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Abstract

Given a connected graph G = (V, E) and a length function ¢ : E — R we let d,,, denote the shortest
distance between vertex v and vertex w. A t-spanner is a subset £’ C E such that if d;, ,, denotes shortest
distances in the subgraph G’ = (V, E') then d,, ,, < td,,, for all v,w € V. We study the size of spanners in
the following scenario: we consider a random embedding &, of G, into the unit square with Euclidean
edge lengths. For e > 0 constant, we prove the existence w.h.p. of (1 + €)-spanners for X}, that have
Oc(n) edges. These spanners can be constructed in O.(n?logn) time. (We will use O, to indicate that
the hidden constant depends on ¢.) There are constraints on p preventing it going to zero too quickly.
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1 Introduction

Given a connected graph G = (V, E) and a length function ¢ : E — R we let d,,, denote the shortest distance
between vertex v and vertex w. A t-spanner is a subset £’ C E such that if d;, ,, denotes shortest distances
in the subgraph G’ = (V, E) then d, , < td,,, for all v,w € V. We say that the stretch of £’ is at most t.
In general, the closer t is to one, the larger we need E’ to be relative to E. Spanners have theoretical and
practical applications in various network design problems. For a recent survey on this topic see Ahmed et al
[1]. Work in this area has in the main been restricted to the analysis of the worst-case properties of spanners.
In this note, we assume that edge lengths are random variables and do a probabilistic analysis.

We consider the case where ¢; ; = | X; — Xj|, where X = {X;, X5, ..., X,,} are n randomly chosen points from
[0, 1]%. The case where the n points are arbitrarily chosen is the subject of the book [10] by Narasimham and
Smid. Section 15.1.2 of this book considers the random model where all (Z) edges between points are available.
We denote this mode by X;. In this paper we consider a model where only a specified subgraph of the possible
edges are available. In particular, we assume that edges exist between the points in X', independently with
probability p. We denote this model by &),. It constitutes a random embedding of the random graph G, ,
into [0, 1]2. In the open problem session of CCCG 2009 [11], O’Rourke asked the following question: for what
values of p is it true that w.h.p. A}, is a t-spanner for X;, where ¢ = O(1). Mehrabian and Wormald [7]
showed that there is no choice of p with this property. Frieze and Pegden [3] proved a related negative result
and also considered the increase in the shortest path length when going from &) to X,
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Now d;; = |X; — X;| when {i,j} € A}, implies that with probability one, a 1-spanner contains all ~ (g)p
edges. We prove the following: We write O »(+) if the hidden constant in the big O notation depends on ¢, 6.
At the moment, in some places, these constants can grow rather fast, for example the dependence on ¢ is only
bounded by e=©(/2),

Theorem 1. Suppose that the edges of X, are given their Euclidean length. Let €,0 > 0 be arbitrary fized
constants. We describe the construction of a (1 + €)-spanner E. for X,.

(a) If np't? — oo then E(|E.|) = O o(p~n).

(b) ]fm = o(log'?n) then |E.| < E(|E.|) + O(n) w.h.p.

The definition of E. is given below in (7). On the other hand,

Theorem 2. Suppose that the edges of X, are given their Euclidean length. Let € > 0 be an arbitrary fized
constant. If np? — oo then w.h.p. any (1 + ¢)-spanner for X, requires Q(e~Y/?n) edges.

Remark 1. We stress that we describe a (1 + €)-spanner for X, and not for Xy. The results of [7] and [3]
rule out O(1)-spanners for X that only use edges of X,. This is because there will w.h.p. be pairs of points
that are close together in Fuclidean distance, but relatively far apart in X,.

Remark 2. We have assumed in Theorem |1| that np'*® — oo. If we were to allow np'*t® = o(1) then we
would find that np= > n?p and so the claimed size of our spanner is more than the likely number of edges in

4,

D

Remark 3. The constant 6 is an artifact of our proof and we conjecture that it can be removed so that w.h.p.
there is a (1 + €)-spanner of size O.(n).

We note that when points are placed arbitrarily and all pairs of points are connected by an edge then the
so-called ©-graph (defined below) produces a (1 + ¢)-spanner with O(n/ec) edges. See Theorem 4.1.5 of [10].

The argument we present for Theorem [I| can be easily adapted to deal with random geometric graphs Gy,
for sufficiently large radius r. Here we generate X as in Theorem [l{and now we join two vertices/points X, Y
by an edge if [ X — Y| <r. See Penrose [12] for an early book on this model.

Theorem 3. Ifr? > lo% then w.h.p. there is a (1 + €)-spanner using O(ne2) edges.

We note finally that Frieze and Pegden [4] have also considered the case where edge lengths are independently
exponential mean one. The results there are much tighter.

2 Lower bound: the proof of Theorem

It is quite easy to prove the lower bound in Theorem 2], so we begin with this. Given an edge {4, B} € E(X,,)
we let ellipse(A, B) be the ellipse with foci A, B defined by |X — A| + |X — B] < (1 4+ ¢)r. The edge
{A, B} is lonely if its length is r and there is no X € X N ellipse(A, B) such that {4, X},{B, X} are
edges of &,. Any (1 + ¢)-spanner must contain all of the lonely edges. Now ellipse(A, B) has axes of size
a = (1+¢)r,b=(2c+2?)"?r and so its volume is ¢r? where 1) = 7(1 +¢)(2¢ +£2)"/2/4. By concentrating on
points that are at least 0.1 from the boundary D of D = [0, 1]?, we see that the expected number of lonely
edges is at least

0.8v2 2 ¥p
(0.64 — o(1)) (g)p/r_o (1—¢r?p)" - 2mrdr > 7;_1; /5_0<1 _s)ds > g_z (1)
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where we have used (1 —p)" = o(1).

Concentration around the mean follows will follow from the Chebyshev inequality. In preparation for this,
observe that if r > p. = (20logn/(npy))"/? then (1 — ypr?)" = o(n~'°) and so going back to the first integral
in we see that we can concentrate on lonely edges with r < p.. Next consider the event R that for each
A € X there are at most 1001~ logn X, neighbors B such that |A — B| < p.. For a given A, the number of
such close neighbors is distributed as a binomial with mean at most 20w ~!logn. So the Chernoff bounds
imply that R occurs with probability 1 — o(n™!%). So we let Z denote the number of lonely edges AB such
that |A — B| < p. and observe that E(Z) = Q(n/c'/?p).

Observe also that given an edge AB there are at most O(s~'log?n) edges CD for which ellipse(A, B) N
ellipse(C, D) # (), assuming the occurrence of R. Write AB ~ CD to denote a non-empty intersection of
ellipses. Thus, if £4 p is the event that AB is lonely, then

E(Z*|R)<> Y PLap|R)+>. > Plap.Lep|R)

AB CD~AB AB CDytAB
< O(E(Z)e og®n) + (1 + o(1))E(Z)* = (1 + o(1))E(Z)?.

The Chebyshev inequality implies that Z is concentrated around its mean. This completes the proof of the
lower bound in Theorem [

3 Upper bound: the proof of Theorem

Suppose that 0 < ¢ < 1. It is perhaps instructive to consider the case where p = 1 i.e. where K, is being
embedded. In this case there are known, simple algorithms for finding a (1 + ¢€)-spanner. For each A € X we
define 7 cones K,(i,A),0 < i < 7 with apex A and whose boundary rays make angles ic and (i + 1)e with
the horizontal. We then let Y (i, A) denote the closest point in Euclidean distance to A in K,(i, A) that is
adjacent to A in X,. We put Y (i, A) = L if there is no such Y and let d4 | = 0o. Also, define i = iy p by
B € K,(i, A). When p =1, the Yao graph [I3] consists of the edges (4,Y(i,A4)),0<i<T,Ae X.

Remark 4. It is known that the path P(A,B) = (Zy = A, Zv,...,Z,, = B), where Z;y1 = Y (iz, p, Z;) has
length at most (cose —sine)~ A — B| and so the Yao graph has stretch factor 1+ & + O(e?).

When p < 1, P(A, B) may not exist in &}, and we show below how to overcome this problem.

We should also mention the very similar ©-graph [9]. Here we replace Y (i, A) by the point in K (i, A) whose
projection onto the bisector of K(i, A) is closest to A. The O-graph also has a stretch factor of at most
(cose —sing) ™t

bt My 1/2 Kylogn 1/2
re = <np1f9) and R, = (W) . (2)
where My, is sufficiently large to justify some inequalities claimed below.
Let
E,={{A,B} e X,:|A—B|<r.}.
We have

n 9 My n
B(ED < () < 2% )

and then we can assert that




using the Chebyshev inequality. Here we can use the fact that the events of the form {|A — B| <r.} are
pair-wise independent.

Let
Ey,={(A,Y(i,A): Ae X,i € {0,1,...,7 — 1}} so that |Es| = O(n/e). (5)

The next two lemmas will discuss the case where A, B are sufficiently distant.
Lemma 4. If |A — B| > R. then with probability 1 — o(n™'°), |A —Y| <e|A — B|, where Y =Y (iap, A).
Proof. We have ,
P(JA—Y|>elA— B|) < (1 —en(eR.)?p/2)" ! < n~™Moe/3"
The 2 in the middle expression allows half the cone to be outside [0, 1]2. O

Lemma 5. If r > R. then with probability 1 — o(n™'%), dap < (1 + 4¢)|A — B].

Proof. Let X1, X5 be points on the line segment AB at distance |A — B|/3,2|A — B|/3 from A respectively.
Let B;,© = 1,2 be the ball of radius er centred at X;. Let A; be the set of X}, neighbors of A in X, and let
As be the set of X, neighbors of B in X,. &;,7 = 1,2 be the event that |A;| > 7r?np/10. Then the Chernoff

bounds imply that
]P)(gl A 52) >1-— 26—7rr2np/1000 —1— O(n—ﬂM975/1000p9)‘

Let & be the event that there is an X, edge between A; and Ay. Then
P(Es | EAE) > 1— (1 —p) ™70 — 1 _ O(n~Kd/100")

Finally note that if &,7 = 1,2,3 all occur then dsp < (1 + 4¢)|A — B|. (4 is trivial and avoids any
computation.) O

For A, B € A we let P4 p denote the shortest path between A, B in X, and we let d4 p denote the length of
Py p.

Let
B.={(A,B): dap>(1+¢)|B—Alandr=|A— B|>r.} (6)
and
Es= |J E(Pap)
(A,B)eB.
Let

C.={(A,B): dup<(1+¢)|B—Alandr=|A—B|€[r.,R] and |[A-Y| >¢|A— B|},
where Y =Y (iap, A). Let



Time: The construction of E. can obviously be done in polynomial time. The most time consuming parts
being solving the all pairs shortest path problems defined by FEs3, E;. We show below that these sets consist
of O.(n) edges in expectation. So the expected time to solve these O(n) single source problems via Dijkstra’s
algorithm is O.(n?logn), see Fredman and Tarjan [2].

For X, Y € X we let d: x,y denote the length of the path from X to Y constructed by the following procedure:
Given A, B € X where {A, B} ¢ E we construct a path A = Zy, 7, ..., Z; = B as follows: in the following,
Y}' = Y(Z, ZJ) for B € K(Z, Zj),j > 0.

CONSTRUCT:

D1 If {Z;, B} € E; then use Py, p to complete the path, otherwise,

D2 If |Z; — Y;| > €| Z; — B| then use Pz, p to complete the path, otherwise,
D3 If dy, g > (1 + 5¢)|Y; — B| then use Pz, p to complete the path, otherwise
D4 Z;1 Y.

Remark 5. We observe that Lemma |4 implies that with probability 1 — o(n™1°) we do not use Pz, B for
|Z; — B| > R.. Denote the corresponding event by U.

The next lemma is used to estimate the quality of the path built by cONSTRUCT. (We can obviously replace
8z by ¢ in order to get a (1 + £)-spanner.)

Lemma 6. CONSTRUCT produces a path of length at most (1 + Te)da .

Proof. Let A= Zy, Zy,..., 7, = B be the sequence defined by CONSTRUCT. If £k = 1 then CONSTRUCT uses
that path P4 p which has stretch one. Otherwise, let d; = |Z; — B| for 0 < j < k and observe that it is
a monotone decreasing sequence. Define Z;,; to the point on the segment Z;Z, such that |Z;,, — Zy| =
|Z;4+1 — Zi|. The assumption that |Z; — Z; 1| < €|Z; — Zy,| implies that £Z;,17,7Z ;11 < 7/2, and thus that
the ratio | 7,

d - d]—l—l
can be bounded by considering the case where £Z; 17,7 ;.1 = 7/2, as it is drawn in Figure .

(8)

. . dia d; . o .
We have in that case that sine = 77 Zi—7) giving dj —dji1 = (cose —sine)|Z; — Zj11].

So, if CONSTRUCT only uses D4 then the length L4 5 of the path constructed satisfies

| and cose =

k
Lap= Z! i+1 — Zj| < (cose —sine Z dj11) = (cose —sine)|A — B| < (cose — sine)dy p.
— =

Suppose that CONSTRUCT uses a path in D1,D2 or D3. If £ = 1 then CONSTRUCT uses a shortest path from
A to B in X,. Assume then that k > 2. It follows from the above argument that

E

-2

|Zjs1 — Zj| < (cose —sine)||A — Zy_1].

<.
Il
o

Now,
deth S ’Zk_g — Zk_1| + de,Q,B S €|Zk_2 — B| -+ (1 + 58)‘Zk_2 — Bl

So,

Lap < (cose —sine)||A— Zy_1| + (1 + 6¢)|Zx_o — B]
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(14 62)(|A — Zs ol + |Zyr — B)

<
< (1+6¢)(cose —sine)|A — B.

Zi1

Zjt

dj — djp djt1

Figure 1: Extreme case for ({8

We argue next that

Lemma 7. The edges of the paths Pz, B used in CONSTRUCT are contained in E; U E3 U Ey. Furthermore,
only edges of length at most R, contribute to Es, Ej.

Proof. First consider the path P = Pz, g used in D1. Because {Z;, B} € E,, we have that dz; B < re and so
all the edges of Pz, p are also in Ej.

Next consider the path P = Pz p used in D2. If dz, g > (1 +¢)|Z; — B| then E(P) C E3. Otherwise,
E(P) C E,.

Now consider the path P = Pz, g used in D3. If dz, p > (1 +¢)|Z; — B| then E(P) C E3. So assume that
dz; 8 < (1+¢€)|Z; — B|. If |Z; = Y;| > €|Z; — B| then E(P) C E4. So assume that |Z; —Y;| <¢|Z; — B|. At
this point we have

(1+5¢) [¥; = Bl < dv, 5 < |2, — Yj| +dz5 < (1+20)|Z, — B| < (1+22) (12, — Y| +|Y; — B)).

This implies that |Z; — Y| > 3¢|Y; — B|/(1 4 2¢). If |Y; — B| > |Z; — B|/2 then we have E(P) C E4. So
assume that |Y; — B| < |Z; — B|/2. But then |Z; -Y}| > |Z;,— B|—|Y; — B| > |Z;— B|/2, a contradiction. [

The next two lemmas bound the expected number of edges in the sets Fs, Ej.

3.1 E(|E3])
Lemma 8. E(|E3|) = Oy (ﬁ)

Proof. Fix a pair of points A, B € X and let r = |A — B| where 7. < r < R. (r., R. defined in (6))). Note
next that shortest paths are always induced paths. We let Lk, 4 p denote the set of induced paths from A
to B with k£ + 1 > 2 edges in &), of total length in [(1 + Ke)r, (1 4+ (K + 1)e)r].

We let Ly g ap = |Lrxrap|- Then we have

Bsl < > > kAP € Lipan}l (9)

A,BEX k,K=1



This is because if dap > (1 4 ¢)|A — B| then the shortest path from A to B has its length in Jg, =
(14 Ke)r, (1 + (K + 1)e)r], for some K > 1. Next define, for L > 1,

F(L,e) := (2Le + L?e*)Y/2,

Claim 1. There are constants A, ¢ such that for K > 1,

k
AF(K +1,8)(1+ (K + 1)e)r’np(1 — p)=D/2\" . 2
E(L A—Bl=7r)< ’ cF(K+1e)(IH(E+De)r*np (10
( K,k,A,BH | T) = ( k‘Q(KS(l —|—K€))1/4 € ( )
Proof of Claim : Let E4 (L) denote the ellipse with centre the midpoint of AB, foci at A, B so that
one axis is along the line through AB and the other is orthogonal to it. The axis lengths a,b being given
by a = (1 + Le)r and b = r((1 + Le)? — 1)V/2 = rF(L,¢). Thus E4 p(L) is the set of points whose sum of
distances to A, B is at most (1 + Le)r.
Given k points Py, ..., Py, the path P = (A = Py, Py, ..., Py, Pr11 = B) is of length at most (1 + (K + 1)e)r
only if all these points lie in E4 g(K + 1). Thus for all i the point P, lies in an ellipse with axes 2a,2b
centred at P;. Here we are using the fact that if a point x lies in an ellipse E then E is contained in a copy
of 2F centered at z. Indeed, suppose that (z;,;),7 = 1,2 are two points in the ellipse £ = {”g—; + z—z < 1}.

Then
2

(=1 g2x2)2+<y1 ;2y2>2§2<x%§x%>+2<y1+y2 _ Z(é %)<4 (11)

It follows that (z1,y;) is contained in a copy of 2F centered at (x2,ys).

So, the probability of the event that (A = Py, Py, ..., Py) is in E4 (K + 1) is at most [[;_, P(P;) where P
is the event that P,;; is in the ellipse congruent to 2E4 g(K + 1), centred at P;. So,

P((A= Py, Py,..., Py, B)isin Eyp(K +1)) < (72 F(K + 1,£)(1 + (K + 1)¢))kp. (12)

The final p factor is P({ Py, B} € E). Given Py, Pa, ..., Py the length of P is at most the sum Z; + -+ 4+ Zj
of independent random variables where Z; is the distance to the origin of a random point in an ellipse with
axes 2a,2b centred at the origin.

Lemma 9. (a) Z, is distributed as 2(U(a? cos?(2nV)+b%sin?(27V)))'/2 where U,V are independent uniform
[0, 1] random variables.

(b) Z, stochastically dominates (~/2UY?(Ke(1 + Ke))Y*r for some ¢ > 0.

Proof. (a) This follows from the fact that a point in F is of the form (a cos 276, bsin 276)u where 0 < u, 6 < 1.
(b) We have

P(Zy<2)=P (U = 4(a? 0082(27TV) + b2 Sin2(2ﬁv)))
= E (min {1, 12%(a® cos®(27V) + b*sin*(27V)) ' })

72
<min{1,E .
= { ’ (a2 cos?(2mV') + b2 sin2(27ﬂ/)> }

Now

E 1 _2/“/2 dz _2/“/2 dz
a2 cos2(2nV) 4+ 02sin?(27V) ) 7 J._o a?cos?(z) + b2sin®(z) 7 J._o a2sin®(z) + b2 cos?(2)



2 /“/2 dz
7)o (a? —b?)sin?(2) + b2

4 [1/? dz 1
< = —
<2 [, wmereto(@)

4 1/2 dz L0 1
o2 g 22+ 2Ke + K262 (1+(K+1)e)2r2)

4 arctan <—2(2K8+}(252)1/2> 0 1
T a? (ke keez ((1 g 1)5)27“2) '

So
(x?

P(Z, <x) < (Ke(1 + Ke))i /%2

for some ¢ > 0.
This implies that Z; dominates (~Y/2U2(Ke(1 + Ke))Y4r. O

Lemma 9 of Frieze and Tkocz [5] implies that if Uy, Us, ..., Uy are independent copies of U'/? then

P(U1/2+U1/2+~-+U1/2 <u) < (2u)?*
! 2 Beo= = 2k
Putting u = W, we see that
a(l+ (K +1)e)\* 2 a(l+ (K +1)e)\" e
P(Zi+Zy+ -+ 72, < (1+(K+1 < < (1

Thus, given k random points P, ..., P, the probability that A, P;,..., P, is an induced path of length
< (14 (K + 1)e)r is at most

AF(K + 1,6)(1 + (K + De)r’np(1 — p) =02\ "
( k?(Ke(l+ Ke))l/4 > :

To get the exponential term in (10]), we need to also make make use of the fact that da g > (1 +cK)r.
Case 1: Ke < 1: Let v = [1+671]. We define v rhombi, R;,i = 1,2,...,~. We partition AB into
segments Ly, Lo, ..., L, of length r/v. The rhombus R; has one diagonal L; and another diagonal of length
h = ((K 4 1)¢)"/?r /10~ that is orthogonal to AB and bisects it. Finally let R; = R; N [0,1]?. Note that R;
has area at least 1/2 of the area of R;. Thus if K > 1 then since Ke < 1,

(K + 1)e)/?r? a

a> o= area(ﬁi) > 20, > 100 (14)

where

F(K+1,e)(1+ (K + 1)8)7”2'
g

o =

For a pair of points A, B and set X C X, let dj (X) denote the minimum length of a path
Q=(A,51,5,...,59,B) in X, where S; € R}\X Here X will stand for P;, P, ..., Py in the analysis below.
Furthermore we can restrict our attention to |X| = k = o(n), as shown in below. We first wish to show
that

Q) < (14 Ke)r for all choices of Sy, 5, ..., S,. (15)
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Now fix 7 and consider the function f(S) = ¢(A, S, 52, ..., Si-1, S, Sit1, . -.,, 5y, B). This is a convex function
of S and so it is maximised at an extreme point of R; \ X. Thus to verify , it is enough to check paths
that only use the vertices of the rhombi. We claim that

0Q) <~ <4h2 + %)1/2 r<ry <2h + %) <1+ (K+1e)r (16)

1/2
where we have used Ke < 1 for the last inequality. Equation follows from the fact that <4h2 + 7%) r

maximises the distance between points in adjacent rhombi.

Let Z denote the number of paths @) such that all edges exist in X,. We use Janson’s inequality [6] to bound
the probability that Z = 0. We have, with v =n — | X| =n — o(n),

o

EZ)=viv—-1)---(v—v+ 1)p7+1H04i > <%)7§

Then for a pair of paths @, Q' let p(Q,Q’),c(Q, Q’), denote the number of vertices and edges the @, Q" have
in common. (Exclude A, B from this count.) We write @ ~ @’ to mean that p(Q, Q") > 0. Then,

A = Z P(Q,Ql> < 927 Z (an)wapp?)%Qfo < 22'y+1(an>2'yflp2ﬂy+1. (17>
Q~Q’ 1<o<y+1
o<p<20

Explanation for ((17) Because r > r., we have anp > 1. Thus the sum in is dominated by the term
p =0 = 1 where @, Q' only share an edge incident to A or B. The factor 2% accounts for the places on Q, Q’
that share a common vertex.

It follows that if K > 1 then

\ E(Z)?
prie=P(dyp > 1+ Ke)r [|[A=Bl=rP,...,P) <exp oA <

1,e)(1 1)e)r? 1,e)(1 1
exp CF(E+1,e)(1+ (K +1)e)rnp < exp My F(K+1,6)(1+ (K +1)e)
22fy+4104'yfy 227+410477p9

Case 2: Ke > 1: Let R be the rectangle with center the midpoint of AB and one side of length (1 +
(K +1)e/10)r parallel to AB and the other of side Ke/10 orthogonal to AB. We partition R into rectangles
Wi, Wa, ..., W, where each W; has side lengths (14 (K +1)e/10)r /v and Ke/10. Putting W, = W;n[0,1]%,i =
1,2,...,v we see that all we need do now is to prove the equivalent of and . Then,

— (K+1)e\ Ke , _ F(K+1,e)(14+ (K + 1)) ,
V> (1 > .
area(IVi) 2 ( LTI T 1000 "

We have used Ke > 1 to justify the second inequality.
We further have that for all S; € :S'\i,i =1,2,...,v that, using the triangle inequality,

(K+1e\ r Ke 4K+1e\r
A B) < 1+——) - — ] - 1+ (K+1 .
((A,Sy,....5,, )_7( + 5 7+7 0T 1 7<( + (K + 1)e)r

Thus, the probability py k. defined above satisfies

_ k
PrKe < (AF(K +1,e)(1+ (K +1De)r’np(l — p)* 1)/2) o~ P (K+1.6)(1+(K +1)e)r?np
,nN,e = ]{:2 Y



and the claim follows by linearity of expectation.
End of proof of Claim

It will be convenient to replace r by

E(|£s])

SR (AF(K 4 1,8)(1+ (K + 1)2)r2np(1 — p)k-0/2\ "
( ) Z 2. k( R(Ke(1+ Ke))/A )

iz and write J, = [, £52) and let puin = r<(np)'/2. Then,

x e e FERLAHEIN P A — Bl € J,)

L (APU +1,6)1+ (K + 1)e)rnp(1 — p)=D/2\F
( 12(Ke(1+ Ke))l/a )

% e—cF(K—f—l,e)(1+(K+1)€)T2"P (M)
n

n—2 00 koo
AF(K +1, 5)1—|—(K+1)5)( — p)— 1/) e p -
< 27m2k2< Z e CF(E+1,e)(1+(K+1)e)p p2 +1
k=1 K=1 k2(Ke(l + Ke))'/t P=Pmin
n—2 0o k
AF(K+15)1+(K+1)5)( p)(kl/) ik X« i
< 27T7LZ]€Z< / e~ CF(E+Le)(A+(K+1)e)s ok 1o
k=1 K=1 k2 (Ke(l+ Ke))'/H s=0
s Sk S (AU +LELE (K + De1 = p) 072y ! L
= ’]T |
k=1 K=1 k2 (Ke(1+ Ke))'/ cF(K+1,e)(1+ (K + 1))
n—2 k oo
A(l k 1)/2 1 1
<2 k 1
= = ) 2 ( FIK+1,e)(1+ (K + 1>e>) (K(1+ Ke)/ (18)
= O.(n)
O
3.2 E(E|

Lemma 10. The expected number of (k + 1)-edge induced paths of length at most (1 + e)r from A to B in
X, can be bounded by

el e)3e2\F ko
(mer]O(l—P)(k ppeldteye ng) > (1 — wer?p)" = =2p. (19)

Proof. Let p, denote the probability that &k fixed points X7y, ..., X} satisfy that:
e A= Xy, X1,..., X} is an induced path
e Foralli=1,...,k, X; lies in a copy of the ellipse 2 - E4 p, translated to be centered at X;_;, and
e The total length of the path has total length at most (1 + ¢)r.
o {X;,B} €A,

From the discussion immediately prior to , we see that p, bounds the probability that the the path has
total length at most (1 + €)r. So we have that

_ e2(1+)2\*
oe < (2me(1 + 5)r2p)k(1 — p)k(k /2 (%) .
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Thus, by linearity of expectation, the number of induced paths A = Xo, ..., X} such that
e the total length of the path is at most (1 + ¢)r, and
e 1no point off the path lies within distance er of A in the cone K (i, A)

is at most

2(1 2\ k
nk(27r5(1 + S)T’Qp)k(l B p)k(k—l)/2 (%) (1 _ 7r83r2p)n—k—2p _

_ k
nar?p(l — p) 12 e(1 + ¢)%e? (1 — medr2p)"—h=2p <
1 —7edr?p 2k? p=

1 3.2\ k
<n7rr2p(1 —p)(k_l)/2—€( +e)e ) (1 — we3r?p) = 2.

3k?
[
Lemma 11. E(|Ey|) = O.(n).
Proof. We have
R o 3,2\ F
< (n _neell+e)’e .
E(|E4]) < 27r/ <2>p2k <n7r7’2p(1 —p)tk 1)/2(372)) (1 — wedr?p)" ™ 2rdr (20)
T=re k=1
oo Re 2 o\ (E=1)/2\ F
1 2
<o (Z)pz /{2/ (@7757" np( - p) ) oI DL
k=1 T=Te
00 k
n © lee(l —p)k=D/2s\"
where A = wer?np = My .p~’. Now,
9] k —AA
I, :/ Aske_szkr!z <o, k<A (22)
5= £=0 ’

(Use I = kAF¥~le=4 + kI, to obtain the equation.)
Using in we get, for small € and ko = 10log, 1/ where b =1/(1 — p),

ko

© (el=pIrNE
S [” (g ds< e z “

k=1

Mo,
Akgexp {~Myp™ + (Mpep™*)"*} < exp {— 20 }  (23)

where we have used (eC'/z2)* < 27" for C' > 0.

Finally,
p)*=1/2g k 2eeds >
—s —(1—¢)s —A/2
S oL () cus [ 3 () ws [oeser e
k=ko+1 —ko+
Substituting (23)), into we see that E(|Ey]) = O (&). O

We have argued that CONSTRUCT builds a (1 + €)-spanner w.h.p. The set of edges in this spanner is that of
U?:o E;. Part (a) of Theorem (1| now follows from (), (]), Lemma [8 and Lemma .

11



3.3 Concentration of measure

Theorem (1| claims a high probability result. We apply McDiarmid’s inequality [8] to prove that |Es|, |Ey4| are
within range w.h.p. We do not seem to be able to apply the inequality directly and so a little preparation is
necessary. We first let m = [1/R.] and divide [0,1]? into a grid of m? subsquares C = (Cy,Cs, ..., C,,2) of
size 1/m > R.. The Chernoff bounds imply that with probability 1 — o(n~'°) each C' € C contains at most
po = 2nR? randomly chosen points of X'. Suppose that we generate the points one by one and color a point
blue if it is one of the first py points in its subsquare. Otherwise, color it red. Let B be the event that all
points of X are blue and we note that

P(B) =1—o(n™ ™). (25)
Let 1o
= 100 l(;g n' (26)

The significance of x; is that the factors (1 — p)**~1/2 in equations and imply that

with probability 1 — o(n~?), no path contributing to Es or £, has more than x; edges. (27)

We let Z3 denote the number of edges e = { A, B} that satisfy

(i) A, B are blue.
(ii) re <|A—B| <2R. and |Y (iap, A) — A| > ¢|A — BJ..
(iii) e is on an induced path in A&, that has length at least (1 + ¢)|A — B| and at most x; edges, each of
length at most R..

Similarly, let Z, denote the number of edges e = {A, B} that satisfy

(i) A, B are blue.
(ii) r. <|A— B| <2R..

(iii) e is on an induced path in X, that has length at most (1 4+ ¢)|A — B| and at most ; edges, each of
length at most R..

Let Z/,i = 3,4 be defined as for Z;, without (i). Note that Lemma’s [§ and [L1] estimate | E;| through |E;| < Z!
and showing E(Z]) = O(n). Furthermore, Z; = Z/,i = 3,4 if U, B (see Remark |5) occur and these two events
occur with probability 1 — o(n~!%). Thus we have for i = 3, 4,

|Ei| < Zi, whp.

and
E(Z) <E(Z | BONU)P(BNU) +n*P(=BV -U) <E(Z)) +n*P(=BV -U) = O(n).

We will therefore bound the probability that either Z3 or Z, exceeds its mean by n. We let W = Z3+ Z4. To
apply McDiarmid’s Inequality we have to establish a Liptschitz bound for W. Our probability space consists
of X;’lel- X Xoj~c, Sk where €); is a set of at most py random points in subsquare C; together with a list of
all of the edges inside C;. We say that C; ~ Cj, if there boundaries share a common point. Thus for a fixed
C; there are usually 8 subsquares Cj, such that C; ~ Cj. The set (), determines the edges between points
in C; and Cj. It can be represented by a py X po {0, 1}-matrix in which each entry appears independently
with probability p. All in all there are n'~°(") components of this probability space.

12



A point X € X is in at most vy = (9pp)™ = n°Y of the paths counted by W. So, changing an ©; or an €2
can only change W by at most v; = 2pgrpr; = n°) and so the random variable W is v;-Liptschitz.. It then
follows from McDiarmid’s inequality that

2
P(W >E(W)+n) <exp {_n—} — e,

2n1—o)y2

This completes the proof of Theorem [T}

4 Proof of Theorem [3

For this we only have to observe that w.h.p. K (X, 1) exists for all X, 4. This follows from the Chernoff bounds
and the fact that the expected number of vertices in K (X,%) grows faster than logn. We can therefore use
Lemma [0] to prove the existence of the required spanner.

5 Summary and open questions

There is a significant gap between the upper and lower bounds of Theorems [I] and 2} in their dependence on
g, p. Closing this gap is our greatest interest.

We have considered a Euclidean version, asking for a (1 + ¢)-spanner and random geometric graphs. We
could probably extend the results of Theorems , to [0,1]¢,d > 3. This does not seem difficiult. There is
a slight problem in that the cones K (i, X) intersect in sets of positive volume. The intersection volumes are
relatively small and so the problems should be minor. We do not claim to have done this.

References

[1] R. Ahmed, G. Bodwin, F. Sahneh, K. Hamm, M. Javad, S. Kobourov and R. Spence, Graph Spanners:
A Tutorial Review.

[2] M. Fredman and R. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms,
25th Annual Symposium on Foundations of Computer Science. IEEE (1984) 338-346.

[3] A.M. Frieze and W. Pegden, Travelling in randomly embedded random graphs, Random Structures and
Algorithms 55 (2019) 649-676

[4] A.M. Frieze and W. Pegden, Spanners in randomly weighted graphs: independent edge lengths.
[5] A.M. Frieze and T. Tkocz, Shortest paths with a cost constraint: a probabilistic analysis.

[6] S. Janson, Poisson approximation for large deviations, Random Structures and Algorithms 1 (1990) 221-
230.

[7] A.Mehrabian and N. Wormald, On the Stretch Factor of Randomly Embedded Random Graphs, Discrete
& Computational Geometry 49 (2013) 647-658.

[8] C. McDiarmid, On the method of bounded differences, Surveys in combinatorics 141 (1989) 148-188.

[9] G. Narasimhan and Smid, Approximating the stretch of Euclidean graphs, SIAM Journal on Computing
30 (2000) 978-989.

13


https://arxiv.org/pdf/1909.03152.pdf
https://arxiv.org/pdf/1909.03152.pdf
https://arxiv.org/pdf/2105.01718.pdf
https://arxiv.org/pdf/2005.12241.pdf

[10] G. Narasimhan and Smid, Geometric Spanner Networks, Cambridge University Press, 2007.

[11] E. D. Demaine and J. O’'Rourke, Open Problems from CCCG 2009, In Proceedings of the 22nd Canadian
Conference on Computational Geometry (CCCG 2010), 83-86.

[12] M. Penrose, Random Geometric Graphs, Oxford University Press, 2003.

[13] A.C. Yao, On constructing minimum spanning trees in k-dimensional spaces and related problems, SIAM
Journal on Computing 11 (1982) 721-736.

14



	Introduction
	Lower bound: the proof of Theorem 2
	Upper bound: the proof of Theorem 1
	E(|E3|)
	E(|E4|)
	Concentration of measure

	Proof of Theorem 3
	Summary and open questions

