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Abstract

Record linkage is the task of combining records from multiple files which refer to
overlapping sets of entities when there is no unique identifying field. In streaming
record linkage, files arrive sequentially in time and estimates of links are updated
after the arrival of each file. This problem arises in settings such as longitudinal
surveys, electronic health records, and online events databases, among others. The
challenge in streaming record linkage is to efficiently update parameter estimates
as new data arrive. We approach the problem from a Bayesian perspective with
estimates calculated from posterior samples of parameters and present methods for
updating link estimates after the arrival of a new file that are faster than fitting a joint
model with each new data file. In this paper, we generalize a two-file Bayesian Fellegi-
Sunter model to the multi-file case and propose two methods to perform streaming
updates. We examine the effect of prior distribution on the resulting linkage accuracy
as well as the computational trade-offs between the methods when compared to a
Gibbs sampler through simulated and real-world survey panel data. We achieve near-
equivalent posterior inference at a small fraction of the compute time. Supplemental
materials for this article are available online.
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1 Introduction

Record linkage is the task of resolving duplicates in two or more overlapping sets of records,

or files, from multiple noisy data sources, often without the benefit of having a unique

identifier. For example, in a longitudinal survey setting it is possible to have multiple

responses from the same person with misspellings or other data errors. This type of error

is shown in Table 1, where records 1 and 5 represent responses from the same person that

were stored with a misspelling in the given name. This presents a problem for those that

wish to use this data to make inferences. With the current accessibility and continuity of

data, record linkage has become crucial for many areas of application including healthcare

(Fleming et al., 2012; Hof et al., 2017), official statistics (Winkler, 2006; Kaplan et al.,

2022; Wortman, 2019), and fraud detection and national security (Vatsalan et al., 2017).

Although probabilistic approaches for record linkage have become more common in

recent years, principled approaches that are computationally tractable and scalable for large

data sets are limited (Binette and Steorts, 2022). Moreover, existing approaches are not

suited for streaming data settings, where inference is desired continuously. In the streaming

context, data files are expected to arrive sequentially in time with no predetermined number

of files. A limited portion of the machine learning literature has targeted the area of near

real-time record linkage from a data-driven perspective (Christen et al., 2009; Ioannou

et al., 2010; Dey et al., 2011; Altwaijry et al., 2017; Karapiperis et al., 2018).

In this work, we propose new methodology to perform record linkage with streaming

data in an efficient and statistically principled fashion under a Bayesian framework. A

model-based approach, such as the one we propose, provides interpretable parameters and

a way to encode prior knowledge about the data generation process. Bayesian inference

also provides natural uncertainty quantification, allowing uncertainty from record linkage

to propagate to downstream analysis (Kaplan et al., 2022). This work presents the first

model-based approach to perform record linkage in streaming data contexts.

A significant portion of the probabilistic record linkage literature has focused on linking

two data files (Fellegi and Sunter, 1969; Tancredi and Liseo, 2011; Gutman et al., 2013;

Sadinle, 2017). Recently, Bayesian approaches for multi-file record linkage have become
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Table 1: An example of noisy data in need of deduplication. Rows 1 and 5 refer to the

same entity but differ due to an error in ‘Given Name’.

Given Name Surname Age Occupation

maddisom ryan f 3

marleikh hoffman d 4

samara pater5on d 5

lili wheatlry f 7

maddison ryan f 3

popular (Sadinle and Fienberg, 2013; Sadinle, 2014; Steorts et al., 2016; Betancourt et al.,

2016; Aleshin-Guendel and Sadinle, 2022). In particular, Aleshin-Guendel and Sadinle

(2022) extend the Bayesian Fellegi-Sunter model of Sadinle (2017) through the use of a

partition prior. However, the existing literature is limited to non-streaming settings where

the number of files is fixed and known in advance, and record linkage is performed offline

in a single procedure. Recent advances have made record linkage possible for big offline

data settings, either by jointly performing blocking and entity resolution (Marchant et al.,

2021) or by quickly computing point estimates and approximating the posterior distribu-

tion (McVeigh et al., 2019). Nonetheless, these approaches are not suited to efficiently

assimilate new data. To address this gap in the literature from a fully model-driven per-

spective, we focus on developing a Bayesian model for multi-file record linkage that enables

online data scenarios. Our approach uses recursive Bayesian computation techniques to

produce samples from the full posterior that efficiently update existing draws from the

previous posterior. To date, such recursive Bayesian updates have not been used for link-

age in a streaming setting. Our proposed model is constructed under the Fellegi-Sunter

paradigm, which entails pairwise comparisons of records (Fellegi and Sunter, 1969; Sadinle

and Fienberg, 2013). We explore diffuse and informative prior distributions and provide

two streaming samplers.

The remainder of this paper proceeds as follows. Section 2 defines the Bayesian record
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linkage model for streaming data and defines the problem context, notation, assumptions,

and constraints for the model. Section 3 introduces two streaming samplers which can be

used to perform updates of parameter estimates upon the arrival of a new file. Section 4

evaluates these methods on both the quality of samples they produce as well as their speed

on simulated data sets. Section 5 provides the result of performing streaming record linkage

on real-world survey panel data. Section 6 contains discussion of further advantages and

disadvantages of each streaming update method.

2 Bayesian Record Linkage Model for Streaming Data

We will begin this section with a description of the streaming data context, definition

of notation, and enumeration of assumptions. We then define the likelihood and prior

specification for the multi-file record linkage model.

2.1 Streaming Record Linkage Notation

We consider k files X1, . . . , Xk that are collected temporally, so that file Xm is available

at time Tm, with T1 < T2 < · · · < Tk. See Figure 5 in Appendix A for a diagram

depicting this context. Each file Xm contains nm ≥ 1 records Xm = {xmi}nm
i=1, with each

nm potentially distinct. Each record is comprised of pm fields and it is assumed that there

is a common set of F fields numbered f = 1, . . . , F across the k files which can be numeric,

text or categorical. Records representing an individual (or entity) can be noisily duplicated

across files. Each individual or entity is recorded at most once in each file, corresponding

to an assumption that there are no duplicates within a file. This setting has a growing

complexity— with k files, all records in k(k−1)/2 pairs of files must be compared and linked.

The goal of the record linkage problem is identifying which records in files X1, . . . , Xk refer

to the same entities. This context is considered “streaming” because data is continuously

generated with no predetermined stopping point and our goal is to update the inference

pipeline as new information becomes available.

Our record linkage model for the streaming data context extends the ideas of Fellegi and
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Sunter (1969) and Sadinle (2017). Within this paradigm, the comparisons are assumed to

come from one of two distributions, M for coreferent pairs and U for non-coreferent pairs.

Two records are coreferent if they refer to the same entity. The Fellegi and Sunter (1969)

framework was extended to the Bayesian paradigm for two-file record linkage in Sadinle

(2017). In this work, we further extend the model for a general k-file scenario. In contrast

to the Aleshin-Guendel and Sadinle (2022) model which also extends the Sadinle (2017)

model for the multi-file case, we parameterize the record matching as vectors linking to

the most recent previous occurrence of an individual and place an informative prior on

these vectors to avoid overlinking between files. This parameterization is the mechanism

by which streaming updates are possible.

We denote comparison between two records, xm1i in file Xm1 and xm2j in file Xm2 , as

a function, γ(xm1i,xm2j), which compares the values in each field, f , dependent on field

type. Each comparison results in discrete levels 0, . . . , Lf with 0 representing exact equality

and subsequent levels representing increased difference. For example, categorical values

can be compared in a binary fashion, numerical fields can be compared by binned absolute

difference, and text fields can be compared by binned Levenshtein distance (Christen, 2012).

We define P =
∑F

f=1(Lf + 1), as the total number of levels of disagreement of all fields.

The comparison γ(xm1i,xm2j) takes the form of a P -vector of binary indicators containing

F ones and P − F zeros which indicates the level of disagreement between xm1i and xm2j

in each field. Exactly one 1 must appear in the first L1 + 1 elements of γ(xm1i,xm2j),

one 1 in the next L2 + 1 elements, and so on. The comparison vectors are collected into

matrices Γ(1), . . . ,Γ(k−1) where Γ(m−1) contains all comparisons between the records in file

Xm and previous files. The comparison matrix Γ(m−1) has nm · (n1 + · · ·+ nm−1) rows and

P columns. Define Γ(1:m) as {Γ(1), . . . ,Γ(m)} for m ∈ 1, . . . , k − 1.

Records can be represented as a k-partite graph, with nodes representing records in

each file and a link between two records indicating that they are coreferent. This graph

can be segmented according to the order of files. First, a bipartite graph between X1 and

X2; then a tripartite graph between X1, X2, and X3, where records in X3 link to records

in X1 and X2; until finally a k-partite graph between X1, . . . , Xk where records in Xk link
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to records in X1, . . . , Xk−1. These graphs can be represented with k − 1 matching vectors,

with one vector per file X2, . . . , Xk. Each vector, denoted Z(m−1), has length nm with the

value in index j, denoted Z
(m−1)
j , corresponding to the record xmj as follows,

Z
(m−1)
j =


∑t−1

ℓ=1 nℓ + i for t < m, if xti ∈ Xt and xmj are coreferent,∑m−1
ℓ=1 nℓ + j otherwise.

Let Z(m−1) =
(
Z

(m−1)
j

)nm

j=1
and Z(1:m) =

{
Z(1), . . . ,Z(m)

}
for m ∈ 1, . . . , k − 1. These

vectors identify which records are coreferent and are therefore the main parameters of

interest in the record linkage problem.

We also define parameters m and u, which specify the distributions M and U re-

spectively. Both m and u are P -vectors which can be separated into the sub-vectors

m =
[
m1 . . . mF

]
and u =

[
u1 . . . uF

]
, where mf and uf have length Lf + 1.

Then M(m) =
∏F

f=1 Multinomial(1;mf ) and U(u) =
∏F

f=1 Multinomial(1;uf ) are the

distributions for matches and non-matches, respectively.

2.2 Preserving the Duplicate-Free File Assumption

Preserving the assumption of duplicate-free files with a large number of files is a challenge

because the combination of several links throughout the parameters Z(1:(k−1)) may imply

that two records in the same file are coreferent. For example if Z
(1)
1 = 1, Z

(2)
1 = 1, and

Z
(2)
2 = n1 + 1, then the records x31 and x32 are implied to be coreferent even though they

are not directly linked to the same record. We address this by placing constraints on the

values of these parameters such that no two records may link directly to the same record

in a previous file. Because each record can send at most one link to a previous record and

receive at most one link from a later record, we guarantee that no two records in the same

file are transitively linked. Figure 1 depicts a three-file example of prohibited and allowed

values of Z(1) and Z(2). Both values are logically equivalent, but without this constraint

the prohibited configuration could allow for one record in file X4 to link to record x31 while

another links to record x21, becoming coreferent and violating the assumption.

The bipartite matching, Z(1), is constrained in a manner consistent with Sadinle (2017).
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Figure 1: Examples of both prohibited (left) and allowed (right) links between records in

three files. On the left Z
(1)
1 = 1 and Z

(2)
1 = 1, while on the right Z

(1)
1 = 1 and Z

(2)
1 = n1+1.

The left configuration is prohibited because the record x11 receives a link from both x21

and x31. Both configurations define the same cluster containing these three records.

Namely, that there can be no two Z
(1)
i = Z

(1)
i′ where i ̸= i′. The tripartite matching must be

similarly restricted to enforce our link validity constraint. Specifically, for some 1 ≤ i ≤ n3

and 1 ≤ j ≤ n1, Z
(2)
i cannot equal j if Z

(1)
k = j for any k ≤ n2. That is, record i cannot be

linked to a record j in X1 which already has a match in X2. To enforce transitivity of the

coreference relationship, comparisons with files Xm,m ≥ 3 will be constrained.

Definition 2.1. Link Validity Constraint. Let Ck be the set of all matching vectors

Z(1:(k−1)) such that every record xm1i receives at most one link from a record xm2j where

m2 > m1. That is, there is at most one value in any Z(m2−1) with m2 > m1 that equals∑m1−1
ℓ=1 nℓ + i. Matching vectors Z(1:(k−1)) are valid if and only if Z(1:(k−1)) ∈ Ck.

This constraint aids in the identifiability of the parameters Z(1:(k−1)). Under these con-

straints each logical cluster of at most one record from each file has one unique valid repre-

sentation, namely a chain of links from the latest-appearing record to the earliest-appearing

record, linking records in order of appearance. The chain nature aids in computation—

it becomes possible to list all members of a cluster by starting at one of its members and

traversing the chain forwards and backwards without needing to branch or double back.
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2.3 Likelihood

In this section and Section 2.4, we define the likelihood and priors that contribute to the

streaming record linkage model posterior. The full posterior distribution is presented in

Appendix B.1. Consistent with the formulation in Sadinle (2017), the likelihood for the

two-file case is defined as

P (Γ(1)|Z(1),m,u) =

n1∏
i=1

n2∏
j=1

P (γij|Z(1),m,u) =

n1∏
i=1

n2∏
j=1

F∏
f=1

Lf∏
ℓ=0

[
m

I(Z(1)
j =i)

fℓ u
I(Z(1)

j ̸=i)

fℓ

]γfℓ
ij

,

where γij := γ(x1i,x2j), γ
fℓ
ij is the component corresponding to level ℓ of field f , and I(·) is

the indicator function taking a value of 1 if its argument holds and 0 otherwise. For every

pair of records, one from each file, m contributes to the distribution if the records are

linked by Z(1) and u contributes otherwise. We extend this to the k-file case by defining

the match set, M := M(Z(1:(k−1))) = {(xm1i,xm2j) : xm1i and xm2j are linked}, to contain

all pairs of records that are linked either directly or transitively through a combination of

multiple vectors Z(1:(k−1)). Testing whether (xm1i,xm2j) ∈ M for m1 < m2 is done by the

process of link tracing. This is the process by which we determine the links implied by

transitivity in the match vectors. To perform link tracing, we start at xm2j and follow the

values in Z(1:(k−1)) to travel down the chain of links, starting with Z
(m2−1)
j . If xm1j is ever

reached, then (xm1i,xm2j) ∈ M , while if a dead end is reached first, then (xm1i,xm2j) /∈ M .

The full data model in the k-file case is then

P (Γ(1:(k−1))|m,u,Z(1:(k−1))) =
k∏

m1<m2

nm1∏
i=1

nm2∏
j=1

F∏
f=1

Lf∏
ℓ=0

[
m

I((xm1i
,xm2j

)∈M)

fℓ u
I((xm1i

,xm2j
)/∈M)

fℓ

]γfℓ(xm1i
,xm2j

)

.

(1)

The likelihood of the k-file Bayesian record linkage model encodes the assumption that all

comparisons, Γ, are conditionally independent given the parameters m,u,Z(1:(k−1)). The

same m and u probabilities appear in the distribution of comparisons between each pair of

files, corresponding to an assumption of equal propensity for error in each file. Alternatively

separate probabilities, mt1t2 and ut1t2 , can be specified for the comparisons between files

Xt1 and Xt2 , as in Aleshin-Guendel and Sadinle (2022). However, every new file, Xk, will

require 2(k−1) new parameters, mt1k and ut1k for all t1 < k, which may affect the model’s
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computational performance as well as the ability of a sampler to adequately explore the

space in a streaming setting. The support of the data distribution is dependent on the

vectors Z(1:(k−1)), specifically, the matching vectors must satisfy the link validity constraint

given in Definition 2.1. We explicitly write this constraint as an indicator function in the

likelihood:

L(m,u,Z(1:(k−1))) = I(Z(1:(k−1)) ∈ Ck) · P (Γ(1:(k−1))|m,u,Z(1:(k−1))). (2)

2.4 Prior Specification

2.4.1 Priors for m and u

The parameters m and u are probabilities of a multinomial distribution, so we specify

conjugate Dirichlet priors. Specifically, we let mf ∼ Dirichlet(af ) and uf ∼ Dirichlet(bf ),

for f = 1, . . . , F , where af and bf are vectors with the same dimension, Lf + 1, as mf

and uf . For a diffuse prior we can set a = b = 1. Also it can be useful to encode

prior knowledge about the propensity for duplicates to have errors in the prior for m. For

example, if we know that an error in field f of a duplicated record has probability p of

occurring, we can let

af = s ·
[
1− p p/Lf . . . p/Lf

]
, (3)

with s determining the strength of the prior knowledge. We empirically investigate the

effect of this informative prior specification on m in simulated data scenarios in Section 4.

2.4.2 Priors for Z(k−1)

We construct the prior for streaming matching vectors using the same hierarchy as specified

in Sadinle (2017). First, let w
(k)
j := I

(
Z

(k−1)
j ≤

∑k−1
m=1 nm

)
, that is let w

(k)
j be an indicator

that record j in file k is linked, and w(k) =
{
w

(k)
j : j = 1, . . . , nk

}
. Then to specify the

prior for Z(k−1), we let

w
(k)
j

∣∣∣π iid∼ Bernoulli(π)

Z(k−1)
∣∣∣w(k) ∼ Uniform ({all valid k-partite matchings}) . (4)
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Allowing π ∼ Beta(απ, βπ) results in the marginal streaming prior

P (Z(k−1)|απ, βπ) =
(N − nk·(Z

(k−1)))!

N !
· B(nk·(Z

(k−1)) + απ, nk − nk·(Z
(k−1)) + βπ)

B(απ, βπ)
,

where N =
∑k−1

m=1 nm and nk·(Z
(k−1)) =

∑nk

j=1 I(Z
(k−1)
j ≤ N)

This streaming prior enforces the condition that no two records within the same file can

link to the same record in a previous file. However, the more general link validity constraint

in Definition 2.1 is not enforced in the prior. It is possible to enforce this constraint in the

prior (rather than the likelihood) by specifying the prior as P (Z(k−1)|απ, βπ)I(Z(1:(k−1)) ∈

Ck) with no effect on the posterior. By not enforcing the link validity constraint in Equation

4, the resulting marginal streaming prior depends on N , rather than on the number of

records available to be linked based on Z1:(k−2). In empirical studies this decision has

resulted in higher accuracy in the linkage. Further exploration of this prior specification is

the subject of future research.

3 Streaming Sampling

The key to Bayesian streaming record linkage is an efficient means of updating the posterior

distribution of existing parameters after the arrival of a new file, Xk. In this section,

we introduce two sampling approaches we have adapted to address this problem, Prior-

Proposal-Recursive-Bayes (PPRB) and Sequential MCMC (SMCMC).

3.1 Prior-Proposal-Recursive Bayes (PPRB)

Prior-Proposal-Recursive Bayes is a recursive Bayesian sampling technique in which existing

posterior samples from a previous stage are used as independent Metropolis proposals to

sample from a later stage posterior distribution, conditioned on new data (Hooten et al.,

2021). We consider a model with parameters θ and data y1,y2:

y =

y1

y2

 ∼ p(y|θ) = p(y1|θ)p(y2|θ,y1), θ ∼ p(θ)
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We assume y1 arrives before y2 and posterior samples θ(1) . . .θ(S) are obtained from

p(θ|y1). After y2 arrives, these samples are resampled as independent Metropolis proposals

for the updated posterior distribution p(θ|y1,y2). The acceptance ratio α for the proposal

θ′ and current value θ simplifies to

α = min

(
p(y2|θ′,y1)

p(y2|θ,y1)
, 1

)
.

This ratio depends only on the full conditional distribution of the new data, y2 and so can

be calculated quickly. If y2 and y1 are conditionally independent given θ, then the old

data y1 does not need to be stored in order to calculate α or perform PPRB.

To apply PPRB to the Bayesian record linkage model when a file Xk arrives, we have

y2 = Γ(k−1), y1 = Γ(1:(k−2)), and θ =
[
m u Z(1:(k−2))

]
. Since all comparisons are as-

sumed conditionally independent given the parameters m,u,Z(1:(k−2)), the past calculated

comparisons Γ(1:(k−2)) would not be needed to calculate α or perform PPRB. However, the

streaming record linkage model requires additional parameters, Z(k−1), for the distribution

of the new data, Γ(k−1), so a straight forward application of PPRB is not possible. Hooten

et al. (2021) propose drawing values of the new parameter from its predictive distribution

and appending those values to the existing samples prior to PPRB, which retains the simpli-

fied form of the acceptance ratio, α. In the streaming record linkage problem, the predictive

distribution of Z(k−1) reduces to its prior: p(Z(k−1)|m,u,Z(1:(k−2)),Γ(1:(k−2))) = p(Z(k−1)).

However, because the space of possible values of Z(k−1) is on the order of (
∑k−1

ℓ=1 nℓ)
nk

and the proposed prior is diffuse, these values are rarely good proposals for the updated

posterior distribution, leading to low acceptance rates and slow mixing.

For this reason, we propose PPRB-within-Gibbs, a Gibbs sampler in which one of the

steps is an independent Metropolis proposal from prior stage posterior samples.

Definition 3.1. PPRB-within-Gibbs algorithm. Consider a general model with par-

titioned data y1,y2, and parameters θ1,θ2,θ3:

y1|θ1,θ2 ∼ p(y1|θ1,θ2)

y2|θ1,θ2,θ3 ∼ p(y2|θ1,θ2,θ3)

θ1 ∼ p(θ1), θ2 ∼ p(θ2), θ3 ∼ p(θ3)
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The parameters θ1,θ2,θ3 have independent priors, y1,y2 are conditionally independent

given the parameters, and the first wave of data, y1, is not dependent on θ3. Let there be

existing posterior samples, {θs
1}Ss=1 from the distribution p(θ1|y1). Then for the desired

number of posterior samples,

1. Update the parameter θ2 from the full conditional distribution [θ2|θ1,θ3,y1,y2],

2. (PPRB step) Propose a new value θ∗
1 by drawing from the existing posterior sam-

ples {θs
1}Ss=1 with replacement. Accept or reject the proposal using the Metropolis-

Hastings ratio

α = min

(
p(y2|θ∗

1,θ2,θ3)

p(y2|θ1,θ2,θ3)

p(θ2|θ∗
1,y1)

p(θ2|θ1,y1)
, 1

)
,

3. Update the parameter θ3 from the full conditional distribution [θ3|θ1,θ2,y1,y2],

recording the values of θ1, θ2, and θ3 at the end of each iteration.

Theorem 3.1. The PPRB-within-Gibbs sampler (Definition 3.1) produces an ergodic Markov

chain with the model’s posterior distribution as its target distribution if the posterior dis-

tribution satisfies the following positivity condition,

p(θ1|y1,y2) > 0, p(θ2|y1,y2) > 0, p(θ3|y1,y2) > 0 =⇒ p(θ1,θ2,θ3|y1,y2) > 0.

Proof. See Appendix C.1.

S is the number of samples drawn from the previous posterior distribution, p(θ1|y1)

and generally cannot be increased. As the pool of samples, {θs
1}Ss=1, approximates the

distribution p(θ1|y1) for the purpose of proposals, a larger S will lead to better proposals.

However, we see in Section 4.4 that the pool of samples available to PPRB or PPRB-

within-Gibbs will degrade over time after repeated applications in a streaming setting. A

large S can extend the utility of the pool but will not keep it from degrading. We briefly

mention future work that could address this degradation in Section 6.

PPRB-within-Gibbs is applicable to the streaming record linkage model via the rela-

tionships θ1 = Z(1:(k−2)), θ2 = [m,u], θ3 = Z(k−1), y1 = Γ(1:(k−2)), y2 = Γ(k−1), which

satisfies all the preconditions of the algorithm. The algorithm steps for the streaming record

linkage model as defined in Section 2 are listed in Appendix C.1.1. The acceptance ratio,
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α, is now the product of two ratios. The first ratio is of the data distribution of new data,

as in original PPRB, evaluated both at the proposed Z(1:(k−1))
∗ and the current Z(1:(k−1)).

The second ratio is of the full conditional density of m and u, but only conditioned on the

pre-arrived data and pre-existing parameters. As such, these values can be pre-calculated

for every existing posterior sample from the previous stage posterior.

This approach retains the appealing speed and low storage requirements of PPRB by

utilizing existing posterior samples, while also avoiding an identified challenge of the original

method proposed by Hooten et al. (2021) by drawing from the full conditional distribution

of Z(k−1) rather than its prior. However, as resampling filtering methods, PPRB and

PPRB-within-Gibbs can never sample states of any Z(m),m < k not present in the first

pool of posterior samples of that parameter. As a result, the pool of samples for any Z(m)

will converge to a degenerate distribution as k → ∞ (Lunn et al., 2013). We see evidence

in Section 4.4 and discuss potential ways to address this in Section 6.

3.2 Sequential MCMC (SMCMC)

Sequential MCMC is a sampling algorithm based on parallel sequential approximation

(Yang and Dunson, 2013). Starting from an existing ensemble of posterior samples from

P (m,u,Z(1:(k−2))|Γ(1:(k−2))), SMCMC uses two kernels:

1. The Jumping Kernel — a probability distribution J(Z(k−1)|·) which is responsible for

initializing a value of Z(k−1) for each sample, potentially conditioning on old or new

data.

2. The Transition Kernel — any MCMC kernel, T , that targets the updated posterior

distribution, P (m,u,Z(1:(k−1))|Γ(1:(k−1))).

These kernels are applied in parallel as initialized at each existing sample, first using

the jumping kernel to initialize Z(k−1) and then repeatedly applying the transition kernel

T until desired convergence is achieved. Final states of each parallel chain are taken as the

new ensemble. SMCMC is a massively parallel MCMC algorithm that is expected to have

fast convergence if the posterior based on new data and the posterior based on current
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data are similar in shape. Both jumping and transition kernels may depend on previously

arrived data as well as new data. For Bayesian multi-file record linkage, we choose the

transition kernel T as a Gibbs-style kernel which updates all parameters in sequence, and

the jumping kernel J to be the full conditional update of Z(k−1).

SMCMC differs from PPRB-within-Gibbs in that it operates on an independent ensem-

ble of samples. If the initial size of the ensemble is S, SMCMC produces S independent

samples from the updated posterior distribution by nature of the parallel algorithm. There-

fore the ensemble can remain relatively small, and only a small number of posterior draws

need to be saved after the arrival of each file. The ensemble is never filtered, so converging

to a degenerate distribution is not a concern for SMCMC. The transition kernel within

SMCMC updates all parameters and maintains the same speed as MCMC for the updated

posterior using the full data. The speed benefits of SMCMC then come from the ability

to use as many as S parallel chains with well-chosen initial values. By contrast, PPRB-

within-Gibbs’s speed benefits come from simplifying the parameter update step. Unlike

PPRB-within-Gibbs, SMCMC requires the full data be stored in perpetuity because with

every new file the transition kernel will update all parameters.

3.3 Proposals for Matching Vector Updates

Both streaming samplers, PPRB-within-Gibbs and SMCMC, depend on full conditional

updates of matching vectors. Step 3 of PPRB-within-Gibbs and the jumping kernel from

SMCMC are both full conditional updates of the most recent vector Z(k−1), and the tran-

sition kernel of SMCMC must update all matching vectors. The choice of update is crucial

for both speed and convergence of the sampler.

A straight-forward method for performing updates of Z(k−1) is to update each compo-

nent Z
(k−1)
j in turn for j = 1, . . . , nk. This method is used by Sadinle (2017) to update

the matching vector in the two-file Bayesian record linkage model. The support for each

component Z
(k−1)
j is enumerable as {1, . . . ,

∑k−1
ℓ=1 nℓ,

∑k−1
ℓ=1 nℓ + j}. To draw from the full

conditional distribution of each Z
(k−1)
j , the product of the likelihood and priors is evaluated

for each potential value, normalized, and used as probabilities to sample the new value.
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The full transition kernel using these component-wise proposals for matching vectors is

defined in Definition C.1 in Appendix C.1.

Zanella (2020) describes a class of locally balanced pointwise informed proposals dis-

tributions to improve sampling in high-dimensional discrete spaces. For a sample space X

with a target distribution given by π(x), these proposals have the form,

Qg(x, y) =
g
(

π(y)
π(x)

)
K(x, y)

Zg(x)
,

where the proposed move is from a point x to a point y. K(x, y) is a symmetric uninformed

local proposal distribution, g : R+ → R+ is a function and Zg(x) is the normalizing

constant. The goal of these proposals is to improve the uninformed proposal K by biasing

towards points with higher probability through the multiplicative term g(π(y)/π(x)). The

uninformed kernel K is arbitrary, and Qg is called locally balanced if and only if g(t) =

tg(1/t). A consequence of this property of g along with a symmetric local proposal K is

that the Metropolis-Hastings acceptance ratio for locally balanced proposals simplifies to

the ratio of normalizing constants, min(Zg(x)/Zg(y), 1).

To apply locally balanced proposals to the Bayesian multi-file record linkage model, we

choose g(t) = t/(1+ t) and K to be the kernel defined by making a single randomly chosen

add, delete, swap, or double-swap move. The kernel K can optionally be blocked, where

first a subset of records in file Xk and an equally sized subset of records in files X1, . . . , Xk−1

are randomly selected and then, only moves which affect links between these subsets are

considered. Blocking limits the scope of possible moves for each update, which in turn

decreases the time required per update. However, blocking also increases the chance of

proposing a move to a lower probability state which is more likely to be rejected, requiring

more updates to sample effectively. We use a block size in Section 4 which is fast while still

producing many accepted proposals. The full transition kernel using these locally balanced

proposals for matching vectors is defined in Definition C.2 in Appendix C.1.

The component-wise full conditional updates can take larger steps than the locally

balanced proposals because each value in Z(k−1) has the potential to be updated. In

contrast, the locally balanced proposals can at most update two components of Z(k−1) with

a double-swap operation. The component-wise full conditional updates, however, are more
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computationally intensive as the likelihood needs to be calculated at more potential states

and there is no option for blocking. We use locally balanced proposals to update Z(k−1)

in PPRB-within-Gibbs. In Section 4 both locally balanced and component-wise proposals

are used within SMCMC and their speed and sampling performance are compared.

4 Simulation Study

To assess both the performance of the model and speed of the streaming update, we evaluate

our Bayesian multi-file record linkage model and both streaming samplers on simulated

data. We choose to focus on the four file case, since the arrival of the fourth file is the

earliest point at which two sequential streaming updates can have been used, demonstrating

the potential for use in streaming settings.

4.1 Data Simulation

Data were simulated using the GeCo software package (Tran et al., 2013) which creates

realistic simulated data about individuals. Each record was given 10 fields: first name,

last name, occupation, and age, plus 6 categorical fields with values drawn uniformly from

12 possible categories. For each of four levels of overlap (10%, 30%, 50%, and 90%), four

files of 200 records each were created. Duplicate records were allowed in consecutive and

non-consecutive datasets. In each duplicated record in files X2, X3 and X4, a maximum

of either 2, 4, or 6 errors were inserted. Errors were inserted into text fields of first name

and last name by simulating typos, common misspellings, and OCR errors using the GeCo

package (Tran et al., 2013). Errors were inserted into the remaining categorical fields by

replacing their value with a category selected randomly uniform from all possible categories.

Each field could have errors, with text fields more likely than categorical fields. A total of

12 datasets were created, one at each combination of error and overlap. This simulation

is intended to mimic a longitudinal survey in which we have demographic information and

the answers to 6 identifying categorical questions with varying levels of noise and overlap.

Comparison vectors were created by comparing each field between pairs of records. Text
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fields were compared using binned normalized Levenshtein distance with 4 levels: exact

equality, (0, 0.25], (0.25, 0.5], and (0.5, 1]. Categorical fields were compared in a binary

fashion. All computation in this section and in Section 5 was performed using the RMACC

Summit Supercomputer (Anderson et al., 2017). We utilized the accompanying package

bstrl (Taylor et al., 2022) on R version 3.5.0 on Intel Haswell CPUs with 24 cores and 4.84

GB of memory per CPU.

4.2 Link Accuracy

We assess the accuracy of our multi-file record linkage model by evaluating samples from the

posterior distribution obtained using a non-streaming Gibbs sampler. The streaming sam-

plers should target the same posterior distribution as the Gibbs sampler, thus we present a

comparison on model performance alone. We compare the streaming samplers on runtime

in Section 4.3. We use three strengths of prior on the parameter m. For the diffuse prior

(Flat), we set a =
[
1 · · · 1

]
. Then for weakly informed (Weak) and strongly informed

(Strong) priors, we use Equation 3 to determine a. We use s = 12 for the weakly informed

prior and s = 120 for the strongly informed prior. In both the weakly and strongly in-

formed priors, p = 1/2 for string fields and p = 1/8 for categorical fields. These values of p

reflect a prior probability of error of 1/2 in string fields and 1/8 in categorical fields, and an

average of 2 errors per record. For comparison, we evaluate the multi-file Bayesian linkage

model of Aleshin-Guendel and Sadinle (2022) as implemented in the multilink package

(Multilink), the empirically motivated Bayesian entity resolution model of Steorts (2015)

as implemented in the blink package (Blink), and a semi-supervised Fellegi-Sunter model

with support vector machine used to classify links as implemented in the RecordLinkage

package (SVM) with 1% of the record pairs used as training data. Multilink is similar to

our proposed model in that it is a Bayesian multi-file Fellegi-Sunter extension. However, it

differs from ours in that it is based on a partitioning prior and does not enable streaming

data. We have included both the recommended separate likelihoods, which models com-

parisons differently for each pair of files, and a single likelihood version (Single Likelihood),

which is more analogous to the model presented in Section 2.3. Blink and SVM are both
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deduplication models, and so may link records within the same file. Where possible, we

have chosen default or recommended values for tuning and hyperparameters in these com-

parison models. Further details about the comparison models can be found in Appendix

D.1.

We compare the accuracy of the resulting links by examining the posterior distribution

of the F1-score, F1 = 2(recall−1 + precision−1)−1 (Blair, 1979). Recall is the proportion of

true coreferent record pairs that are correctly identified, and precision is the proportion of

identified coreferent pairs that are true duplicates. Table 2 shows these posterior distribu-

tions as means and standard deviations of posterior samples drawn from each model, after

discarding burn-in. We also evaluate the models through the posterior distribution of the

number of estimated distinct entities across all files in Figure 2. Because the SVM may re-

sult in non-transitive links, we consider only the accuracy of the link labels for this method

rather than number of estimated entities. The model presented in this paper performs as

well or better than the comparison models using both metrics. Additional error levels are

included in the supplemental material.

Overall the link accuracy of our model is comparable to the comparison models. In all

but one case (90% overlap and 6 errors) our proposed model has the highest F1-score, and

in that case our model’s F1-score is close to the best-performing comparison model. As

expected, performance is generally worse for all models in scenarios with fewer duplicates

and more errors in the duplicates. We would hesitate to generalize these comparison results

to other scenarios, particularly because two comparison models (Blink, SVM) allow for

duplicates within files which are not present in this simulated data. Additionally, the

SVM method relies on having training data, which is not always available and expensive to

produce, while the proposed model is fully unsupervised. With higher amounts of error and

low overlap, the strength of the prior on m can be used to compensate for a lack of clean

identifying information. We see in these cases, that the Strong Prior model outperforms the

Weak and Flat Prior models, even though the strong prior is slightly misspecified for higher

error cases. Similar prior information may be provided for the other Bayesian comparison

models (Blink, Multilink), which may also improve their performance in these more difficult
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Figure 2: Posterior distribution of the number of estimated entities for simulated datasets.

A vertical line indicates the true number of distinct entities in each dataset. Compared

models are on the y-axis: the model presented in this paper (Streaming) and three com-

parison models.

cases. Each Bayesian model was run using 3 different random seeds and all exhibited some

multimodality in higher overlap cases where links are more constrained, particularly those

with duplicate-free file constraints (Streaming, Multilink).

4.3 Speed

Our streaming samplers from Section 3 more efficiently produce samples from the model’s

posterior distribution. We demonstrate this improved efficiency by recording the amount of

time required by each sampler to produce an effective sample size of 1000. For each of the

16 simulated data sets, five samplers were used to sample from the posterior distribution

of m,u,Z(1),Z(2),Z(3)|Γ(1),Γ(2),Γ(3). We compared PPRB-within-Gibbs using locally bal-
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Table 2: Posterior means and standard deviations of F1-score for simulated datasets.

Within rows, each model is listed: the model presented in this paper (Streaming) and

three comparison models. Larger values represent more accurate links in the posterior dis-

tribution. The support vector machine, a non-bayesian method, is represented only by the

F1-score of its resulting point estimate.

Model 10% overlap 30% overlap 50% overlap 90% overlap

Errors: 2

Streaming (Flat Prior) 0.992 (0.0054) 1.000 (0.0009) 0.991 (0.0018) 0.990 (0.0000)

Streaming (Weak Prior) 0.992 (0.0056) 1.000 (0.0009) 0.999 (0.0015) 1.000 (0.0000)

Streaming (Strong Prior) 0.978 (0.0102) 0.999 (0.0022) 0.994 (0.0020) 1.000 (0.0000)

Multilink 0.985 (0.0089) 0.996 (0.0041) 0.985 (0.0019) 0.944 (0.0000)

Multilink (Single Likelihood) 0.991 (0.0047) 0.999 (0.0016) 0.994 (0.0015) 0.992 (0.0000)

Blink 0.578 (0.0165) 0.974 (0.0021) 0.993 (0.0005) 0.996 (0.0004)

SVM (1% training) 0.962 1.000 0.986 0.999

Errors: 4

Streaming (Flat Prior) 0.979 (0.0123) 0.957 (0.0067) 0.974 (0.0036) 0.997 (0.0001)

Streaming (Weak Prior) 0.981 (0.0107) 0.971 (0.0072) 0.986 (0.0034) 0.998 (0.0001)

Streaming (Strong Prior) 0.978 (0.0101) 0.976 (0.0052) 0.986 (0.0036) 0.998 (0.0001)

Multilink 0.161 (0.0038) 0.640 (0.0402) 0.982 (0.0048) 0.978 (0.0015)

Multilink (Single Likelihood) 0.913 (0.0283) 0.960 (0.0092) 0.983 (0.0035) 0.997 (0.0004)

Blink 0.504 (0.0117) 0.887 (0.0065) 0.962 (0.0043) 0.994 (0.0011)

SVM (1% training) 0.933 0.827 0.919 0.947

Errors: 6

Streaming (Flat Prior) 0.227 (0.0073) 0.797 (0.0200) 0.952 (0.0071) 0.993 (0.0016)

Streaming (Weak Prior) 0.808 (0.0592) 0.910 (0.0157) 0.954 (0.0065) 0.977 (0.0011)

Streaming (Strong Prior) 0.896 (0.0180) 0.929 (0.0103) 0.952 (0.0054) 0.983 (0.0012)

Multilink 0.064 (0.0013) 0.482 (0.0118) 0.822 (0.0263) 0.985 (0.0017)

Multilink (Single Likelihood) 0.064 (0.0021) 0.393 (0.0151) 0.913 (0.0147) 0.997 (0.0012)

Blink 0.456 (0.0127) 0.803 (0.0092) 0.910 (0.0058) 0.986 (0.0022)

SVM (1% training) 0.674 0.668 0.707 0.675
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Figure 3: Time required for each sampler to produce an effective sample size of 1000. The

effective sample size is measured on the continuous parameters, m and u. Lower values

indicate more efficient sampling. The SMCMC sampling time is estimated assuming 1000

available cores so that each ensemble member can be updated in parallel.

anced Z(3) updates (PPRBwG), SMCMC with locally balanced proposals for both jumping

and transition kernels (SMCMC-LB), SMCMC with component-wise full conditional draws

for both jumping and transition kernels (SMCMC-Comp), SMCMC with component-wise

full conditional draws for the jumping kernel and locally balanced proposals for the tran-

sition kernel (SMCMC-Mixed), and a non-streaming Gibbs sampler fit to the full data

using the sampler in Definition C.1 in Appendix C.1 (Gibbs). All streaming samplers

used the BRL package (Sadinle, 2017) to sample from the bipartite record linkage posterior

distribution, m,u,Z(1)|Γ(1). More details about these simulations are in Appendix D.2.

We choose effective sample size to capture both the number of samples produced in a

given time and their quality. To summarize the effective sample size of each run, we calcu-

late the effective sample size of each component of the continuous parameters m and u, and

find the median across all values. Since SMCMC produces independent samples, the effec-

tive sample size of any parameter is equal to the size of the SMCMC ensemble. The three

SMCMC methods are assumed to be run fully parallel, where the samples produced are

not limited by time but by available computational resources. The streaming samplers take
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an order of magnitude less time to obtain 1000 effective samples than the non-streaming

sampler (Figure 3). With fewer cores available the time advantage for SMCMC will not be

as stark, however there is still a benefit with as few as 36 cores.

As the number of records in each file, n1, . . . , nk, grows, the time required by each

component-wise Z(k−1) full conditional update will grow quadratically because it iterates

through every combination of a record in fileXk and a record in all previous files, nk·
∑k−1

ℓ=1 nℓ

total pairs of records. This will affect the time of any sampler using component-wise full

conditional updates. The time for locally balanced proposals, if blocked, does not grow

with the number of records per file. However the smaller the block size becomes relative

to the file size, the less effective blocked locally balanced proposals will be at exploring the

parameter space. As the number of files, k, grows, the time required by each component-

wise Z(k−1) full conditional update will grow linearly since the number of records in file k

does not increase, only the total number of records in previous files. The time for locally

balanced proposals, if blocked, does not grow with the number of files. A growing number

of files will also increase the time required by SMCMC as more full conditional updates

will be required per iteration of the transition kernel. The time required for the transition

kernel will grow at most quadratically with increasing k because a linear series of new full

conditional updates are required which are themselves require at most linearly increasing

time with k. As k increases, the amount of time required for PPRB-within-Gibbs is not

affected unless using component-wise full conditional updates for Z(k−1) or also increasing

the locally balanced proposal block-size.

4.4 PPRB Degeneracy

As is true of all filtering methods, PPRB and PPRB-within-Gibbs have the undesirable

property that the pool of samples for any Z(m) will converge to a degenerate distribution

as k → ∞. We see an example of this phenomenon in Figure 4, particularly for overlaps of

50% or less and 4 or more errors, where the posterior distribution of F1-score from PPRB-

within-Gibbs differs from the other samplers. For 10% overlap, 4 errors, and a flat prior on

m, we even see a very large difference between PPRB-within-Gibbs and the non-streaming
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sampler. To investigate further, we compare the samples produced from PPRB-within-

Gibbs to those produced from a non-streaming (Gibbs) sampler. In 4-file record linkage,

PPRB-within-Gibbs produces noticeably fewer unique values of Z(1) than Gibbs for the

same number of posterior samples. This indicates that degradation is occurring due to the

filtering of the initial pool of samples from two sequential PPRB-within-Gibbs updates.

As more files are added and the pool of Z(1) samples is further filtered, this contrast will

become more apparent, eventually leading to a single value of Z(1) being sampled.

5 Real Data Application

We now apply streaming record linkage to a sample of records from a longitudinal survey

with a known true identity for each record. The Social Diagnosis Survey (SDS) of quality of

life in Poland (Czapinski and Panek, 2015) is a biennial survey of households that was first

conducted in the year 2000. Individuals may be recorded multiple times in separate years

but there is no duplication of individuals within a year. Four files of data were selected

from the full dataset from the years 2007 through 2013. The four files have varying sizes,

with n1 = 151, n2 = 464, n3 = 688, and n4 = 677, for a total of 1980 records. The files were

created by randomly sampling, without replacement, 910 individuals from all individuals

appearing in at least one of the included years. Of the 910 individuals, 306 appear in just

one file, 240 appear in two files, 262 appear in three files, and 102 appear in all four files.

Linkage was performed using six fields: gender, province, educational attainment, and

year, month, and day of birth. All fields are categorical and were compared using binary

comparisons. We chose hyperparameters to produce flat priors in m, u, and Z(ℓ) for

ℓ = 1, 2, 3. We compared five samplers: a non-streaming Gibbs sampler (Gibbs), sequen-

tially applied PPRB-within-Gibbs updates with locally balanced proposals (PPRBwG), and

sequentially applied SMCMC updates with component-wise proposals (SMCMC-Comp),

locally balanced proposals (SMCMC-LB) or a mix using component-wise jumping kernel

proposals and locally balanced transition kernel proposals (SMCMC-Mixed). More details

of the MCMC runs can be found in Appendix D.3.

The streaming record linkage models were able to recover the true coreferent records
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Table 3: Posterior means and standard deviations of F1-score and estimated number of

entities, and total sampling time, for the four-file Poland SDS data set using five samplers.

There are 910 true entities in the four files. Sampling time is given in cumulative hours

required to produce posterior samples of the parameters conditioned first on three files,

then on four files using each sampling method. The SMCMC sampling time is estimated

assuming 1000 available cores so that each ensemble member can be updated in parallel.

Sampler F1-Score Estimated Entities Sampling Time

Gibbs 0.985 (9e-04) 915 (1.6) 121.1

PPRBwG 0.992 (0.0010) 915 (2.0) 10.9

SMCMC-Comp 0.992 (0.0012) 916 (1.9) 3.5

SMCMC-LB 0.99 (0.0022) 916 (1.9) 6.9

SMCMC-Mixed 0.992 (0.0010) 916 (1.8) 3.5

with high accuracy. Table 3 shows the posterior F1-score distribution for each of the 5

samplers, the posterior distribution of the estimated number of entities resulting from the

linkage, and the time to generate the posterior samples. All samplers performed equally

well at recovering the true coreferent record sets with a posterior mean F1-score between

0.985 and 0.992. Streaming samplers were significantly faster than the non-streaming Gibbs

sampler, with times given for the cumulative time required to produce both three-file and

four-file inference using each sampling method. This is representative of the streaming

data setting where inference is required after each new file arrives. The streaming samplers

show between 11 times and 35 times speedup when compared to the non-streaming Gibbs

sampler, where SMCMC time estimates are based on the assumption that enough cores

are available for each ensemble to be run simultaneously in parallel.
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6 Discussion

In this paper we have introduced a model for multi-file Bayesian record linkage based on the

Fellegi-Sunter paradigm that is appropriate for streaming data contexts. We have shown

this model to work as well as comparison models on realistic simulated data at varying

amounts of duplication and error. With this work, we have proposed the first model-

based streaming record linkage procedures that update inference on existing parameters and

estimate new parameters as new data arrives. Our model provides interpretable parameters

for estimating not only links between records, but the probability of different levels of error

between fields of coreferent records. These streaming samplers allow for near-identical

inference to the model fit using the full data. Having two distinct streaming options for this

model allows for the selection of one based on the needs of the user, and we have detailed the

trade-offs that one might consider. We have demonstrated that these streaming samplers

can provide significant computational gains when compared to a Gibbs sampler using both

simulated and real-world data.

Our simulation study shows a noticeable effect of the strength of the prior on m on the

accuracy of the resulting posterior samples. In Section 2.4.1 we describe a way to use the

prior on m to incorporate prior knowledge about the probability of errors in duplicated

fields, and in Section 4.2 we suggest how this can be used to compensate for a lack of clean

identifying fields in each record. The priors on Z(1:(k−1)) can also be tuned through the

values of απ and βπ, but practitioners are unlikely to have prior knowledge about the level

of overlap between files.

The scalability of this model to files with very large numbers of records could be limited

in two ways. First, the dimension of the model’s parameter space grows directly with the

number of records included. A larger parameter space requires both larger storage for

posterior samples and slower computation of the transition kernel. A very large file also

poses difficulties for the computation of comparisons. With the arrival of a new file, a

comparison vector needs to be computed comparing each record in the new file to each

record in previous files. These challenges with large files could be mitigated by blocking to

prohibit links across large time differences or breaking large files into several smaller files.
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Future work in streaming record linkage includes relaxing the assumption of no dupli-

cates within files to develop an entity resolution model that can identify duplicates both

within and between files in a streaming context. Further streaming sampling methods may

be explored by combining techniques of PPRB-within-Gibbs and SMCMC into a streaming

sampler with more of the strengths of both methods: the ease of computation and low data

storage demands of PPRB with the non-degenerate sampling of SMCMC. Additionally,

more informative prior distribution selection for the linkage parameters is an area of future

research.
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All supplemental materials are contained in a single compressed (zipped) archive.

Appendix to “Fast Bayesian Record Linkage for Streaming Data Contexts”: Appendices

that include supplemental tables and figures; posterior and full conditional distribu-

tions; supplemental definitions, theorems, and proofs; and simulation details. (streaming-

record-linkage-appendix.pdf, PDF document)

R-package for streaming record linkage: R-package ‘bstrl‘, implementing the stream-

ing record linkage model and the PPRB-within-Gibbs and SMCMC streaming up-

dates. (bstrl 1.0.2.tar.gz, GNU zipped tar file)

Reproducible code repository: R code that can be used to reproduce the numerical

results in this article, including tables and figures (streamingrl-reproducible-main.zip,

compressed folder)
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Figure 5: A depiction of the streaming record linkage problem up to time Tk. Files 1

through k arrive sequentially and are duplicate-free. The red arrows illustrate the growing

complexity of the linkage problem on multiple files: with k files, records in k(k−1)/2 pairs

of files must be compared and linked.

A Supplemental Figures and Tables

Figure 5 depicts the streaming record linkage problem up to time Tk.

Table 4 and Figure 6 show F1-scores and entity errors for additional error levels from

the simulation in Section 4.

B Posterior and Full Conditional Distributions

B.1 Posterior Distribution

Here we specify a function that is proportional to the full streaming record linkage posterior

density.
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Table 4: Posterior means and standard deviations of F1-score for simulated datasets.

Within rows, each model is listed: the model presented in this paper (Streaming) and

three comparison models. Larger values represent more accurate links in the posterior dis-

tribution. The support vector machine, a non-bayesian method, is represented only by the

F1-score of its resulting point estimate.

Model 10% overlap 30% overlap 50% overlap 90% overlap

Errors: 1

Streaming (Flat Prior) 0.999 (0.0026) 0.988 (0.0003) 0.999 (0.0010) 0.998 (0.0000)

Streaming (Weak Prior) 0.998 (0.0038) 1.000 (0.0001) 0.999 (0.0012) 1.000 (0.0000)

Streaming (Strong Prior) 0.988 (0.0067) 0.995 (0.0016) 0.992 (0.0011) 1.000 (0.0000)

Multilink 0.987 (0.0088) 0.995 (0.0021) 0.982 (0.0010) 0.915 (0.0000)

Multilink (Single Likelihood) 0.999 (0.0035) 0.995 (0.0004) 0.991 (0.0011) 0.946 (0.0000)

Blink 0.869 (0.0136) 0.988 (0.0007) 0.999 (0.0007) 1.000 (0.0000)

SVM (1% training) 1.000 0.998 0.997 1.000

Errors: 3

Streaming (Flat Prior) 0.955 (0.0195) 0.990 (0.0058) 0.987 (0.0021) 0.995 (0.0001)

Streaming (Weak Prior) 0.970 (0.0193) 0.990 (0.0057) 0.996 (0.0021) 1.000 (0.0001)

Streaming (Strong Prior) 0.978 (0.0159) 0.983 (0.0055) 0.996 (0.0022) 1.000 (0.0001)

Multilink 0.095 (0.0055) 0.981 (0.0059) 0.983 (0.0027) 0.954 (0.0000)

Multilink (Single Likelihood) 0.940 (0.0210) 0.991 (0.0052) 0.985 (0.0023) 1.000 (0.0000)

Blink 0.543 (0.0176) 0.944 (0.0031) 0.988 (0.0023) 0.999 (0.0002)

SVM (1% training) 0.933 0.958 0.984 0.974

Errors: 8

Streaming (Flat Prior) 0.231 (0.0077) 0.414 (0.0093) 0.822 (0.0163) 0.950 (0.0031)

Streaming (Weak Prior) 0.240 (0.0085) 0.415 (0.0103) 0.843 (0.0157) 0.911 (0.0026)

Streaming (Strong Prior) 0.710 (0.0277) 0.817 (0.0128) 0.898 (0.0075) 0.908 (0.0030)

Multilink 0.204 (0.0084) 0.372 (0.0084) 0.647 (0.0097) 0.977 (0.0032)

Multilink (Single Likelihood) 0.136 (0.0057) 0.369 (0.0070) 0.647 (0.0097) 0.972 (0.0022)

Blink 0.340 (0.0216) 0.663 (0.0104) 0.836 (0.0140) 0.918 (0.0080)

SVM (1% training) 0.586 0.482 0.556 0.542
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Figure 6: Posterior distribution of the number of estimated entities for simulated datasets.

A vertical line indicates the true number of distinct entities in each dataset. Distributions

to the right or left of the vertical line indicate underlinking or overlinking, respectively,

in the posterior. Compared models are on the y-axis: the model presented in this paper

(Streaming) and three comparison models.
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P (m,u,Z(1), . . . ,Z(k−1)|Γ(1), . . . ,Γ(k−1)) (5)

∝ P (m)P (u)P (Z(1)) · · ·P (Z(k−1))P (Γ(1), . . . ,Γ(k−1)|m,u,Z(1), . . . ,Z(k−1)) (6)

∝
F∏

f=1

Lf∏
ℓ=0

m
afℓ
fℓ u

bfℓ
fℓ

×
k∏

t=2

[
(Nt−1 − nt·(Z

(t−1)))!

Nt−1!
· B(nt·(Z

(t−1)) + απ, nt − nt·(Z
(t−1)) + βπ)

B(απ, βπ)

]

×
k∏

t1<t2

nt1∏
i=1

nt2∏
j=1

F∏
f=1

Lf∏
ℓ=0

[
m

I((xt1i
,xt2j

)∈M)

fℓ u
I((xt1i

,xt2j
)/∈M)

fℓ

]γfℓ(xt1i
,xt2j

)

, (7)

where

Nt−1 = n1 + · · ·+ nt−1

nt·(Z
(t−1)) =

nt∑
j=1

I(Z(t−1)
j ≤ Nt−1)

M := M(Z(1), . . . ,Z(k−1)) = {(xt1i,xt2j) : xt1i and xt2j are linked}.

B.2 Full conditional for m, u

We provide the full conditional distribution for m starting from the posterior in Equation

7.

P (m|u,Z(1), . . . ,Z(k−1),Γ(1), . . . ,Γ(k−1)) (8)

∝ P (m,u,Z(1), . . . ,Z(k−1)|Γ(1), . . . ,Γ(k−1)) (9)

∝
F∏

f=1

Lf∏
ℓ=0

m
afℓ+

∑k
t1<t2

∑nt1
i=1

∑nt2
j=1 I((xt1i

,xt2j
)∈M)·γfℓ(xt1i

,xt2j
)

fℓ . (10)

We recognize the inside products in Equation 10 as the kernel of a Dirichlet distribu-

tion, and so each vector mf for f = 1, . . . , F has a conjugate Dirichlet full conditional

distribution. Similarly, we can derive
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P (u|m,Z(1), . . . ,Z(k−1),Γ(1), . . . ,Γ(k−1)) ∝
F∏

f=1

Lf∏
ℓ=0

u
bfℓ+

∑k
t1<t2

∑nt1
i=1

∑nt2
j=1 I((xt1i

,xt2j
)/∈M)·γfℓ(xt1i

,xt2j
)

fℓ ,

(11)

and so each vector uf for f = 1, . . . , F also has a conjugate Dirichlet full conditional

distribution.

B.3 Full conditional for Z(t−1)

Let T be a file number, 2 ≤ T ≤ k. We derive the full conditional distribution for Z(T−1),

the matching vector introduced with file XT , starting from the posterior in Equation 7.

P (Z(T−1)|m,u,Z(1), . . . ,Z(T−2),Z(T ), . . . ,Z(k−1),Γ(1), . . . ,Γ(k−1)) (12)

∝ P (m,u,Z(1), . . . ,Z(k−1)|Γ(1), . . . ,Γ(k−1)) (13)

∝

[
(NT−1 − nT ·(Z

(T−1)))!

NT−1!
· B(nT ·(Z

(T−1)) + απ, nT − nT ·(Z
(T−1)) + βπ)

B(απ, βπ)

]

×
k∏

t2=T

t2−1∏
t1=1

nt1∏
i=1

nt2∏
j=1

F∏
f=1

Lf∏
ℓ=0

[
m

I((xt1i
,xt2j

)∈M)

fℓ u
I((xt1i

,xt2j
)/∈M)

fℓ

]γfℓ(xt1i
,xt2j

)

, (14)

where

Nt−1 = n1 + · · ·+ nt−1

nt·(Z
(t−1)) =

nt∑
j=1

I(Z(t−1)
j ≤ Nt−1)

M := M(Z(1), . . . ,Z(k−1))

= {(xt1i,xt2j) : xt1i and xt2j are linked}.

Pairs of records, xt1i and xt2j, where t1, t2 < T do not depend on Z(T−1) to be linked

because of the constraints outlined in Section 2.2.
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C Supplemental Definitions and Theorems

C.1 Sampler Definitions and Theorems

Definition C.1. Component-wise sampler. Define the component-wise sampler for

sampling from the streaming record linkage model as follows:

1. For f = 1, . . . , F

a. Update the vector mf from its conjugate full conditional Dirichlet distribution.

b. Update the vector uf from its conjugate full conditional Dirichlet distribution.

2. For each vector Z(ℓ), ℓ = 1, . . . , k − 1

a. For each index j = 1, . . . , nℓ+1, update the component Z
(ℓ)
j from its full condi-

tional distribution over all possible values, 1, . . . , (n1+· · ·+nℓ), (n1+· · ·+nℓ+j).

3. Repeat steps 1 and 2 for s = 1, . . . , S times.

Definition C.2. Locally balanced sampler. Define the locally balanced sampler for

sampling from the streaming record linkage model as follows:

1. For f = 1, . . . , F

a. Update the vector mf from its conjugate full conditional Dirichlet distribution.

b. Update the vector uf from its conjugate full conditional Dirichlet distribution.

2. For each vector Z(ℓ), ℓ = 1, . . . , k − 1

a. Propose a new value of Z(ℓ) using locally balanced proposals (Zanella, 2020).

Each potential proposal takes a step through either the addition of a link, the

removal of a link, swapping one end of a link, or exchanging ends of two links

(double-swap). Proposal probabilities are weighted with barker weights, g(t) =

t/(1 + t).

b. Accept or reject the proposal using the standard Metropolis-Hastings acceptance

ratio for asymmetric proposals.
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3. Repeat steps 1 and 2 for s = 1, . . . , S times.

Theorem C.1. The component-wise sampler (Definition C.1) produces an ergodic Markov

chain with the streaming record linkage model posterior distribution as its target distribu-

tion.

Proof. The sampler in Definition C.1 is a Gibbs algorithm which samples directly from

the full conditional distributions of the parameters in sequence. Therefore if we prove that

the resulting Markov chain is irreducible, then it is ergodic and samples from the posterior

distribution. From an initial state with non-zero probability, (m,u,Z(1), . . . ,Z(k−1)), a new

state with non-zero probability, (m∗,u∗,Z
(1)
∗ , . . . ,Z(k−1)

∗ ), may always be reached through

a sequence of non-zero probability steps. For the matching vectors, first remove all existing

links from (Z(1), . . . ,Z(k−1)) one component at a time until the completely unlinked state is

reached. In the next iteration, add all links in (Z(1)
∗ , . . . ,Z(k−1)

∗ ) one component at a time.

All components of m and u are strictly positive, so states have zero posterior probability

if and only if the state is invalid (Definition 2.1) and the indicator in the likelihood equals

zero. As states are invalid due to conflicting links, removing links can never turn a valid

state to invalid. Since (Z(1)
∗ , . . . ,Z(k−1)

∗ ) is valid and has nonzero posterior probability,

constructing it one link at a time will never result in an invalid state.

Theorem C.2. The locally balanced sampler (Definition C.2) produces an ergodic Markov

chain with the streaming record linkage model posterior distribution as its target distribu-

tion.

Proof. The sampler in Definition C.2 is a Metropolis-Hastings within Gibbs algorithm.

Therefore it is sufficient to show that the resulting chain is irreducible. Similarly to the

proof of Theorem C.1, we show there is a non-zero probability path between a starting state,

(m,u,Z(1), . . . ,Z(k−1)), and an ending state, (m∗,u∗,Z
(1)
∗ , . . . ,Z(k−1)

∗ ), via the completely

unlinked state. In each iteration, the locally balanced proposals may remove a single link

or add a single link to each vector Z(1), . . . ,Z(k−1). As in the proof of Theorem C.1, each

of these steps are to states with positive probability. Since the locally balanced proposals

are weighted by the target density, they can be proposed with positive probability.
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Theorem C.3. The PPRB-within-Gibbs sampler (Definition 3.1) produces an ergodic

Markov chain with the model’s posterior distribution as its target distribution if the target

distribution satisfies the positivity condition,

p(θ1|y1,y2) > 0, p(θ2|y1,y2) > 0, p(θ3|y1,y2) > 0 =⇒ p(θ1,θ2,θ3|y1,y2) > 0.

Proof. First, we show that the Metropolis-Hastings acceptance ratio, α, in step 2 is appro-

priate for the target distribution. Since the proposals come from the distribution, p(θ∗
1|y1),

the acceptance ratio would be

α =
p(θ∗

1|θ2,θ3,y1,y2)

p(θ1|θ2,θ3,y1,y2)

p(θ1|y1)

p(θ∗
1|y1)

=
p(θ∗

1,θ2,θ3|y1,y2)

p(θ1,θ2,θ3|y1,y2)

p(θ1|y1)

p(θ∗
1|y1)

=
p(y1|θ∗

1,θ2)p(y2|θ∗
1,θ2,θ3)p(θ

∗
1)p(θ2)p(θ3)

p(y1|θ1,θ2)p(y2|θ1,θ2,θ3)p(θ1)p(θ2)p(θ3)

p(θ1|y1)

p(θ∗
1|y1)

=
p(y2|θ∗

1,θ2,θ3)

p(y2|θ1,θ2,θ3)

p(θ∗
1,θ2|y1)

p(θ1,θ2|y1)

p(θ1|y1)

p(θ∗
1|y1)

=
p(y2|θ∗

1,θ2,θ3)

p(y2|θ1,θ2,θ3)

p(θ2|θ∗
1,y1)

p(θ2|θ1,y1)
.

Second, we have that p(θ1|y1) = 0 =⇒ p(θ1|θ2,θ3,y1,y2) = 0 since the latter

distribution is conditioned on a superset of random variables as the former. Therefore the

distribution p(θ1|y1) works as an independent Metropolis-Hastings proposal distribution

for the target p(θ1|θ2,θ3,y1,y2).

Finally, the positivity condition implies that a Gibbs sampler is irreducible, and so the

algorithm produces an ergodic Markov chain. (?)

C.1.1 PPRB-within-Gibbs sampler for Streaming RL model

We perform the three steps of each iteration as

1. For f = 1, . . . , F

a. Update the vector mf from its conjugate full conditional Dirichlet distribution

(see Appendix B.2).
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b. Update the vector uf from its conjugate full conditional Dirichlet distribution

(see Appendix B.2).

2. (PPRB step) Propose a new value (Z(1)
∗ , . . . ,Z(k−2)

∗ ) by drawing from the exist-

ing posterior samples (with replacement). Accept or reject the proposal using the

Metropolis-Hastings ratio,

α = min

(
p(Γ(k−1)|Z(1)

∗ , . . . ,Z(k−2)
∗ ,m,u,Z(k−1))

p(Γ(k−1)|Z(1), . . . ,Z(k−2),m,u,Z(k−1))
· p(m,u|Z(1)

∗ , . . . ,Z(k−2)
∗ ,Γ(1), . . . ,Γ(k−2))

p(m,u|Z(1), . . . ,Z(k−2),Γ(1), . . . ,Γ(k−2))
, 1

)

3. Update the value of Z(k−1) using a Metropolis-Hastings proposal targeting its full

conditional distribution. We examine two such possible proposals in Section 3.3.

D Simulation and Sampling Details

This appendix contains details for MCMC runs and simulation studies whose results are

presented in the main body of the paper.

D.1 Link Accuracy Comparison

Proposed Model: Streaming Record Linkage

The sampler was run for 2500 iterations, discarding the first 500. We set απ = βπ = 1

as an uninformative prior for Z(1), Z(2), and Z(3). Flat Dirichlet priors were chosen for

u, and three choices of prior strength were used for m (Flat, Weak, Strong). Component-

wise proposals were used for Z(1), Z(2), and Z(3) to avoid needing excessive burn-in. We

found that a Gibbs sampler with locally balanced proposals required too many iterations

to converge to the target posterior distribution to be computationally feasible.

Multilink (Aleshin-Guendel and Sadinle, 2022)

We use flat Dirichlet priors for the m and u parameters, α = 1 for the Dirichlet-

multinomial overlap table prior on the partitions and a uniform prior on the number of

clusters. For each of the simulated datasets, we produce 1000 posterior samples after a 500

iteration burn-in from an initial state of no linked pairs.

Blink (Steorts, 2015)

40



For string fields, we choose a steepness parameter c = 1 and the generalized Levenshtein

distance of the R function adist. For categorical fields, we choose beta parameters a = 5

and b = 20 to encode prior knowledge of between 1 and 4 errors per record, or a distortion

probability of between 0.1 and 0.4. For each simulated dataset, we produce 1000 posterior

samples after a 5000 iteration burn-in.

Support Vector Machine

Training pairs were chosen as evenly as possible between coreferent and non-coreferent

pairs, which sometimes resulted in all coreferent pairs being included in the training set.

D.2 Speed Comparison

The Gibbs sampler was run using component-wise full conditional updates for Z(1), Z(2)

and Z(3) for 2500 iterations, discarding the first 500 for burn-in. Each PPRB update

was run for 5000 iterations, discarding the first 1000 for burn-in. The SMCMC updates

used ensembles of size 200 and were computed with 12 parallel processes. SMCMC-Comp

used 5 jumping kernel iterations and 50 transition kernel iterations, SMCMC-LB used 50

jumping kernel iterations and and 200 transition kernel iterations, and SMCMC-Mixed

used 5 jumping kernel iterations and 200 transition kernel iterations. All locally balanced

proposals used a block size of 75 records.

D.3 Social Diagnosis Survey Analysis

The Gibbs sampler was run for 2500 iterations, discarding the first 500 for burn-in. Each

PPRB update was run for 5000 iterations, discarding the first 1000 for burn-in. The

SMCMC updates used ensembles of size 200 and were computed with 12 parallel pro-

cesses. SMCMC-Comp used 5 jumping kernel iterations and 50 transition kernel iterations,

SMCMC-LB used 500 jumping kernel iterations and and 200 transition kernel iterations,

and SMCMC-Mixed used 5 jumping kernel iterations and 200 transition kernel iterations.

All locally balanced proposals used a block size of 150 records.
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