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Abstract

Geospatial problems often involve spatial autocorrelation and covariate shift, which
violate the independent, identically distributed assumption underlying standard
cross-validation. In this work, we establish a theoretical criterion for unbiased cross-
validation, introduce a preliminary categorization framework to guide practitioners
in choosing suitable cross-validation strategies for geospatial problems, reconcile
conflicting recommendations on best practices, and develop a novel, straightforward
method with both theoretical guarantees and empirical success.

1 Introduction

Cross-validation (CV) estimates how reliable and accurate a model’s predictions are on new, unseen
data. Standard CV provides unbiased model error estimates for independent, identically distributed
(iid) data [2]. However, it can substantially underestimate model errors for geospatial problems due to
the inherent spatial autocorrelation and the frequent presence of covariate shift. For example, natural
resource managers may use environmental features (e.g., soil characteristics, canopy cover, rainfall)
from a region that a threatened species currently occupies to learn a species distribution model (SDM)
describing the species-habitat relationship. Conservation actions like translocating individuals of the
species to a new area may require the SDM to be applied outside the region where it was fit, raising a
key question: How good are the model predictions in this new area? If spatial autocorrelation within
the training region permits information leakage between training and validation folds, CV estimates
computed within the training region may be optimistically biased. Furthermore, the distribution of
the features in the occupied region may differ from those in the new area, a phenomenon referred
to as covariate shift. Standard CV fails to account for the challenges of spatial autocorrelation and
covariate shift. This paper addresses the question of how to evaluate models for geospatial problems
from both theoretical and empirical perspectives.

2 Background

Geospatial Problems Consider a dataset Tw consisting of a training set Ttr and a test set Tte:
Tw = {Ttr, Tte} = {{Xtr,ytr}, {Xte,yte}} = {{xi, yi}ntr

i=1, {xj, yj}nte
j=1}, where X,x are fea-

tures (all or some are spatial variables); y, y are the response variables; i and j subscripts respectively
denote training and test samples. A spatial random variable is a stochastic process Z : D× Ω → R,
where D ⊂ Rd is a region (typically, d = 2 or 3), and Ω is a sample space. When we observe a spatial
variable’s value, it creates a realization of the process by fixing ω ∈ Ω. Spatial autocorrelation
(SAC) refers to the degree of spatial dependence (SD) between feature values measured at locations.
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Ttr and Tte are collected from a training region Dtr and a test region Dte, respectively. Covariate
shift (CS) is defined by PXtr ̸= PXte while Pytr|Xtr

= Pyte|Xte
, where P denotes distribution [3].

It is likely to happen when Dtr and Dte differ. In this paper, we focus on geospatial problems with
the common traits: 1) Models are learned and applied at geolocated data points. 2) Geolocation
information is available for each data point but not explicitly used in the model, i.e., Xte and Xtr do
not include geocoordinates. 3) Ttr and Xte are known or estimable, while yte is unknown.

Model Error Test error and risk are two common quantities for model error [4]. Test error (ErrT )
is the expected loss over test samples, given a fixed training set T . (T is short for Ttr when different
predictive goals are not emphasized.) Risk (R) is the expected test error over training sets from the
same population. The key distinction is that risk considers expectations over training sets while test
error conditions on a single training set. CV is occasionally mistaken for estimating test error, but it
truly estimates the risk under the iid assumption [5].

Cross-validation Methods Standard CV approaches split data points into folds uniformly at
random. As the most widely used variant, K-Fold Cross-Validation (KFCV) divides a training set
randomly into K non-overlapping folds, iteratively holds out one fold as the validation fold, and
trains a model on the remaining training folds (e.g., Fig. 1(a)). Leave-One-Out Cross-Validation
(LOOCV) is an extreme case, where it uses n-fold CV with a single data point as the validation fold,
while the training folds contain the rest of the data. For iid data, these standard CV estimators are
unbiased; the random resampling mimics how a new sample would be drawn from the population.

Additional CV techniques have been developed for non-iid data. Spatial CV strategies handle data
dependencies by spatially segregating training and validation folds, and they can be broadly classified
into two categories. First, BLock Cross-Validation (BLCV) groups geographically close points
into blocks [6, 7]. BLCV reduces much spatial dependence across folds as most nearby points end
up in the same fold (e.g., Fig. 1(b)). Second, BuFfered Cross-Validation (BFCV) inserts a buffer
between training and validation folds and excludes points within it [8, 9]. This procedure removes
spatial dependence between folds at the cost of losing training samples located within the buffer
region (e.g., Fig. 1(c)). One concern with spatial CV methods is the possibility of introducing
covariate shift between folds. Spatially separated folds may have differing feature spaces, possibly
resulting in pessimistically biased error estimates. Importance-Weighted Cross-Validation (IWCV)
does not assume identical distributions between training and test sets but was developed in non-spatial
contexts [10, 11]. It provides an asymptotically unbiased estimator by adjusting the loss function
with the ratio of test and training probability densities. Fig. 1 illustrates how these CV methods assign
training samples to folds.
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(b) BLCV (bl = 12)
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(c) BFCV (bl = 20, bf = 12)

Figure 1: Visualization of various CV methods dividing 1800 training data points on a 60 × 60
landscape into 9 folds. (a) Different colors represent different folds for KFCV or IWCV. (b) An
illustration of BLCV with a block size (bl) of 12 grid cells, assigning each block to one of the 9 folds.
(c) An example of BFCV using a block size (bl) of 20 grid cells and a buffer size (bf) of 12 grid cells.
It highlights fold 5 as the validation fold, with training samples in its adjacent buffer region excluded.
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3 Methodology

A Criterion for Unbiased CV Rabinowicz and Rosset (2020) prove that when training and test
features are iid and a latent variable induces correlation structure in the response variable, the CV
risk estimate (under squared error loss) is unbiased when the joint distribution of the test and training
sets matches that of the validation and training folds, for all folds. To extend this result, we consider
autocorrelation as the mechanism creating dependence, with a general loss function. We establish a
criterion for unbiasedness in Thm. 1, where K is the number of CV folds, and the subscripts k,−k
denote the validation fold and the training folds, respectively. (See proof in Appx.)

Theorem 1. If PXte|Xtr
= PXk|X−k

, ∀k ∈ 1, . . . ,K, then cross-validation is an asymptotically
unbiased estimator of the risk R(n).

Framework for Selecting a CV Method For the purpose of exploring the relationships between
problem characteristics and CV strategies, we introduce a categorization framework determined by
two dimensions (Tab. 1). We assess spatial (in)dependence by the maximal semivariogram range of
all features, which refers to the distance at which semivariance reaches its maximum value, indicating
that observations at this distance or farther are spatially independent. We characterize covariate shift
between training and test features by the Cramér-von Mises two-sample test (Cramér test) [12], a
multivariate, distribution-free test with null hypothesis that the samples are identically distributed.

Table 1: Geospatial scenarios determined by semivariogram range and the Cramér test. We consider
spatial (in)dependence between training and testing sets by comparing the nearest distance (d)
between training and test samples with the semivariogram range (r) of the training features; and
covariate shift by comparing the p-value (p) of Cramér test and the user-defined significance level α.

Spatial Dependence Spatial Independence

No Covariate Shift Scenario SD:
d < r and p ≥ α

Scenario SI:
d ≥ r and p ≥ α

Covariate Shift Scenario SD + CS:
d < r and p < α

Scenario SI + CS:
d ≥ r and p < α

A New CV Method For Scenario SI + CS (Tab. 1) which requires extrapolation to a new, spatially
independent test region, none of the existing CV methods are quite appropriate. KFCV, BLCV, and
BFCV are ineffectively in dealing with covariate shift, while IWCV is not tailored for autocorrelated
data. Therefore, we propose Importance-weighted Buffered Cross-Validation (IBCV), combining the
strengths of BFCV and IWCV. IBCV separates training and validation folds with a buffer region (as
Fig. 1c) and employs density ratio weighting to correct covariate shift. The K-fold IBCV estimator is

R̂
(n)
KIBCV ≡ 1

K

∑K
k=1

1
nk

∑
i∈kth

pte(xi)
ptr(xi)

L(yi, ŷi(xi;T−k−bf )),

where bf is the buffer region, T−k−bf is the training fold, the subscript (n) denotes the size of
training set, pte(xi)

ptr(xi)
is the density ratio of a validation sample Ti, and L can be any loss function. We

claim that IBCV is asymptotically unbiased. (See proof and Algo. 1 in Appx.)

Proposition 2. IBCV is asymptotically unbiased: ET [R̂
(n)
IBCV ] = R(n) when n → ∞.

Prospective users of IBCV should weigh a few caveats. First, IBCV may not be well-suited for small
datasets. Eliminating buffer points would have a stronger impact on smaller datasets, potentially
resulting in a pessimistic bias and high variance. Second, IBCV should be expected to struggle with
severe covariate shift just as other importance-weighed methods do. Such methods perform poorly
when the support of PXte

has little overlap with the support of PXtr
.

4 Experiments

Simulation Experiments We generated data with the model y = x(1) + x(2) + x(1) · x(2) + ϵ,
where x(1) and x(2) are two features with varying degrees of spatial autocorrelation and ϵ is an iid
normal error term. We generated 100 simulations for each scenario, with each simulation comprising
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Table 2: Simulations: average biases of 9-fold CV estimates of RMSE with respect to risk, across
varying spatial autocorrelation ranges (r). Bias is calculated as the mean CV estimate minus the risk
except for Scenario SD + CS, where bias is calculated as the average of absolute differences between
CV estimates and test errors. The smallest biases in each row of the same scenario block are in bold,
and the best CV methods are summarized alongside the scenario names.

KFCV BLCV BFCV IWCV IBCV KFCV BLCV BFCV IWCV IBCV
r Scenario SD: KFCV Scenario SI: BLCV
4 0.0103 0.0174 0.0280 -0.0517 -0.0354 0.0023 0.0094 0.0200 -0.0611 -0.0449
8 -0.0024 0.0030 0.0691 -0.0605 0.0062 -0.0299 0.0046 0.0388 -0.1106 -0.0482

12 -0.0010 0.0778 0.1602 -0.0550 0.0956 -0.0438 0.0347 0.1123 -0.1778 -0.0477
Scenario SD + CS: BFCV Scenario SI + CS: IBCV

4 0.1043 0.1068 0.0973 0.1651 0.1453 0.4883 0.4954 0.5060 -0.0018 0.0059
8 0.1938 0.1861 0.1853 0.2524 0.1872 0.4603 0.4955 0.5320 -0.0652 -0.0347
12 0.2472 0.2492 0.2583 0.2472 0.1870 0.4429 0.5217 0.6041 -0.0646 0.0070

1800 training points and 500 test points. We fitted linear models without the interaction term to mimic
the common case of model misspecification.

We measured bias in the CV estimates of RMSE across all scenarios and varying degrees of spatial
autocorrelation (Tab. 2). In Scenario SD, KFCV is the least biased. Its internal random partitioning
mechanism intersperses training points among validation points, aligning with the spatial structure
between training and test sets in this case. Instead, BLCV and BFCV always produce pessimistic
bias via introduced covariate shift, especially for strongly autocorrelated data (when r = 12). In
Scenario SI, BLCV is advantageous. BLCV retains some spatial dependence across fold boundaries,
potentially causing error underestimation. However, it can also introduce covariate shift across folds,
which could lead to error overestimation. When the two offset each other, as may be controlled with
block size, BLCV can achieve an accurate error estimate. In Scenario SD + CS, BFCV seems the
best choice though it displays the highest variability among all methods (Appx. Fig. 3). In Scenario
SI + CS, IBCV and IWCV, explicitly addressing covariate shift, outperform others significantly. The
gap between IBCV and IWCV widens gradually with SAC range. IBCV is 46.78% less biased than
IWCV when r = 8, and 89.16% less biased when r = 12.

Example Application We predicted whether a Hermit Warbler (HEWA), one of the most prevalent
species in the Oregon 2020 dataset [13], was observed or not at a certain survey site based on
the surrounding habitat, as represented by four vegetation indexes computed from remote sensing
data [14, 15]. 1000 training points and 500 test points were randomly sampled from different regions
of Oregon to create datasets for each of the four scenarios of Tab. 1 (Fig. 2). For these real datasets,
we could not directly estimate risk due to having only one landscape per analysis. Instead, we used
test error as a proxy and assessed the five machine learning models - Ridge classifier (Ridge), Linear
SVM (LSVM), K-Nearest Neighbors (KNN), Random Forest (RF), and Naive Bayes (NB) - based on
classification error rate, i.e., the proportion of misclassified samples in the test set.

Figure 2: HEWA dataset: sampling strategies of training (blue) and test (orange) points in four
scenarios. Subplots (a), (c) and (d) share the same training set. We fitted Matérn variogram functions
with the lag class estimated by Scott’s rule [16], and obtained the maximal range of the features
was r = 0.28 degree for (a), (c), (d), while for (b) it was r = 0.33 degree. The nearest distances
between training and test samples were d = 0.00, 0.36, 0.00, 0.71 degrees for (a), (b), (c), and (d),
respectively. The p-values from the Cramér test were p = 0.71, 0.04, 0.00, 0.00 for (a), (b), (c) and
(d), respectively. We set α = 0.01. Therefore, the classification of the datasets align with Tab. 1.

4



From Tab. 3, the recommended CV methods for the four scenarios are almost consistent with those in
the simulations. The only difference is that in Scenario SD, IWCV outperforms KFCV, though their
estimates are quite close. Except for Scenario SD, KFCV usually severely underestimates model
errors because when nearby points end up in different CV folds, spatial autocorrelation in features
can transmit information across fold boundaries, leading to optimistic model error estimates. In
Tab. 3, we set hyperparameters (block size and buffer size) to the maximum semivariogram range of
all features. We also fine-tuned the hyperparameters and did a peak-to-peak comparison; in this case,
the best CV method for each scenario remained the same (Appx. Tab. 4). That said, hyperparameters
significantly influence CV estimates, and finding the best ones in practice can be challenging.

Table 3: HEWA: model classification error rates and 9-fold CV estimates thereof. The best estimates
of test error (target) in each column of the same scenario block are in bold. The best CV methods
which produce the closest estimates for most models are summarized alongside the scenario names.

Classifier Ridge LSVM KNN RF NB Ridge LSVM KNN RF NB
Scenario SD: IWCV Scenario SI: BLCV

Test error 0.1700 0.1720 0.1740 0.1740 0.1700 0.2320 0.2280 0.2440 0.2520 0.2440
KFCV 0.1709 0.1709 0.1779 0.1910 0.1729 0.1890 0.1900 0.2180 0.2120 0.1950
IWCV 0.1706 0.1706 0.1777 0.1907 0.1727 0.1888 0.1898 0.2178 0.2118 0.1948
BLCV 0.1664 0.1678 0.1905 0.1964 0.1663 0.2007 0.2047 0.2292 0.2607 0.2043
BFCV 0.1783 0.1775 0.1909 0.1989 0.1678 0.2173 0.2876 0.2628 0.2692 0.2110
IBCV 0.1780 0.1773 0.1906 0.1986 0.1676 0.2170 0.2872 0.2625 0.2689 0.2107

Scenario SD + CS: BFCV Scenario SI + CS: IBCV
Test error 0.2140 0.2040 0.2080 0.1840 0.2160 0.2420 0.2540 0.2440 0.2540 0.2640

KFCV 0.1709 0.1709 0.1779 0.1910 0.1729 0.1709 0.1709 0.1779 0.1910 0.1729
IWCV 0.2400 0.2430 0.2533 0.2706 0.2469 0.2239 0.2245 0.2370 0.2507 0.2289
BLCV 0.1644 0.1678 0.1905 0.1964 0.1663 0.1644 0.1678 0.1905 0.1964 0.1663
BFCV 0.1783 0.1775 0.1909 0.1989 0.1678 0.1783 0.1775 0.1909 0.1989 0.1678
IBCV 0.2526 0.2489 0.2649 0.2789 0.2393 0.2370 0.2334 0.2484 0.2572 0.2222

5 Conclusion

Recent studies have come to mixed conclusions on the best practice in evaluating models for
geospatial problems, and our analysis yields points of both agreement and disagreement with the
ongoing discussion. For example, Roberts et al. (2017) and Valavi et al. (2019) argue that spatial CV
is less biased than non-spatial CV [6, 7]. Ploton et al. (2020) advocate for the adoption of spatial CV
as the norm for spatially autocorrelated data [17]. Our results do provide evidence for spatial CV in
some scenarios. However, Hoffimann et al. (2021) and Wadoux et al. (2021) show that spatial CV
can yield notably pessimistic estimates [18, 19]. Our study corroborates this perspective, particularly
in Scenario SD. Our agreements with these conflicting studies simply highlights our main message:
the best evaluation strategy for a geospatial problem depends on how the training set relates to the
intended test set; specifically, the spatial and distributional relationships between features across CV
folds should match those between the training and testing features.

We see several directions for future work. The framework outlined in Tab. 1 served this study
adequately, but to offer more precise recommendations to practitioners, we need more nuanced tools
for characterizing geospatial problems, going beyond the current four discrete quadrants. While
IBCV shows promise, further developments to aid hyperparameter selection, and improvements to
the method itself, may be fruitful. Finally, we hope this paper not only serves practitioners interested
in assessing models with geospatial data but also triggers the exploration of thoughtful ways for
evaluating performance on other non-iid datasets.
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Appendix

Proof of Theorem 1 With the geospatial settings defined in Section 2, we further assume the
training and test features have the same domain: xi,xj ∈ X ⊂ Rm, and the function f : x → y
is unchanged between training and test sets (i.e., no concept shift). Therefore, the domains of the
response variables are also the same: yi, yj ∈ Y ⊂ R. The subscripts k,−k denote the validation
and training folds, respectively.

Proof. Since p(Xte|Xtr) = p(Xk|X−k), we have

p(Xte, Xtr)/p(Xtr) = p(Xk, X−k)/p(X−k). (1)

We multiply the LHS by p(yte|Xte) and the RHS by p(yk|Xk). Since f is assumed constant, these
quantities are equal, i.e., p(yte|Xte) = p(ytr|Xtr) = p(yk|Xk).

We focus first on the LHS. Since y is conditionally independent of all other variables given its
corresponding X , we can condition on additional variables, we have p(yte|Xte) = p(yte|Xte, Xtr)),
and p(ytr|Xtr) = p(ytr|Xtr, Xte, yte). Therefore, the condensed process is:

p(Xte, Xtr) · p(yte|Xte)

p(Xtr)

=
p(Xte, Xtr) · p(yte|Xte, Xtr) · p(ytr|Xtr, Xte,yte)

p(Xtr) · p(ytr|Xtr)

=
p(yk, Xk,y−k, X−k)

p(y−k, X−k)

= p(Tte|Ttr).

Similarly, the result of multiplying RHS of Eqn. 1 with p(yk|Xk) is p(Tk|T−k). Note that T is short
for Ttr when not emphasizing different predictive goals. Combining the manipulated LHS and RHS,
we can conclude that

p(Tte|Ttr) = p(Tk|T−k). (2)
Now we are ready to show unbiasedness for the leave-one-out (LOO) setting. For this setting,
Eqn. 2 is written as p(Tj |T ) = p(Ti|T−i), recalling that Tj is a single intended test instance outside
of the full training set T (containing n training samples), Ti is a single-instance validation fold,
and T−i is the training fold (i.e., excluding Ti from T ). As is typical, we assume that T−i is
distributed as T and of size n, ignoring the bias from the different sizes of T−i and T ; this gives
p(Tj |T ) = p(Tj |T−i) = p(Ti|T−i), which is needed for step (1) below. We use shorthand Li for
L(yi, ŷi(xi;T−i)) and Lj for L(yj , ŷj(xj;T−i)). The error estimate of standard LOOCV is

R̂
(n)
LOOCV ≡ 1

n

∑n
i=1 L(yi, ŷi(xi;T−i)).

So we have

ET [R̂
(n)
LOOCV ] =

1

n

∑n
i=1 ET−i,Ti

[Li]

=
1

n

∑n
i=1 ET−i

[ ∫
Y

∫
X

p(xi, yi|T−i)Lidxidyi

]
(1)
=

1

n

∑n
i=1 ET−i

[ ∫
Y

∫
X

p(xj, yj |T−i)Ljdxjdyj

]
=

1

n

∑n
i=1 ET−i,Tj

[Lj ]

=
1

n

∑n
i=1 R

(n−1) n→∞−→≈ R(n)

All of these claims also hold for KFCV, with more bookkeeping required to account for varying fold
sizes.
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Proof of Proposition 2 With the same settings and assumptions of Theorem 1, we show that
IBCV is asymptotically unbiased.

Proof. We demonstrate the claim for LOOIBCV; it also valid for KIBCV with more bookkeeping for
the folds. The leave-one-out IBCV estimator is

R̂
(n)
LOOIBCV ≡ 1

n

∑n
i=1

pte(xi)
ptr(xi)

L(yi, ŷi(xi;T−i−bf )),

where bf is the buffer region, T−i−bf is the training fold, the supscript (n) denotes the size of training
set, and pte(xi)

ptr(xi)
is the density ratio of a validation sample Ti. Step (1) below holds because T−i−bf

and Ti are independent. Step (2) holds because T−i−bf and Tj are independent. We use shorthand
Li for L(yi, ŷi(xi;T−i−bf )) and Lj for L(yj , ŷj(xj;T−i−bf )).

ET [R̂
(n)
LOOIBCV ]

=
1

n

∑n
i=1 ET−i−bf ,Ti

[ pte(xi)
ptr(xi)

Li

]
(1)
=

1

n

∑n
i=1 ET−i−bf

[ ∫
Y

∫
X

pte(xi)

ptr(xi)
ptr(xi, yi)Lidxidyi

]
=

1

n

∑n
i=1 ET−i−bf

[ ∫
Y

∫
X

pte(xj)pte(yj |xj)Ljdxjdyj

]
(2)
=

1

n

∑n
i=1 ET−i−bf ,Tj

[
Lj

]
=

1

n

∑n
i=1 R

(n−1−nbf ) n→∞−→≈ R(n).

Algorithm 1 LOOIBCV
Input: training set associated with the geocoordinates (lat, long) and density ratio (w) of each
training point: {xi, yi, lati, longi, wi}ni=1
Parameters: buffer size bf
Output: estimated error Err

1: for i = 1 to n do
2: Compute the distances from the validation point Ti to other training samples T−i;
3: Remove training samples with distance smaller than bf ;
4: Fit a model f̂ on the remaining training fold T−i−bf ;
5: Compute density ratio weighted loss on the validation fold Ti:

Erri = wi · L(yi, ŷi(xi;T−i−bf )).
6: end for
7: Return the estimated error: Err = 1

n

∑n
i=1 Erri.
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(c) Scenario SD + CS
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CV algorithm: KFCV BLCV BFCV IWCV IBCV

Figure 3: Biases of CV estimates in scenarios with various characteristics: spatially dependent
(SD), spatially independent (SI), spatially dependent with covariate shift (SD + CS), and spatially
independent with covariate shift (SI + CS). Circles inside the boxes display the mean values of biases.
The black dash lines illustrate no bias. (a), (b) and (d) show bias of the average CV estimate to the
risk. Since the feature distributions change across simulations in Scenario SD + CS, (c) plots the
absolute bias, i.e., the absolute value of CV estimate minus test error in each simulation.
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Table 4: HEWA1000: model classification test error rates (targets) and 9-fold CV estimates thereof
(best estimates in each column in bold). BLCV-range, BFCV-range, and IBCV-range set the tuning
parameters a priori based on the maximum semivariogram range of all features. BLCV-best, BFCV-
best and IBCV-best estimates are selected from the best ones, for a peak-to-peak comparison. A dash
means that setting the hyperparameters based on the range gives the best value.

Model Test error KFCV IWCV BLCV BFCV IBCV BLCV BFCV IBCV
(target) -range -range -range -best -best -best

SD
Ridge 0.1700 0.1709 0.1706 0.1664 0.1783 0.1780 - - -
LSVM 0.1720 0.1709 0.1706 0.1678 0.1775 0.1773 - - -
KNN 0.1740 0.1779 0.1777 0.1905 0.1909 0.1906 - - -
RF 0.1740 0.1910 0.1907 0.1964 0.1989 0.1986 - - -
NB 0.1700 0.1729 0.1727 0.1663 0.1678 0.1676 - - -

SI
Ridge 0.2320 0.1890 0.1888 0.2007 0.2173 0.2170 0.2357 0.2411 0.2408
LSVM 0.2280 0.1900 0.1898 0.2047 0.2876 0.2872 0.2406 0.2396 0.2394
KNN 0.2440 0.2180 0.2178 0.2292 0.2628 0.2625 0.2402 0.2383 0.2381
RF 0.2520 0.2120 0.2118 0.2607 0.2692 0.2689 - 0.2365 0.2363
NB 0.2440 0.1950 0.1948 0.2043 0.2110 0.2107 0.2424 0.2441 0.2438

SD + CS
Ridge 0.2140 0.1709 0.2400 0.1644 0.1783 0.2526 0.1976 0.1997 -
LSVM 0.2040 0.1709 0.2430 0.1678 0.1775 0.2489 0.2055 0.2035 -
KNN 0.2080 0.1779 0.2533 0.1905 0.1909 0.2649 0.2186 - -
RF 0.1840 0.1910 0.2706 0.1964 0.1989 0.2789 - - -
NB 0.2160 0.1729 0.2469 0.1663 0.1678 0.2393 0.1984 0.2037 -

SI + CS
Ridge 0.2420 0.1709 0.2239 0.1644 0.1783 0.2370 0.1976 0.1997 0.2384
LSVM 0.2540 0.1709 0.2245 0.1678 0.1775 0.2334 0.2055 0.2035 0.2544
KNN 0.2440 0.1779 0.2370 0.1905 0.1909 0.2484 0.2425 0.2406 -
RF 0.2540 0.1910 0.2507 0.1964 0.1989 0.2572 0.2322 0.2453 -
NB 0.2640 0.1729 0.2289 0.1663 0.1678 0.2222 0.1984 0.2037 0.2546
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