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Robust Inference of Manifold Density and Geometry
by Doubly Stochastic Scaling*
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Abstract. The Gaussian kernel and its traditional normalizations (e.g., row-stochastic) are popular approaches
for assessing similarities between data points. Yet, they can be inaccurate under high-dimensional
noise, especially if the noise magnitude varies considerably across the data, e.g., under heteroskedas-
ticity or outliers. In this work, we investigate a more robust alternative—the doubly stochastic
normalization of the Gaussian kernel. We consider a setting where points are sampled from an
unknown density on a low-dimensional manifold embedded in high-dimensional space and corrupted
by possibly strong, non–identically distributed, sub-Gaussian noise. We establish that the doubly
stochastic a�nity matrix and its scaling factors concentrate around certain population forms, and
provide corresponding finite-sample probabilistic bounds. We then utilize these results to develop
several tools for robust inference under general high-dimensional noise. First, we derive a robust
density estimator that reliably infers the underlying sampling density and can substantially outper-
form the standard kernel density estimator under heteroskedasticity and outliers. Second, we obtain
estimators for the pointwise noise magnitudes, the pointwise signal magnitudes, and the pairwise
Euclidean distances between clean data points. Lastly, we derive robust graph Laplacian normal-
izations that accurately approximate various manifold Laplacians, including the Laplace–Beltrami
operator, improving over traditional normalizations in noisy settings. We exemplify our results in
simulations and on real single-cell RNA-sequencing data. For the latter, we show that in contrast to
traditional methods, our approach is robust to variability in technical noise levels across cell types.

Key words. doubly stochastic, Sinkhorn scaling, graph Laplacian, a�nity matrix, manifold learning, noise
robustness, di↵usion maps
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1. Introduction.

1.1. Traditional normalizations of the Gaussian kernel. Many popular techniques for
clustering, manifold learning, visualization, and semisupervised learning begin by learning
similarities between observations. The learned similarities then form an a�nity matrix that
describes a weighted graph, which is further processed and analyzed according to the required
task. A popular approach to construct an a�nity matrix from the data is to evaluate the
Gaussian kernel with pairwise Euclidean distances. Specifically, letting y1, . . . , yn 2 Rm be a
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590 BORIS LANDA AND XIUYUAN CHENG

collection of given data points, we define the Gaussian kernel K✏ : Rm
⇥ Rm

! R+ and the
resulting kernel matrix K 2Rn⇥n as

Ki,j =

(
K✏(yi, yj), i 6= j,

0, i= j,
K✏(yi, yj) = exp

⇢
�
kyi � yjk22

✏

�
(1.1)

for i, j = 1, . . . , n, where ✏> 0 is a tunable bandwidth parameter. Here we adopt the version
of the kernel matrix K whose main diagonal is zeroed-out, namely with no self-loops in the
graph described by K. This choice will be further motivated from the viewpoint of noise
robustness in section 1.3.

The kernel matrix K is often normalized to attain certain favorable properties. For in-
stance, a popular choice is to divide each row ofK by its sum to make it a transition probability
matrix. A general family of normalizations that underlies many methods can be expressed by
P (↵)

2Rn⇥n or P̂ (↵)
2Rn⇥n given by

P̂ (↵)
i,j =

P (↵)
i,j

Pn
j=1P

(↵)
i,j

, P (↵) =D�↵KD�↵, Di,i =
nX

j=1

Ki,j ,(1.2)

where ↵2 [0,1] is a parameter of the normalization, and D 2Rn⇥n is a diagonal matrix whose
main diagonal holds the degrees of the nodes in the weighted graph represented by K. If ↵= 0,
then P̂ (↵) describes the popular row-stochastic normalization D�1K, and if ↵= 0.5, then P (↵)

describes its symmetric variant D�1/2KD�1/2. These normalizations have been utilized and
extensively studied in the context of clustering [63, 52, 60, 28, 72], nonlinear dimensionality
reduction (or manifold learning) [6, 17, 51, 73], image denoising [11, 53, 49, 42, 66], and graph-
based signal processing and supervised learning [64, 18, 31, 22, 10].

An important theoretical aspect of various normalizations is the convergence of the cor-
responding graph Laplacian to a di↵erential operator as n ! 1 and ✏ ! 0, typically under
the assumption that the points y1, . . . , yn are sampled from a low-dimensional Riemannian
manifold M embedded in Rm; see [65, 15, 24, 32, 63, 69] and references therein. The fam-
ily of normalizations in (1.2) was proposed in the di↵usion maps paper [17], where it was
shown that a population analogue (i.e., a continuous surrogate in the limit n ! 1) of the
graph Laplacian In � P̂ (↵) converges to a certain di↵erential operator parametrized by ↵; see
section 3.3 for more details. This operator is particularly appealing from the viewpoint of
di↵usion on the manifold M; in the case of ↵ = 1, this operator is precisely the Laplace–
Beltrami operator [29], which determines the solution to the heat equation and encodes the
intrinsic geometry of the manifold regardless of the sampling density. Note that the parameter
↵ in (1.2) determines the entrywise power of the degree matrix D, whose diagonal entries arePn

j=1, j 6=iK✏(yi, yj), which can be interpreted as a kernel density estimator evaluated at the
sample points y1, . . . , yn [54, 56]. Indeed, ↵ controls the influence of the sampling density on
the resulting a�nity matrix and its spectral behavior [17].

1.2. The doubly stochastic normalization. An alternative normalization of K that is not
covered by P̂ (↵) or P (↵) of (1.2) is the doubly stochastic normalization [81, 82, 48, 79]

Wi,j = diKi,jdj ,
nX

j=1

Wi,j = 1(1.3)
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ROBUST INFERENCE BY DOUBLY STOCHASTIC SCALING 591

for i = 1, . . . , n, where d1, . . . , dn > 0 are the scaling factors of K. Since the resulting W is
symmetric and stochastic (i.e., each row sums to 1), it is also doubly stochastic. The problem
of finding d= [d1, . . . , dn]> 0 is known as matrix scaling and has been extensively studied in
the literature; see [3, 34] and references therein. In the case of (1.3), the scaling factors are
guaranteed to exist and are unique for n> 2 since K is fully indecomposable (see Lemma 1 in
[42]). Although the scaling factors d do not admit a closed form solution, they can be found
numerically, e.g., by the classical Sinkhorn–Knopp algorithm [67], convex optimization [2], or
algorithms specialized for symmetric matrices [40, 79]. The doubly stochastic normalization
is also closely related to entropic optimal transport [21, 55]. In particular, Wi,j is the optimal
transport plan between yi and yj according to the squared Euclidean distance loss with an
entropic regularization term weighted by ✏ (see Proposition 2 in [42]).

Doubly stochastic a�nity matrices proved useful for various tasks such as clustering
[82, 5, 78, 44, 1, 23, 13], manifold learning [48, 79, 14], image denoising [50], and graph
matching [19], often exhibiting more stable behavior and outperforming traditional normal-
izations. We note that requiring an a�nity matrix to be doubly stochastic is appealing from
a geometric perspective since the heat kernel on a compact Riemannian manifold—an opera-
tor describing a�nities between points according to the intrinsic geometry—is always doubly
stochastic [29].

In the context of manifold learning, the doubly stochastic normalization was recently
investigated in [48, 79, 14]. Specifically, [48] analyzed a population setting where the scaling
equation (1.3) is replaced with a more general family of integral equations parametrized by
↵ (see (2.1) in section 2 for the special case of ↵ = 0.5). It was shown that the limiting
di↵erential operator can be made the same as for the traditional normalization P̂ (↵) from
(1.2) as ✏ ! 0 for any ↵ 2 [0,1]. In a di↵erent direction, [79] focused on the case where the
manifold is a torus and derived spectral convergence rates for W as n!1 and ✏! 0, showing
that the doubly stochastic normalization admits an improved bias error term compared to the
traditional normalization in (1.2) when ↵= 0.5. Lastly, [14] investigated a regularized version
of the scaling equation (1.3) where the scaling factors are lower-bounded, and established
operator convergence rates of the corresponding graph Laplacian to the same operator as for
P̂ (0.5) as n!1 and ✏! 0 on general manifolds. We note that theoretical investigation of the
doubly stochastic normalization is typically more challenging than that of more traditional
normalizations, particularly due to the implicit and nonlinear nature of the scaling equation
(1.3) and its population analogue (which is a nonlinear integral equation).

1.3. The influence of noise. Modern experimental procedures such as single-cell RNA-
sequencing (scRNA-seq) [9, 35, 38], cryo-electron microscopy [4, 61, 33], and calcium imaging
[47, 57, 45], to name a few, produce large datasets of high-dimensional observations often
corrupted by strong noise. In such cases, the classical theoretical setup where data points
reside on, or near, a low-dimensional manifold can be highly inaccurate. To model noisy data,
we consider

yi = xi + ⌘i,(1.4)

where x1, . . . , xn are the underlying clean observations and ⌘1, . . . ,⌘n 2 Rm are independent
noise random vectors with zero means (to be specified in detail later on).
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592 BORIS LANDA AND XIUYUAN CHENG

For identically distributed noise vectors {⌘i}ni=1, the influence of noise on pairwise Euclid-
ean distances and the entries of a kernel matrix was investigated in [25]. Specifically, if the
noise magnitudes k⌘ik22 concentrate well in high dimension around a global constant c, it was
shown that kyi � yjk22 ⇡ kxi � xjk22 +2c for all i 6= j. Consequently, the noisy Gaussian kernel
K✏(yi, yj) is biased for i 6= j by a global multiplicative factor. Since this factor does not exist
on the main diagonal of the Gaussian kernel matrix, it is advantageous to zero it out (as done
in K from (1.1)). This way, the multiplicative factor cancels out automatically through the
traditional normalization P̂ (↵) (for any ↵) or P (↵) with ↵= 0.5; see [26] for more details.

In many applications, the noise characteristics vary considerably across the data due to
heteroskedasticity and outliers. In particular, heteroskedastic noise is prevalent in applications
involving count or nonnegative data, typically modeled by, e.g., Poisson, binomial, negative bi-
nomial, or gamma distributions, whose variances inherently depend on their means, which can
vary substantially across the data. Notable examples for such data are network tra�c analysis
[62], photon imaging [58], document topic modeling [77], scRNA-seq [30], and high-throughput
chromosome conformation capture [36], among many others. Heteroskedastic noise also arises
in natural image processing due to spatial pixel clipping [27] and in experimental procedures
where conditions vary during data acquisition, such as in spectrophotometry and atmospheric
data collection [16, 69]. Besides natural heteroskedasticity, experimental data often include
outlier observations with abnormal noise distributions due to, e.g., abrupt deformations or
technical errors during acquisition and storage. Consequently, to better understand the ad-
vantages of doubly stochastic normalization, it is important to investigate it under general
non–identically distributed noise that supports heteroskedasticity and outliers.

If the noise vectors {⌘i}ni=1 are not identically distributed or if k⌘ik22 do not concentrate
well around a global constant, then the noisy Euclidean distances kyi�yjk22 can be corrupted
in a nontrivial way. In such cases, as demonstrated in [42], the Gaussian kernel and several of
its traditional normalizations can behave unexpectedly and incorrectly assess the similarities
between data points. On the other hand, [42] also shows that the doubly stochastic nor-
malization is robust to non–identically distributed high-dimensional noise. Specifically, under
suitable conditions on the noise, and if ✏ and n are fixed while m is growing, W converges
pointwise in probability to its clean counterpart, even if the noise magnitudes k⌘ik22 are com-
parable to the signal magnitudes kxik22 and fluctuate considerably. While this result highlights
an important advantage of the doubly stochastic normalization, it does not account for the
sample size n or the bandwidth ✏. Hence, the population interpretation of the doubly stochas-
tic normalization under noise in terms of the sampling density and the underlying geometry
remains unclear.

1.4. Our results and contributions. In this work, we consider a setting where x1, . . . , xn
are sampled from a low-dimensional manifold embedded in Rm, and ⌘1, . . . ,⌘n are sampled
from non–identically distributed sub-Gaussian noise that allows for heteroskedasticity and
outliers. Our analysis is carried out in a high-dimensional regime in which the noisy Euclidean
distances satisfy kyi � yjk22 = kxi � xjk22 + k⌘ik22 + k⌘jk22 + o(1), where k⌘ik22 are unknown and
can be large, and the o(1) term is vanishing as m ! 1 but is explicitly accounted for. Our
main contributions are twofold. First, we characterize the pointwise behavior of the scaling
factors d and the scaled matrix W in terms of the quantities in our setup for large m,n and
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ROBUST INFERENCE BY DOUBLY STOCHASTIC SCALING 593

small ✏; see section 2. Second, we build on these results to infer various quantities of interest
from the noisy data and provide robust normalizations analogous to (1.2) with appropriate
theoretical justification; see section 3. In addition, in section 4 we demonstrate our results on
real single-cell RNA-sequencing data, and in section 5 we discuss future research directions.
All proofs are deferred to the supplement (supplement.pdf [local/web 360KB]). Below is a
detailed account of our results and contributions.

In section 2 we begin by considering the setting of fixed ✏ and large m,n. We establish
that di and Wi,j concentrate around certain quantities that depend explicitly on the clean
Gaussian kernel K✏(xi, xj), the noise magnitudes k⌘ik22, and the solution to an integral equa-
tion that is the population analogue of (1.3). The associated error term is described via a
probabilistic bound that is explicit in m, n, and the sub-Gaussian norm of the noise; see The-
orem 2.4. Importantly, this result allows the noise magnitudes k⌘ik22 to be large and possibly
diverge (stochastically) as m,n!1, while the probabilistic errors in d and W are vanishing.
Therefore, the doubly stochastic scaling is robust to the entrywise perturbations of the noise
in large samples and high dimension simultaneously. Next, we turn to analyze the solutions
to the aforementioned integral equation (see (2.1)) for small ✏. In particular, we prove a first-
order approximation in ✏ that depends on the sampling density and the manifold geometry;
see Theorem 2.6. Overall, our results in section 2 show that for small ✏ and su�ciently large
m and n, the noisy doubly stochastic a�nity matrix Wi,j approximates the clean Gaussian
kernel K✏(xi, xj) up to a global constant and a multiplicative bias term that depends inversely
on the square root of the sampling densities at xi and xj , but not on the noise magnitudes
k⌘ik22. This is made possible by the scaling factors di, which “absorb” the noise magnitudes
k⌘ik22, thereby correcting the Euclidean distances in the noisy Gaussian kernel. In particular,
the scaling factor di depend exponentially on the noise magnitude k⌘ik22, and inversely on the
square root of the sampling density at xi; see (2.8) in section 2. To the best of our knowledge,
these results are new even when no noise is present, as they describe the sample-to-population
pointwise behavior of W and the scaling factors d.

In section 3 we proceed by developing several tools for robust inference. First, we construct
a robust density estimator by applying a nonlinearity toW and establish its convergence to the
true density up to a global constant under appropriate conditions; see (3.1) and Theorem 3.3.
We demonstrate that this approach can provide accurate density estimates on a manifold
under strong heteroskedastic noise and outliers, whereas the standard kernel density estimator
Di,i from (1.2) fails; see Figures 1–4. Second, we show that the scaling factors d and our
robust density estimator can be combined to recover the noise magnitudes k⌘ik22, the signal
magnitudes kxik22, and the clean Euclidean distances kxi�xjk22 up to small perturbations; see
(3.4), (3.5), and Proposition 3.4. We demonstrate that these tools can be useful for detecting
outliers, assessing the local quality of data, and identifying near neighbors more accurately;
see Figures 5 and 6. Third, by utilizing our robust density estimator and the doubly stochastic
matrix W , we provide a family of normalizations that is a robust analogue of the traditional
normalizations in (1.2) and establish convergence of the corresponding graph Laplacians to
the appropriate family of di↵erential operators; see (3.10), (3.11), and Theorem 3.5. These
normalizations can be used to obtain a more robust version of the di↵usion maps method [17].
In particular, we demonstrate that in the case of ↵= 1 and high-dimensional heteroskedastic
noise, our approach provides a much more accurate approximation to the Laplace–Beltrami

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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594 BORIS LANDA AND XIUYUAN CHENG

operator than the traditional normalization of (1.2); see Figure 7. Overall, our results in
section 3 show that it is possible to recover the sampling density and the manifold geometry
under general high-dimensional noise, even when the noise magnitudes are nonnegligible and
vary substantially. Importantly, our results show that this recovery is possible even when the
ambient dimension grows slowly with the sample size, e.g., m/ n0.001.

Lastly, in section 4 we exemplify the tools derived in section 3 on experimental single-
cell RNA-sequencing (scRNA-seq) data with cell type annotations. First, we show that our
general-purpose noise magnitude estimator (derived in section 3.2) agrees with a popular
model for explaining scRNA-seq data; see Figure 8a. Second, we show that our robust ana-
logue of P̂ (↵) from (1.2) (derived in section 3.3) describes a more accurate and stable random
walk behavior with respect to the ground truth cell types; see Figures 8b and 8c. The reason
for this advantage is that di↵erent cell types have di↵erent levels of technical noise, which are
automatically accounted for by our proposed robust normalization.

2. Large sample behavior of doubly stochastic scaling under high-dimensional noise.
We consider the setting where the clean points x1, . . . , xn are sampled independently from
a probability measure d⌫ supported on a d-dimensional Riemannian manifold M ⇢ Rm. In
particular, d⌫ = q(x)dµ(x), where dµ(x) is the volume form of M at x 2 M and q(x) is a
positive and continuous probability density function on M. We further make the following
assumption on M.

Assumption 2.1. M is compact, smooth, with no boundary, and satisfies kxk2  1 for all
x2M.

A random vector ⌘ 2Rm is called sub-Gaussian if h⌘, yi is a sub-Gaussian random variable
[74] for any y 2Rm, where h·, ·i is the standard scalar product. For each x2M, let ⌘(x)2Rm

be a sub-Gaussian random vector with zero mean. Given the clean points x1, . . . , xn, the noise
vectors ⌘1, . . . ,⌘n are sampled independently from ⌘(x1), . . . ,⌘(xn), respectively. Therefore,
each clean point xi is first sampled independently from M according to the density function
q(x), and then each noisy observation yi is produced by (1.4) according to the realization
of the random vector ⌘(xi). Let k⌘(x)k 2

be the sub-Gaussian norm of ⌘(x) [74], given by
k⌘(x)k 2

= supkyk2=1 kh⌘(x), yik 2
, where k · k 2

in the right-hand side is the sub-Gaussian
norm of a random variable [74]. To control the magnitude of the noise, we make the following
assumption.

Assumption 2.2. E :=maxx2M k⌘(x)k 2
C/(m1/4

p
logm) for a constant C > 0.

For instance, Assumption 2.2 holds if ⌘(x) is a multivariate normal with covariance ⌃(x)2
Rm⇥m satisfying k⌃(x)k2  C/(m1/4

p
logm) for all x 2 M. Observe that this includes the

special case ⌃(x) = Im/
p
m, where Im 2Rm⇥m is the identity matrix. In this case, the noise

magnitude at x 2 M is Ek⌘(x)k22 = Tr{⌃(x)} = 1, which is equal to or greater than the
magnitude of the clean point kxk22 (by Assumption 2.1). Moreover, in the more extreme case
of ⌃(x) = Im/(m1/4

p
logm), the noise magnitude is Ek⌘(x)k22 =

p
m/ logm, which is growing

in m and can be much larger than kxk22. Note that the distribution of the noise can vary
across x 2 M. In particular, we can have regions of M where Ek⌘(x)k22 is very large and
others where it is very small, allowing for considerable noise heteroskedasticity. Even if ⌘(x)
is identically distributed across x2M, the norm k⌘(x)k2 is allowed to have a heavy tail that
prohibits k⌘(x)k2 from concentrating around a global constant. For instance, we can take ⌘(x)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/1

4/
24

 to
 1

07
.1

5.
22

6.
3 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



ROBUST INFERENCE BY DOUBLY STOCHASTIC SCALING 595

to be the zero vector with probability p2 (0,1) and sampled uniformly from a bounded subset
of Rm with probability 1 � p. This is a useful model for describing outliers, in which case
the magnitudes k⌘(xi)k22 can fluctuate substantially over i = 1, . . . , n. Lastly, we emphasize
that the coordinates of ⌘(x) need not be independent or identically distributed. Figure 2 in
section 3 provides a two-dimensional visualization of prototypical noise models covered in our
setting.

To analyze the doubly stochastic scaling for large sample size and high dimension, we
require the dimension to be at least some fractional power of the sample size; that is, we
assume the following.

Assumption 2.3. m� n� for a constant � > 0.

We note that the requirement m � n� can be modified to include an arbitrary constant
c > 0, namely m� cn� . This constant was set to 1 for simplicity.

We treat the quantities d, �, C, q(x), and the geometry of M (e.g., curvature, reach)
as fixed and independent of m, n, ✏, and E, which can vary. To fix the geometry of M

and make it independent of m, one can consider a manifold that is first embedded in Rr

for fixed r > 0, and then embedded in Rm for any m > r via a rigid transformation (i.e., a
composition of rotations, translations, and reflections). Rigid transformations preserve the
pairwise Euclidean distances {kx� yk2}x,y2M, thereby making all geometric properties of M
(both intrinsic and extrinsic) independent of m.

To state our results, we introduce the positive function ⇢✏ : M ! R+ that solves the
integral equation

1

(⇡✏)d/2

Z

M
⇢✏(x)K✏(x, y)⇢✏(y)q(y)dµ(y) = 1(2.1)

for all x2M. The integral equation (2.1) and the scaling function ⇢✏(x) can be interpreted as
population analogues of the scaling equation (1.3) and the scaling factors d, respectively. Due
to the compactness of M and the positivity and continuity of K✏(x, y) and q(x), the results in
[8] (see in particular Theorem 5.2 and Corollaries 4.12 and 4.19 therein) guarantee that the
solution ⇢✏(x) exists and is a unique positive and continuous function on M (see also [41]).
Note that ⇢✏(x) depends on the kernel bandwidth parameter ✏. Table 1 summarizes common
symbols and notation used in the results of this section.

We now have the following theorem, which characterizes the scaled matrix W and the
scaling factors d for large sample size n and high dimension m.

Theorem 2.4. Under Assumptions 2.1, 2.2, 2.3, there exist t0,m0(✏), n0(✏),C 0(✏)> 0, such
that for all m>m0(✏) and n> n0(✏), we have

Wi,j =
⇢✏(xi)K✏(xi, xj)⇢✏(xj)

(n� 1)(⇡✏)d/2
(1 + Ei,j) ,(2.2)

di =
⇢✏(xi)p

(n� 1)(⇡✏)d/2
exp

✓
k⌘ik22
✏

◆
(1 + Ei,i)(2.3)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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596 BORIS LANDA AND XIUYUAN CHENG

Table 1
Common symbols and notation.

M d-dimensional manifold embedded in Rm

d Intrinsic dimension of M
m Dimension of the ambient space
n Number of data points
q(x) Sampling density at x2M
xi Clean data points on M
yi Noisy data points in Rm

⌘i Noise vectors in Rm

K✏(·, ·) Gaussian kernel
✏ Kernel bandwidth parameter
⇢✏(x) Function solving the integral eq. (2.1) at x2M
K Noisy n⇥ n Gaussian kernel matrix
W Noisy n⇥ n doubly stochastic a�nity matrix
d Vector of n scaling factors solving (1.3)
E Maximal sub-Gaussian norm of the noise
�M The (negative) Laplace–Beltrami operator on M
dµ(x) Volume form of M at x2M

for all i, j = 1, . . . , n, i 6= j, where ⇢✏(x) is the solution to (2.1), and

max
i,j

|Ei,j | tC 0(✏)max

(
E
p

logm,E2
p

m logm,

r
logn

n

)
,(2.4)

with probability at least 1� n�t for any t > t0.

Theorem 2.4 provides explicit asymptotic expressions for the doubly stochastic matrix W
and the associated scaling factors d in terms of the quantities in our setup, as well as a high-
probability bound on the relative pointwise errors Ei,j with explicit dependence on m, n, and
E. We note that t0,m0(✏), n0(✏),C 0(✏) in Theorem 2.4 all depend on d, �, C, q(x), and on the
geometry of M, which are considered as fixed in our setup. The notation m0(✏), n0(✏),C 0(✏)
means that these quantities additionally depend on ✏.

Observe that under Assumption 2.2, the quantities E
p
logm and E2

p
m logm appearing

in (2.4) always converge to zero as m ! 1. Moreover, since m is growing with n by As-
sumption 2.3, all three quantities E

p
logm, E2

p
m logm, and

p
logn/n converge to zero as

n!1. Consequently, Theorem 2.4 implies that if we fix a bandwidth parameter ✏, then all
pointwise errors Ei,j appearing in (2.2) and (2.3) converge almost surely to zero as n!1.

According to (2.4), the convergence rate of maxi,j |Ei,j | to zero is bounded by the largest
among E

p
logm, E2

p
m logm, and

p
logn/n. If no noise is present, i.e., E = 0, this rate

is bounded by
p

logn/n, which describes the sample-to-population convergence and is in-
dependent of the ambient dimension m. In fact, in this case we do not actually require
Assumptions 2.2 and 2.3. On the other hand, if noise is present, then the convergence rate
depends also on the maximal sub-Gaussian norm E and on the ambient dimension m. Let us
suppose for simplicity that m/ n. In this case, as long as E C/

p
m, then the convergence

rate of maxi,j |Ei,j | to zero is still bounded by
p

logn/n. As discussed earlier, a simple example
for this case is if ⌘(x) is multivariate normal with covariance ⌃(x) satisfying k⌃(x)k2 C/

p
m,
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ROBUST INFERENCE BY DOUBLY STOCHASTIC SCALING 597

which allows the magnitude of the noise Ek⌘(x)k22 to be comparable to the signal magnitude
kxk22. If m/ n and E decays more slowly than 1/

p
m, then the bound on maxi,j |Ei,j | becomes

dominated by the term E2
p
m logm, which converges to zero as m,n ! 1 even though the

noise magnitude Ek⌘(x)k22 can possibly diverge (see the discussion following Assumption 2.2).
The proof of Theorem 2.4 can be found in section SM2 of the supplement and relies on two

main ingredients. The first is the decomposition K✏(yi, yj) = exp{�kyik22/✏} exp{2hyi, yji/✏}
exp{�kyjk22/✏}, which can be viewed as diagonal scaling of the nonnegative matrix (exp{2hyi,
yji/✏}), together with the fact that the inner products hyi, yji concentrate around their clean
counterparts hxi, xji for i 6= j under high-dimensional sub-Gaussian noise; see Lemma SM1.1
in supplement section SM1. The second ingredient is a refined stability analysis of the scaling
factors of a symmetric nonnegative matrix with zero main diagonal; see Lemma SM1.2 in
supplement section SM1, which improves upon the analysis in [42]. These two ingredients are
combined with a perturbation analysis of the Gaussian kernel and large-sample concentration
arguments to prove the results in Theorem 2.4.

Theorem 2.4 asserts that for su�ciently large m and n, Wi,j is close to the clean Gaussian
kernel K✏(xi, xj) up to a constant factor and the multiplicative bias term ⇢✏(xi)⇢✏(xj). This
bias term is determined by the scaling function ⇢✏(x) that solves (2.1), which depends on the
geometry of M and the density q(x) in a nontrivial way and does not admit a closed form
expression in general. Nonetheless, we can provide an explicit approximation to ⇢✏(x) when ✏
is small. To that end, we first assume that q(x) is su�ciently smooth on M; specifically we
assume the following.

Assumption 2.5. q 2 C
6(M).

Let p � 1 and define k · kLp(M,dµ) as the standard Lp norm on M with measure dµ, i.e.,
kfkLp(M,dµ) = (

R
M |f✏(x)|pdµ)1/p for f : M ! R. In addition, we denote by �M{f}(x) the

negative Laplace–Beltrami operator on M applied to f and evaluated at x 2 M. We now
have the following result.

Theorem 2.6. Under Assumptions 2.1 and 2.5, for any p 2 [1,4/3), there exist constants
✏0, cp > 0 and a function ! : M ! R that depends only on the geometry of M, such that for
all ✏ ✏0,

���⇢✏ � q�1/2F✏
���
Lp(M,dµ)

 cp✏
2,(2.5)

where ⇢✏(x) is the solution to (2.1), and

F✏(x) = 1�
✏

8

 
!(x)�

�M{q�1/2
}(x)p

q(x)

!
.(2.6)

If d  5, then (2.5) holds for any p 2 [1,2], and moreover, there exist ✏00, c
0 > 0, such that for

all ✏ ✏00 and x2M,
���⇢✏(x)� q�1/2(x)F✏(x)

��� c0✏2�d/4.(2.7)

The first part of Theorem 2.6 provides an asymptotic approximation to ⇢✏(x) with an
Lp(M, dµ) error of O(✏2) for p < 4/3. This approximation is equal to q�1/2 to zeroth-order
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598 BORIS LANDA AND XIUYUAN CHENG

with a first-order correction term that depends additionally on the manifold geometry and
on the smoothness of the density. The second part of Theorem 2.6 improves upon this result
in the case of d  5, where the convergence now is in L2(M, dµ) with the same rate of
O(✏2). Moreover, in this case we have uniform pointwise convergence on M with rate at least
O(✏2�d/4). If d 3, then this result implies the first-order pointwise asymptotic approximation
⇢✏(x) ⇠ q�1/2(x)F✏(x) uniformly for x 2 M. Otherwise, if d = 4 or d = 5, (2.7) only implies
the zeroth-order pointwise asymptotic approximation ⇢✏(x)⇠ q�1/2(x) (since the error in the
right-hand side of (2.7) becomes O(✏) or larger). We note that the expression q�1/2F✏ was
also used in [14] to construct an approximate solution to (2.1), yet our results here prove the
convergence of ⇢✏ to q�1/2F✏, which did not appear previously.

The proof of Theorem 2.6 can be found in section SM3 of the supplement and is based on
the following approach. First, we construct a certain covering of M to show that the measure
of the set {x : ⇢✏(x)> t} is upper bounded by c/t2 for some constant c > 0 that depends only
on the manifold M and the density q; see Lemma SM1.3 in supplement section SM1. Then,
to establish (2.5), we make use of a technical manipulation of the integral equation (2.1) that
relies on the aforementioned Lemma SM1.3, the positive definiteness of the Gaussian kernel
(as an integral operator), and the asymptotic expansion developed in [17] (see also Lemma
SM1.4 in supplement section SM1). In the special case of d  5, the Lp(M, dµ) convergence
in (2.5) together with Holder’s inequality allow us to refine the previous analysis and establish
the remaining claims.

By combining Theorems 2.4 and 2.6, we can describe the convergence of di and Wi,j to
population forms that do not depend on the manifoldM (to zeroth-order in ✏). In particular, if
d 5, we are guaranteed that in the asymptotic regime where m,n!1 and ✏! 0 su�ciently
slowly, we have

di ⇠
1p

(n� 1)(⇡✏)d/2q(xi)
exp

✓
k⌘ik22
✏

◆
, Wi,j ⇠

K✏(xi, xj)

(n� 1)(⇡✏)d/2
p

q(xi)q(xj)
,(2.8)

almost surely for all indices i 6= j. Hence, if the sampling density on M is uniform, i.e.,
q(x) is a constant function, then Wi,j approximates the clean Gaussian kernel K✏(xi, xj) for
all i 6= j up to a global constant, even if the noise magnitudes k⌘ik22 are large and fluctuate
considerably. In this case, the variability of the scaling factors di corresponds to the variability
of k⌘ik22, where large values of di correspond to strong noise, and vice versa. If the density
is not uniform, then Wi,j and di are also a↵ected by the variability of the density q(xi).
Nonetheless, this e↵ect can be removed by estimating the density and correcting di and Wi,j

accordingly; see sections 3.1 and 3.2 for more details.

3. Applications to inference of density and geometry. In this section, we utilize the
doubly stochastic scaling (1.3) and the results in the previous section to infer various quantities
of interest from the noisy data. All numerical experiments described in this section use the
scaling algorithm of [79] to solve (1.3) with a tolerance of 10�9. To simplify the analysis and
statements of the results presented in this section, we work under the following assumption
that extends the pointwise first-order convergence of ⇢✏(x) in Theorem 2.6 to arbitrary intrinsic
dimension d; see Remark 3.2 below.
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ROBUST INFERENCE BY DOUBLY STOCHASTIC SCALING 599

Assumption 3.1. There exist � 2 (0,1], ✏00 > 0, and c0 > 0, such that for all ✏  ✏00 and
x2M, |⇢✏(x)� q�1/2(x)F✏(x)| c0✏1+� .

Remark 3.2. Assumption 3.1 requires that ⇢✏(x) (the solution to (2.1)) is approximated
by q�1/2(x)F✏(x) uniformly on M with an error of O(✏1+�) for some � 2 [0,1). According to
Theorem 2.6, Assumption 3.1 is immediately satisfied for any d 3 (with � = 1� d/4) under
Assumptions 2.1 and 2.5. We conjecture that this property also holds in more general settings
and for higher intrinsic dimensions, currently not covered by Theorem 2.6. We therefore rely
on Assumption 3.1 to simplify the presentation of our results in this section and state them
in more generality for arbitrary intrinsic dimensions. We note that all numerical examples in
this section were conducted in settings with d= 1 that satisfy Assumption 3.1.

3.1. Robust manifold density estimation. Since the asymptotic expression of the doubly
stochastic kernelWi,j in (2.8) is invariant to the noise magnitudes k⌘ik22, it is natural to employ
Wi,j to infer the probability density q(xi). Recall that the standard kernel density estimator
(KDE) using the Gaussian kernel at xi is given by Di,i/(n� 1) =

Pn
j=1, j 6=iK✏(xi, xj)/(n� 1),

which approximates (⇡✏)d/2q(xi) asymptotically for large n and small ✏ (see [80] and references
therein). Clearly, we cannot directly replace the Gaussian kernel in the KDE with W sincePn

j=1Wi,j = 1. Instead, we propose to employ the nonlinearity
Pn

j=1[Wi,j ]s for s > 0, s 6= 1,
where [Wi,j ]s is the sth power of Wi,j . Specifically, we define the doubly stochastic kernel
density estimator (DS-KDE) as

q̂i =
1

n� 1

0

@
nX

j=1

[Wi,j ]
s

1

A
1/(1�s)

(3.1)

for i= 1, . . . , n. We now have the following result.

Theorem 3.3. Fix s > 0, s 6= 1. Under Assumptions 2.1–3.1, there exist ✏0, t0,m0(✏), n0(✏),
C 0(✏)> 0, such that for all ✏< ✏0, m>m0(✏), n> n0(✏), we have

q̂i = (⇡✏)d/2sd/(2(s�1))q(xi)
h
1 +O(✏) + E

(1)
i

i
(3.2)

for all i = 1, . . . , n, where maxi |E
(1)
i | is upper bounded by the right-hand side of (2.4) with

probability at least 1� n�t for any t > t0.

We note that the quantities ✏0, t0,m0(✏), n0(✏),C 0(✏) appearing in Theorem 3.3 need not
be the same as those in Theorem 2.4, and may additionally depend on s and �, which are
considered as fixed constants independent of m, n, E, and ✏. The proof of Theorem 3.3 can
be found in supplement section SM4.

Theorem 3.3 establishes that up to the constant factor (⇡✏)d/2sd/(2(s�1)), the DS-KDE q̂i
approximates the density q(xi) for all i = 1, . . . , n with a bias error of O(✏) and a variance
error E

(1)
i that has the same behavior as Ei,j in (2.4). In particular, for su�ciently small

✏ and su�ciently large m and n (which depend also on ✏), the quantity q̂i can approximate
(⇡✏)d/2sd/(2(s�1))q(xi) with high probability up to an arbitrarily small relative error. Therefore,
q̂i can be serve as a density estimator that is robust to the high-dimensional noise in our setup.
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(a) Clean data
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Figure 1. Example of density estimation on the unit circle using DS-KDE from (3.1) versus the standard
KDE in clean and noisy scenarios, where n = m = 2000, s = 2, and ✏ = 0.1. The angles ✓i 2 [0,2⇡) were
sampled from N (0,0.16⇡2) modulo 2⇡. Panel (a): Clean data. Panel (b): Heteroskedastic noise with smoothly
varying magnitude (see Figure 2a). Panel (c): Identically distributed outlier type noise (see Figure 2b).

We now demonstrate the advantage of the DS-KDE over the standard KDE via a toy
example. We simulated n = 2000 points from the unit circle in R2 and embedded them in
Rm with m= 2000 by applying a random orthogonal transformation. The angle of each clean
point xi, denoted by ✓i 2 [0,2⇡), was sampled from N (0,0.16⇡2) modulo 2⇡, where N (µ,�2)
is the standard univariate normal distribution. The resulting sampling density q(x) on the
circle can be seen in Figure 1a. We also depict the outputs of the standard KDE and the
DS-KDE with s = 2 and ✏ = 0.1. It is evident that without noise, both estimators provide
similarly accurate estimates of q(xi), noting that we normalized the standard KDE by (⇡✏)d/2

and the DS-KDE by (⇡✏)d/2sd/(2(s�1)).
Next, we simulated two types of high-dimensional noise. First, we added noise ⌘i sampled

uniformly from a ball in Rm with radius 0.01 + 0.49(1 + cos(✓i))/2, where ✓i is the angle of
xi on the unit circle. Hence, the expected noise magnitude varies smoothly between 0.01 and
0.5 along the circle; see Figure 2a for a two-dimensional visualization. Figure 1b depicts the
standard KDE as well as our robust density estimator q̂i versus the true density q(xi). We
observe that the standard KDE produces an estimate that is very di↵erent from the true
density q(xi), and has more to do with the noise magnitudes k⌘ik22 in the data. On the other
hand, the DS-KDE is robust to the magnitudes of the noise, and produces an estimate that
is nearly as accurate as in the clean case. For the second type of noise, we took each ⌘i to
be the zero vector with probability p = 0.9 and sampled it from a multivariate normal with
covariance Im/(4m) with probability 1 � p = 0.1, thereby simulating identically distributed
outlier-type noise; see Figure 2b for a two-dimensional visualization. Figure 1c shows that in
this case, the standard KDE su↵ers from pointwise drops in the estimated density. Essentially,
these drops stem from the nonzero realizations of the noise, i.e., the “outliers,” whose large
noise magnitudes inflate the pairwise Euclidean distances. On the other hand, the DS-KDE
produces an estimate that is invariant to the outliers and is very close to q(xi).

It is interesting to point out that although the DS-KDE is undefined when s = 1, the
limiting case of s ! 1 is interpretable and can be implemented. In particular, according to
(3.1), a direct calculation shows that
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(a) Noise with smoothly varying

magnitude
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(b) Outlier type noise

Figure 2. Two-dimensional visualization of prototypical noise models used in our experiments. The clean
data xi are sampled from the unit circle with nonuniform density as in Figure 1a. Panel (a): Heteroskedastic
noise with smoothly varying magnitude, where ⌘i is sampled uniformly from a ball in Rm with radius 0.01 +
0.49(1+cos(✓i))/2 (✓i is the angle of xi on the unit circle). Panel (b): Identically distributed outlier-type noise,
where ⌘i is zero with probability 0.9 and sampled from a multivariate normal with covariance Im/(4m) with
probability 0.1.

lim
s!1

q̂i =
1

n� 1
exp

8
<

:�

nX

j=1, j 6=i

Wi,j log(Wi,j)

9
=

; .(3.3)

The right-hand side of (3.3), up to the factor 1/(n � 1), is known as the perplexity of the
ith row of W , where the expression inside the exponent in (3.3) is the entropy. According to
Theorem 3.3, we expect the right-hand side of (3.3) to approximate (⇡✏)d/2sd/(2(s�1))q(xi)!
(⇡e✏)d/2q(xi) as s! 1, which provides an explicit relation between the entropy of each row of
the doubly stochastic kernel W and the sampled density q(xi). We mention that Theorem 3.3
does not strictly cover the limit s! 1 since the dependence of the bias and variance errors on
s is harder to track and is not made explicit. However, the numerical experiments described
below suggest that the conclusions of Theorem 3.3 also hold for s! 1 and that the performance
of the density estimator in this case is comparable to other choices of s over a range of
bandwidth parameters ✏.

Figure 3 illustrates the maximal density estimation errors (over i= 1, . . . , n) for the stan-
dard KDE as well as the DS-KDE as functions of n, for m = n and s = 0.5, s = 2, and
s ! 1, where ✏ = 0.1. We used the same noise settings as for Figure 2, and the displayed
errors were averaged over 50 randomized trials. In the clean case, the KDE and the DS-KDE
perform similarly, where all errors decrease with n at a rate close to n�1/2, which agrees with
Theorem 3.3 and 2.4 up to a logarithmic factor. In both noisy cases however, the KDE error
saturates at a high level and does not decrease further, whereas the DS-KDE errors decrease
roughly at the same rate as in the clean case. In particular, the DS-KDE errors for n= 3000
are over an order of magnitude smaller than the standard KDE error.

In Figure 4, we depict the maximal density estimation errors for the standard KDE and
DS-KDE (3.1) as functions of ✏ for s = 0.5, s = 2, and s ! 1, where m = n = 2000. We
used the same noise settings as for Figure 2, and the displayed errors were averaged over 10
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Figure 3. Density estimation errors for the standard KDE and the DS-KDE from (3.1) (normalized by
the corresponding global constant) versus the number of samples n and several values of s for clean and noisy
scenarios, where m = n. The density q(x) and noise models are the same as for Figures 1a, 1b, and 1c,
respectively; see also Figures 2a and 2b.
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Figure 4. Density estimation errors for the standard KDE and the DS-KDE from (3.1) (normalized by the
corresponding global constant) versus the bandwidth parameter ✏ and several values of s for clean and noisy
scenarios, where m= n= 2000. The density q(x) and noise models are the same as for Figures 1a, 1b, and 1c,
respectively; see also Figures 2a and 2b.

randomized trials. We observe that in the clean case, all density estimators perform similarly
well, attaining errors of about 0.02 for the best values of ✏, with a small advantage to the
DS-KDE with s = 2. Yet, in the noisy scenarios, the standard KDE can only achieve an
error of about 0.1, which requires using a large bandwidth parameter, while the DS-KDE
behaves similarly to the clean case and achieves significantly smaller errors. As expected from
Theorem 3.3, we see the prototypical bias-variance trade-o↵ in all noise scenarios, where the
error of the DS-KDE is dominated by the bias term O(✏) for large ✏, and dominated by the
variance error maxi |E

(1)
i | for small ✏. However, while the strong noise forces the standard

KDE to use a large bandwidth ✏ (proportional to the magnitude of the noise) to achieve the
smallest error in the bias-variance trade-o↵, the DS-KDE does not su↵er from this issue and
achieves small errors even when the bandwidth is much smaller than the noise magnitudes.
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ROBUST INFERENCE BY DOUBLY STOCHASTIC SCALING 603

3.2. Recovering noise magnitudes, signal magnitudes, and Euclidean distances. Ac-
cording to the asymptotic expression for the scaling factors di in (2.8), we can extract the
noise magnitudes k⌘ik22 from di (up to a global constant) if we know the density q(xi). Since
we do not have access to q(xi) directly, we replace it with its estimate q̂i from (3.1) and define

N̂i = ✏ log
⇣
di
p

(n� 1)q̂i
⌘

(3.4)

for i = 1, . . . , n, which serves as an estimator for the noise magnitude k⌘ik22. In our setup of
high-dimensional noise (Assumptions 2.2 and 2.3), we have kyik22 ⇡ kxik22 + k⌘ik22 and kyi �
yjk22 ⇡ kxi � xjk22 + k⌘ik22 + k⌘jk22; see Lemma SM1.1 and the proof of Theorem 2.4. Hence,
we can infer the signal magnitudes kxik22 and the pairwise Euclidean distances kxi � xjk22
according to

Ŝi = kyik
2
2 � N̂i, D̂i,j = kyi � yjk

2
2 � N̂i � N̂j ,(3.5)

respectively, for i, j = 1, . . . , n with j 6= i. Equivalently, D̂i,j from (3.5) can be derived di-
rectly from Wi,j by canceling out the term (q(xi)q(xj))�1/2 appearing in (2.8) via the density
estimator q̂i, that is,

D̂i,j =�✏ log
n
(n� 1)

p
q̂iWi,j

p
q̂j
o
.(3.6)

Therefore, the corrected distances D̂i,j correspond to the similarities measured by the a�nity
matrix

p
q̂iWi,j

p
q̂j , which approximates the clean Gaussian kernel (up to a global constant)

according to Theorem 3.3 and the results in section 2.
We now have the following result, whose proof can be found in supplement section SM5.

Proposition 3.4. Under Assumptions 2.1–3.1, there exist ✏0, t0,m0(✏), n0(✏),C 0(✏)> 0, such
that for all ✏< ✏0, m>m0(✏), n> n0(✏), we have

N̂i = k⌘ik
2
2 + ✏

d log(s)

4(s� 1)
+O(✏2) + E

(2)
i ,(3.7)

Ŝi = kxik
2
2 � ✏

d log(s)

4(s� 1)
+O(✏2) + E

(3)
i ,(3.8)

D̂i,j = kxi � xjk
2
2 � ✏

d log(s)

2(s� 1)
+O(✏2) + E

(4)
i,j ,(3.9)

for all i, j = 1, . . . , n, i 6= j, where maxi |E
(2)
i |, maxi |E

(3)
i |, and maxi,j |E

(4)
i,j | are upper bounded

by the right-hand side of (2.4) with probability at least 1� n�t for any t > t0.

Proposition 3.4 asserts that for su�ciently largem,n and su�ciently small ✏, the quantities
N̂i, Ŝi, and D̂i,j can approximate k⌘ik22, kxik

2
2, and kxi � xjk22, respectively, up to arbitrarily

small errors with high probability. According to (3.7), (3.8), and (3.9), the first error term
in these approximations is a global constant that depends explicitly on d, s, and ✏, and thus
can be removed if the intrinsic dimension d is known or can be estimated. Alternatively, if
one is only interested in ranking k⌘ik22, kxik

2
2, or kxi�xjk22, then the relevant bias error term

is improved to O(✏2) since ranking is una↵ected by a global additive constant. For example,
this is the case if one is interested in identifying the points with the largest or smallest noise
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604 BORIS LANDA AND XIUYUAN CHENG

magnitudes, or determining the nearest neighbors of each point xi. The variance error terms
E
(2), E(3), E(4) have the same behavior as E from Theorem 2.4 in section 2.

Note that the noise magnitude estimator N̂i in (3.4) corrects for the e↵ect of the variability
of the density q(xi) on the scaling factors d. However, one does not have to use q̂i in (3.4) and
it can be replaced with the constant 1. In such a case, we would still have an O(✏) bias error
term in each of (3.7), (3.8), and (3.9), but it would depend on q(xi) (and q(xj) in the case
of (3.9)). Hence, the O(✏) term would no longer be a global constant that does not influence
ranking. Consequently, the main advantage of accounting for the density is to improve the
e↵ective bias error term from O(✏) to O(✏2) under ranking.

We begin by demonstrating N̂i and Ŝi via a toy example. We generated two centered
circles in R2, one with radius 1 and the other with radius 0.5. We independently sampled 500
points from the first circle and 500 from the second circle according to the same (nonuniform)
density used for Figure 1a. We then embedded all points in Rm with m = 500 by applying
a random orthogonal transformation, and added i.i.d. outlier-type noise ⌘i taken to be zero
with probability 0.9 and sampled from a multivariate normal with covariance �iIm/m with
probability 0.1, where �i is sampled uniformly from (0,1); see Figure 5a for a two-dimensional
visualization of this setup. Figure 5b illustrates the noisy point magnitudes kyik22, where
the signal magnitudes are clearly intertwined with the noise. Figure 5c illustrates the noise
magnitude estimator N̂i from (3.4) with s= 2 and ✏= 0.1, for each index i= 1, . . . ,1000. It is
evident that N̂i accurately infers the true noise magnitudes k⌘ik22, albeit a small upward shift
due to the bias term ✏d log s/(4(s� 1)) from (3.7). Importantly, N̂i is invariant to the density
q(xi) and the signal magnitudes kxik22. Similarly, Figure 5d shows that Ŝi accurately recovers
kxik22 up to a small global shift and minor fluctuations. Overall, the doubly stochastic scaling
allows us to decompose kyik22 into signal and noise parts. In particular, N̂i can be utilized
to identify the noisy points in this setting, while Ŝi reveals that the clean data points can be
partitioned into two groups with distinct magnitudes.

Next, we demonstrate the advantage of correcting the noisy Euclidean distances kyi�yjk22
via D̂ from (3.9). Figure 6a shows the noisy distances kyi � yjk22 versus the clean distances
kxi � xjk22 in the setup of Figures 1b and 2a, where points are sampled from a circle and
corrupted by noise with magnitude that is varying smoothly from 0.01 to 0.5 (see more details
in the text of section 3.1). It is evident that the Euclidean distances are strongly corrupted
by the variability of the noise magnitude and deviate substantially from the desired behavior,
which is the dashed diagonal line (describing perfect correspondence). In Figure 6b we depict
the corrected distances D̂i,j computed with s = 2 and ✏ = 0.1, which are much closer to the
clean distances and concentrate well around a line with slope 1 that is shifted slightly below
the desired trend. This shift agrees almost perfectly with the bias term �✏d log(s)/(2(s� 1))⇡
�0.035 appearing in (3.9). Lastly, for each k= 1, . . . ,50, we computed the k nearest neighbors
of each xi according to the noisy distances kyi � yjk22 and the corrected distances D̂i,j . For
each k, Figure 6c shows the proportion of these nearest neighbors that coincide with any
of the k true nearest neighbors according to the clean distances kxi � xjk22, averaged over
i= 1, . . . ,1000. It is clear that the corrected distances allow for more accurate identification of
near neighbors, with more than 80% accuracy for k= 50, while the noisy distances provide less
than 60% accuracy in that case. Note that the nearest neighbors of each point xi according
to the corrected distances D̂i,j correspond to the largest entries of

p
q̂iWi,j

p
q̂j in each row

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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(a) Two-dimensional visualization
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(b) Magnitudes of noisy points ||yi||22
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(c) Estimated vs. true noise magnitude
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(d) Estimated vs. true signal magnitude

Figure 5. Example of estimating the noise magnitudes k⌘ik22 and signal magnitudes kxik22 using N̂i and
Ŝi from (3.4) and (3.9), respectively (panels (c) and (d)), with s = 2, ✏ = 0.1, for i = 1, . . . ,1000. The
noisy observations yi are sampled from two concentric circles, each with the nonuniform density of Figure 1a,
embedded in dimension m= 500 and corrupted with probability 0.1 by multivariate normal noise with covariance
�iIm, where �i is sampled uniformly at random from (0,1) (panels (a) and (b)).
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(a) Noisy vs. clean distances
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(b) Corrected vs. clean distances
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(c) Near neighbor detection

Figure 6. Influence of noise on pairwise Euclidean distances and on detection accuracy of the nearest
neighbors, compared to the corrected distances D̂i,j from (3.9) with s = 2 and ✏ = 0.1. The data is sampled
from a unit circle with nonuniform density, embedded in dimension m = 1000 and corrupted by noise whose
magnitude varies smoothly from 0.01 to 0.5; see Figures 1b and 2a and relevant text.
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606 BORIS LANDA AND XIUYUAN CHENG

i. Hence, Figure 6c also describes the advantage of the a�nity matrix
p
q̂iWi,j

p
q̂j over the

noisy Gaussian kernel Ki,j for encoding similarities between data points.

3.3. Robust weighted manifold Laplacian approximation. In what follows we construct
a family of normalizations that is a robust analogue of (1.2) and establish convergence to the
associated family of di↵erential operators (see [17]).

Fix ↵2 [0,1], and define

L(↵) =
4(In � Ŵ (↵))

✏
, Ŵ (↵)

i,j =
fW (↵)

i,j
Pn

j=1
fW (↵)

i,j

, fW (↵)
i,j =

Wi,j

[q̂iq̂j ]
↵�1/2

(3.10)

for all i, j = 1, . . . , n, where In is the n ⇥ n identity matrix, and L(↵) is an appropriately
normalized graph Laplacian for Ŵ (↵). The formulas in (3.10) are equivalent to those in (1.2)
except that we utilize the robust density estimator q̂i instead of the standard KDE and further
account for the asymptotic approximation of W in (2.8) (leading to the power ↵� 0.5 in the
denominator of fW (↵) instead of the power ↵ appearing in P (↵) of (1.2)). Note that when
↵= 0.5, no normalization of W is actually performed since Ŵ (0.5)

i,j =Wi,j .
Next, we define the Schrodinger-type di↵erential operator

{T (↵)f}(x) =
�M{fq1�↵}(x)

[q(x)]1�↵
�

�M{q1�↵}(x)

[q(x)]1�↵
f(x)(3.11)

for any f 2 C
2(M), where �M is the negative Laplace–Beltrami operator on M. If the

sampling density is uniform, i.e., q(x) is a constant function, then T (↵) reduces to �M for any
↵. Otherwise, T (↵) depends on the density q(x), except for the special case of ↵ = 1, where
the density vanishes and T (↵) again becomes �M. When ↵= 0.5, T (↵) is the Fokker–Planck
operator describing Brownian motion via the Langevin equation [51], and when ↵ = 0, T (↵)

describes the limiting operator of the popular random walk graph Laplacian.
We now have the following result, whose proof can be found in supplement section SM5.

Theorem 3.5. Fix f 2 C
3(M). Under Assumptions 2.1–3.1, there exist ✏0, t0,m0(✏), n0(✏),

C 0(✏)> 0, such that for all ✏< ✏0, m>m0(✏), n> n0(✏), we have

nX

j=1

L(↵)
i,j f(xj) = {T (↵)f}(xi) +O(✏�) + E

(5)
i(3.12)

for all i = 1, . . . , n, where maxi |E
(5)
i | is upper bounded by the right-hand side of (2.4) with

probability at least 1� n�t for any t > t0.

Theorem 3.5 shows that for su�ciently large m,n and su�ciently small ✏, the matrix L(↵)

can approximate the action of the operator T (↵) pointwise up to an arbitrarily small error with
high probability. If ↵= 1, then L(↵) approximates the (negative) Laplace–Beltrami operator
�M, which encodes the intrinsic geometry of the manifold [17] regardless of the sampling
density. If ↵ = 0.5, then L(↵) = 4(In � W )/✏ approximates the Fokker–Planck operator,
suggesting that the doubly stochastic Markov matrix W simulates Langevin di↵usion on M,
agreeing with the results in [48, 79, 14]. If ↵ = 0, we have fW (↵)

i,j =
p
q̂iWi,j

p
q̂j , which

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/1

4/
24

 to
 1

07
.1

5.
22

6.
3 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



ROBUST INFERENCE BY DOUBLY STOCHASTIC SCALING 607

10
3

10
4

10
-1

10
0

10
1

(a) Error versus n

10
-1

10
0

10
0
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Figure 7. Maximal absolute di↵erence between the Laplace–Beltrami operator {�Mf}(xi) and its approx-

imation
Pn

j=1L
(↵)
i,j f(xj) using the robust graph Laplacian normalization (3.10) with ↵ = 1 and its traditional

counterpart, versus the sample size n and the bandwidth ✏. The data is sampled according to the setting used
for Figures 1a, 1b, and 2a, namely a unit circle with nonuniform density where the points are either clean or
corrupted by smoothly varying noise in high dimension.

corrects for the influence of density on W according to (2.8), thereby approximating the clean
Gaussian kernel up to a global constant. In this case, L(↵) approximates the same operator
as the standard random walk graph Laplacian on the clean data. Theorem 3.5 shows that the
popular family of normalizations (1.2) can be made robust to general high-dimensional noise
via the doubly stochastic a�nity matrix W and our robust density estimator (3.1).

In Figure 7 we demonstrate the advantage of the robust graph Laplacian normalization
(3.10) for ↵ = 1 over the traditional normalization 4(In � P̂ (1))/✏, where P̂ (1) is from (1.2).
We used the same setting as the one used for Figures 1a and 1b, namely the unit circle with
nonuniform density, where the sampled points are either clean or corrupted by smoothly
varying noise; see more details in the corresponding text of section 3.1. To quantify the
accuracy of the approximation in (3.12), we used the test function f(✓(x)) = (cos(✓(x)) +
sin(2✓(x)))/5, where ✓(x) 2 [0,2⇡) is the angle of a point x on the circle. For ↵ = 1, T (↵)

reduces to the Laplace–Beltrami operator �M, in which case {�M(f)}(xi) = (� cos(✓i) �
4 sin(2✓i))/5, where ✓i = ✓(xi). We then computed the maximal absolute di↵erence betweenPn

j=1L
(↵)
i,j f(xj) and {�M(f)}(xi) over i= 1, . . . , n, for both our robust normalization as well

as the traditional one. Figure 7a shows these errors versus the sample size n, where ✏ = 0.1,
s = 2, m = n, and we averaged the errors over 30 randomized trials. Figure 7a shows the
same errors versus the bandwidth parameter ✏, where m= n= 5000, s= 2, and we averaged
the results over 20 randomized trials. It is evident that the robust and the traditional graph
Laplacian normalizations perform nearly identically in the clean case, both across n and
across ✏, suggesting that the bias and variance errors in (3.12) match those for the traditional
normalization, at least in our setting. On the other hand, the robust normalization performs
much better in the noisy case whenever the error is dominated by the variance term, i.e., when
✏ is su�ciently small with respect to the sample size n, while having almost identical behavior
when the error is dominated by the bias term. Consequently, the robust normalization achieves
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608 BORIS LANDA AND XIUYUAN CHENG

smaller errors for any fixed bandwidth in this scenario and allows us to use a smaller optimally
tuned bandwidth to obtain a better approximation of the Laplace–Beltrami operator under
noise.

4. Experiments on real single-cell RNA-sequencing data. In this section, we demon-
strate our results using real data from single-cell RNA-sequencing (scRNA-seq), which is a
revolutionary technology for measuring high-dimensional gene expression profiles of individ-
ual cells in diverse populations [70, 46]. In this case, each observation eyi 2 Rm is a vector
of nonnegative integers describing the expression levels of m di↵erent genes in the ith cell of
the sample. The high resolution of the data—given at the single-cell level—makes it possible
to study the similarities between di↵erent cells and to characterize di↵erent cell populations,
which is of paramount importance in immunology and developmental biology. However, one of
the main challenges in analyzing scRNA-seq data is the high levels of noise and its nonuniform
nature [37, 38, 39].

To demonstrate our results, we used the popular dataset of purified peripheral blood
mononuclear cells (PBMC) by [84], where 32733 genes are sequenced over 94654 cells that
are annotated experimentally according to 10 known cell types. To preprocess the data, we
first randomly subsampled 500 cells from each of the following types: b cells, cd14 monocytes,
cd34, cd4 helper, cd56 nk, and cytotoxic t. These cell types are fairly distinguishable one
from another, thereby simplifying the interpretability of our subsequent results, while the
subsampling makes computations more tractable. We then computed the total expression
count for each cell, given by ci =

Pm
j=1 eyi,j , where eyi,j denotes the jth entry of eyi, and

computed the normalized observations yi = eyi/ci. This is a standard normalization in scRNA-
seq for making the cell descriptors to be probability vectors, thereby removing the influence
of technical variability of counts (also known as “read depth”) across cell populations [75, 20].
The doubly stochastic scaling of the Gaussian kernel is then evaluated using the normalized
observations y1, . . . , yn, n= 3000, with a prescribed tolerance of 10�6 and a maximum of 104

iterations in the algorithm of [79].
In our first experiment, we set out to investigate the accuracy of noise magnitude estimator

N̂i described in (3.4). To validate our noise estimates, we assume the popular Poisson data
model eyi,j ⇠Poisson(µi,j) [59]. In this case, we have E[eyi,j ] = Var[eyi,j ] = µi,j , and by standard
concentration arguments,

k⌘ik
2
2 ⇠

Pm
j=1 (eyi,j � µi,j)

2

c2i
⇠

Pm
j=1Var[eyi,j ]

c2i
=

Pm
j=1 µi,j

c2i
⇠

Pm
j=1 eyi,j
c2i

=
1

ci
,(4.1)

asymptotically as m!1 under appropriate delocalization conditions on the Poisson param-
eters {µi,j}

m
j=1. Therefore, we expect the noise magnitude k⌘ik22 to be close to 1/ci, which

is the inverse of the total gene expression counts for cell i. Figure 8a depicts the estimated
noise magnitudes N̂i computed with ✏ = 2 · 10�5 and s = 2, versus 1/ci for a prototypical
subsampled dataset (with 3000 cells total, 500 from each of six di↵erent types). Evidently,
the Poisson model suggests that the noise magnitude fluctuates considerably across the data,
roughly by an order of magnitude. Of course, the noise magnitude estimator N̂i is completely
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Figure 8. Accuracy of the noise magnitude estimate N̂i from (3.4) (panel (a)) and the Markov matrix Ŵ (↵)

from (3.10) as well as its traditional analogue P̂ (↵) from (1.2) (panels (b) and (c)), evaluated using the annotated
single-cell RNA-sequencing data from [84]. The noise magnitude estimate N̂i is compared to the anticipated
value from the Poisson model (4.1), while the error in the Markov matrix Ŵ (↵) and its traditional analogue
is assessed by the average probability to transition between distinct cell types (the smaller the better), plotted
against the bandwidth parameter ✏.

oblivious to the Poisson model and does not have access to the total counts ci (as it is deter-
mined solely from the normalized observations). Nonetheless, the estimated noise magnitudes
N̂i concentrate around the red dashed diagonal line, showcasing good agreement with the
Poisson model. Note that there seems to be a slight quadratic trend to the estimated noise
magnitudes, which is in line with literature suggesting over-dispersion with respect to the
standard Poisson [68] (e.g., negative binomial).

In our second experiment, we employ the cell type annotations to assess the accuracy of
Ŵ (↵)

i,j from (3.10) and its traditional counterpart P̂ (↵) from (1.2). Since Ŵ (↵)
i,j is a transition

probability matrix, it describes a random walk over the cells. It is reasonable to assume
that a random walk that starts at a certain cell should be unlikely to immediately transition
to a cell with a di↵erent type. Motivated by the this reasoning, we show in Figure 8b the
probability of a cell transitioning to a cell with a di↵erent type, averaged over all cells i =
1, . . . ,3000, according to Ŵ↵

i,j from (3.10) as well as its traditional counterpart, where we used
s= 2, ↵= 0,0.5,1, and averaged the results over 20 randomized trials (of subsampling cells),
plotted against the bandwidth parameter ✏. Figure 8c is the same as Figure 8b except that
we averaged the aforementioned probabilities over the cells in each cell type separately and
took the largest of these, namely the worst-case averaged transition probability over the six
cell types.

From Figures 8b and 8c it is evident that for large bandwidth parameters ✏, all normal-
izations provide similarly undesirable behavior in the form of large probabilities of transition
errors, namely probabilities of transitioning between di↵erent cell types. As we decrease ✏,
the behavior generally improves across all normalizations, but the errors due to the robust
normalizations Ŵ (↵) are consistently smaller than the traditional ones. This advantage of our
normalizations is particularly evident over the traditional normalization with ↵ = 0, whose
worst-case error (for one of the cell types) exceeds 0.4 for all values of ✏. The traditional
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normalization with ↵ = 0.5 seems to be more accurate than ↵ = 0 or ↵ = 1 and provides
results very similar to the robust normalizations, albeit slightly larger worst-case errors for
small ✏. Recall that the traditional normalization with ↵= 0.5 is obtained by first performing
the symmetric normalization D�1/2

i Wi,jD
�1/2
i , where Di =

Pn
j=1Ki,j , and then performing a

row-stochastic normalization. These steps are precisely one iteration of the accelerated scaling
algorithm described in [79]. This fact can possibly explain the advantage of ↵= 0.5 over the
other values of ↵.

Note that all robust normalizations provide nearly identical probabilities of transition
errors, which may initially seem strange in light of the di↵erent limiting operators for the
corresponding graph Laplacians in Theorem 3.5. However, an important distinction is that
the graph Laplacian L(↵) describes the first-order behavior W (↵) in ✏, while its zeroth-order
behavior is given by

Pn
j=1 Ŵ

(↵)
i,j f(xj)⇠ f(xi) for largem,n and small ✏, regardless of ↵. Hence,

we should expect the random walk transition probability errors to be very similar across ↵.
Indeed, this is the case for the robust normalization. On the other hand, the random walk
transition probability errors for the traditional normalization di↵er substantially across ↵,
which is likely due to the strong variability of the noise in the data (see Figure 8a) and the
sensitivity of the standard kernel density estimator to such noise.

5. Discussion. The results in this work give rise to several future research directions. On
the practical side, to make the tools we developed in section 3 widely applicable, it is desirable
to derive procedures for adaptively tuning the bandwidth parameter ✏ and the parameter
s in the DS-KDE (3.1). Moreover, for large experimental datasets, the density can vary
considerably across the sample space, in which case a global bandwidth parameter is unlikely
to provide a satisfactory bias-variance trade-o↵. Hence, it is worthwhile to tune the bandwidth
according to the local density around each point. Techniques for adaptive bandwidth selection
have been extensively studied for standard kernel density estimation and traditional graph
Laplacian normalizations in the clean case (see [83, 7] and references therein), e.g., by near
neighbor distances. However, the adaptation of these techniques to our setting is nontrivial,
as the near neighbor distances could be too corrupted for determining the local bandwidth.
Therefore, this topic requires substantial analytical and empirical investigation that is left for
future work.

On the theoretical side, one important direction is to characterize the constant C 0(✏)
appearing in (2.4) in terms of ✏. This would require a more advanced analysis of the stability
of the scaling factors d under perturbations in W and the prescribed row sums, which is
beyond the scope of this work. In addition, we conjecture that the results in Theorem 2.6
can be strengthened, and specifically that ⇢✏(x) = q�1/2(x)F✏(x) +O(✏2) uniformly over x 2

M. Currently, Theorem 2.6 only proves an analogous Lp bound for p 2 [1,4/3), while the
pointwise bound in Theorem 2.6 is only for d 5 and is dominated by a dimension-dependent
error that is worse than O(✏2). A useful first step in that direction might be to obtain a
tighter characterization of ⇢✏ than in our Lemma SM1.3. However, this will require di↵erent
theoretical tools and is left for future work. Lastly, properly refined versions of Theorems 2.4
and 2.6 can be combined to describe how to tune the bandwidth parameter ✏ for convergence
of the approximation errors described in sections 3.1 and 3.3.
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[40] P. A. Knight, D. Ruiz, and B. Uçar, A symmetry preserving algorithm for matrix scaling , SIAM J.
Matrix Anal. Appl., 35 (2014), pp. 931–955, https://doi.org/10.1137/110825753.

[41] P. Knopp and R. Sinkhorn, A note concerning simultaneous integral equations, Canadian J. Math., 20
(1968), pp. 855–861.

[42] B. Landa, R. R. Coifman, and Y. Kluger, Doubly stochastic normalization of the Gaussian
kernel is robust to heteroskedastic noise, SIAM J. Math. Data Sci., 3 (2021), pp. 388–413,
https://doi.org/10.1137/20M1342124.

[43] B. Landa and Y. Shkolnisky, The steerable graph Laplacian and its application to filtering image
datasets, SIAM J. Imaging Sci., 11 (2018), pp. 2254–2304, https://doi.org/10.1137/18M1169394.

[44] D. Lim, R. Vidal, and B. D. Haeffele, Doubly Stochastic Subspace Clustering , preprint,
arXiv:2011.14859, 2020.

[45] S. Lohani, A. H. Moberly, H. Benisty, B. Landa, M. Jing, Y. Li, M. J. Higley, and J. A. Cardin,
Dual color mesoscopic imaging reveals spatiotemporally heterogeneous coordination of cholinergic and
neocortical activity , BioRXiv, 2020.

[46] E. Z. Macosko, A. Basu, R. Satija, J. Nemesh, K. Shekhar, M. Goldman, I. Tirosh, A. R.
Bialas, N. Kamitaki, E. M. Martersteck, et al., Highly parallel genome-wide expression profiling
of individual cells using nanoliter droplets, Cell, 161 (2015), pp. 1202–1214.

[47] W. Q. Malik, J. Schummers, M. Sur, and E. N. Brown, Denoising two-photon calcium imaging
data, PloS one, 6 (2011), e20490.

[48] N. F. Marshall and R. R. Coifman, Manifold learning with bi-stochastic kernels, IMA J. Appl. Math.,
84 (2019), pp. 455–482.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/1

4/
24

 to
 1

07
.1

5.
22

6.
3 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

https://arxiv.org/abs/1609.06349
https://doi.org/10.1137/110825753
https://doi.org/10.1137/20M1342124
https://doi.org/10.1137/18M1169394
https://arxiv.org/abs/2011.14859


ROBUST INFERENCE BY DOUBLY STOCHASTIC SCALING 613

[49] F. G. Meyer and X. Shen, Perturbation of the eigenvectors of the graph Laplacian: Application to
image denoising , Appl. Comput. Harmon. Anal., 36 (2014), pp. 326–334.

[50] P. Milanfar, Symmetrizing smoothing filters, SIAM J. Imaging Sci., 6 (2013), pp. 263–284,
https://doi.org/10.1137/120875843.

[51] B. Nadler, S. Lafon, R. R. Coifman, and I. G. Kevrekidis, Di↵usion maps, spectral clustering and
reaction coordinates of dynamical systems, Appl. Comput. Harmon. Anal., 21 (2006), pp. 113–127.

[52] A. Y. Ng, M. I. Jordan, and Y. Weiss, On spectral clustering: Analysis and an algorithm, in Advances
in Neural Information Processing Systems, 2002, pp. 849–856.

[53] J. Pang and G. Cheung, Graph Laplacian regularization for image denoising: Analysis in the continuous
domain, IEEE Trans. Image Process., 26 (2017), pp. 1770–1785.

[54] E. Parzen, On estimation of a probability density function and mode, Ann. Math. Statist., 33 (1962),
pp. 1065–1076.
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