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Abstract

Given a connected graph G = (V,E) and a length function ℓ : E → R we let dv,w denote the shortest
distance between vertex v and vertex w. A t-spanner is a subset E′ ⊆ E such that if d′v,w denotes shortest
distances in the subgraph G′ = (V,E′) then d′v,w ≤ tdv,w for all v, w ∈ V . We study the size of spanners in
the following scenario: we consider a random embedding Xp of Gn,p into the unit square with Euclidean
edge lengths. For ϵ > 0 constant, we prove the existence w.h.p. of (1 + ϵ)-spanners for Xp that have
Oϵ(n) edges. These spanners can be constructed in Oϵ(n

2 log n) time. (We will use Oϵ to indicate that
the hidden constant depends on ε.) There are constraints on p preventing it going to zero too quickly.
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1 Introduction

Given a connected graph G = (V,E) and a length function ℓ : E → R we let dv,w denote the shortest distance
between vertex v and vertex w. A t-spanner is a subset E ′ ⊆ E such that if d′v,w denotes shortest distances
in the subgraph G′ = (V,E ′) then d′v,w ≤ tdv,w for all v, w ∈ V . We say that the stretch of E ′ is at most t.
In general, the closer t is to one, the larger we need E ′ to be relative to E. Spanners have theoretical and
practical applications in various network design problems. For a recent survey on this topic see Ahmed et al
[1]. Work in this area has in the main been restricted to the analysis of the worst-case properties of spanners.
In this note, we assume that edge lengths are random variables and do a probabilistic analysis.

We consider the case where ℓi,j = |Xi−Xj|, where X = {X1, X2, . . . , Xn} are n randomly chosen points from
[0, 1]2. The case where the n points are arbitrarily chosen is the subject of the book [10] by Narasimham and
Smid. Section 15.1.2 of this book considers the random model where all

(︁
n
2

)︁
edges between points are available.

We denote this mode by X1. In this paper we consider a model where only a specified subgraph of the possible
edges are available. In particular, we assume that edges exist between the points in X , independently with
probability p. We denote this model by Xp. It constitutes a random embedding of the random graph Gn,p

into [0, 1]2. In the open problem session of CCCG 2009 [11], O’Rourke asked the following question: for what
values of p is it true that w.h.p. Xp is a t-spanner for X1, where t = O(1). Mehrabian and Wormald [7]
showed that there is no choice of p with this property. Frieze and Pegden [3] proved a related negative result
and also considered the increase in the shortest path length when going from X1 to Xp,
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Now di,j = |Xi − Xj| when {i, j} ∈ Xp implies that with probability one, a 1-spanner contains all ≈
(︁
n
2

)︁
p

edges. We prove the following: We write Oε,θ(·) if the hidden constant in the big O notation depends on ε, θ.
At the moment, in some places, these constants can grow rather fast, for example the dependence on ε is only
bounded by ε−O(1/ε).

Theorem 1. Suppose that the edges of Xp are given their Euclidean length. Let ε, θ > 0 be arbitrary fixed
constants. We describe the construction of a (1 + ε)-spanner Eε for Xp.

(a) If np1+θ →∞ then E(|Eε|) = Oε,θ(p
−θn).

(b) If 1
p log 1/p

= o(log1/2 n) then |Eε| ≤ E(|Eε|) +O(n) w.h.p.

The definition of Eε is given below in (7). On the other hand,

Theorem 2. Suppose that the edges of Xp are given their Euclidean length. Let ε > 0 be an arbitrary fixed
constant. If np2 →∞ then w.h.p. any (1 + ε)-spanner for Xp requires Ω(ε−1/2n) edges.

Remark 1. We stress that we describe a (1 + ε)-spanner for Xp and not for X1. The results of [7] and [3]
rule out O(1)-spanners for X1 that only use edges of Xp. This is because there will w.h.p. be pairs of points
that are close together in Euclidean distance, but relatively far apart in Xp.

Remark 2. We have assumed in Theorem 1 that np1+θ → ∞. If we were to allow np1+θ = o(1) then we
would find that np−θ ≫ n2p and so the claimed size of our spanner is more than the likely number of edges in
Xp.

Remark 3. The constant θ is an artifact of our proof and we conjecture that it can be removed so that w.h.p.
there is a (1 + ε)-spanner of size Oε(n).

We note that when points are placed arbitrarily and all pairs of points are connected by an edge then the
so-called Θ-graph (defined below) produces a (1 + ε)-spanner with O(n/ε) edges. See Theorem 4.1.5 of [10].

The argument we present for Theorem 1 can be easily adapted to deal with random geometric graphs GX ,r
for sufficiently large radius r. Here we generate X as in Theorem 1 and now we join two vertices/points X, Y
by an edge if |X − Y | ≤ r. See Penrose [12] for an early book on this model.

Theorem 3. If r2 ≫ logn
n

then w.h.p. there is a (1 + ε)-spanner using O(nε−2) edges.

We note finally that Frieze and Pegden [4] have also considered the case where edge lengths are independently
exponential mean one. The results there are much tighter.

2 Lower bound: the proof of Theorem 2

It is quite easy to prove the lower bound in Theorem 2., so we begin with this. Given an edge {A,B} ∈ E(Xp)
we let ellipse(A,B) be the ellipse with foci A,B defined by |X − A| + |X − B| ≤ (1 + ε)r. The edge
{A,B} is lonely if its length is r and there is no X ∈ X ∩ ellipse(A,B) such that {A,X} , {B,X} are
edges of Xp. Any (1 + ε)-spanner must contain all of the lonely edges. Now ellipse(A,B) has axes of size
a = (1+ ε)r, b = (2ε+ ε2)1/2r and so its volume is ψr2 where ψ = π(1+ ε)(2ε+ ε2)1/2/4. By concentrating on
points that are at least 0.1 from the boundary ∂D of D = [0, 1]2, we see that the expected number of lonely
edges is at least

(0.64− o(1))
(︃
n

2

)︃
p

∫︂ 0.8
√
2

r=0

(︁
1− ψr2p

)︁n · 2πrdr ≥ n2π

2ψ

∫︂ ψp

s=0

(1− s)nds ≥ nπ

3ψ
, (1)
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where we have used (1− p)n = o(1).

Concentration around the mean follows will follow from the Chebyshev inequality. In preparation for this,
observe that if r ≥ ρε = (20 log n/(npψ))1/2 then (1− ψpr2)n = o(n−10) and so going back to the first integral
in (1) we see that we can concentrate on lonely edges with r ≤ ρε. Next consider the event R that for each
A ∈ X there are at most 100ψ−1 log n Xp neighbors B such that |A−B| ≤ ρε. For a given A, the number of
such close neighbors is distributed as a binomial with mean at most 20πψ−1 log n. So the Chernoff bounds
imply that R occurs with probability 1 − o(n−10). So we let Z denote the number of lonely edges AB such
that |A−B| ≤ ρε and observe that E(Z) = Ω(n/ε1/2p).

Observe also that given an edge AB there are at most O(ε−1 log2 n) edges CD for which ellipse(A,B) ∩
ellipse(C,D) ̸= ∅, assuming the occurrence of R. Write AB ∼ CD to denote a non-empty intersection of
ellipses. Thus, if LA,B is the event that AB is lonely, then

E(Z2 | R) ≤
∑︂
AB

∑︂
CD∼AB

P(LA,B | R) +
∑︂
AB

∑︂
CD ̸∼AB

P(LA,B,LC,D | R)

≤ O(E(Z)ε−1 log2 n) + (1 + o(1))E(Z)2 = (1 + o(1))E(Z)2.

The Chebyshev inequality implies that Z is concentrated around its mean. This completes the proof of the
lower bound in Theorem 1.

3 Upper bound: the proof of Theorem 1

Suppose that 0 < ε ≪ 1. It is perhaps instructive to consider the case where p = 1 i.e. where Kn is being
embedded. In this case there are known, simple algorithms for finding a (1 + ε)-spanner. For each A ∈ X we
define τ cones Kp(i, A), 0 ≤ i < τ with apex A and whose boundary rays make angles iε and (i + 1)ε with
the horizontal. We then let Y (i, A) denote the closest point in Euclidean distance to A in Kp(i, A) that is
adjacent to A in Xp. We put Y (i, A) = ⊥ if there is no such Y and let dA,⊥ = ∞. Also, define i = iA,B by
B ∈ Kp(i, A). When p = 1, the Yao graph [13] consists of the edges (A, Y (i, A)), 0 ≤ i < τ, A ∈ X .

Remark 4. It is known that the path P (A,B) = (Z0 = A,Z1, . . . , Zm = B), where Zi+1 = Y (iZi,B, Zi) has
length at most (cos ε− sin ε)−1|A−B| and so the Yao graph has stretch factor 1 + ε+O(ε2).

When p < 1, P (A,B) may not exist in Xp and we show below how to overcome this problem.

We should also mention the very similar Θ-graph [9]. Here we replace Y (i, A) by the point in K(i, A) whose
projection onto the bisector of K(i, A) is closest to A. The Θ-graph also has a stretch factor of at most
(cos ε− sin ε)−1.

Let

rε =

(︃
Mθ,ε

np1+θ

)︃1/2

and Rε =

(︃
Kθ log n

np1+θ

)︃1/2

. (2)

where Mθ,ε is sufficiently large to justify some inequalities claimed below.

Let
E1 = {{A,B} ∈ Xp : |A−B| ≤ rε} .

We have

E(|E1|) ≤
(︃
n

2

)︃
πr2εp ≤

Mθ,εn

2pθ
(3)

and then we can assert that

|E1| ≤
Mθ,εn

pθ
w.h.p. (4)
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using the Chebyshev inequality. Here we can use the fact that the events of the form {|A−B| ≤ rε} are
pair-wise independent.

Let
E2 = {(A, Y (i, A)) : A ∈ X , i ∈ {0, 1, . . . , τ − 1}} so that |E2| = O(n/ε). (5)

The next two lemmas will discuss the case where A,B are sufficiently distant.

Lemma 4. If |A−B| ≥ Rε then with probability 1− o(n−10), |A− Y | ≤ ε|A−B|, where Y = Y (iA,B, A).

Proof. We have
P(|A− Y | > ε|A−B|) ≤ (1− επ(εRε)

2p/2)n−1 ≤ n−ε3πMθ,ε/3p
θ

.

The 2 in the middle expression allows half the cone to be outside [0, 1]2.

Lemma 5. If r ≥ Rε then with probability 1− o(n−10), dA,B ≤ (1 + 4ε)|A−B|.

Proof. Let X1, X2 be points on the line segment AB at distance |A− B|/3, 2|A− B|/3 from A respectively.
Let Bi, i = 1, 2 be the ball of radius εr centred at Xi. Let A1 be the set of Xp neighbors of A in X1 and let
A2 be the set of Xp neighbors of B in X2. Ei, i = 1, 2 be the event that |Ai| ≥ πr2np/10. Then the Chernoff
bounds imply that

P(E1 ∧ E2) ≥ 1− 2e−πr
2np/1000 = 1−O(n−πMθ,ε/1000p

θ

).

Let E3 be the event that there is an Xp edge between A1 and A2. Then

P(E3 | E1 ∧ E2) ≥ 1− (1− p)r
4n2p2/100 = 1−O(n−K2

θ,ε/100p
θ

).

Finally note that if Ei, i = 1, 2, 3 all occur then dA,B ≤ (1 + 4ε)|A − B|. (4 is trivial and avoids any
computation.)

For A,B ∈ A we let PA,B denote the shortest path between A,B in Xp and we let dA,B denote the length of
PA,B.

Let
Bε = {(A,B) : dA,B ≥ (1 + ε)|B − A| and r = |A−B| ≥ rε} (6)

and
E3 =

⋃︂
(A,B)∈Bε

E(PA,B).

Let
Cε = {(A,B) : dA,B ≤ (1 + ε)|B − A| and r = |A−B| ∈ [rε, Rε] and |A− Y | ≥ ε|A−B|} ,

where Y = Y (iA,B, A). Let

E4 =
⋃︂

(A,B)∈Cε

E(PA,B).

We show in Lemmas 8 and 11 that the expected sizes of the sets E3, E4 are Oε(n). Let

Eε =
4⋃︂
i=1

Ei. (7)
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Time: The construction of Eε can obviously be done in polynomial time. The most time consuming parts
being solving the all pairs shortest path problems defined by E3, E4. We show below that these sets consist
of Oε(n) edges in expectation. So the expected time to solve these O(n) single source problems via Dijkstra’s
algorithm is Oε(n

2 log n), see Fredman and Tarjan [2].

For X, Y ∈ X we let ˆ︁dX,Y denote the length of the path from X to Y constructed by the following procedure:
Given A,B ∈ X where {A,B} /∈ E we construct a path A = Z0, Z1, . . . , Zk = B as follows: in the following,
Yj = Y (i, Zj) for B ∈ K(i, Zj), j ≥ 0.

Construct:

D1 If {Zj, B} ∈ E1 then use PZj ,B to complete the path, otherwise,

D2 If |Zj − Yj| > ε|Zj −B| then use PZj ,B to complete the path, otherwise,

D3 If dYj ,B ≥ (1 + 5ε)|Yj −B| then use PZj ,B to complete the path, otherwise

D4 Zj+1 ← Yj.

Remark 5. We observe that Lemma 4 implies that with probability 1 − o(n−10) we do not use PZj ,B for
|Zj −B| ≥ Rε. Denote the corresponding event by U .

The next lemma is used to estimate the quality of the path built by construct. (We can obviously replace
8ε by ε in order to get a (1 + ε)-spanner.)

Lemma 6. construct produces a path of length at most (1 + 7ε)dA,B.

Proof. Let A = Z0, Z1, . . . , Zk = B be the sequence defined by construct. If k = 1 then construct uses
that path PA,B which has stretch one. Otherwise, let dj = |Zj − B| for 0 ≤ j ≤ k and observe that it is
a monotone decreasing sequence. Define Z̄j+1 to the point on the segment ZjZk such that |Z̄j+1 − Zk| =
|Zj+1 − Zk|. The assumption that |Zj − Zj+1| ≤ ε|Zj − Zk| implies that ∠Zj+1ZkZ̄j+1 < π/2, and thus that
the ratio

|Zj+1 − Zj|
dj − dj+1

(8)

can be bounded by considering the case where ∠Zj+1ZkZ̄j+1 = π/2, as it is drawn in Figure 1.

We have in that case that sin ε =
dj+1

|Zj−Zj+1| and cos ε =
dj

|Zj−Zj+1| , giving dj − dj+1 = (cos ε− sin ε)|Zj − Zj+1|.
So, if construct only uses D4 then the length LA,B of the path constructed satisfies

LA,B =
k−1∑︂
j=0

|Zj+1 − Zj| ≤ (cos ε− sin ε)
k∑︂
j=1

(dj − dj+1) = (cos ε− sin ε)|A−B| ≤ (cos ε− sin ε)dA,B.

Suppose that construct uses a path in D1,D2 or D3. If k = 1 then construct uses a shortest path from
A to B in Xp. Assume then that k ≥ 2. It follows from the above argument that

k−2∑︂
j=0

|Zj+1 − Zj| ≤ (cos ε− sin ε)||A− Zk−1|.

Now,
dZk−1,B ≤ |Zk−2 − Zk−1|+ dZk−2,B ≤ ε|Zk−2 −B|+ (1 + 5ε)|Zk−2 −B|

So,

LA,B ≤ (cos ε− sin ε)||A− Zk−1|+ (1 + 6ε)|Zk−2 −B|
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≤ (1 + 6ε)(|A− Zk−2|+ |Zk−2 −B|)
≤ (1 + 6ε)(cos ε− sin ε)|A−B|.

Zj

Zj+1

Zk
Z̄j+1

ε

dj − dj+1 dj+1

Figure 1: Extreme case for (8)

We argue next that

Lemma 7. The edges of the paths PZj ,B used in construct are contained in E1 ∪ E3 ∪ E4. Furthermore,
only edges of length at most Rε contribute to E3, E4.

Proof. First consider the path P = PZj ,B used in D1. Because {Zj, B} ∈ E1, we have that dZj ,B ≤ rε and so
all the edges of PZj ,B are also in E1.

Next consider the path P = PZj ,B used in D2. If dZj ,B ≥ (1 + ε)|Zj − B| then E(P ) ⊆ E3. Otherwise,
E(P ) ⊆ E4.

Now consider the path P = PZj ,B used in D3. If dZj ,B ≥ (1 + ε)|Zj − B| then E(P ) ⊆ E3. So assume that
dZj ,B ≤ (1 + ε)|Zj −B|. If |Zj − Yj| ≥ ε|Zj −B| then E(P ) ⊆ E4. So assume that |Zj − Yj| ≤ ε|Zj −B|. At
this point we have

(1 + 5ε) |Yj −B| ≤ dYj ,B ≤ |Zj − Yj|+ dZj ,B ≤ (1 + 2ε)|Zj −B| ≤ (1 + 2ε) (|Zj − Yj|+ |Yj −B|).

This implies that |Zj − Yj| ≥ 3ε|Yj − B|/(1 + 2ε). If |Yj − B| ≥ |Zj − B|/2 then we have E(P ) ⊆ E4. So
assume that |Yj−B| < |Zj−B|/2. But then |Zj−Yj| ≥ |Zj−B|−|Yj−B| ≥ |Zj−B|/2, a contradiction.

The next two lemmas bound the expected number of edges in the sets E3, E4.

3.1 E(|E3|)

Lemma 8. E(|E3|) = Oθ,ε

(︂
n
pθ

)︂
.

Proof. Fix a pair of points A,B ∈ X and let r = |A − B| where rε ≤ r ≤ Rε (rε, Rε defined in (6)). Note
next that shortest paths are always induced paths. We let LK,k,A,B denote the set of induced paths from A
to B with k + 1 ≥ 2 edges in Xp, of total length in [(1 +Kε)r, (1 + (K + 1)ε)r].

We let LK,k,A,B = |LK,k,A,B|. Then we have

|E3| ≤
∑︂
A,B∈X

∞∑︂
k,K=1

k| {P ∈ LK,k,A,B} |. (9)
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This is because if dA,B ≥ (1 + ε)|A − B| then the shortest path from A to B has its length in JK,r =
[(1 +Kε)r, (1 + (K + 1)ε)r], for some K ≥ 1. Next define, for L ≥ 1,

F (L, ε) := (2Lε+ L2ε2)1/2.

Claim 1. There are constants Λ, c such that for K ≥ 1,

E (LK,k,A,B||A−B| = r) ≤
(︃
ΛF (K + 1, ε)(1 + (K + 1)ε)r2np(1− p)(k−1)/2

k2(Kε(1 +Kε))1/4

)︃k

e−cF (K+1,ε)(1+(K+1)ε)r2np. (10)

Proof of Claim 1: Let EA,B(L) denote the ellipse with centre the midpoint of AB, foci at A,B so that
one axis is along the line through AB and the other is orthogonal to it. The axis lengths a, b being given
by a = (1 + Lε)r and b = r((1 + Lε)2 − 1)1/2 = rF (L, ε). Thus EA,B(L) is the set of points whose sum of
distances to A,B is at most (1 + Lε)r.

Given k points P1, . . . , Pk, the path P = (A = P0, P1, . . . , Pk, Pk+1 = B) is of length at most (1 + (K + 1)ε)r
only if all these points lie in EA,B(K + 1). Thus for all i the point Pi+1 lies in an ellipse with axes 2a, 2b
centred at Pi. Here we are using the fact that if a point x lies in an ellipse E then E is contained in a copy

of 2E centered at x. Indeed, suppose that (xi, yi), i = 1, 2 are two points in the ellipse E =
{︂
x2

ξ2
+ y2

η2
≤ 1

}︂
.

Then
(x1 − x2)2

ξ2
+

(y1 − y2)2

η2
≤ 2(x21 + x22)

ξ2
+

2(y21 + y22)

η2
= 2

2∑︂
i=1

(︃
x2i
ξ2

+
y2i
η2

)︃
≤ 4. (11)

It follows that (x1, y1) is contained in a copy of 2E centered at (x2, y2).

So, the probability of the event that (A = P0, P1, . . . , Pk) is in EA,B(K + 1) is at most
∏︁k

i=1 P(Pi) where Pi
is the event that Pi+1 is in the ellipse congruent to 2EA,B(K + 1), centred at Pi. So,

P((A = P0, P1, . . . , Pk, B) is in EA,B(K + 1)) ≤ (πr2F (K + 1, ε)(1 + (K + 1)ε))kp. (12)

The final p factor is P({Pk, B} ∈ E). Given P1,P2, . . . ,Pk the length of P is at most the sum Z1 + · · ·+ Zk
of independent random variables where Zi is the distance to the origin of a random point in an ellipse with
axes 2a, 2b centred at the origin.

Lemma 9. (a) Z1 is distributed as 2(U(a2 cos2(2πV )+b2 sin2(2πV )))1/2 where U, V are independent uniform
[0, 1] random variables.

(b) Z1 stochastically dominates ζ−1/2U1/2(Kε(1 +Kε))1/4r for some ζ > 0.

Proof. (a) This follows from the fact that a point in E is of the form (a cos 2πθ, b sin 2πθ)u where 0 ≤ u, θ ≤ 1.

(b) We have

P(Z1 ≤ x) = P
(︃
U ≤ x2

4(a2 cos2(2πV ) + b2 sin2(2πV ))

)︃
= E

(︁
min

{︁
1, 1

4
x2(a2 cos2(2πV ) + b2 sin2(2πV ))−1

}︁)︁
≤ min

{︃
1,E

(︃
x2

a2 cos2(2πV ) + b2 sin2(2πV )

)︃}︃
.

Now

E
(︃

1

a2 cos2(2πV ) + b2 sin2(2πV )

)︃
=

2

π

∫︂ π/2

z=0

dz

a2 cos2(z) + b2 sin2(z)
=

2

π

∫︂ π/2

z=0

dz

a2 sin2(z) + b2 cos2(z)
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=
2

π

∫︂ π/2

z=0

dz

(a2 − b2) sin2(z) + b2

≤ 4

π

∫︂ 1/2

z=0

dz

(a2 − b2)z2 + b2
+O

(︃
1

a2

)︃
=

4

πr2

∫︂ 1/2

z=0

dz

z2 + 2Kε+K2ε2
+O

(︃
1

(1 + (K + 1)ε)2r2

)︃
.

=
4

πr2

arctan
(︂

1
2(2Kε+K2ε2)1/2

)︂
(2Kε+K2ε2)1/2

++O

(︃
1

(1 + (K + 1)ε)2r2

)︃
.

So

P(Z1 ≤ x) ≤ ζx2

(Kε(1 +Kε))1/2r2

for some ζ > 0.

This implies that Z1 dominates ζ−1/2U1/2(Kε(1 +Kε))1/4r.

Lemma 9 of Frieze and Tkocz [5] implies that if U1, U2, . . . , Uk are independent copies of U1/2 then

P(U1/2
1 + U

1/2
2 + · · ·+ U

1/2
k ≤ u) ≤ (2u)2k

(2k)!
.

Putting u = α1/2

(Kε(1+Kε))1/4r
, we see that

P(Z1 + Z2 + · · ·+ Zk ≤ (1 + (K + 1)ε)r) ≤
(︃
α(1 + (K + 1)ε)

(Kε(1 +Kε))1/4

)︃k
2k

(2k)!
≤

(︃
α(1 + (K + 1)ε)

(Kε(1 +Kε))1/4

)︃k
e2k

k2k2k
. (13)

Thus, given k random points P1, . . . , Pk, the probability that A,P1, . . . , Pk is an induced path of length
≤ (1 + (K + 1)ε)r is at most(︃

ΛF (K + 1, ε)(1 + (K + 1)ε)r2np(1− p)(k−1)/2

k2(Kε(1 +Kε))1/4

)︃k

.

To get the exponential term in (10), we need to also make make use of the fact that dA,B ≥ (1 + εK)r.

Case 1: Kε ≤ 1: Let γ = ⌈1 + θ−1⌉. We define γ rhombi, Ri, i = 1, 2, . . . , γ. We partition AB into γ
segments L1, L2, . . . , Lγ of length r/γ. The rhombus Ri has one diagonal Li and another diagonal of length

h = ((K + 1)ε)1/2r/10γ that is orthogonal to AB and bisects it. Finally let ˆ︁Ri = Ri ∩ [0, 1]2. Note that ˆ︁Ri

has area at least 1/2 of the area of Ri. Thus if K ≥ 1 then since Kε ≤ 1,

α ≥ αi = area( ˆ︁Ri) ≥
((K + 1)ε)1/2r2

20γ
≥ α

100
(14)

where

α =
F (K + 1, ε)(1 + (K + 1)ε)r2

γ
.

For a pair of points A,B and set X ⊆ X , let d∗A,B(X) denote the minimum length of a path

Q = (A, S1, S2, . . . , Sγ, B) in Xp where Si ∈ ˆ︁Ri \X. Here X will stand for P1, P2, . . . , Pk in the analysis below.
Furthermore we can restrict our attention to |X| = k = o(n), as shown in (26) below. We first wish to show
that

ℓ(Q) < (1 +Kε)r for all choices of S1, S2, . . . , Sγ. (15)
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Now fix i and consider the function f(S) = ℓ(A, S1, S2, . . . , Si−1, S, Si+1, . . . , , Sγ, B). This is a convex function

of S and so it is maximised at an extreme point of ˆ︁Ri \X. Thus to verify (15), it is enough to check paths
that only use the vertices of the rhombi. We claim that

ℓ(Q) ≤ γ

(︃
4h2 +

1

γ2

)︃1/2

r ≤ rγ

(︃
2h+

1

γ

)︃
≤ (1 + (K + 1)ε)r (16)

where we have used Kε ≤ 1 for the last inequality. Equation (16) follows from the fact that
(︂
4h2 + 1

γ2

)︂1/2

r

maximises the distance between points in adjacent rhombi.

Let Z denote the number of paths Q such that all edges exist in Xp. We use Janson’s inequality [6] to bound
the probability that Z = 0. We have, with ν = n− |X| = n− o(n),

E(Z) = ν(ν − 1) · · · (ν − γ + 1)pγ+1

γ∏︂
i=1

αi ≥
(︂αnp
100

)︂γ p
2
.

Then for a pair of paths Q,Q′ let ρ(Q,Q′), σ(Q,Q′), denote the number of vertices and edges the Q,Q′ have
in common. (Exclude A,B from this count.) We write Q ∼ Q′ to mean that ρ(Q,Q′) > 0. Then,

∆̄ =
∑︂
Q∼Q′

P(Q,Q′) ≤ 22γ
∑︂

1≤σ≤γ+1
σ≤ρ≤2σ

(αn)2γ−ρp2γ+2−σ ≤ 22γ+1(αn)2γ−1p2γ+1. (17)

Explanation for (17) Because r ≥ rε, we have αnp ≫ 1. Thus the sum in (17) is dominated by the term
ρ = σ = 1 where Q,Q′ only share an edge incident to A or B. The factor 22γ accounts for the places on Q,Q′

that share a common vertex.

It follows that if K ≥ 1 then

ρk,K,ε = P(d∗A,B ≥ (1 +Kε)r | |A−B| = r, P1, . . . , Pk) ≤ exp

{︃
−E(Z)2

2∆̄

}︃
≤

exp

{︃
−F (K + 1, ε)(1 + (K + 1)ε)r2np

22γ+4104γγ

}︃
≤ exp

{︃
−Mθ,εF (K + 1, ε)(1 + (K + 1)ε)

22γ+4104γγpθ

}︃
Case 2: Kε ≥ 1: Let R be the rectangle with center the midpoint of AB and one side of length (1 +
(K +1)ε/10)r parallel to AB and the other of side Kε/10 orthogonal to AB. We partition R into rectangles

W1,W2, . . . ,Wγ where eachWi has side lengths (1+(K+1)ε/10)r/γ andKε/10. Putting ˆ︂Wi = Wi∩[0, 1]2, i =
1, 2, . . . , γ we see that all we need do now is to prove the equivalent of (14) and (15). Then,

area(ˆ︂Wi) ≥
(︃
1 +

(K + 1)ε

10

)︃
Kε

20γ
r2 ≥ F (K + 1, ε)(1 + (K + 1)ε)

1000γ
r2.

We have used Kε ≥ 1 to justify the second inequality.

We further have that for all Si ∈ ˆ︁Si, i = 1, 2, . . . , γ that, using the triangle inequality,

ℓ(A, S1, . . . , Sγ, B) ≤ γ

(︃
1 +

(K + 1)ε

10

)︃
r

γ
+ γ

(︃
Kε

10
+

4(K + 1)ε

10

)︃
r

γ
< (1 + (K + 1)ε)r.

Thus, the probability ρk,K,ε defined above satisfies

ρk,K,ε ≤
(︃
ΛF (K + 1, ε)(1 + (K + 1)ε)r2np(1− p)(k−1)/2

k2

)︃k

e−cF (K+1,ε)(1+(K+1)ε)r2np,

9



and the claim follows by linearity of expectation.

End of proof of Claim 1

It will be convenient to replace r by ρ
(np)1/2

and write Jρ = [ ρ
n1/2 ,

ρ+1
n1/2 ] and let ρmin = rε(np)

1/2. Then,

E(|E3|)

≤
(︃
n

2

)︃ ∞∑︂
ρ=ρmin

∞∑︂
K=1

n−2∑︂
k=1

k

(︃
ΛF (K + 1, ε)(1 + (K + 1)ε)r2np(1− p)(k−1)/2

k2(Kε(1 +Kε))1/4

)︃k

× e−cF (K+1,ε)(1+(K+1)ε)r2npP(|A−B| ∈ Jρ)

≤
(︃
n

2

)︃
π

∞∑︂
ρ=ρmin

∞∑︂
K=1

n−2∑︂
k=1

k

(︃
ΛF (K + 1, ε)1 + (K + 1)ε)r2np(1− p)(k−1)/2

k2(Kε(1 +Kε))1/4

)︃k

× e−cF (K+1,ε)(1+(K+1)ε)r2np

(︃
2ρ+ 1

n

)︃
≤ 2πn

n−2∑︂
k=1

k
∞∑︂
K=1

(︃
ΛF (K + 1, ε)1 + (K + 1)ε)(1− p)(k−1)/2

k2(Kε(1 +Kε))1/4

)︃k ∞∑︂
ρ=ρmin

e−cF (K+1,ε)(1+(K+1)ε)ρ2ρ2k+1

≤ 2πn
n−2∑︂
k=1

k
∞∑︂
K=1

(︃
ΛF (K + 1, ε)1 + (K + 1)ε)(1− p)(k−1)/2

k2(Kε(1 +Kε))1/4

)︃k ∫︂ ∞

s=0

e−cF (K+1,ε)(1+(K+1)ε)sskds

= 2πn
n−2∑︂
k=1

k
∞∑︂
K=1

(︃
ΛF (K + 1, ε)1 + (K + 1)ε)(1− p)(k−1)/2

k2(Kε(1 +Kε))1/4

)︃k (︃
1

cF (K + 1, ε)(1 + (K + 1)ε)

)︃k+1

k!

≤ 2πn
n−2∑︂
k=1

k

(︃
Λ(1− p)(k−1)/2

kε1/4

)︃k ∞∑︂
K=1

(︃
1

cF (K + 1, ε)(1 + (K + 1)ε)

)︃
1

(K(1 +Kε))k/4
(18)

= Oε(n).

3.2 E(|E4|)

Lemma 10. The expected number of (k + 1)-edge induced paths of length at most (1 + ε)r from A to B in
Xp can be bounded by (︃

nπr2p(1− p)(k−1)/2 ε(1 + ε)3e2

2k2

)︃k

(1− πε3r2p)n−k−2p. (19)

Proof. Let ρk denote the probability that k fixed points X1, . . . , Xk satisfy that:

• A = X0, X1, . . . , Xk is an induced path

• For all i = 1, . . . , k, Xi lies in a copy of the ellipse 2 · EA,B, translated to be centered at Xi−1, and

• The total length of the path has total length at most (1 + ε)r.

• {Xk, B} ∈ Xp.

From the discussion immediately prior to (11), we see that ρk bounds the probability that the the path has
total length at most (1 + ε)r. So we have that

ρk ≤ (2πε(1 + ε)r2p)k(1− p)k(k−1)/2

(︃
e2(1 + ε)2

2k2

)︃k

p.
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Thus, by linearity of expectation, the number of induced paths A = X0, . . . , Xk such that

• the total length of the path is at most (1 + ε)r, and

• no point off the path lies within distance εr of A in the cone K(i, A)

is at most

nk(2πε(1 + ε)r2p)k(1− p)k(k−1)/2

(︃
e2(1 + ε)2

2k2

)︃k

(1− πε3r2p)n−k−2p =(︃
nπr2p(1− p)(k−1)/2

1− πε3r2p
ε(1 + ε)3e2

2k2

)︃k

(1− πε3r2p)n−k−2p ≤(︃
nπr2p(1− p)(k−1)/2 ε(1 + ε)3e2

3k2

)︃k

(1− πε3r2p)n−k−2p.

Lemma 11. E(|E4|) = Oε(n).

Proof. We have

E(|E4|) ≤ 2π

∫︂ Rε

r=rε

(︃
n

2

)︃
p

∞∑︂
k=1

k

(︃
nπr2p(1− p)(k−1)/2 ε(1 + ε)3e2

3k2

)︃k

(1− πε3r2p)n−k−2rdr (20)

≤ 2π

(︃
n

2

)︃
p

∞∑︂
k=1

k

∫︂ Rε

r=rε

(︃
eπεr2np(1− p)(k−1)/2

k2

)︃k

e−πε
3r2nprdr

≤ n

ε3

∞∑︂
k=1

k

∫︂ ∞

s=A

(︃
eε(1− p)(k−1)/2s

ε3k2

)︃k

e−sds, (21)

where A = πε2r2εnp =Mθ,εp
−θ. Now,

Ik =

∫︂ ∞

s=A

ske−s = k!
k∑︂
ℓ=0

e−AAℓ

ℓ!
≤ 2e−AAk, if k ≤ A/2. (22)

(Use Ik = kAk−1e−A + kIk−1 to obtain the equation.)

Using (22) in (21) we get, for small ε and k0 = 10 logb 1/ε where b = 1/(1− p),

k0∑︂
k=1

k

∫︂ ∞

s=A

(︃
e(1− p)(k−1)/2s

ε2k2

)︃k

e−sds ≤ e−A
k0∑︂
k=1

(︃
eA

ε2k2

)︃k

≤

Ak0 exp
{︁
−Mθ,εp

−θ + (Mθ,εp
−θ)1/2

}︁
≤ exp

{︃
−Mθ,ε

2pθ

}︃
, (23)

where we have used (eC/x2)x ≤ e2C
1/2

for C > 0.

Finally,

∞∑︂
k=k0+1

k

∫︂ ∞

s=A

(︃
e(1− p)(k−1)/2s

ε2k2

)︃k

e−sds ≤
∫︂ ∞

s=A

e−s
∞∑︂

k=k0+1

(︃
2eε3s

k2

)︃k

ds ≤
∫︂ ∞

s=A

e−(1−ε)sds ≤ e−A/2. (24)

Substituting (23), (24) into (21) we see that E(|E4|) = O
(︁
n
ε3

)︁
.

We have argued that construct builds a (1 + ε)-spanner w.h.p. The set of edges in this spanner is that of⋃︁4
i=0Ei. Part (a) of Theorem 1 now follows from (3), (5), Lemma 8 and Lemma 11.
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3.3 Concentration of measure

Theorem 1 claims a high probability result. We apply McDiarmid’s inequality [8] to prove that |E3|, |E4| are
within range w.h.p. We do not seem to be able to apply the inequality directly and so a little preparation is
necessary. We first let m = ⌊1/Rε⌋ and divide [0, 1]2 into a grid of m2 subsquares C = (C1, C2, . . . , Cm2) of
size 1/m ≥ Rε. The Chernoff bounds imply that with probability 1 − o(n−10) each C ∈ C contains at most
ρ0 = 2nR2

ε randomly chosen points of X . Suppose that we generate the points one by one and color a point
blue if it is one of the first ρ0 points in its subsquare. Otherwise, color it red. Let B be the event that all
points of X are blue and we note that

P(B) = 1− o(n−10). (25)

Let

κ1 =
100 log1/2 n

p
. (26)

The significance of κ1 is that the factors (1− p)k(k−1)/2 in equations (18) and (20) imply that

with probability 1− o(n−2), no path contributing to E3 or E4 has more than κ1 edges. (27)

We let Z3 denote the number of edges e = {A,B} that satisfy

(i) A,B are blue.

(ii) rε ≤ |A−B| ≤ 2Rε and |Y (iA,B, A)− A| ≥ ε|A−B|..

(iii) e is on an induced path in Xp that has length at least (1 + ε)|A − B| and at most κ1 edges, each of
length at most Rε.

Similarly, let Z4 denote the number of edges e = {A,B} that satisfy

(i) A,B are blue.

(ii) rε ≤ |A−B| ≤ 2Rε.

(iii) e is on an induced path in Xp that has length at most (1 + ε)|A − B| and at most κ1 edges, each of
length at most Rε.

Let Z ′
i, i = 3, 4 be defined as for Zi, without (i). Note that Lemma’s 8 and 11 estimate |Ei| through |Ei| ≤ Z ′

i

and showing E(Z ′
i) = O(n). Furthermore, Zi = Z ′

i, i = 3, 4 if U ,B (see Remark 5) occur and these two events
occur with probability 1− o(n−10). Thus we have for i = 3, 4,

|Ei| ≤ Zi, w.h.p.

and
E(Zi) ≤ E(Z ′

i | B ∩ U)P(B ∩ U) + n2P(¬B ∨ ¬U) ≤ E(Z ′
i) + n2P(¬B ∨ ¬U) = O(n).

We will therefore bound the probability that either Z3 or Z4 exceeds its mean by n. We let W = Z3+Z4. To
apply McDiarmid’s Inequality we have to establish a Liptschitz bound for W . Our probability space consists
of "m2

i=1Ωi × "Cj∼Ck
Ωj,k where Ωi is a set of at most ρ0 random points in subsquare Ci together with a list of

all of the edges inside Ci. We say that Cj ∼ Ck if there boundaries share a common point. Thus for a fixed
Cj there are usually 8 subsquares Ck such that Cj ∼ Ck. The set Ωj,k determines the edges between points
in Cj and Ck. It can be represented by a ρ0 × ρ0 {0, 1}-matrix in which each entry appears independently
with probability p. All in all there are n1−o(1) components of this probability space.
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A point X ∈ X is in at most ν0 = (9ρ0)
κ1 = no(1) of the paths counted by W . So, changing an Ωi or an Ωi,j

can only change W by at most ν1 = 2ρ0ν0κ1 = no(1) and so the random variable W is ν1-Liptschitz.. It then
follows from McDiarmid’s inequality that

P(W ≥ E(W ) + n) ≤ exp

{︃
− n2

2n1−o(1)ν21

}︃
= e−n

1−o(1)

.

This completes the proof of Theorem 1.

4 Proof of Theorem 3

For this we only have to observe that w.h.p. K(X, i) exists for all X, i. This follows from the Chernoff bounds
and the fact that the expected number of vertices in K(X, i) grows faster than log n. We can therefore use
Lemma 6 to prove the existence of the required spanner.

5 Summary and open questions

There is a significant gap between the upper and lower bounds of Theorems 1 and 2, in their dependence on
ε, p. Closing this gap is our greatest interest.

We have considered a Euclidean version, asking for a (1 + ε)-spanner and random geometric graphs. We
could probably extend the results of Theorems 1, 2,3 to [0, 1]d, d ≥ 3. This does not seem difficiult. There is
a slight problem in that the cones K(i,X) intersect in sets of positive volume. The intersection volumes are
relatively small and so the problems should be minor. We do not claim to have done this.
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