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Abstract

Topological data analysis (TDA) is gaining prominence across a wide spectrum of
machine learning tasks that spans from manifold learning to graph classification.
A pivotal technique within TDA is persistent homology (PH), which furnishes
an exclusive topological imprint of data by tracing the evolution of latent struc-
tures as a scale parameter changes. Present PH tools are confined to analyzing
data through a single filter parameter. However, many scenarios necessitate the
consideration of multiple relevant parameters to attain finer insights into the data.
We address this issue by introducing the Effective Multidimensional Persistence
(EMP) framework. This framework empowers the exploration of data by simulta-
neously varying multiple scale parameters. The framework integrates descriptor
functions into the analysis process, yielding a highly expressive data summary.
It seamlessly integrates established single PH summaries into multidimensional
counterparts like EMP Landscapes, Silhouettes, Images, and Surfaces. These
summaries represent data’s multidimensional aspects as matrices and arrays,
aligning effectively with diverse ML models. We provide theoretical guarantees
and stability proofs for EMP summaries. We demonstrate EMP’s utility in graph
classification tasks, showing its effectiveness. Results reveal that EMP enhances
various single PH descriptors, outperforming cutting-edge methods on multiple
benchmark datasets.

1 Introduction

In the past decade, topological data analysis proved to be a powerful machinery to discover hidden
patterns in various forms of data that are otherwise inaccessible with more traditional methods [1, 2].
In particular, for graph machine learning (ML) tasks, while many traditional methods fail, TDA and,
specifically, tools of persistent homology (PH), have demonstrated a high potential to detect local and
global patterns and to produce a unique topological fingerprint to be used in various ML tasks [3].
This makes PH particularly attractive for capturing various characteristics of the complex data which
may play the key role behind the learning task performance.

In turn, multiparameter persistence (multipersistence or MP) is a novel idea to further advance the
PH machinery by analyzing the data in a much finer way simultaneously along multiple dimensions.
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However, due to technical issues stemming from its multidimensional structure in commutative
algebra, a general definition for MP has not yet been established. In this paper, we develop an
alternative approach to utilize multipersistence ideas efficiently for various types of data, with a main
focus on graph representation. In particular, we bypass technical issues with the MP (Appendix B.5)
by extracting very practical summaries via the slicing approach in a structured way. We then obtain
computationally efficient multidimensional topological fingerprints of the data in the form of matrices
and linear arrays which can serve as input to ML models.

Our main contribution lies in employing interpretable persistence features to achieve accurate graph
classification. This is crucial because existing graph neural networks (GNNs) demand extensive data
and costly training, yet lack insights into specific classification outcomes. Unlike GNNs, our single
and multi-parameter persistence features offer insights into the evolving underlying graphs as the
scale parameter changes, enabling the creation of efficient machine learning models. In domains with
limited graph data, the predictive models we construct using topological summaries from single and
multi-parameter persistence achieve accuracy levels comparable to the top GNN models.

Our contributions can be summarized as follows:

ã We develop a computationally efficient and highly expressive EMP framework that provides
multidimensional topological fingerprints of the data. EMP expands popular summaries of
single persistence to multidimensions by adapting an effective slicing direction.

ã We derive theoretical stability guarantees of the new topological summaries.

ã We illustrate the utility of EMP summaries in various settings and compare our results to
state-of-the-art (SOTA) methods. Our numerical experiments demonstrate that EMP summaries
outperform SOTA in a broad range of benchmark datasets for graph classification tasks.

2 Related Work

2.1 Persistent Homology

Persistent homology is a key tool in topological data analysis to deliver invaluable and complementary
information on the intrinsic properties of data that are inaccessible with conventional methods [4, 5].
In the past decade, PH has become quite popular in various ML tasks, ranging from manifold learning
to medical image analysis, and material science to finance (TDA applications library [6]).

Multipersistence is a highly promising approach with the potential to significantly improve the
success of single parameter persistence (SP) in applications of TDA, but there exist some fundamental
challenges related to converting this novel idea into an effective feature extraction method, as follows.
Except for some special cases, MP theory tends to suffer from the problem of the nonexistence of
barcode decomposition because of the partially ordered structure of the index set {(αi, βj)} [7].
Lesnick et al. [8] proposed a solution to circumvent this problem using the slicing technique. This
method involves examining one-dimensional fibers within the multiparameter domain. In these fibers,
the multidimensional persistence module is constrained to a single direction (referred to as a slice),
and single persistence analysis is applied to this one-dimensional slice. Later, by using this novel
idea, Carrière et al. [9] combined several slicing directions (vineyards) and obtained a vectorization
by summarizing the persistence diagrams (PDs) in these directions. There are several promising
recent studies in this direction [10, 11]. However, these methods often come with several drawbacks,
primarily related to computational expenses. Consequently, their practical use for real-world problems
is constrained. Very recently, a couple of very successful MP vectorizations proved the potential of
MP in several settings [12, 13]. Here, we aim to add a practical and highly efficient way to use MP
approach for various forms of data and provide a multidimensional topological vectorization with
EMP summaries.

2.2 Graph Neural Networks

After the success of convolutional neural networks (CNN) on image-based tasks, graph neural
networks (GNNs) have emerged as powerful tools for graph-level classification and representation
learning. Based on the spectral graph theory, Bruna et al. introduced a graph-based convolution
in the Fourier domain [14] . However, the complexity of this model is high since all Laplacian
eigenvectors are needed. To tackle this problem, ChebNet [15] integrated spectral graph convolution
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with Chebyshev polynomials. Then, Graph Convolutional Networks (GCNs) of [16] simplified the
graph convolution with a localized first-order approximation. More recently, various approaches
proposed accumulating graph information from a wider neighborhood, using diffusion aggregation
and random walks. Such higher-order methods include approximate personalized propagation of
neural predictions (APPNP) [17], higher-order graph convolutional architectures (MixHop) [18],
multi-scale graph convolution (N-GCN) [19], and Lévy Flights Graph Convolutional Networks
(LFGCN) [20]. In addition to random walks, other recent approaches include GNNs on directed
graphs (MotifNet) [21], graph convolutional networks with attention mechanism (GAT, SPAGAN) [22,
23], and graph Markov neural network (GMNN) [24]. While GNNs produce great performances in
many graph learning tasks, they tend to suffer from over-smoothing problems and are vulnerable to
graph perturbations.

3 Background

We start with providing the basic background for our framework. Since our primary focus pertains
to graph representation learning in this study, we elucidate our methodology within the context of
graphs. For a comprehensive treatment of the classical persistent homology construction in various
contexts, consult [25]. Due to space limitations, our methodology on alternative data forms, such as
point clouds and image data are explained in Appendices B.2 and B.3.

3.1 Persistent Homology

Persistent Homology is a mathematical machinery to capture the hidden shape patterns in the data
by using algebraic topology tools. PH extracts this information by keeping track of evolution of the
topological features (components, loops, cavities) created in the data while looking at it in different
resolutions [4].

For a given graph G, consider a nested sequence of subgraphs G1 ⊆ . . . ⊆ GN = G. For each

Gi, define an abstract simplicial complex Ĝi, 1 ≤ i ≤ N , yielding a filtration of complexes Ĝ1 ⊆

. . . ⊆ ĜN . Here, clique complexes are among the most common ones, i.e., a clique complex Ĝ is
obtained by assigning (filling with) a k-simplex to each complete (k + 1)-complete subgraph in
G. For example, a 3-clique in G, which is a complete 3-subgraph, will be filled with a 2-simplex
(triangle). Then, in this sequence of simplicial complexes, we can systematically keep track of the
evolution of the topological patterns. A k-dimensional topological feature (or k-hole) represent
connected components (0-hole), loops (1-hole) and cavities (2-hole). For each k-hole σ, PH records

its first appearance (birth) in the filtration sequence, say Ĝbσ , and disappearance (death) in later

complexes, Ĝdσ
with a unique pair (bσ, dσ), where 1 ≤ bσ < dσ ≤ N . PH records all these

birth and death times of the topological features in persistence diagrams (PDs). Let 0 ≤ k ≤ D

where D is the highest dimension in the simplicial complex ĜN . Then the kth persistence diagram

PDk(G) = {(bσ, dσ) | σ ∈ Hk(Ĝi) for bσ ≤ i < dσ}. Here, Hk(Ĝi) represents the kth homology

group of Ĝi which keeps the information of the k-holes in the simplicial complex Ĝi. For the sake of
notation, we skip the dimension (subscript k). With the intuition that the topological features with a
long life span (persistent features) describe the hidden shape patterns in the data, these PDs provide a
unique topological fingerprint of the graph G.

As one can easily notice, the most important step in the PH machinery is the construction of the
nested sequence of subgraphs G1 ⊆ . . . ⊆ GN = G. For a given unweighted graph G = (V, E)
with V = {v1, . . . , vN} the set of nodes and E ⊂ {{vi, vj} ∈ V × V , i 6= j} the set of edges,
the most common technique is to use a filtering function f : V → R with a choice of thresholds
I = {αi} where α1 = minv∈V f(v) < α2 < . . . < αN = maxv∈V f(v). For αi ∈ I, let
Vi = {vr ∈ V | f(vr) ≤ αi}. Let Gi be the induced subgraph of G by Vi, i.e., Gi = (Vi, Ei) where
Ei = {ers ∈ E | vr, vs ∈ Vi}. This process yields a nested sequence of subgraphs G1 ⊂ G2 ⊂ . . . ⊂
GN = G, called the sublevel filtration induced by the filtering function f . We denote PDs obtained
via sublevel filtration for a filtering function f as PD(G, f). The choice of f is crucial here, and in
most cases, f is either an important function from the domain of the data, e.g., atomic number for
chemical compounds, or a function defined from intrinsic properties of the graph, e.g., degree and
betweenness. Similarly, for a weighted graph, one can use sublevel filtration on the weights of the
edges and obtain a suitable filtration reflecting the domain information stored in the edge weights.
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3.2 Single Persistence Vectorizations

While PH extracts hidden shape patterns from data as persistence diagrams (PD), PDs being collec-
tions of points in R

2 by itself are not very practical for statistical and machine learning purposes.
Instead, the common technique is to faithfully represent PDs as kernels [26] or vectorizations [27].
This provides a practical way to use the outputs of PH in real-life applications. Single Persistence
Vectorizations transform obtained PH information (i.e., PDs) into a function or a feature vector form
which are much more suitable for machine learning tools than PDs. Common single persistence (SP)
vectorization methods are Persistence Images [28], Persistence Landscapes [29], Silhouettes [30],
and various Persistence Curves [31]. These vectorizations define a single variable or multivariable
functions out of PDs, which can be used as fixed size 1D or 2D vectors in applications, i.e. 1× n
vectors or m×n vectors. For example, a Betti curve for a PD with n thresholds can also be expressed
as 1 × n size vectors. Similarly, Persistence Images is an example of 2D vectors with the chosen
resolution (grid) size.

3.3 Multidimensional Persistence

MultiPersistence introduces a novel concept that holds the potential to significantly enhance the
performance of single-parameter persistence. The term single is applied because we filter the data in
just one direction, G1 ⊂ · · · ⊂ GN = G. The filtration’s construction is pivotal in achieving a detailed
analysis of the data to uncover concealed patterns. When utilizing a single function f : V → R

containing crucial domain information (e.g., value for blockchain networks, atomic number for
protein networks), it induces a single-parameter filtration as described earlier.

However, numerous datasets possess multiple highly relevant domain functions for data analysis.
Employing these functions concurrently would yield a more comprehensive grasp of the concealed
patterns. This insight led to the suggestion of the MP theory as a natural extension of single persistence
(SP).

In simpler terms, if we use only one filtering function, sublevel sets induce a single parameter filtration

Ĝ1 ⊂ · · · ⊂ ĜN = Ĝ. Instead, if we use two or more functions, then it would give a way to study
the data in a much finer resolution. For example, if we have two node functions f : V → R and
g : V → R with valuable complementary information of the network, MP is presumed to produce
a unique topological fingerprint combining the information from both functions. These pair of
functions f, g induce a multivariate filtering function F : V → R

2 with F (v) = (f(v), g(v)). Again,
we can define a set of non-decreasing thresholds {αi}

m
1 and {βj}

n
1 for f and g respectively. Then,

Vij = {vr ∈ V | f(vr) ≤ αi, g(vr) ≤ βj}, i.e., Vij = F−1((−∞, αi] × (−∞, βj ]). Then, let Gij

be the induced subgraph of G by Vij , i.e., the smallest subgraph of G generated by Vij . This induces

a bifiltration of complexes {Ĝij | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. We can imagine {Ĝij} as a rectangular
grid of size m× n (See Figure 3).

By computing the homology groups of these complexes, {Hk(Ĝij)}, we obtain the induced bi-graded
persistence module (a rectangular grid of size m × n). Again, the idea is to keep track of the

k-dimensional topological features via the homology groups {Hk(Ĝij)} in this grid. As we explained
in Appendix B.5, because of the technical issues related to commutative algebra, converting the
multipersistence module into a mathematical representation like a “Multipersistence Diagram” is
unfeasible. As a result, we do not have an effective vectorization of the MP module. These technical
obstacles prevent this promising approach to reach its full potential in real-life applications.

In this paper, we overcome this problem by producing practical and computationally efficient
vectorizations by utilizing the slicing idea in the multipersistence grid in a structured way, as we
describe next.

4 Effective Multidimensional Persistence Summaries

We now introduce our Effective MultiPersistence framework which describes a way to expand most
single persistence vectorizations (Section 3.2) as multidimensional vectorizations by utilizing the MP
approach. In particular, by using the existing single-parameter persistence vectorizations, we produce
multidimensional vectors by effectively using one of the filtering directions as the slicing direction in
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the multipersistence module. We give the basic setup in this section, and the generalization directions
and further details in Appendix B.

4.1 EMP Framework

To keep the exposition simple, we describe our framework for 2-parameter multipersistence (d = 2).
For d > 2, the construction is similar and given below. The outline is as follows: For two given
filtering functions f, g for a graph G, we use the first function f to get a single parameter filtering
of the data, i.e., G1 ⊆ . . . ⊆ Gm = G. Then, we use the second function in each subgraph Gi to
obtain persistence diagram PD(Gi, g) for 1 ≤ i ≤ m. Hence, we obtain m persistence diagrams
{PD(Gi, g)}

m
i=1. Next, by applying the chosen SP vectorization ϕ to each PD, we obtain m different

same length vector ~ϕ(PD(Gi, g)), say 1× k vector. By combining all m 1D-vectors, we obtain EMP

vectorization Mϕ with M
i
ϕ = ~ϕ(PD(Gi, g)) where M

i
ϕ represents the ith row of Mϕ which is a

2D-vector (matrix) of size m× k (See Figure 1).

Here, we give the details for sublevel filtration for two filtering functions. In Appendix B.3, we explain
how to modify the construction for weight filtrations or Vietoris-Rips filtrations. Let G = (V, E) be
a graph, and let f, g : V → R be two filtering functions with threshold sets {αi}

m
i=1 and {βj}

n
j=1

respectively. Let Vi = {vr ∈ V | f(vr) ≤ αi}. Let Gi be the induced subgraph of G by Vi. This
gives a filtering of the graph (nested subgraphs) as G1 ⊆ . . . ⊆ Gm = G. Recall that g : V → R

is another filtering function for G. Now, we fix 1 ≤ i0 ≤ m, and consider Gi0 . By restricting g
on Gi0 , we get persistence diagram PD(Gi0 , g) as follows. Let Vi0j = {vr ∈ Vi0 | f(vr) ≤ βj},
and let Gi0j be the induced subgraph of Gi0 by Vi0j . This defines a finer filtering of the graph Gi0

as Gi01 ⊆ Gi02 . . . ⊆ Gi0n = Gi0 (See Figure 3 in the appendix). Corresponding clique complexes

defines a filtration Ĝi01 ⊆ Ĝi02 . . . ⊆ Ĝi0n = Ĝi0 . This filtration gives the persistence diagram
PD(Gi0 , g). Hence, for each 1 ≤ i ≤ m, we obtain a persistence diagram PD(Gi, g).

The next step is to use vectorization on these m persistence diagrams. Let ϕ be a single persistence
vectorization, e.g., Persistence Landscape, Silhouette, Entropy, Betti, Persistence Image. By applying
the chosen SP vectorization ϕ to each PD, we obtain a function ϕi = ϕ(PD(Gi, g)) where in most
cases it is a single variable function on the threshold domain [β1, βn], i.e., ϕi : [β1, βn] → R. For the
multivariable case (e.g., Persistence Image), we give an explicit description in the examples section
below. Most such vectorizations being induced from a discrete set of points PD(G), they naturally
can be expressed as a 1D vector of length k. In the examples below, we explain this conversion in
detail. Then, let ~ϕi be the corresponding 1 × k vector for the function ϕi. Now, we are ready to
define our EMP summary Mϕ which is a 2D-vector (a matrix)

M
i
ϕ = ~ϕi for 1 ≤ i ≤ m,

where M
i
ϕ is the ith-row of Mϕ. Hence, Mϕ is a 2D-vector of size m × k. Each row M

i
ϕ is the

vectorization of the persistence diagram PD(Gi, g) via the SP vectorization method ϕ. We use the
first filtering function f to get a finer look at the graph as G1 ⊆ . . . ⊆ Gm = G. Then, we use the
second filtering function g to obtain the persistence diagrams PD(Gi, g) of these finer pieces. In a
way, we look at G with a two-dimensional resolution {Gij} and we keep track of the evolution of

topological features in the induced bifiltration {Ĝij}. The main advantage of this technique is that
the outputs are fixed-size matrices (or arrays) for each dataset which is highly suitable for various
machine learning models.

Order of the filtering functions. Since we only use horizontal slices, the first function is only
used for finer filtration, and the second function gives the persistence diagrams. This makes our
method a-symmetric (the order is important). Hence, one can change the order and get different
performance results for the model. We discuss the order choice in detail and give experiments in
Appendix B.4.

Higher Dimensional Multipersistence. Similarly, for d = 3, let f, g, h be filtering functions and
let {Gij} be the bifiltering of the data, e.g., sublevel filtration for two functions f, g. Then, again by
using the third function h, we find m · n persistence diagrams {PD(Gij, h)}

m,n
i,j=1. Similarly, for a

given SP vectorization ϕ, one obtains a 1D-vector ~ϕ(PD(Gij, g)) of size 1 × k for each i, j. This

produces a 3D-vector (array) Mϕ of size m× n× k where M
ij
ϕ = ~ϕ(PD(Gij, g)). For d > 3, one

could follow a similar route.
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Figure 1: Illustration of the EMP framework for networks. Using the pair of filtering functions f ,
g we define non-decreasing thresholds {αi}

m
1 and {βj}

n
1 , respectively, based on node features, red,

and edge features, blue. Both, filtrations and vectorizations run in parallel to better use computational
resources and produce EMP representations in a timely manner.

4.2 Examples of EMP Summaries

Here, we discuss explicit constructions of EMP summaries for most common SP vectorizations. As
noted above, the framework is very general and it can be applied to most SP vectorization methods. In
all the examples below, we use the following setup: Let G = (V, E) be a graph, and let f, g : V → R

be two filtering functions with threshold sets {αi}
m
i=1 and {βj}

n
j=1 respectively. As explained above,

we first apply sublevel filtering with f to get a sequence of nested subgraphs, G1 ⊆ . . . ⊆ Gm = G.
Then, for each Gi, we apply sublevel filtration with g to get persistence diagram PD(Gi, g). Therefore,
we will have m PDs. In the examples below, for a given SP vectorization ϕ, we explain how to obtain
a vector ~ϕ(PD(Gi, g)), and define the corresponding EMP Mϕ. Note that we skip the homology
dimension (subscript k for PDk(G)) in the discussion. In particular, for each dimension k = 0, 1, . . . ,
we will have one EMP Mϕ(G) (a matrix or array) corresponding to {~ϕ(PDk(Gi, g))}. The most
common dimensions are k = 0 and k = 1 in applications. Recently, Demir et al. [32] has successfully
applied a similar vectorization in drug discovery problem.

EMP Landscapes. Persistence Landscapes λ are one of the most common SP vectorizations
introduced by [29]. For a given persistence diagram PD(G) = {(bi, di)}, λ produces a function λ(G)
by using generating functions Λi for each (bi, di) ∈ PD(G), i.e., Λi : [bi, di] → R is a piecewise
linear function obtained by two line segments starting from (bi, 0) and (di, 0) connecting to the same

point ( bi+di

2
, di−bi

2
). Then, the Persistence Landscape function λ(G) : [ε1, εq] → R for t ∈ [ε1, εq]

is defined as
λ(G)(t) = max

i
Λi(t)

where {εk}
q
1 are thresholds for the filtration used.

Considering the piecewise linear structure of the function, λ(G) is completely determined by its

values at 2q − 1 points, i.e., bi±di

2
∈ {ε1, ε1.5, ε2, ε2.5, . . . , εq} where εk.5 = (εk + εk+1)/2. Hence,

a vector of size 1× (2q − 1) whose entries the values of this function would suffice to capture all the

information needed, i.e. ~λ = [λ(ε1) λ(ε1.5) λ(ε2) λ(ε2.5) λ(ε3) . . . λ(εq)]

Considering we have threshold set {βj}
n
j=1 for the second filtering function g, ~λi = ~λ(PD(Gi, g))

will be a vector of size 1× 2n− 1. Then, as Mi
λ = ~λi for each 1 ≤ i ≤ m, EMP Landscape Mλ(G)

would be a 2D-vector (matrix) of size m× (2n− 1).
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Figure 2: For the same network and the same filtering functions, EMP Betti Summary (left), EMP
Silhouette (center), and EMP Entropy Summary (right) can produce highly different topological
summaries emphasizing different information in persistence diagrams.

EMP Surfaces. Next, we give an important family of SP vectorizations, Persistence Curves [31].
This is an umbrella term for several different SP vectorizations, i.e., Betti Curves, Life Entropy,
Landscapes, et al. Our EMP framework naturally adapts to all Persistence Curves to produce
multidimensional vectorizations. As Persistence Curves produce a single variable function in general,
they all can be represented as 1D-vectors by choosing a suitable mesh size depending on the number
of thresholds used. Here, we describe one of the most common Persistence Curves in detail, i.e., Betti
Curves. It is straightforward to generalize the construction to other Persistence Curves.

Betti curves are one of the simplest SP vectorizations as it gives the count of the topological features
at a given threshold interval. In particular, βk(∆) is the total count of k-dimensional topological
feature in the simplicial complex ∆, i.e., βk(∆) = rank(Hk(∆)) (See Figure 3 in the Appendix).

In particular, βk(G) : [ε1, εq+1] → R is a step function defined as βk(G)(t) = rank(Hk(Ĝi)) for
t ∈ [εi, εi+1), where {εi}

q
1 represents the thresholds for the filtration used. Considering this is a step

function where the function is constant for each interval [εi, εi+1), it can be perfectly represented by

a vector of size 1× q as ~β(G) = [β(1) β(2) β(3) . . . β(q)].

Then, with the threshold set {βj}
n
j=1 for the second filtering function g, ~βi = ~β(PD(Gi, g)) will be a

vector of size 1× n. Then, as Mi
β = ~βi for each 1 ≤ i ≤ m, EMP Betti Summary Mβ(G) would

be a 2D-vector (matrix) of size m× n (Figure 2). In particular, each entry Mβ = [mij ] is just the

Betti number of the corresponding clique complex in the bifiltration {Ĝij}, i.e., mij = β(Ĝij). This
matrix Mβ is also called bigraded Betti numbers in the literature, and computationally much faster
than other vectorizations [33].

We give further EMP examples (EMP Silhouettes and EMP Images) in Appendix B.1.

4.3 Stability of EMP Summaries

We now demonstrate that when the original single-parameter vectorization ϕ is stable, the resulting
EMP vectorization Mϕ also maintains stability. The specifics of the stability concept in persistence
theory are outlined, along with examples of stable SP vectorizations, in Appendix C.1.

We give generalizations of these stability notions and metrics in multidimensions and the proof of the
following stability theorem in Appendix C.2.

Theorem 1. Let ϕ be a stable SP vectorization. Then, the induced EMP Vectorization Mϕ is also

stable, i.e., with the notation given in Appendix C.2, there exists Ĉϕ > 0 such that for any pair of
graphs G+ and G−, we have the following inequality.

D(Mϕ(G
+),Mϕ(G

−)) ≤ Ĉϕ ·Dpϕ
({PD(G+)}, {PD(G−)}).

5 Experiments

In our experiments, we used nine widely used benchmark datasets in graph classification tasks. In
particular, we consider (i) three molecule graphs [34]: BZR_MD, COX2_MD, and DHFR_MD;
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Table 1: Accuracy. Classification accuracy (in % ± standard deviation) of EMP summary on
nine benchmark datasets. The best results are in bold font and the second best results are marked
underlined.

Model BZR_MD COX2_MD DHFR_MD MUTAG PROTEINS IMDB-B IMDB-M REDDIT-B REDDIT-5K

CSM [35] 77.63±1.29 OOT OOT 87.29±1.25 OOT OOT OOT OOT OOT
H-SP [37] 60.08±0.88 59.92±0.66 67.95±0.00 80.90±0.48 74.53±0.35 73.34±0.47 51.58±0.42 OOM OOM
H-WL [37] 52.64±1.20 57.15±1.20 66.08±1.02 75.51±1.34 74.53±0.35 72.75±1.02 50.73±0.63 OOM OOM
MLG [38] 51.46±0.61 51.15±0.00 67.95±0.00 78.53±2.25 75.55±0.71 52.56±0.42 34.27±0.33 OOM OOM
WL [39] 67.45±1.40 60.07±2.22 62.56±1.51 85.75±1.96 73.06±0.47 71.15±0.47 50.25±0.72 77.95±0.60 51.63±0.37

WL-OA [40] 68.19±1.09 62.37±2.11 64.10±1.70 86.10±1.95 73.50±0.87 74.01±0.66 49.95±0.46 87.60±0.33 OOM
FC-V [41] 75.61±1.13 73.41±0.79 76.78±0.69 87.31±0.66 74.54±0.48 73.84±0.36 46.80±0.37 89.41±0.24 52.36±0.37

GNNs [42] 69.87±1.29 66.05±3.16 73.11±1.59 80.42±2.07 75.80±3.70 71.20±3.90 49.10±3.50 89.90±1.90 56.10±1.60

EMP 77.76±0.95 70.12±0.81 80.13±0.94 88.79±0.63 72.78±0.54 74.44±0.45 48.01±0.42 91.03±0.22 54.41±0.32

(ii) two biological graphs [35, 36]: MUTAG and PROTEINS; and (iii) four social graphs: IMDB-
Binary (IMDB-B), IMDB-Multi (IMDB-M), REDDIT-Binary (REDDIT-B), and REDDIT-Multi-5K
(REDDIT-M-5K). The dataset statistics are given in appendix Table 4.

5.1 Experimental Setup

To assess the effectiveness of our EMP summaries in graph representation learning, we assess them
using the random forest (RF) classifier in a graph classification task. We select RF to underline
EMP’s adaptability, although EMP can seamlessly integrate with advanced DL models as a trainable
component.

For the RF classifier, we fix the forest’s tree count at 1000, the minimum sample requirement at
2, and the Gini impurity for split quality measurement. All EMP representations we introduce are
vectorized.

We apply filtrations based on the available information of each dataset, either using their graph
structure or their provided node/edge features. Our pool of filtering functions include: atomic weight,
closeness, edge-betweenness, weighted degree, Katz centrality, and Ricci curvatures. We also use
power filtration as the last filtration direction. To test our EMP framework we use three vectorizations:
Betti curves, Silhouettes and Entropy Summary functions, thus producing EMP matrix representations
that can be embedded in classic and modern machine learning algorithms.

We give further details on our experimental setup in Appendix A.1. Furthermore, Appendix A.2
includes an analysis of computational complexity. The source code is available in Python2.

5.2 Experimental Results

We compare our model with three types of state-of-the-art baselines, covering six graph kernels,
six graph neural networks (GNNs), and one topological method. Graph kernels: (i) comprised of
the subgraph matching kernel (CSM) [35], (ii) Shortest Path Hash Graph Kernel (HGK-SP) [37],
(iii) WL Hash Graph Kernel (HGK-WL) [37], (iv) Multiscale Laplacian Graph Kernel (MLG) [38],
(v) Weisfeiler– Lehman (WL) [39], and (vi) WL Optimal Assignment (WL-OA) [40]; topological
method: filtration curves (FC-V) [41], six graph neural networks including GCN, DGCNN, Diffpool,
ECC, GIN, GraphSage which are compared in [42]. We report the best results of these six GNNs in
the GNNs row in Table 1. For each dataset, we report our best performing model (Table 3). For all
methods, we report the average accuracy of 10 runs of 10-fold CV along with the standard deviation.

Table 1 shows the results of different methods on nine graph datasets. Out-of-time (OOT) results
indicate that a method could not complete the classification task within 12 hours, and OOM means
“out-of-memory” (from an allocation of 128 GB RAM). In Table 2, we further compare our EMP
model with other existing MultiPersistence vectorizations in the literature. Namely, MP landscapes
(MP-L) [11], MP Images (MP-I) [9], multiparameter persistence kernel (MP-K) [43], the generalized
rank invariant landscape (GRIL) [44], and MP Hilbert and Euler characteristic functions (MP-H and
MP-E) [45] and MP Signed Barcodes (MP-SB) [13] where we reported the best of the four different
vectorizations namely, MP-HSM-C, MP-ESM-C, MP-ESM-SW, MP-HSM-SW.

2https://www.dropbox.com/scl/fo/5kydyx2ivu1vpqi8hd0ob/h?rlkey=
5u46k0x6p4hewpq5lhk9zpxl5&dl=0
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We observe the following phenomena:

� Compared with all baselines, out of 9 benchmark datasets, the proposed EMP summaries achieve
the best performance on 5 datasets (BZR_MD, DFHR_MD, MUTAG, IMDB-B, REDDIT-B),
and second best in 2 datasets (COX2_MD, REDDIT-5K).

� EMP summary consistently outperforms Filtration Curves on all datasets except COX2_MD
and PROTEINS, indicating that the multiparameter structure of the EMP summaries can better
capture the complex structural properties and local topological information in heterogeneous
graphs.

� When compared with other Multipersistence Vectorizations, EMP consistently ranks among top
two performances.

� Moreover, EMP Summaries consistently deliver competitive results with GNNs and kernel
methods in all benchmark datasets. This indicates that EMP summary introduces powerful
topological and geometric schemes for node features and graph representation learning.

Table 2: Comparison with other Multipersistence Vectorizations

Dataset MP-Kernel MP-Landscape MP-Images GRIL MP-Hilbert MP-Euler MP-SB EMP

COX2 79.9±1.8 79.0±3.3 77.9±2.7 79.8±2.9 78.2±1.7 77.3±1.1 78.4±0.7 79.9±0.8

IMDB-B 68.2±1.2 71.2±2.0 71.1±2.1 65.2±2.6 73.0±4.5 72.0±1.9 75.1±3.4 74.4±0.5

IMDB-M 46.9±2.6 46.2±2.3 46.7±2.7 NA 49.1±1.6 50.0±0.8 51.1±1.3 48.0±0.4

MUTAG 86.1±5.2 84.0±6.8 85.6±7.3 87.8±4.2 87.2±5.8 87.2±4.3 89.9±4.3 88.8±0.6

PROTEINS 67.5±3.1 65.8±3.3 67.3±3.5 70.9±3.1 70.2±2.1 70.7±1.9 73.9±1.7 72.8±0.5

5.3 Ablation Study

To further investigate the effectiveness of the EMP vectorization function in graph representation
learning, we have conducted ablation studies of various EMP summaries on the benchmark datasets.
In Table 3, we give the performances of different types of EMP summaries (i.e., EMP Silhouette
(EMP-S), EMP Entropy (EMP-E), and EMP Betti (EMP-B) using only 0-dimensional topological
features (H0), only 1-dimensional topological features (H1) and using both (H0 +H1). Note that in
these models, we also included graph-based features (i.e., fV : node features, and fE : edge features;
see more details in Section 5.1 and Appendix A.1).

These results suggest that:

� The choice of the EMP summary can significantly affect the performance (e.g., BZR_MD,
DFHR_MD),

� Using both dimensions (H0 +H1) may not be better than using only one of the dimensions
(e.g., PROTEINS, IMDB-B, REDDIT-5K)

� The choice of topological dimension (H0 or H1) for EMP Summary can be crucial for some
datasets (e.g. BZR_MD, REDDIT-5K).

Table 3: Ablation Study. Comparison of the performances of EMP summaries on nine benchmark
datasets. The accuracies are given in % (± standard deviation) and bold numbers represent the best
results.

Model BZR_MD COX2_MD DHFR_MD MUTAG PROTEINS IMDB-B IMDB-M REDDIT-B REDDIT-5K

EMP-B H0 68.04±2.04 69.39±1.36 72.12±0.94 88.56±0.66 71.54±0.43 73.13±0.44 46.33±0.43 90.52±0.20 54.41±0.32
EMP-B H1 69.22±1.06 70.12±0.81 68.77±1.03 86.30±0.72 71.61±0.48 74.44±0.45 48.01±0.42 88.23±0.28 51.96±0.30
EMP-B H0 + H1 69.08±1.47 69.27±1.15 74.21±0.91 88.79±0.63 71.52±0.53 73.20±0.36 46.82±0.53 91.03±0.22 54.34±0.31

EMP-E H0 65.29±1.75 67.29±1.19 74.53±1.03 86.74±0.68 72.78±0.54 73.15±0.63 46.93±0.49 89.95±0.18 53.47±0.36
EMP-E H1 77.76±0.95 67.55±0.85 66.40±0.89 86.57±0.70 71.93±0.54 72.95±0.49 47.03±0.23 88.64±0.16 51.97±0.36
EMP-E H0 + H1 73.32±1.09 69.18±1.11 74.80±0.96 86.84±0.62 71.86±0.36 72.97±0.58 47.03±0.41 90.05±0.22 53.95±0.35

EMP-S H0 68.23±0.97 69.07±1.24 78.31±0.68 87.89±0.57 71.51±0.60 73.83±0.39 47.38±0.53 88.42±0.24 52.29±0.19
EMP-S H1 70.74±1.28 63.72±1.24 75.26±1.05 84.71±0.99 70.74±0.57 73.99±0.55 47.71±0.34 86.96±0.35 50.71±0.28
EMP-S H0 + H1 72.90±0.91 67.89±1.70 80.13±0.94 88.10±0.83 71.61±0.56 74.29±0.28 47.80±0.51 88.59±0.38 52.75±0.22

Limitations: The main limitation of the EMP approach comes with the choice of filtering functions
and pairing them. While these choices give flexibility to the model, the best function pairs to use
may require domain information of the dataset. One way to bypass this issue is to use self-supervised
methods to learn effective node and edge functions from the data.
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6 Conclusion

We have introduced an innovative and computationally efficient summary approach for multidimen-
sional persistence across various forms of data, with a specific focus on applications in graph-based
machine learning. This novel framework, called Effective Multidimensional Persistence (EMP),
offers a practical and effective method to integrate the concept of multidimensional persistence
into real-world scenarios. The EMP approach seamlessly integrates with ML models, providing
a unified enhancement to existing single persistent summaries. In graph classification tasks, EMP
summaries have demonstrated superior performance compared to state-of-the-art techniques across
multiple benchmark datasets. Moreover, we have shown that EMP maintains important stability
guarantees. This signifies a significant stride in bridging theoretical multipersistence concepts with
the machine learning community, thus advancing the utilization of persistent homology in diverse
contexts. Looking ahead, our future endeavors aim to enrich the EMP framework by incorporating
multiple slicing directions within the multipersistence grid. This involves leveraging deep learning
methodologies to effectively combine outputs from various slicing directions.
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