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Abstract

Recent advances in Bayesian models for random partitions have led to the formulation and explo-
ration of Exchangeable Sequences of Clusters (ESC) models. Under ESC models, it is the cluster
sizes that are exchangeable, rather than the observations themselves. This property is particularly
useful for obtaining microclustering behavior, whereby cluster sizes grow sublinearly in the number
of observations, as is common in applications such as record linkage, sparse networks and genomics.
Unfortunately, the exchangeable clusters property comes at the cost of projectivity. As a consequence,
in contrast to more traditional Dirichlet Process or Pitman-Yor process mixture models, samples a
priori from ESC models cannot be easily obtained in a sequential fashion and instead require the use
of rejection or importance sampling. In this work, drawing on connections between ESC models and
discrete renewal theory, we obtain closed-form expressions for certain ESC models and develop faster
methods for generating samples a priori from these models compared with the existing state of the
art. In the process, we establish analytical expressions for the distribution of the number of clusters
under ESC models, which was unknown prior to this work.
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1 Introduction

Random partitions are integral to a variety of
Bayesian clustering methods, with applications to
text analysis (Blei, 2012; Blei, Ng, & Jordan, 2003)
genetics (Falush, Stephens, & Pritchard, 2003;
Pritchard, Stephens, & Donnelly, 2000), entity
resolution (Binette & Steorts, 2022) and commu-
nity detection (Legramanti, Rigon, Durante, &
Dunson, 2022), to name but a few. The most
widely used random partition models are those
based on Dirichlet processes and Pitman-Yor pro-
cesses (Antoniak, 1974; Ishwaran & James, 2003;

Sethuraman, 1994), most notably the famed Chi-
nese Restaurant Process (CRP; Aldous, 1985). A
drawback of these models is that they generate
partitions in which one or more cells of the parti-
tion grows linearly in the number of observations
n. This property is undesirable in applications to,
for example, record linkage and social network
modeling, where data commonly exhibit a large
number of small clusters. For these applications, a
different mechanism is needed that better captures
the growth of cluster sizes with n.

The solution to this issue is to deploy mod-
els with the microclustering property, whereby the
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size of the largest cluster grows sublinearly in the
number of observations n. An early attempt in this
direction appeared in Zanella et al. (2016). The
authors were motivated by record linkage applica-
tions (Binette & Steorts, 2022) where clusters are
expected to remain small even as the number of
observations increases. This initial class of models,
constructed under the Kolchin representation of
Gibbs partitions (Kolchin, 1971), places a prior κ
on the number of clusters K, and then draws from
a distribution µ over cluster sizes conditional on
K. This approach is comparatively simple, admit-
ting an algorithm that facilitates sampling a priori
and a posteriori similar to the CRP. Unfortu-
nately, the distributions of the number of clusters
and the size of a randomly chosen cluster are
not straightforwardly related to the priors κ and
µ. More to the point, it is not yet theoretically
proven that this family of models indeed exhibits
the microclustering property asymptotically.

More recently, Betancourt, Zanella, and Ste-
orts (2022) considered a different approach to
microclustering, called Exchangeable Sequences of
Clusters (ESC) models. These models belong to
the class of finitely exchangeable Gibbs parti-
tions (Gnedin & Pitman, 2006; Pitman, 2006),
named for the fact that the cluster sizes S1, S2, . . .
are finitely exchangeable. An ESC model is spec-
ified by a distribution µ over cluster sizes (or a
prior over such distributions), and a partition is
generated by drawing cluster sizes independently
from µ conditional on the event that these cluster
sizes sum to n. That is, having specified a distri-
bution µ on the positive integers, we draw cluster
sizes S1, S2, . . . i.i.d. µ, conditional on the event

En =

{
∃K :

K∑
j=1

Sj = n

}
. (1)

The advantage of this model is that the prior µ
straightforwardly encodes a distribution over clus-
ter sizes, in the sense that the size of a randomly
chosen cluster is (in the large-n limit) distributed
according to µ (Betancourt et al., 2022, Theorem
2). Furthermore, unlike the model proposed in
Zanella et al. (2016), the microclustering prop-
erty has been theoretically established for ESC
models (Betancourt et al., 2022, Theorem 3).
Indeed, to the best of our knowledge, ESC models
remain the only random partition model for which

the microclustering property has been rigorously
established.

While ESC models are more interpretable
and have better-developed theory than previously-
proposed microclustering models, there is no
known relationship between the cluster size dis-
tribution µ and the number of clusters K under
these models. Recently, Natarajan, De Iorio, Hei-
necke, Mayer, and Glenn (to appear) (Proposition
2) established the distribution of the number of
clusters K for the case where µ is a shifted neg-
ative binomial, one of the specific models first
proposed by Betancourt et al. (2022). Bystrova,
Arbel, King, and Deslandes (2020) established the
behavior of K under a related class of Gibbs-
type processes. Nonetheless, a general description
of the behavior of K under ESC models remains
open. Additionally, since ESC models require con-
ditioning on En, previous approaches to sampling
a priori amount to drawing repeatedly from µ
and checking whether or not the cluster sizes
S1, S2, . . . satisfy the condition in event En. We
note that (approximate) sampling a posteriori
from ESC models (rather than a priori) has relied
on the “chaperones” algorithm (see Betancourt et
al., 2022; Zanella et al., 2016), a modification of
the well-known reseating algorithm TODO:cite,
meant to ensure that clusters do not become
empty during the reseating step. As suggested
by an anonymous reviewer, this approach might
be modified to produce (approximate) a priori
samples. This would come at the expense of the
bookkeeping overhead required by the chaperones
algorithm, and would produce approximate rather
than exact samples from the prior. As such, we do
not pursue it here, but highlight it as an avenue
for future work.

In this paper, we resolve both of the issues
highlighted above by

1. Establishing analytic expressions for the distri-
bution of the number of clusters under ESC
models by relating the ESC generative pro-
cess to known results in renewal theory and
enumerative combinatorics.

2. Leveraging these connections with enumerative
combinatorics to more efficiently sample from
ESC models.

Apart from the prior works outlined above,
the literature on the microclustering property is
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scarce but diverse. Previous work includes mod-
els that sacrifice finite exchangeability to handle
data with a temporal component (e.g., arrival
times Di Benedetto, Caron, & Teh, 2021), general
finite mixture models with constraints on cluster
sizes (Jitta & Klami, 2018; Klami & Jitta, 2016;
Silverman & Silverman, 2017), and models for
sparse networks based on random partitions with
power-law distributed cluster sizes (Bloem-Reddy,
Foster, Mathieu, & Teh, 2018). Recently, Lee and
Sang (2022) considered the question of balance in
cluster sizes, as encoded by majorization of clus-
ter size vectors. Clearly, this is an emergent area
of research with a variety of applications for which
efficient sampling methods are crucial.

2 Main Results

We begin by defining the ESC model more rig-
orously. Our goal is to generate a partition of
[n] = {1, 2, . . . , n}. Under the ESC model, this is
done by first selecting a distribution µ on the posi-
tive integers (e.g., from a prior Pµ). As mentioned
above, we may think of µ as encoding a distri-
bution over cluster sizes, though this intuition is
really only true asymptotically as n→∞. Having
picked a distribution µ, the ESC model gener-
ates partition sizes by drawing S1, S2, . . . i.i.d.
from µ, conditional on En defined in Equation (1),
according to the following procedure:

1. Draw µ ∼ Pµ

2. Draw S1, S2, . . .
i.i.d.∼ µ conditional on En.

3. Define Kn to be the unique integer such that∑Kn

j=1 Sj = n.
4. Assign the n observations to Kn clusters by

randomly permuting the vector

(1, 1, . . . , 1, 2, 2, . . . , 2, . . . ,Kn,Kn, . . . ,Kn)

in which 1 appears S1 times, 2 appears S2

times, k appears Sk times, etc.

As discussed in the introduction, this model
raises two key challenges. First, while µ naturally
encodes the (asymptotic) cluster size distribution,
it is not immediately clear how to relate the behav-
ior of the number of clusters Kn to µ or to our
prior Pµ. This raises a challenge for the purposes of
interpretability and user-friendliness of the model.
Second, generating samples a priori from this dis-
tribution is non-trivial, since one must condition

on the event En that
∑Kn

j=1 Sj = n. We address
both of these concerns by drawing on the connec-
tions between the ESC model, renewal theory and
enumerative combinatorics.

2.1 Generating ESC Partitions

Let us consider the matter of generating partitions
from ESC models. Betancourt et al. (2022) sug-
gest drawing S1, S2, . . . i.i.d. according to µ until∑k

j=1 Sj ≥ n for some k ≤ n. If equality holds,
then (S1, S2, . . . , Sk) is a valid sequence of cluster
sizes (i.e., the event En holds), otherwise a new
sequence is generated. Unfortunately, on average,
this procedure must be repeated 1/Pr[En | µ]
times before a valid sequence is generated. Thus,
crucial to this approach is that Pr[En | µ] be
bounded away from zero for large n. This fact is
established in Betancourt et al. (2022) for the case
where µ has finite mean by identifying the clus-
ter sizes S1, S2, . . . with the waiting times of a
discrete renewal process and appealing to the fol-
lowing result (see, for example, Theorem 2.6 in
Barbu & Limnios, 2009).
Lemma 1. Let µ be a distribution on the
positive integers with finite mean and gener-

ate S1, S2, . . .
i.i.d.∼ µ. With En as defined in

Equation (1),

lim
n→∞

Pr[En | µ] =
1

E[S1 | µ]
.

Trouble arises in the event that E[S1 | µ] is
large (or infinite), since then we may need to
generate many samples S1, S2, . . . from µ before
obtaining a usable sequence. To alleviate this issue
and allow for the possibility that µ has infinite
expectation, we propose an alternative approach
to generating cluster sizes conditional on En. We
begin by writing, for positive integers s1, s2, . . . ,

Pr [S1 = s1, S2 = s2, · · · | En, µ]

= Pr [S1 = s1 | En, µ]

· Pr [S2 = s2, S3 = s3, · · · | S1 = s1, En, µ] .

(2)
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Since En is precisely the event that there exists a
k such that

∑k
j=1 Sj = n, we have

Pr [En | S1 = s1, µ]

= Pr

[
∃k :

k∑
j=2

Sj = n− s1

∣∣∣ µ]
= Pr [En−s1 | µ] ,

from which we have

Pr [S1 = s1 | En, µ]

=
Pr [En | S1 = s1, µ] Pr[S1 = s1 | µ]

Pr [En | µ]

=
Pr [En−s1 | µ]µs1

Pr [En | µ]
.

(3)

Since the variables S1, S2, . . . are drawn i.i.d.,

Pr [S2 = s2, S3 = s3, · · · | S1 = s1, En, µ]

= Pr [S1 = s2, S2 = s3, · · · | En−s1 , µ] .

Plugging this and Equation (3) into
Equation (2), we have, for 1 ≤ s1 ≤ n,

Pr [S1 = s1, S2 = s2, · · · | En, µ]

= Pr [S1 = s2, S2 = s3, · · · | En−s1 , µ]

· µs1 Pr [En−s1 | µ] /Pr[En | µ].
(4)

This equation suggests a recursive approach to
generating cluster size sequences, which we for-
malize in Algorithm 1. Crucially, this algorithm
avoids the runtime dependence on Pr[En | µ]
exhibited by the näıve sampling approach.
Theorem 2. For any s1, s2, · · · ∈ [n] satisfy-

ing
∑k

j=1 sj = n, the sequence (X1, X2, . . . , Xk)
generated by Algorithm 1 satisfies

Pr [X1 = s1, X2 = s2, . . . , Xk = sk | µ]
= Pr [S1 = s1, S2 = s2, . . . , Sk = sk | En, µ]

Proof. By construction of Algorithm 1, the vari-
able m is initialized to m← n, and thus

Pr[X1 = s1 | µ] =
µs1 Pr[En−s1 | µ]

Pr[En | µ]
.

Algorithm 1 Given distribution µ = (µn)
∞
n=1,

generate S1, S2, · · · | En.

1: Compute Pr[Et | µ] for t = 1, 2, . . . , n.
2: m← n; k ← 1
3: while m > 0 do
4: Draw Xk according to

Pr[Xk = s;m] =
µs Pr[Em−s | µ]

Pr[Em | µ]
s ∈ {1, 2, . . . ,m}

5: m← m−Xk; k ← k + 1
6: end while
7: Return (X1, X2, . . . , Xk−1)

It follows that

Pr [X1 = s1, . . . , Xk = sk | µ]
= Pr[X1 = s1 | µ]
· Pr [X2 = s2, . . . , Xk = sk | X1 = s1, µ]

= Pr [X2 = s2, . . . , Xk = sk | X1 = s1, µ]

· µs1 Pr[En−s1 | µ]/Pr[En | µ].

Given X1 = s1, Algorithm 1 sets m← n− s1 and
k ← 2, and draws X2 according to

Pr [X2=s2 | X1=s1, µ] =
µs2 Pr[En−s1−s2 | µ]

Pr[En−s1 | µ]
,

whence

Pr [X1 = s1, . . . , Xk = sk | µ]

=
µs1 Pr[En−s1 | µ]

Pr[En | µ]
· µs2 Pr[En−s1−s2 | µ]

Pr[En−s1 | µ]
· Pr [X3=s3, . . . ,Xk=sk | X1=s1,X2=s2,µ] .

Repeating this argument, we have

Pr [X1 = s1, . . . , Xk = sk | µ]

=

(
k−1∏
j=1

µsj Pr[En−
∑j

t=1 st
| µ]

Pr[En−
∑j−1

t=1 st
| µ]

)
· Pr[Xk=sk | X1=s1, . . . , Xk−1=sk−1, µ]

=

(
k−1∏
j=1

µsj Pr[En−
∑j

t=1 st
| µ]

Pr[En−
∑j−1

t=1 st
| µ]

)

· µsk Pr[E0 | µ]
Pr[En−

∑k−1
t=1 st

| µ]
.
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Since Pr[E0 | µ] = 1, we conclude that

Pr [X1 = s1, . . . , Xk = sk | µ] =

(∏k
j=1 µsj

)
Pr[En | µ]

.

On the other hand, repeated application of
Equation (4) yields

Pr[S1 = s1, S2 = s2, . . . , Sk = sk | En, µ]

=

(∏k
j=1 µsj

)
Pr[En | µ]

,

which completes the proof.

Remark 1 (Sampling a posteriori). Algorithm 1
generates a priori samples from an ESC, and it
is natural to extend these ideas to sampling a
posteriori. Unfortunately, sampling a posteriori
from the ESC requires more complicated machin-
ery (see, e.g., the “chaperones” algorithm; Betan-
court et al., 2022; Zanella et al., 2016), and it
is not obvious how to adapt the speedups exhib-
ited by Algorithm 1 to these a posteriori sampling
schemes. We anticipate that ideas like those intro-
duced in this paper can be extended and applied
to the problem of sampling a posteriori from ESC
models, especially for choices of µ with “nice”
structure that supports fast updates, but our focus
in the present paper is on prior elicitation and
calibration. We leave to future work the mat-
ter of extending these techniques to more general
sampling problems.

Algorithm 1 generates samples from an ESC
model without the conditioning required by the
method proposed in Betancourt et al. (2022), pro-
vided that we can compute Pr[En | µ] for arbitrary
choices of n ≥ 0. Computation of this quantity
requires the use of the k-th partial exponential
Bell polynomial (Charalambides, 2002),

Bn,k(x1, x2, . . . , xn−k+1)

=
∑

j1,j2,...,jn−k+1

n!
∏n−k+1

i=1

(
xi

i!

)ji
j1!j2! · · · jn−k+1!

,
(5)

where the sum is over all non-negative integers
j1, j2, . . . , jn−k+1 satisfying

∑n−k+1
i=1 ji = k and∑n−k+1

i=1 iji = n.

Theorem 3. Let µ be a probability distribution
on the positive integers. Then

Pr[En | µ]

=

n∑
k=1

k!

n!
Bn,k

(
1!µ1, 2!µ2, . . .

. . . , (n− k + 1)!µn−k+1

)
.

Proof. Viewing the cluster sizes S1, S2, . . . as the
waiting times of a discrete-time renewal pro-
cess (Barbu & Limnios, 2009), En corresponds
to the event that a renewal occurs at time n. A
key result from renewal theory relates Pr[En | µ]
and the cluster size distribution µ via their prob-
ability generating functions. Let M(s) denote the
ordinary generating function of the sequence µ =
(µn)

∞
n=1. That is, for s ≥ 0,

M(s) =

∞∑
k=0

µks
k,

where µ0 = 0 by assumption (i.e., in the language
of renewal theory, waiting times are positive; in
the language of the ESC model, there are no
empty clusters). For each n = 0, 1, 2, . . . , let un =
Pr[En | µ], with u0 = 1 by convention (i.e., a
renewal always occurs at time 0). Letting U(s) be
the ordinary generating function of the sequence
(un)

∞
n=0, one can show (see, e.g., Barbu & Limnios,

2009, Proposition 2.1) that for all s ≥ 0,

U(s) =

∞∑
k=0

uks
k =

1

1−M(s)
. (6)

This suggests a natural approach to computing
Pr[En | µ] = un using the fact that un can be
determined from the n-th derivative of U(s) eval-
uated at s = 0. Defining the functions f(z) = 1/z
and g(s) = 1 − M(s), observe that for all n =
0, 1, 2, . . . ,

U (n)(s) =
dn

dsn
f(g(s))

and for n = 1, 2, . . . , we have

f (n)(z) =
(−1)nn!
zn+1

, and g(n)(s) = −M (n)(s).
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Applying Faá di Bruno’s formula (Charalambides,
2002, Theorem 11.4),

U (n)(s) =
dn

dsn
f(g(s))

=

n∑
k=1

f (k)(g(s))

·Bn,k

(
g′(s), g′′(s), . . . , g(n−k+1)(s)

)
=

n∑
k=1

(−1)kk!
(1−M(s))k+1

·Bn,k

(
−M ′(s),−M ′′(s), . . .

. . . ,−M (n−k+1)(s)
)
,

Using this identity along with the fact that
M (k)(0) = k!µk, we have

un =
1

n!
U (n)(0)

=

n∑
k=1

(−1)kk!
n!

Bn,k

(
− 1!µ1,−2!µ2, . . .

. . . ,−(n− k + 1)!µn−k+1

)
.

A basic property of Bell polynomials (Charalam-
bides, 2002, page 412) states that

Bn,k

(
abx1, a

2bx2, . . . , a
n−k+1bxn−k+1

)
= anbkBn,k (x1, x2, . . . , xn−k+1) .

(7)

Setting a = 1 and b = −1, it follows that

un =

n∑
k=1

k!

n!
Bn,k

(
1!µ1, 2!µ2, . . .

. . . , (n− k + 1)!µn−k+1

)
,

and the result follows by dividing by n! and
recalling that un = Pr[En | µ].

Theorem 3 allows us to compute Pr[En | µ] for
arbitrary choices of µ, which we now illustrate in
the context of Poisson-distributed cluster sizes.

Example: ESC-Poisson.

Consider the case where (µn)
∞
n=0 is given by

µk =

{
λk−1e−λ

(k−1)! = ke−λ

λ
λk

k! if k = 1, 2, . . .

0 if k = 0.

That is, cluster sizes are shifted Poisson random
variables. Applying Theorem 3,

Pr[En | λ]

=

n∑
k=1

k!e−kλλn−k

n!
Bn,k (1, 2, . . . , (n− k + 1)) ,

where we have used Equation (7). A basic iden-
tity (Comtet, 1974, page 135) states that

Bn,k (1, 2, . . . , (n− k + 1)) =

(
n

k

)
kn−k. (8)

Applying this identity, we conclude that

Pr[En | λ] =
n∑

k=1

e−kλ(kλ)n−k

(n− k)!

=

n∑
k=1

Pois(n− k; kλ),

(9)

where Pois(·;λ) denotes the probability mass func-
tion of a Poisson random variable with rate
parameter λ.

2.2 Behavior of the number of
clusters Kn

The number of clusters Kn is the (random) num-

ber k such that
∑k

j=1 Sj = n, again conditional on
the event En to ensure that such a k exists. A nat-
ural choice under the ESC concerns the behavior
of the random variable Kn.
Theorem 4. Let S1, S2, . . . , SKn

be cluster sizes
generated according to an ESC model on n objects
with cluster size distribution µ. Then for k =
1, 2, . . . , n,

Pr[Kn = k | En, µ]

=
k!Bn,k (1!µ1, 2!µ2, . . . , (n− k + 1)!µn−k+1)

n! Pr[En | µ]
.
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Proof. We begin by observing that En =
∪nk=1 {Kn = k}, whence for k = 1, 2, . . . , n,

Pr[Kn = k | En, µ]

=
∑

s1,s2,...,sk

Pr[S1 = s1, . . . , Sk = sk | µ]
Pr[En | µ]

=
∑

s1,s2,...,sk

∏k
j=1 µsj

Pr[En | µ]
,

where the sum is over all s1, s2, . . . , sk satisfying∑k
j=1 sj = n. Equivalently, using basic properties

of partitions of [n], we can express this sum as

Pr[Kn = k | En, µ]

=
k!

Pr[En | µ]
∑

j1,j2,...,jn−k+1

n−k+1∏
i=1

µji
i

ji!

(10)

where the sum is over all j1, j2, . . . , jn−k+1 satisfy-

ing
∑n−k+1

i=1 ji = k and
∑n−k+1

i=1 iji = n. The sum
on the right-hand side of Equation (10) is known
in the enumerative combinatorics literature as the
ordinary Bell polynomial (Charalambides, 2002),

B̂n,k(µ1, µ2, . . . , µn−k+1)

=
∑

j1,j2,...,jn−k+1

k!

n−k+1∏
i=1

µji
i

ji!
,

(11)

and can be related to the exponential Bell poly-
nomial defined in Equation (5) according to

B̂n,k(µ1, µ2, . . . , µn−k+1)

=
k!

n!
Bn,k (1!µ1, 2!µ2, . . . , (n− k + 1)!µn−k+1) ,

which completes the proof.

Remark 2 (Asymptotic Runtime). As discussed
above and explored experimentally in Section 3
below, the advantage of our novel sampling pro-
cedure in Algorithm 1 over the näıve sampling
algorithm presented in Betancourt et al. (2022)
lies in the fact that its runtime is not sensitive to
the cluster size distribution µ. This is of partic-
ular importance when Pr[En | µ] is small (e.g.,
because E[S1 | µ] is large compared to n). Thus,
our concerns in this paper are largely with finite
runtime comparison between these two methods.

Nonetheless, it may be informative to compare the
asymptotic runtimes required by these two algo-
rithms to produce B random partitions, e.g., for
use in prior calibration. We find that these two
asymptotic runtimes are comparable in the setting
where B is of the same order as n. See Section 2.4
for details.

With Theorem 4 in hand, we can precisely
describe the behavior of Kn for a particular
choice of µ (or a prior over µ), in terms of Bell
polynomials.

Example: ESC-Poisson, continued.

Under the ESC-Poisson distribution (see
Section 2.1 above), cluster sizes are drawn accord-
ing to a (shifted) Poisson. In Section 2.1, using
Theorem 3, we computed Pr[En | µ] for this
distribution. Here, we use Theorem 4 to derive
the distribution of the number of clusters Kn. By
Theorem 4, for k ∈ [n],

Pr[Kn = k | En, µ] =
B̂n,k(µ)

Pr[En | µ]

=
k!Bn,k

(
e−λ, 2e−λλ, . . . , (n− k + 1)e−λλn−k

)
n! Pr[En | µ]

=

(
n∑

ℓ=1

e−ℓλ(ℓλ)n−ℓ

(n− ℓ)!

)−1
e−kλ(kλ)n−k

(n− k)!

where we have used Equations (7), (8) and (9).

2.3 Illustrative Examples

Theorems 3 and 4 allow us to determine the
behavior of ESC models for arbitrary choices of
cluster size distribution, as we now demonstrate.

Negative Binomial Cluster Sizes.

The model that has received the most atten-
tion to date in the microclustering literature (see,
e.g., Betancourt et al., 2022; Natarajan et al., to
appear; Zanella et al., 2016) is the ESC-NB model,
in which µ takes the form of a shifted negative
binomial distribution,

µk =

{(
k+r−2
k−1

)
(1− p)rpk−1 if k = 1, 2, . . .

0 if k = 0,

where p ∈ [0, 1] is the probability of success and
r > 0 is the number of failures. To permit the
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possibility that r is not an integer, we define(
r

m

)
=

(r)m
m!

,

where (r)m denotes the falling factorial, (r)m =
r(r − 1)(r − 2) · · · (r −m+ 1).

We first establish an expression for Pr[En | µ].
By the definition in Equation (11),

B̂n,k(µ1, µ2, . . . , µn−k+1)

= k!
∑

j1,j2,...,jn−k+1

n−k+1∏
i=1

µji
i

ji!

=
∑

s1,s2,...,sk

k∏
i=1

µsk ,

where the second sum is over all positive inte-
gers s1, s2, . . . , sk summing to n. Plugging in our
definition of µ, this becomes

B̂n,k(µ1, µ2, . . . , µn−k+1)

=
∑

s1,s2,...,sk

k∏
i=1

(
si + r − 2

si − 1

)
(1− p)rpsi−1

= (1− p)rkpn−k
∑

s1,s2,...,sk

k∏
i=1

(
si + r − 2

si − 1

)
.

After a change of variables, we have

B̂n,k(µ1, µ2, . . . , µn−k+1)

= (1− p)rkpn−k
∑

s1,s2,...,sk

k∏
i=1

(
si + r − 1

si

)
,

where now the sum is over all non-negative inte-
gers s1, s2, . . . , sk summing to n − k. A basic
identity for binomial coefficients (Graham, Knuth,
& Patashnik, 1994, Equation 5.14) states that(

t

m

)
= (−1)m

(
m− t− 1

m

)
, (12)

which holds for all t ∈ R and non-negative integers
m. Taking t = si + r − 1 and m = si,

B̂n,k(µ1, µ2, . . . , µn−k+1)

=
(1− p)rkpn

pk

∑
s1,s2,...,sk

k∏
i=1

(−1)si
(
−r
si

)

=
(−1)n−k(1− p)rkpn

pk

∑
s1,s2,...,sk

k∏
i=1

(
−r
si

)
.

Applying the generalized Vandermonde convolu-
tion identity (Graham et al., 1994), a second
application of Equation (12) yields

B̂n,k(µ1, µ2, . . . , µn−k+1)

= (−1)n−k(1− p)rkpn−k

(
−kr
n− k

)
= (−1)2(n−k)(1− p)rkpn−k

(
n− k + kr − 1

n− k

)
= pn

(
(1− p)r

p

)k (
n+ k(r − 1)− 1

n− k

)
Applying Theorem 3 and plugging in the definition
given in Equation (11),

Pr[En | µ]

= pn
n∑

k=1

(1− p)rk

pk

(
n+ k(r − 1)− 1

n− k

)
.

(13)

Applying Theorem 4 and the Bell polynomial
expressions above,

Pr[Kn = k | En, µ]

=
pn−k(1− p)rk

Pr[En | µ]

(
n+ k(r − 1)− 1

n− k

)
,

(14)

where Pr[En | µ] is as in Equation (13). We note
that this recovers Proposition 2 in Natarajan et
al. (to appear) as a special case.

Geometric Cluster Sizes

As another illustrative example, consider the set-
ting where cluster sizes are distributed according
to a geometric distribution,

µk =

{
(1− p)k−1p if k = 1, 2, . . .

0 if k = 0.

8



Of course, one could characterize this model using
the fact that the geometric distribution is a special
case of the negative binomial, but we include this
example for the sake of its comparative simplicity.

Applying Theorem 3 followed by Equation (7),

Pr[En | µ]

=

n∑
k=1

k!pk(1− p)n−k

n!

·Bn,k (1!, 2!, . . . , (n− k + 1)!) .

By a basic identity (Comtet, 1974, page 135),

Bn,k (1!, 2!, . . . , (n− k + 1)!) =

(
n− 1

k − 1

)
n!

k!
. (15)

After a change of variables, we conclude that

Pr[En | µ] = (1− p)n−1p

n−1∑
ℓ=0

(
n− 1

ℓ

)(
p

1− p

)ℓ

= p.

Turning to the cluster size distribution under
this model, Theorem 4 states that

Pr[Kn = k | En, µ]

=
k!

n!p
Bn,k(1!µ1, 2!µ2, . . . , (n− k + 1)!µn−k+1).

Applying Equations (7) and (15) yields

Pr[Kn=k | En, µ] =
(1− p)n

p

(
p

1− p

)k(
n− 1

k − 1

)
.

Zipf-distributed Cluster Sizes

A more interesting example is given by the case
where cluster sizes are drawn according to a dis-
crete power law. We consider, for α > 1, a Zipfian
cluster size distribution, given by

µk =
k−α

ζ(α)
for k = 0, 1, 2, . . . ,

where ζ(·) denotes the Riemann zeta function. Our
results above imply that

un =

n∑
k=1

k!

n!ζ(α)k
Bn,k

(
1!,

2!

2α
,. . .,

(n− k + 1)!

(n− k + 1)α

)
.

It is not immediately clear how to simplify this
probability using basic Bell polynomial identities.
Nonetheless, from Theorem 4, we have that for
k ∈ [n],

Pr[Kn = k | En, α]

=
k!ζ−k(α)Bn,k

(
1!, 2!

2α , . . . ,
(n−k+1)!
(n−k+1)α

)
∑n

ℓ=1 ℓ!ζ
−ℓ(α)Bn,ℓ

(
1!, 2!

2α , . . . ,
(n−ℓ+1)!
(n−ℓ+1)α

) ,
and the Bell polynomials appearing on the right-
hand side can be computed in quadratic time
according to the recurrence relation (Charalam-
bides, 2002, Equations 11.11, 11.12)

Bn,k (µ1, µ2, . . . , µn−k+1)

=

n−k+1∑
j=1

µjBn−j,k−1 (µ1, µ2, . . . , µn−j−k) .

Thus, even in the absence of a closed-form expres-
sion for Pr[Kn | En, α], the distribution of Kn can
be obtained numerically.

A host of interesting questions are raised by
ESC models in which cluster sizes exhibit heavy-
tailed behavior as in the Zipf distribution. In such
settings, Pr[En | µ] may converge very slowly or
not at all, and the näıve sampling algorithm may
be especially slow. Indeed, if the cluster size dis-
tribution µ has infinite mean, classical renewal
theory results (Barbu & Limnios, 2009) do not
apply, and we have no guarantee that Pr[En | µ]
converges to a finite limit as n → ∞. Further,
existing microclustering results (e.g., Betancourt
et al., 2022, Theorem 3) do not apply to cluster
size distributions that lack a finite mean, leaving
open the question as to whether these models yield
the microclustering property at all.

2.4 Asymptotic Runtime

Our concern in this work is the finite-sample
behavior of our sampler and its sensitivity to the
cluster size distribution in comparison to the näıve
sampling algorithm. We compare these finite-
sample runtimes in Section 3 below. Nonetheless,
it is of interest to compare the asymptotic run-
times of Algorithm 1 and the näıve sampling
algorithm. Toward this end, observe that the
näıve algorithm presented in Betancourt et al.
(2022) generates a sequence of random variables

9



S1, S2, . . . , STn so that
∑Tn

j=1 Sj ≥ n, where Tn =

min{k :
∑k

j=1 Sj ≥ n}. The probability that these
random variables sum to n exactly (and hence con-
stitute a valid partition of n) is Pr[En | µ]. Thus,
on average, the näıve sampling algorithm must
generate O(ETn/Pr[En | µ]) random variables
to produce a single random partition. Provided
E[S1 | µ] < ∞, Wald’s equation (Levin, Peres, &
Wilmer, 2009) states that

ETn =
E
∑Tn

k=1 Sk

E[S1 | µ]
≥ n

E[S1 | µ]
.

It follows by Lemma 1 that the näıve sampling
algorithm requires time Ω(Bn), to generate B
random partitions, since Pr[En | µ]→ 1/E[S1 | µ].

In contrast, consider our novel sampling pro-
cedure in Algorithm 1. Before it can be used
to produce any samples, this procedure requires
quadratic time to compute the terms Pr[Xk =
s;m] for all 1 ≤ s ≤ m ≤ n in terms of Pr[Em |
µ] for m = 1, 2, . . . , n. Having computed these
probabilities, generating a single partition requires
generating Kn random variables, where Kn is the
(random) number of clusters in the generated par-
tition. Thus, to generate B sample partitions,
Algorithm 1 requires O(n2) +O(BKn) runtime.

It is common in microclustering tasks that the
total number of observations is often on the order
of between a few hundreds and tens of thousands.
In such settings, the number of Monte Carlo sam-
ples B is likely to be at least of the same order
as the number of observations n, and the O(n2)+
O(BKn) runtime required by Algorithm 1 is essen-
tially equivalent to the O(Bn) runtime required
by the näıve algorithm, since Kn → n/E[S1 | µ]
under microclustering models when E[S1 | µ] <∞
(Betancourt et al., 2022, Theorem 1). To the best
of our knowledge, the asymptotic behavior of Kn

when this expectation is infinite is not yet estab-
lished. Should it turn out that Kn = o(n) in such
settings (we conjecture as much, but a proof is
beyond the scope of the present work), the Kn-
dependence of Algorithm 1 would be especially
desirable compared to the näıve sampler.

3 Experiments

We now turn to a brief experimental investi-
gation of our theoretical results. We note that

all computations discussed above are performed
in logarithmic space to avoid overflow or under-
flow. A Python implementation of our method is
available in the digital supplement.

3.1 Behavior of Kn

We begin by verifying that the samples gener-
ated by Algorithm 1 match their intended ESC
clustering distribution (i.e., verifying Theorem 2).
Theorem 4 establishes the distribution of the
number of clusters Kn under ESC models. In par-
ticular, Equation (14) gives the distribution of
Kn under the ESC-NB model, in which the clus-
ter sizes are distributed according to a Negative
Binomial with success parameter p ∈ [0, 1] and
number of failures r > 0. Figure 1 shows this dis-
tribution for p = 0.5 and r = 2.0. The left-hand
plot contains a histogram of 2000 draws of Kn,
based on clusterings generated from the näıve ESC
sampling method (Betancourt et al., 2022). The
right-hand plot contains an analogous histogram
based on clusterings generated from Algorithm 1,
computing the Pr[En | µ] terms using Bell poly-
nomial identities. In both subplots, the solid black
line indicates the distribution of Kn predicted by
Theorem 4. We see that both the näıve and Bell
polynomial-based algorithms yield clusterings in
which the behavior of Kn matches that predicted
by Theorem 4.

Naive Bell

140 160 180 200 140 160 180 200
0.00

0.01

0.02

0.03

0.04

0.05

Number of clusters

D
en

si
ty

Fig. 1 Histogram of 2000 draws from the distribution
of the number of clusters Kn under the ESC-NB model
on n = 500 observations with Negative Binomial param-
eters p = 0.5 and r = 2.0 using the näıve (left) and Bell
polynomial-based (right) sampling algorithms. The distri-
bution predicted by Theorem 4 is indicated in black in both
subplots.

3.2 Runtime Comparison

We now turn to a comparison of our proposed sam-
pling algorithm with the näıve sampling approach

10



d e s cri b e d i n S e cti o n 2. 1 a n d u s e d i n m o st pr e vi o u s
mi cr o cl u st eri n g w or k ( s e e, e. g., B et a n c o urt et al. ,
2 0 2 2 ). F or si m pli cit y, w e c o n si d er t h e E S C- P oi s s o n
m o d el, i n w hi c h cl u st er si z e s ar e dr a w n a c c or di n g
t o a P oi s s o n di stri b uti o n wit h p ar a m et er λ .

L e m m a 1 s u g g e st s t h at t h e r u nti m e of t h e
n aı̈ v e s a m pli n g al g orit h m i s li k el y t o b e s e n siti v e
t o t h e m e a n of t h e cl u st er si z e di stri b uti o n E S 1 =
λ . T o e x a mi n e t hi s f a ct, w e g e n er at e d p artiti o n s
of n = 5 0 0 o bj e ct s u n d er t h e E S C- P oi s s o n m o d el
wit h P oi s s o n p ar a m et er λ u si n g b ot h t h e n aı̈ v e
p r o c e d u r e a n d t h e pr o c e d ur e d e s cri b e d i n Al g o-
rit h m 1 . F or v ar yi n g v al u e s of t h e P oi s s o n p ar a m-
et er λ , w e p erf or m e d 2 0 i n d e p e n d e nt r e p etiti o n s,
r e c or di n g t h e r u nti m e r e q uir e d t o g e n er at e cl u s-
t eri n g s u n d er b ot h m et h o d s. T h e m e a n r u nti m e
o v er t h e s e 2 0 r e pli c at e s f or t h e s e t w o m et h o d s ar e
s u m m ari z e d i n Fi g ur e 2 , wit h t h e n aı̈ v e m et h o d
i n di c at e d b y cir cl e s c o n n e ct e d b y s oli d li n e s a n d
t h e B ell p ol y n o mi al- b a s e d m et h o d i n di c at e d b y
tri a n gl e s c o n n e ct e d b y d a s h e d li n e s. We s e e t h at
t h e r u nti m e of t h e n aı̈ v e s a m pli n g e r r or d e p e n d s
s e n siti v el y o n t h e m e a n λ of t h e cl u st er si z e di stri-
b uti o n. S p e ci fi c all y, r u nti m e s f or t h e n aı̈ v e m et h o d
a r e o r d er s of m a g nit u d e sl o w er f or v al u e s of λ t h at
d o n ot ( e x a ctl y or a p pr o xi m at el y) di vi d e n = 5 0 0.
U n d er s u c h cir c u m st a n c e s, if S 1 , S2 , . . . , Sk ar e
s u c h t h at

k
j = 1 S j = n , eit h er all of t h e s u m m a n d s

m u st b e m o d er at el y f ar fr o m t h e m e a n E S 1 = λ
of t h e cl u st er si z e di stri b uti o n, or, if m o st of t h e
s u m m a n d s ar e cl o s e t o E S 1 , o n e or m or e m u st
d e vi at e si g ni fi c a ntl y fr o m it. I n eit h er e v e nt, s u c h
s e q u e n c e s ar e of e s p e ci all y l o w pr o b a bilit y, a n d
t h u s m a n y s e q u e n c e s S 1 , S2 , . . . m u st b e g e n er at e d
b ef or e t h e e v e nt E n o c c ur s, i n cr e a si n g t h e a v e r a g e
r u nti m e of t h e n aı̈ v e p r o c e d u r e.

1 e − 0 2

1 e − 0 1

1 e + 0 0

1 e + 0 1

1 e + 0 2

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
λ

R
u
nt
i

m
e 

(s
ec

o
n
ds

, l
o
g 

sc
al

e)

M et h o d

N ai v e
B ell

Fi g. 2 R u nti m e i n s e c o n d s r e q ui r e d b y t h e n aı̈ v e ( ci r cl e s,
s oli d li n e ) a n d B ell p ol y n o mi al- b a s e d ( t ri a n gl e s, d a s h e d
li n e ) m e t h o d s t o g e n e r a t e a p a r ti ti o n of n = 5 0 0 o bj e c t s
u n d e r a n E S C- P oi s s o n m o d el, a s a f u n c ti o n of t h e P oi s s o n
p a r a m e t e r λ . We s e e t h a t t h e n aı̈ v e s a m pli n g m e t h o d i s
hi g hl y s e n si ti v e t o t h e e x p e c t e d cl u s t e r si z e E S 1 = λ .

F urt h er e x a mi ni n g Fi g ur e 2 , w e n ot e t h at o ur
pr o p o s e d s a m pli n g m et h o d d o e s n ot u nif or ml y
i m pr o v e u p o n t h e n aı̈ v e s a m pli n g m et h o d at all
v al u e s of λ . T hi s i s o wi n g t o t h e f a ct t h at Al g o-
rit h m 1 r e q uir e s t h at w e c o m p ut e t h e pr o b a biliti e s

Pr[ X k = s ; m ] =
µ s Pr[ E m − s | µ ]

Pr[ E m | µ ]
( 1 6)

f or e a c h m ∈ [n ] a n d e a c h s ∈ [m ]. E v e n wit h
a c c e s s t o t h e s e q u e n c e s µ m a n d u m = Pr[ E m |
µ ] f or m ∈ [n ], c o n str u cti n g t h e s e pr o b a biliti e s
a h e a d of ti m e i n c ur s a c o m p ut ati o n al c o st, w hi c h
i s i n cl u d e d i n t h e r u nti m e r e p ort e d i n Fi g ur e 2 .

Fi g ur e 3 c o m p ar e s t h e n aı̈ v e s a m pli n g p r o c e-
d ur e a n d o ur pr o p o s e d m et h o d, t hi s ti m e a m orti z-
i n g t hi s u p-fr o nt c o m p ut ati o n al c o st o v er 2 0 0 s a m-
pl e p artiti o n s. T h at i s, e a c h tri al n o w c o n si st s of
fir st c al c ul ati n g t h e pr o b a biliti e s i n E q u ati o n ( 1 6 ),
t h e n u si n g t h o s e pr o b a biliti e s t o g e n er at e 2 0 0 cl u s-
t eri n g s fr o m t h e E S C- P oi s s o n m o d el. We s e e t h at
o v er a r a n g e of v al u e s of P oi s s o n p ar a m et er λ a n d
n u m b er of o b s er v ati o n s n , o ur pr o p o s e d m et h o d
i m pr o v e s u p o n t h e r u nti m e of t h e n aı̈ v e s a m pli n g
m et h o d b y a n or d er of m a g nit u d e.

0. 0 0 1

0. 0 1 0

0. 1 0 0

1. 0 0 0

1 0 0 0 3 0 0 0 1 0 0 0 0
n (l o g s c al e)

R
u
nti

m
e 

(s
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o
n
ds

, l
o
g 

sc
al

e)

λ

1 0
2 0
5 0
1 0 0

M et h o d

N ai v e
B ell

Fi g. 3 A m o r ti z e d r u nti m e of t h e n aı̈ v e E S C s a m pl e r ( ci r-
cl e s, s oli d li n e ) a n d o u r p r o p o s e d B ell p ol y n o mi al- b a s e d
m e t h o d ( t ri a n gl e s, d a s h e d li n e ), a s a f u n c ti o n of t h e n u m b e r
of o b s e r v a ti o n s n . Cl u s t e r si z e s w e r e g e n e r a t e d a c c o r di n g
t o a P oi s s o n di s t ri b u ti o n wi t h v a r yi n g c h oi c e s of m e a n λ
(i n di c a t e d b y li n e s h a d e ). E a c h p oi nt c o r r e s p o n d s t o t h e
m e a n r u nti m e o v e r 2 0 t ri al s, wi t h e r r o r b a r s i n di c a ti n g t w o
s t a n d a r d e r r o r s of t h e m e a n. I n e a c h t ri al, 2 0 0 s a m pl e s w e r e
g e n e r a t e d f r o m t h e E S C- P oi s s o n m o d el wi t h p a r a m e t e r λ ,
a n d t o t al r u nti m e, i n cl u di n g u p-f r o nt c o m p u t a ti o n r e q ui r e d
b y t h e B ell p ol y n o mi al- b a s e d m e t h o d, w a s r e c o r d e d.

4 Di s c u s si o n a n d C o n cl u si o n

We h a v e a d dr e s s e d t w o o ut st a n di n g i s s u e s i n E S C
m o d el s: t h e b e h a vi or of t h e n u m b er of cl u st er s K n

a n d t h e m att er of s a m pli n g a pri ori fr o m t h e s e

1 1



models. A number of natural follow-up questions
present themselves. For example, all known results
concerning the microclustering property in ESC
models require that the cluster size distribution µ
has finite expectation. It is natural to ask whether
the microclustering property continues to hold if
µ has infinite expectation, and how the size of
the largest cluster grows in such situations. This
question is the subject of ongoing work.

One possible criticism of Algorithm 1 is that
it requires O(n2) up-front runtime to compute the
probabilities Pr[Xk = s;m] for all 1 ≤ s ≤ m.
Absent particular structure in the cluster size
distribution µ, it requires a new O(n2) runtime
computation any time µ is updated. We stress that
Algorithm 1 is not aimed at this situation, but
rather is meant for faster a priori sampling, such
as in the context of prior calibration. Nonetheless,
future work should investigate speeding up these
probability computations for use in Algorithm 1,
perhaps using approximation techniques similar to
those deployed in Bystrova et al. (2020). Such a
speedup (even at the cost of approximation error)
has the potential to yield the first feasible alter-
native to the chaperones algorithm for sampling a
posteriori from ESC models.
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