for each neuron, and constancy
of rotation rate are preserved. The predicted rotation rate is slightly faster, which may
be due either to inherent chaos in the system (in which case even an excellent—but
not exact—state estimate may yield a divergent outcome), or to specific parameter
estimates that are not exact. The associated parameter estimates are in “Appendix B”.

Figure 4 shows the same result (of Fig. 3) with an extended x-axis. The series of
activations can no longer be discerned by eye, but the figure is intended to demonstrate
that the activity persists at a reliable rate for 2700 ms: roughly ten times longer than
the required duration for the associated animal behavior described in Armstrongand
and Abarbanel (2016). Result for simultaneous-firing mode is of similar quality (see
Armstrong 2020).

3.4 Discussion

It is encouraging that sufficient information is contained in the cells’ voltage traces to
yield accurate simultaneous estimates of cellular and synaptic properties. As noted,
however, a biological circuit can employ multiple
configurations that enact identical circuit output. We have shown (Armstrong et al.
2020) that, within the context of an astrophysical model, an SDA procedure can be
designed to identify the existence of degenerate model solutions. For the case of a
biological system, however, how might SDA discriminate between degeneracy due to
insufficient measurements versus degeneracy that represents real redundancy in the
system for the purpose of robustness? This remains a largely open question.
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Fig. 4 Estimates and predictions of Fig. 3, with an extended x-axis, showing that the series-firing prediction
continues at a stable—and slightly faster—rate of rotation (reproduced from Armstrong 2020)

4 COVID-19

The alarming events that unfolded in March 2020 surrounding COVID-19 compelled
me to reach out to epidemiologists, via colleagues at Northwestern University, to
ascertain whether SDA could inform predictive models for guiding policy on social
behavior. Quickly I learned that it was important to remind the epidemiology commu-
nity that this framework exists.

At the time, the coronavirus disease was burdening health care systems worldwide.
Mathematical modeling had been used to aid policymakers’ plans for hospital capacity
needs, and to understand the minimum criteria for effective contact tracing (Murray
et al. 2020). Insufficient testing capacity, however, especially at the beginning of the
epidemic in the United States, and other data reporting issues, meant that surveillance
data on COVID-19 was biased and incomplete. Moreover, the creation of a predictive
epidemiological model tailored to COVID-19 had been hindered by gross uncertain-
ties in the recordings of the populations affected by the disease (Heggeness 2020;
Weinberger et al. 2020; Li et al. 2020).

Meanwhile, inference was not commonly used in epidemiology. It was presented
roughly 10years prior as a means for epidemiological forecasting (Bettencourt etal.
2007; Rhodesand and Hollingsworth 2009), and there had been two employments
of SDA for examining COVID-19 specifically (Sesterhenn 2020; Nadler etal. 2020).
None of these publications examined the sensitivity of estimates to contamination in
measurements.

Within this context, my collaborators and I sought a means to quantify what data
must be recorded in order to estimate specific unknown quantities in an epidemiolog-
ical model of COVID-19 transmission, aiming to show how SDA can inform hospital
policy if employed with real data.
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Fig. 5 Schematic of themodel. Each rectangle represents a population. Note the distinction of asymptomatic
cases, undetected cases, and the two tiers of hospitalized care: H andC . The aim of including this degree of
resolution is to inform policy on social behavior so as to minimize strain on hospital capacity. The red ovals
indicate the variables that correspond to measured quantities in the inference experiments (reproduced from
Armstrong et al. 2021) (Color figure online)

4.1 Model

The standard “compartment"model in epidemiology consists of populations of people.
The simplest is the susceptible-infectious-removed (SIR) model, where “removed"
includes both recovered and dead populations.

Generally, the model is written as:

dS

dt
= −β I S

N
,

d I

dt
= β I S

N
− γ I ,

dR

dt
= γ I , (8)

where N is the sum of all three populations, β is the average number of contacts per
person per time, multiplied by the probability of disease transmission in a contact
between a susceptible and an infectious subject, and 1/γ is the average duration over
which an infected person is contagious.

We expanded this model to capture key features of COVID-19, such that the struc-
ture is relevant for informing policy on social behavior and contact tracing so as to
avoid exceeding hospital capacity. Figure5 shows a schematic. There are 22 popula-
tions, including (i) asymptomatic, presymptomatic, and symptomatic populations, (ii)
undetected and detected cases, and (iii) two hospitalized populations: those who do
and do not require critical care. Absent additive noise in themeasurements, the process
is deterministic. The circled populations denote those given as measurements in the
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SDA experiments. For details, see “Appendix C”, and for the complete equations of
motion, see “Appendix A” of Ref. (Armstrong et al. 2021).

4.2 SDA Procedure

The measured state variables (the red-ovaled populations in Fig. 5) are: the detected
asymptomatics, detected mild symptomatics, detected severe symptomatics, recov-
ered, and dead. We simulated the time evolution of these populations based on initial
conditions set by the onset of the pandemic in New York City in late winter of 2020
(see Armstrong et al. (2021) for details.) The time series lasted 101 days, with daily
sampling.

We used these measurements—with varying noise levels added—to estimate the
time course of the unmeasured populations over the same time period, as well as
five model parameters taken to be unknown. Three are time-varying: (i) transmission
rate Ki (t), and (ii) detection probabilities of asymptomatic and symptomatic cases
(dSym(t) and dSys(t). Two parameters taken to be intrinsic properties of the disease,
and therefore static, are: the fraction of the exposed population that acquires symptoms
( fsympt ), and the fraction of those symptomatics so severe that they require hospital-
ization ( fsevere). We aimed to demonstrate the ability of SDA to quantify the accuracy
to which these parameters can be estimated, given certain properties of the data includ-
ing sampling rate, temporal baseline of sampling, and noise level. Note that this study
differs from those of Sect. 3 in that the results are estimates, not predictions.

4.3 Result

With noiseless data, a baseline of 101 days, andmeasurements of susceptible, detected
asymptomatics, detected mild symptomatatics, detected severe symptomatics, recov-
ered and dead: the estimates of all unmeasured states and parameterswere good, except
for the time-varying transmission rate Ki (t) (Fig. 6). Estimates of the static parame-
ters fsympt and fsevere were, respectively, 0.59 (true: 0.6) and 0.07 (true: 0.07). The
action plot as a function of annealing parameter β (Fig. 7) levels off around β = 30,
indicating that a solution compatible with both measurements and model has been
found.

We next removed the measurement of the recovered population R and repeated the
experiment. Estimates of most time-varying quantities are poor (Fig. 8) and the esti-
mates of the static parameters fsympt and fsevere failed to converge. The corresponding
action plot increases indefinitely (Fig. 9), indicating that a solution compatible with
both model and measurements is not found. This has worrisome implications for esti-
mation with real data, as recovered people will not necessarily report the fact.

Further, adding low (∼ 5%) Gaussian additive noise in the recovered population
R yields poor estimates of all quantities. Doubling the temporal baseline of state
variable measurements in that with-noise version yields good state variable estimates
(Fig. 1, bottom panel) but poor parameter estimates (not shown). Finally, applied to
real publicly available data (from Italy posted by JohnsHopkins (2020)), the procedure
failed to converge.
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Fig. 6 Estimates of the state—measured and unmeasured—variables, the time-varying transmission rate
Ki (t), and detection rates of mild and severe symptomatics dSym (t) and dSys(t), respectively, where the
y-axes are numbers of cases, and the measured populations are: Asdet , Smdet , Ssdet , R, and D. Excellent
estimates are obtained of all states and parameters, except early values of Ki prior to the implementation
of social distancing (reproduced from Armstrong et al. 2021)

Fig. 7 Cost function plotted at each annealing step β, corresponding to the state estimates of Fig. 6, for
twenty paths in state space, where β scales the rigidity of the imposed model constraint. At low β the
procedure endeavours to fit the measured variables to the simulated measurements. As β increases, the
weight of the model dynamics is increasingly imposed and thus the cost increases—until it approaches a
plateau (around β = 30), indicating that a solution has been found that is consistent with bothmeasurements
and model (reproduced from Armstrong et al. 2021)

4.4 Discussion

The high sensitivity of parameter estimates to contamination in the data indicated that
we were in for a long and largely unpredictable journey with this disease, given the
difficulties with accurate reporting (although we did not publish that statement in the
paper). The failure of convergence for the real Italy datamight also be due in-part to the
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Fig. 8 Estimates akin to those of Fig. 6, without a measurement of Population R. Results are significantly
poorer (reproduced from Armstrong et al. 2021)

Fig. 9 Cost versus β without a
measurement of the recovered
population, over 20 trials. As β

increases, the cost increases
indefinitely, indicating that no
solution has been found that is
consistent with both
measurements and model
dynamics (reproduced from
Armstrong et al. 2021)

fact that the SDA procedure assumes Gaussian-distributed errors in themeasurements.
That is not necessarily the case for this type of data.

Beyond that, it has been our aim to plant a seed in the epidemiology community:
that SDA is a versatile and powerful tool for forecasting, specifically for the case
wherein measurements are not only sparse but grossly contaminated. I am elated to
see that, indeed, since our publication, the idea has taken stronger hold (Ghostine et al.
2021; Evensen 2020; Marinoschi 2021; Sun et al. 2021a, b).

5 Summary

We have explored applications of SDA over two distinct state variable distributions,
measurement and sampling sets, and spatial and temporal scales. Several salient
lessons emerge. First, the scale (i.e. choice of discretized step size) makes no dif-
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ference to the SDA procedure. One must take care, however, to choose it wisely, given
the competing interests of computational efficiency and model resolution. That is,
there exists a tradeoff between the degree of biological detail (i.e. realism) and com-
putational ease: the greater the number of degrees of freedom comprising the model,
the greater the computational cost.

Second, the sensitivity of estimates and predictions to the sparsity of measurements
varieswidely acrossmodels. For theCOVID-19 compartmentmodel, with 5%additive
noise in the Recovered population, the temporal baseline of measurements had to be
doubled to maintain the quality of estimates of the unmeasured state variables. It could
be worthwhile to conduct a formal study of how Shannon entropy flows among the
state variables and parameters of a given dynamical system.

Third, and intimately related to the second point above: the sensitivity of estimates
and predictions to contamination in measurements also varies widely across models.
Predictions for the biological circuit weathered 10% additive noise well, while the
COVID-19 model suffered severely with 5% noise added to just one of the five mea-
sured populations. That result might in-part be due to the SDA procedure’s assumption
of Gaussian-distributed noise in measurements—a limitation that should be loosened.

It should be noted that, for realistic biological systems, the main challenge for SDA
is estimating errors onunknownmodel parameters. Parameter estimation is notoriously
difficult, largely because parameters—unlike model state variables—do not obey a
known dynamical law. Thus there exists no straightforward way to correlate errors
in parameter estimates with state variable evolution or with errors in measurements
(Carrassi and Vannitsem 2011). One must consider this carefully when tackling an
optimization problem wherein the model is poorly constrained by measurements.

Finally, I refer the reader back to Table 1 for a summary of the applications of a
path-integral inference methodology described in this paper. Examining applications
outside one’s specific discipline is an opportunity to view one’s own through a slightly
different filter, and a slightly fresher perspective.

Acknowledgements E. A. acknowledges NSF Grant 2139004.

Appendix A: The SDA Procedure

The specific computational implementation of the cost function used for the neuronal
network model of Ref. Armstrong (2020) can be written as:

A0 = R f Amodel + Rm Ameas + Aother constraints

Amodel = 1

ND

∑N−2

n∈{odd}
∑D

a=1

[{

xa(tn+2) − xa(tn) − δt

6
[Fa(x(tn), p) + 4Fa(x(tn+1), p)

+ Fa(x(tn+2), p)]}2

+
{

xa(tn+1) − 1

2
(xa(tn) + xa(tn+2)) − δt

8
[Fa(x(tn), p) − Fa(x(tn+2), p)]

}2
]

Ameas = 1

Nmeas

∑

j

∑L

l=1
(yl(t j ) − xl(t j ))

2. (9)
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Here, the “model error" term Amodel is a simplification of the first term in Eq. 4
governingMarkov-chain transition probabilities. The “measurement error" term Ameas
is a simplification of the second term of Eq. 4 concerning the conditional mutual
information.

Amodel in Eq. (9) incorporates the model evolution of all D state variables xa . Here,
the outer sum on n is taken over all odd-numbered discretized radial locations of
the model equations of motion. The sum on a is taken over all D state variables. A
Simpson’s rule method of finite differences is used to discretize the state space, so that
the first and second terms for Amodel represent the first and second derivative of the
model, respectively.

Ameas governs the transfer of information from measurements yl to model states
xl . Here, the summation on j runs over all discretized radial locations J at which
measurements are made, which may be some subset of all integrated locations of the
model. The summation on l is taken over all L measured quantities.

Aother constraints are model-dependent.
To generate simulated data, the forward integration is performed by Python’s

odeINT package, which discretizes via an adaptive step size. The optimization is per-
formed by the open-source Interior-point Optimizer (Ipopt) (Wächter 2009), which
employs a Hermite-Simpson method of discretization and a constant step size. The
discretization of state space, calculations of the model Jacobean and Hessian matrices,
and the annealing procedure are performed via an interface with Ipopt that was written
in C and Python; our complete computational implementation is available at the github
repository of Ref. Lorenz (1963). Simulations currently run on a computing cluster
equipped with 201 GB of RAM and 24 GenuineIntel CPUs (64 bits), each with 12
cores.

Appendix B: Neurobiology

Details of the Model

The GHK (Vi (t), [Ca]i (t)) of Eq. 6 is:

GHK (Vi (t), [Ca]i (t)) = Vi (t)
[Ca]i (t) − Caext e−2FVi (t)/RT

e−2FVi (t)/RT − 1
.

[Ca](t) is the intracellularCa2+ concentration as a function of time.Caext is the extra-
cellular concentration of Ca2+ ions. In the GHK current, F is the Faraday constant,
R is the gas constant, and T is temperature, which is taken to be 37 ◦C. The calcium
dynamics evolve as:

d[Cai ](t)
dt

= φi ICaTi + Ca0,i − [Cai ](t)
τCa,i

.

Ca0 is the equilibrium concentration of calcium inside the cell, and φ is a constant
that summarizes the effects of volume and surface area.
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The gating variables Ui (t) = m(t), h(t), n(t), a(t), b(t) of Eq. 6 satisfy:

dUi (t)

dt
= (U∞(Vi (t)) −Ui (t))/τUi (Vi (t))

U∞(Vi ) = 0.5[1 + tanh((Vi − θU ,i )/σU ,i )]
τUi (Vi ) = tU0 + tU1[1 − tanh2((Vi − θU ,i )/σU ,i )]. (10)

In Eq. 7 for the synapses, the gating variables si j (t) evolve as:

dsi j (t)

dt
= νT (Vj (t))[1 − si j (t)] − γ si j (t)

T (Vj (t)) = Tmax

1 + exp(−(Vj (t) − VP )/KP )
. (11)

The rate constants ν and γ have units of 1/time. VP and KP are parameters govern-
ing the shape of the distribution of neurotransmitter rise and fall as it drives gating
variables si j . The neurons and synapses are distinguishable via different values of
all electrophysiological and kinetic parameters. For a list of the parameters that were
taken to be known and fixed during the SDA procedure, see Ref. Armstrong (2020).

Details of the SDA Procedure for the NetworkModel

The simulated data were generated from twomodel versions, each defined by a unique
set of synapse strengths gi j . The first set corresponds to a mode that—when the
injected current Iin j is a steady, low-noise back ground current—expresses sequential
activations of the interneurons. These values are on the order of 0.1µS. The second set
of gi j corresponds to a mode that—with the same steady injected current—expresses
simultaneous firing of the neurons. These values are an order of magnitude lower:
roughly 0.01 µS.

During the estimation window, the cells received three distinguishable input cur-
rents Iin j,i : the x-, y-, and y-phase-offset output of a chaotic Lorenz-63 model (Lorenz
1963), with steps spliced into each current at intermittent locations. The integration
time step for the simulated data and the time step of measurement sampling was 0.1
ms; the estimation window was 799 ms.

During the prediction window, the estimated model was exposed to two novel
currents: (1) a continuation of the chaotic Lorenz-63 output used in estimation; (2)
the low-noise step that is known to produce either synchronous or sequential fir-
ing, depending on the synapse maximum conductances gi j . For the first, second, and
third neuron, this injected background current was: 0.4, 0.5, and 0.3 nA, respectively
(Table 2).

For each of the two functional modes of circuit activity, multiple versions of the
experiment were performed, each version employing a distinct set of measurements:
(1) membrane voltage of all three neurons; (2) membrane voltage of two out of the
three neurons; (3) calcium concentration of all three neurons.
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Table 2 Estimates for gi j
corresponding to sequential
bursting

Parameter Estimated Correct Lower Upper
value value bound bound

E01 − 82.98 − 83.0 − 90.0 10.0

E02 − 83.29 − 83.3

E10 − 82.67 − 82.7

E12 − 82.57 − 82.5

E20 − 83.26 − 83.2

E21 − 82.88 − 82.9

g01 0.248 0.25 0.01 10.0

g02 0.403 0.4

g10 0.283 0.28

g12 0.177 0.18

g20 0.211 0.21

g21 0.314 0.32

gL,0 2.88e−3 3.0e−3 9e−4 9e−2

gL,1 3.25e−3 3.3e−3

gL,2 2.87e−3 2.9e−3

gNa,0 1.18 1.2 0.2 1.8

gNa,1 0.96 1.0

gNa,2 1.24 1.4

gK ,0 0.197 0.2 0.02 0.8

gK ,1 0.210 0.22

gK ,2 0.150 0.17

gCaT ,0 1.01e−4 1.0e−4 e−5 e−2

gCaT ,1 1.16e−4 1.1e−4

gCaT ,2 1.16e−4 9.0e−5

The columns are: Estimated value: parameter estimation from the
D.A. procedure; Correct value: value used to generate the simulated
data that was provided to the D.A. procedure; Lower bound: User-
imposed lower bound on the parameter value, for the D.A. procedure;
Upper bound: user-imposed upper bound. Note that the bounds used
for the reversal potentials Ei j permit the possibility that synapses are
either excitatory or inhibitory. Units: reversal potentials are in mV;
ion channel and synapse maximum conductances are in µS. Notation:
gi j denotes the weight of the synapse entering cell i from cell j; gL,i
denotes the value of leak current in cell i . Estimates were obtained
for annealing parameter values: Rm = 1, R f ,0 = 0.01, α = 1.5, and
β = 27. Forty paths were searched, all of which converged to this
solution (reproduced from Armstrong 2020)

Appendix C: Details of the Epidemiological Model for COVID-19

The resolution of asymptomatic versus symptomatic caseswasmotivated by an interest
in what interventions are necessary to control the epidemic. For example, is it suffi-
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cient to focus only on symptomatic individuals, or must we also target and address
asymptomatic individuals who may not even realize they are infected?

The detected and undetected populations exist for two reasons. First, we sought to
account for underreporting of cases and deaths. Second, we desired a model struc-
ture that can simulate the impact of increasing detection rates on disease transmission,
including the impact of contact tracing. Thus the model was structured from the begin-
ning so that we might examine the effects of interventions that were imposed later on.
The ultimate aimwas to informpolicy on the requirements for containing the epidemic.

We included both H and C populations (patients in the hospital requiring / not
requiring ICU care, respectively) because hospital inpatient and ICU bed capacities
were the key health system metrics that we aimed to avoid straining. Any policy
considered must include predictions on inpatient and ICU bed needs. Preparing for
those needs is a key response if or when the epidemic grows uncontrolled.
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