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ABSTRACT

Additive manufacturing (AM) is a rapidly growing technology within the industry and education sectors. Despite this,
there lacks a comprehensive tool to guide AM-novices in evaluating the suitability of a given design for fabrication
by the range of AM processes. Existing design for additive manufacturing (DfAM) evaluation tools tend to focus on
only certain key process-dependent DfAM considerations. By contrast, the purpose of this research is to propose a
tool that guides a user to comprehensively evaluate their chosen design and educates the user on an appropriate
DfAM strategy. The tool incorporates both opportunistic and restrictive elements, integrates the seven major AM
processes, and outputs an evaluative score and recommends processes and improvements for the input design. This
paper presents a thorough framework for this evaluation tool and details the inclusion of features such as dual-DfAM
consideration, process recommendations, and a weighting system for restrictive DfAM. The result is a detailed
recommendation output that helps users to determine not only “can you print your design?” but also “should you
print your design?” by combining several key research studies to build a comprehensive user design tool. This
research also demonstrates the potential of the framework through a series of user-based studies, in which the
opportunistic side of the tool was found to have significantly improved novice designers’ ability to evaluate designs.
The preliminary framework presented in this paper establishes a foundation for future studies to refine the tool’s

accuracy using more data and expert analysis.
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1. INTRODUCTION

Additive manufacturing (AM) is rapidly growing in industry, academia, and medicine as a technology to both
prototype and manufacture end products. In 2014, AM’s market worth was around $4 billion and is expected to reach
$23.33 billion by 2026 [1], [2]. AM offers many benefits when compared to traditional manufacturing (TM), such as
geometric complexity, functional material grading and mass customization. Therefore, many designers and engineers
are adopting or transitioning to the new technology in order to leverage its potential benefits for their products [3].
However, to ensure the maximum potential of these designed products, it is crucial that engineers consider design for
additive manufacturing (DfAM). Though understanding of DfAM is evolving quickly, it is still considered an
emerging field. Currently, TM processes still dominate in most industries due to high upfront costs of entering the
AM product landscape and a general lack of knowledge in how to incorporate the AM technology into the design and
manufacturing process [4]. Additionally, while creating complex geometries suitable for AM is possible, the current
approaches require applicability that is not yet fully defined [5]. There is still ample room for expansion in using AM;
in design contexts where it is appropriate, AM can be cheaper, faster, and more sustainable [6] than traditional
subtractive manufacturing. Additionally, there is yet another realm where AM serves as simply one of numerous
options to be considered alongside traditional manufacturing techniques. Such design with AM is beneficial when AM
acts as an initial step on the way toward using more traditional manufacturing techniques (e.g., using material extrusion
to create a form-and-fit test prior to investing in injection molding tooling). While not the central focus of this paper,
design with AM serves as a relevant corollary to design for traditional manufacturing and DfAM.

Despite the AM spread, specific guidelines for new users still lack. Designers are challenged with a lack of
knowledge of AM capabilities, process-related limitations and constraints and their effects on the final product.
Because of this, there is a need for new methods to assist in selecting ideal AM process settings, associated materials,
or appropriate designs for a given AM process [7]-[9]. This is further compounded by AM's growing popularity: a
wide span of people, ranging from middle-school students to senior engineers, are showing interest in 3D printing.
Both academia and industry need generalized guidelines [10]. With AM continuing to diffuse into many industries
and STEM curricula[11], it is imperative that a comprehensive and effective tool is presented to novice designers to
allow them to effectively evaluate parts. The design guidelines and tools that have long served TM processes may no
longer be relevant or useful for AM because parts created using these new DfAM principles are geometrically

contrasting to their TM counterparts.
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The purpose of this research is to establish an initial framework capable of providing comprehensive guidance to
novice designers in understanding the benefits and limitations of AM. The framework aims to achieve this by
providing tailored outputs for individual designs through scoring systems and design recommendations. Though a
range of design evaluation tools have begun to arise in research [3], they offer a piecemeal approach to design
evaluation, often limited in the DfAM rules that they consider or in the AM process types that they incorporate
guidance for. By developing a more comprehensive approach that can accommodate a range of AM process types
along with an expansive view of DfAM, the likelihood of successful and meaningful prints should increase. This
framework is then evaluated through an initial user-testing study where both novice and expert designers evaluate a
series of designs for AM appropriateness with and without the proposed tool. The output scores from the use of the
framework are compared to the self-evaluation scores without the framework to determine (1) consistency across
expert groups, (2) if the novice group is collectively advanced towards the expert group, and (3) if the novice group’s

internal consistency is improved. These results will be presented and discussed, with potential future work outlined.

2. RELATED WORK

Design for AM literature has emphasized the need for a shift in design thinking when utilizing AM processes
over traditional manufacturing processes. Research has outlined that product innovation and design methods that were
previously used need to be revamped to be applicable to the AM procedure [12]. Initial research observed the trend of
AM moving towards end product manufacturing and the need to reconsider traditional design methods during or before
the initial design stage [13]. With the unprecedented possibilities that AM offers as well as the added limitations, it is
crucial to recognize that conventional design for manufacturing steps may hinder the advancement of AM within the

design space.

2.1 Considering the Duality of DFAM

While traditional design for manufacturing approaches tend to guide designers in side-stepping the limitations
inherent in traditional manufacturing processes, DfAM, by contrast, challenges users to consider both the opportunities
and restrictions that AM poses to design. Laverne et al. [14] identified these two sides of DfAM and was the first in
defining the concept of Restrictive DFAM (R-DfAM) and Opportunistic DFAM (O-DfAM). Within the design making

stage, traditional design for manufacturing methods do not apply to the AM design process and new methods are
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essential in the creation of innovative design solutions. R-DfAM has been emphasized in a significant amount of
ongoing research and aims to outline AM-specific limitations and presents design rules that ensure manufacturability
[15]. R-DfAM can be seen as a set of guidelines that maximizes the quality and expected outcome of a print by
accommodating process limitations. These limitations are inherent in the fundamental difference of layer-wise
manufacturing when being compared to conventional subtractive processes [16]. However, limitations within AM
vary process-to-process due to the fundamental differences in the technologies. For example, the consideration of
support materials in overhangs or self-supporting angles is negligible when dealing with most powder-based processes
as layers are being supported by loose powder [17], [18] whereas in material extrusion supports must be present to
hold up deposited layers of material. Conversely, access to cavities or crevices may be a greater design concern for
powder-based than other processes due to the presence of loose powder during the print.

On the other side, O-DfAM is a series of considerations intended to lead designers to optimize their part and
leverage the benefits of AM. AM offers an array of opportunities that was not previously possible with TM, such as
utilizing generative design tools (topology optimization, lattice structures, biomimicry), mass customization, and
monolithic multi-material structures [19]. Despite the benefits AM has to offer, its consideration in the design space
is currently limited in contrast to R-DfAM which may hinder the overall adoption of AM. This can generally be
attributed to a lack of knowledge in how to fully integrate and optimize the process into existing work flows [20],
generally requiring designers to understand when their design is worth creating with AM. Similar to R-DfAM, various
processes can offer varying opportunities. For example, embedding components is possible for low-temperature
processes such as material extrusion, but high temperature processes such as DED are not able to take advantage of
this feature [21].

A dual-DfAM approach combines the concept of both “should I print this” (O-DfAM) and “can I print this?” (R-
DfAM) to consider both sides of this new design thinking. This dual-DfAM design approach is holistic in that it
encourages designers to maximize the utility of AM while considering the limitations within the design space. Pradel
and coauthors offer one of the most extensive investigations of how such dual-DfAM currently manifests across the
field of DfAM study [22]. They performed a critical review of 81 articles to establish a framework centered on the
role of DFAM when considered across a generic design process, including in the conceptual design, embodiment
design, detailed design, process planning, and process selection stages. Despite the significance for innovation, dual

DfAM methods only account for approximately 30% of existing DfFAM methods in research [14]. However, the
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benefits of dual-DfAM consideration are becoming clearer. For example, in educational settings, students trained in
dual-DfAM produce more useful, unique, technically good and overall creative designs than those with only R-DfAM
education (within a competition-structured DfAM task) [23]. Despite the quantity of research in presenting and
demonstrating the importance of rethinking design in the face of AM, there lacks a methodology to support designers

in comprehensive consideration of dual-DfAM when evaluating the suitability of designs for AM.

2.2 Existing DFAM Evaluation Approaches

There are several emerging design tools that accommodate the growing need to support novice AM designers in

the evaluation of candidate parts for printing. However, these tools often provide narrow process scopes and focus on
either the opportunistic or restrictive side of AM rather than utilizing a holistic approach with dual-DfAM.
Certain tools allow designers to evaluate their designs through a rapid, intuitive scoring system. Booth [10] presents
a tool to allow user to quickly analyze printability of designs in order to reduce the number of printing and prototyping
failures. The user is presented with a physical worksheet that prompts them to interact with 3-point or 5-point scales,
with a predominant focus on R-DfAM elements. There are § elements of which each element is equally weighted. The
user sums their selections and utilizes a key to determine the necessity of redesign. There are elements of opportunistic
evaluations present with certain starred ratings indicating consideration of a different manufacturing process, but there
is no direct ranking of the opportunistic side. After the worksheet was implemented, both the rate of print failures and
reprinted parts fell roughly 40%. Bracken [24] presented a similar tool catered specifically towards Powder Bed Fusion
design analysis. The user is presented with a three-point scale in which they score either 1, 3 or 5 depending on how
restrictive their design is. This worksheet freely uses specific values within the questions as it is catered towards a
single process. When utilized in a design workshop, 77% of respondents either agreed or strongly agreed that this
worksheet was useful for design for AM.

On the other end of the spectrum, there are tools that cater towards the opportunistic side. As an example, design
heuristics cards can be used to educate designers on how to take advantage of O-DfAM to improve their designs [25].
These heuristics include a series of figure and text-based cards to inspire designers with process-independent design
methods to maximize the capability of AM during the idea generation stage. The cards present case studies as well as
a description of each opportunistic element. Such heuristics positively impact the generated designs by novice

designers and are found to be more effective at communicating DfFAM concepts in the early phases of re-design than
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a lecture on DfAM alone. A similar approach by Perez [26] presents users with design principles containing textual
descriptions, simplified visuals and a real world example. In early-stage design, the cards were found to significantly
improve the quality and novelty of users’ ideas and assist in innovative ideation. Additional studies showed the
effectiveness of these cards in producing significantly improving the novelty and quality of ideas [27].

Computational and automated tools have also been presented to cater to this growing need of early stage design
evaluation for AM. Kumke [15] presents a criteria-based evaluation tool which recommends appropriate design
methods in the context of conceptual DfAM and is further aided by digital and physical models to assist in visualizing
the design concepts which simplifies the Semantic network of the wide array of AM design potentials. Novice
participants in a design workshop, however, perceived this tool to contain too much design information and may be
overwhelmed. Yang further extends the idea of automating the identification of relevant AM part candidates [28].
Specifically, machine learning was used to establish a more efficient screening system that reduces the experience-
dependency seen in other decision support systems. Many emerging frameworks aim to provide process
recommendations to the users, but require post-design knowledge such as production quantity [29], material cost [30]
or surface roughness [30], [31] which limits the user accessibility and further complicates the approach for novice
users. The fundamental dual-DfAM design approach presented will be utilized as a foundation for how the tool is
constructed and previous DfAM evaluation approaches will be utilized to provide inspiration and support for various
aspects of the tool.

As presented, there are a variety of approaches and growing research in the field of DFAM education and design
analysis tools for AM. Generally, the research and approaches have targeted specific areas of DfAM, such as the
DfAM heuristics (O-DfAM) or the Booth worksheet (R-DfAM). However, there is yet to be a comprehensive approach
that combines the benefits of previous work to give designers a holistic and easy-to-use tool to evaluate both can a

part be printed and if'it should be printed. The next section outlines a novel framework for such a tool.

3. PROPOSED DECISION FRAMEWORK

This paper presents a solution for a framework that builds upon prior research and improves upon the previous
points in Section 2. The solution assumes users to be AM novices or perhaps intermediate users of AM technologies;
that is, users who understand the basic concepts behind AM, especially for the material extrusion process, but lack

extensive understanding of DfAM. Given a design tool generated from the proposed framework, this solution further
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assumes that users can manipulate, visualize, and select the appropriate options on the tool with little to no difficulty

and does not thoroughly accommodate for those users who may face difficulty in working with the tool. These

assumptions, though limitations of this work, were necessary considerations to incorporate key features that enable

interactive, self-guided, and holistic DfAM decision making. Specifically, this proposed framework aims to

incorporate the following features to support the DFAM decision making process:

e Dual-DfAM Approach: Implement both restrictive and opportunistic elements to utilize a Dual-DfAM approach
for a more holistic evaluation if AM is an appropriate approach.

e  Weighing System — Features: Implement a weighting system that more accurately evaluates the importance of
each design element rather than assuming each element is of equal importance.

e  Weighing System — Process: Implement a weighting system that accounts for variation in elements across process
types rather than assuming each element is of equal importance between different processes.

e Process Agnostic Language: Implement a set of questions that relate to elements using process-agnostic language
to ensure the tool has a wider usability.

e Feature Based Evaluation: Leverage a feature-based approach that enables a wide range of use cases by focusing
predominately on the geometry of the design rather than the way in which it is being used.

e Inclusion of Visual Aids: Increasing the user engagement and detail of the tool by providing manipulable 3D
models as detailed and clear visual aids to accompany each response level in a question.

e Transparent Design Recommendations: Generate a series of detailed redesign recommendations based on user
input to provide score transparency and informative outputs.

e Standalone Digital Framework: Integrate all the above features into a single approach via a digital application.

This also enables automation of any required calculations to increase simplicity and increase usability.

Each of these features, as well as how they are both measured and determined to be successful, are collected
in Table 1. Additional detail on each feature is presented in the subsections that follow. The high-level structure of the
framework that encompasses these features is shown in Figure 1. It outlines the major segments of the framework that

enables an input design to be evaluated and scored.



Table 1. Identification and Evaluation of Framework Features

Framework Feature

Evidence of Inclusion

Success Threshold

Dual DfAM Approach

Number of questions related to
each O-DfAM and R-DfAM

Less than 50% difference in
number of O-DfAM and R-DfAM
questions

Weighting System — Features

Quantitative feature weighting
value associated with
individual R-DfAM questions

All R-DfAM questions have a
weighting value associated with
them

Weighting System -- Processes

Quantitative process weighting
value associated with
individual R-DfAM questions

Each R-DfAM question has a
weighting value for at least 5 of the
7 main AM process types

Process-Agnostic Language

Multiple-choice questions with
absence of quantitative values

3+ response levels offered as
options for each question

Feature-Based Evaluation

Questions can be answered
without context beyond the
provided geometry

All O-DfAM and R-DfAM
questions can be addressed through
the geometry

Inclusion of Visual Aids

Manipulable visuals
accompany the R-DfAM and
O-DfAM questions

All questions include 3D visuals of
each response level and can be
rotated at minimum 360 degrees in
the XY

Transparent Design Recommendations

Final output includes
numerical percentage and plain
language recommendations

O-DfAM and R-DfAM categories
each result in a score between 0-
100% that is explained in plain
language

Standalone Digital Application

All framework features are
combined into a self-contained
digital application

Digitized framework requires no
external feature dependencies to
make informed DfAM
recommendations

Restrictive ("Can | Pnnt

This"™) & Opportunistic
("Should | Print This™)
Scores

DIAM
Questions

Initial Design

DfAM Scores,

Process

Design Improvement
Suggestions

Redesign

User Assumptions:

1.Has initial STL file

2.Knows boundary conditions.

3.Has initial build onentation chosen.

4. Has access (0 known AM processes.

Individual AM
»| Process Type
Scores

design

Figure 1. Overall framework flow.

AM relevance to
5 design

Rankings &

Reccomendations

User Redesigns |

Final Design

& Process
Selection

Top AM processes
relevant to specific
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As shown in Figure 1, the user starts with their early-stage initial design. The fidelity of the provided design is
flexible, though the initial assumption in the framework is that the designer can provide a preliminary STL file. The
design features are evaluated in the framework via an R-DfAM question set and then an O-DfAM question set. The
user can respond to each question using a 3-point scale which determines the design’s suitability along the spectrum
of R-DfAM and O-DfAM. As the user enters each response, the framework calculates R-DfAM scores, O-DfAM
scores and after the last question a final Restrictive score and an Opportunistic score is output to the user to indicate
the relevance of AM to their design input. In answering each question, the framework simultaneously generates
specific design improvement suggestions based on the user’s input for each question. Lastly, in utilizing a pre-
determined weighting system for AM processes, specific processes are ranked and recommended to the user for their
design. Final recommendations compiled and output to through in a digital format. Based on the tool output the user
can choose to either redesign the part and restart the process or proceed with the print. The following subsections
present each of the key features inherent to the novelty of the approach and provide additional detail to support its

relevance to the proposed framework.

3.1 Inclusion of Dual-DfAM

Laverne’s study [14] presented that dual-DfAM methods are the most suitable within an innovation context as
they are correlated with a systemic level of product description. Prabhu [23] concluded that in a study, students with
dual-DfAM knowledge generated ideas with “higher technical goodness and overall creativity compared to the
showcase-structured task.” Considering this, it is important to establish a framework that evaluates using a dual DFAM
approach.

While it is crucial to educate and inform the user on if their print can be printed within the confines of AM
limitations, it is also very important to realize that there are often cases in which AM is not the ideal manufacturing
method to use. To account for the needs of both R-DfAM and O-DfAM, the proposed framework includes the 17 dual-

DfAM considerations presented in Table 2.

Table 2. Dual-DfAM Considerations Included in Framework.

Restrictive DFAM Opportunistic DFAM
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Internal Access Geometric Complexity — Freeform/Organic Structures
Geometric Complexity —
Unsupported Features — Overhangs
Lattice Structures
Unsupported Features — Bridges Customization
Unsupported Features — Part Consolidation —
Self-Supporting Angles Monolithic Assemblies
Cross-Sectional Geometry — Part Consolidation —
Sharp Corners Assemblies with Relative Motion
Cross-Sectional Geometry — Size/Area Multiple Materials
Small Features Embedded Internal Components

Cross-Sectional Ratio

Surface Accuracy

Structure Anisotropy

The considerations featured in Table 2 were selected through consideration of previous R-DfAM and O-DfAM
tools presented throughout this paper, as well as previous work performed by the authors of this paper. Upon
validating the proposed framework, future work may derive more restrictive and opportunistic DFAM concepts from
other established tools to improve Table 2. In addition, Table 2 omits advantages related to the economic benefits of
small batch sizes in AM so that the considerations remain, crucially, functionality-independent; this ensures a feature-
based approach, where the evaluator does not necessarily need to know the actual use case for the final product, only

the information that is contained in the STL file.

3.2 Feature-Based Approach

To maximize the tool’s generality, users score their designs on the absence or presence of geometric features
rather than how the design will be applied in use. Such feature-based approaches are demonstrated in prior DfAM
research. Zhang [32] presents a multi-attribute decision making process in which part orientation is optimized and

examines a ranking method based on expert evaluations and accommodates individual user requirements. Similarly,
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Tedia [33] presents a method in which a three-dimensional voxel array is evaluated for infeasible features, minimum
feature size, support material, orientation and manufacturing time for different build orientations and was successful
in accurately analyzing build time estimations utilizing its feature-based approach.

By establishing the proposed framework around a similar feature-based approach, this ensures that the tool is
context-agnostic and can be applied to a wider array of designs. By removing context of a design’s use, it does not
confine the tool and its’ questions to specific conditions, and it enables anyone within a product cycle to evaluate a
design’s printability. However, emphasizing only a design’s geometric features in the evaluation framework is not
without its limitations. By removing the use case consideration, you may limit the scope as to how appropriate AM is

for a specific design.

3.3 Question Language

Each question in both the restrictive and opportunistic section presents a different element for the user to analyze
their design. The question inquires the user on the presence of specific features present in their design. Since this tool
is being developed to be accessible by AM novices, certain questions have additional descriptions that explain what
the elements mean to reduce any knowledge barriers.

Previous approaches have incorporated both 3- and 5-point scales for user input [10]. This tool presents a solution
in which the user is presented with a 3-point scale (with answers nominally denoted as a, b, and ¢) for every question
presented to the user. Owing to those previous approaches, and other use of scales in similar tools [24], this tool
maintains a similar structure for the questions which provides sufficient resolution for early-stage design. Each

9

restrictive question follows a general format of answer option “a” increasing the difficulty of the print success and

9

answer option “c” reflecting minimal effect on printing difficulty as shown in Figure 2.

Unsupported Features — Overhangs
Q2: Does your part have overhangs? Overhangs are geometries
that stick out mid-air and are only supported on one end.

a. The part generally has long overhanging features

b.  The part generally has short overhanging features

c.  There are no overhanging features

Figure 2. Restrictive question example.
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While previous research into evaluation worksheets have opted for specific numerical values throughout the R-
DfAM evaluation questions, doing so limits the tools applicability to the wide range of available AM processes. As
such, the language used in this framework avoids specifying certain metrics that may be process specific, as shown in
Figure 2. However, when general consistency exists across processes, a numeric value can be utilized to define an
initial boundary for the user while still maintaining a scope to maximize process agnosticism.

The opportunistic questions follow a similar format (Figure 3) in which answer option a does not leverage the
benefits presented by AM and answer option “c” maximizes the benefits of AM. Again, the language and structure

of these questions are presented in a way that does not actively focus on a single process. The language here not only

provides relevance to the question but guides the user in the DfFAM process.

Geometric Complexity — Lattice Structures
Q12: Does your part leverage the geometric complexity offered by AM such
as internal lattice structures?
a. The part is comprised of fully dense, continuous material.
b.  The part uses lattice structures to reduce material use in areas
with minimal loading.
c. The part relies heavily on lattice structures throughout, with
density adjusted based on loading.

Figure 3. Opportunistic question example.

3.4 Interactive Models

Another key factor included within this framework is the refinement of the visual representations of each option.
Previous restrictive DFAM worksheets present a solution in which the focus of each element is presented via text, with
low-fidelity sketches to serve as a visual aid [10] [24]. Design heuristics cards focus more on the visual aspect with
more detailed, colored, and real-world examples to convey each opportunistic element at a high level [25].

The approach presented in the current paper attempts to bridge the benefits offered by existing tools and further
refine the advantages of visual aids as both an educational tool for novices and one that clearly communicates the
definition of each element and option. Visual learning has been extensively studied and proven to promote user
interaction, improve information retention and increase content clarity. Presentation modalities for heuristics are

explored and research [40] has shown when given 3D models representing modalities, experts were shown to produce
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higher novelty redesigns of parts. These studies motivate the focus on presenting clear and concise visuals within the
early-stage design process.

As shown in Figure 4, the framework presents the user with 3D models that correspond to each answer choice. A
specific model was generated and modified for each answer choice to provide a unified example for each question.
These models were generated internally by DfAM domain researchers to represent an idea of the final application.
They provide the user with a clear and concise representation of the element to reduce ambiguity and allow the user

to interpret each element quicker. These models can be interacted with by the user, which allows them to pan, zoom

and rotate around the build plate.

Figure 4. Interactive model example.

This added layer of interactivity presents additional information to the user and may create a more engaging tool.
Alvarez [34] showed that for a specific academic class, 100% of the students were satisfied with the inclusion of 3D
models in their learning environment and believed they were useful to their education. Similarly, Taleyarkhan [35]
investigated the impact on students’ CAD utilization in design projects and found that the utilization of this method
helped individual students progress from beginner designers towards adept and informed designers across several
design strategies by exploring concepts through a three-dimensional space. This previous work supports the benefit

of including 3D models within the framework to complement the existing renders shown previously.
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3.5 Scoring

The scoring systems from previous worksheets assume that each DfAM element has equal importance when
determining print success. This framework differs in that a weighted system is incorporated between elements. Due
to the technical limitations and benefits of certain processes, it cannot be assumed that when observing the entire AM
landscape, each design consideration is of equal importance across different AM processes. For example, with powder-
based processes such as binder jetting, there is a minimal design consideration for support structures because the loose
powder supports each layer [17] whereas with most other processes support structures are required due to the method
of deposition [36]. Furthermore, within the process itself, the design considerations may vary in importance. With
binder jetting, support structures require minimal consideration within the design stage. However, since the process is
powder-based, improving internal access requires greater design consideration within the context of just binder jetting
[37]. Therefore, it is important to build a tool that both considers every process and accommodates the differences
between considerations, it is important to construct a weighting system.

To further investigate this process variation and to identify preliminary weights for a range AM processes, a
survey was internally distributed to a series of AM domain experts. They were asked to identify the AM process they
considered themselves to be an expert in and independently weigh each restrictive element found in Table 2 from 0-
10 for their chosen process, where a score of 10 denotes a restrictive consideration that is essential for a given process
and a score of 0 suggesting that the consideration is not at all important. After all scores were collected from each
expert, all scores for each restrictive element were averaged across process types to arrive at the values shown in Table
3. In this way, the average score for the restrictive element acts as a signifier for how important that element is broadly
considered to be by experts across all AM process types. Despite being an average score for all process types, for the
initial testing of this framework, the values shown in Table 3 are utilized for the restrictive scoring. As the table shows,
there is variation across the AM landscape for various restrictive elements. Unfortunately, in the current DfAM
landscape it is difficult to recruit domain experts across all seven main AM process types, especially for those
processes that are less commonly utilized (e.g., sheet lamination). Because of this, the values in Table 3 are an average
of expert assessments across all process types (i.e., the restrictive scores of powder-bed fusion experts were also
averaged with those of material extrusion experts). Though this limits the usefulness of the tool in identifying
restrictive DfAM nuance between processes, the fundamental approach underpinning the collection and use of these

weights presented in this study can be used to expand the collection of inter-process data in future work. Although
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these scores are preliminary and would require more data to accurately represent the elements, the initial values already

demonstrate the need to account for restrictive DfAM variability across AM.

Table 3. Results from expert analysis AM study.

Restrictive Element

Average Weighting Factor

Improving Internal Access 6.57
Increasing Minimum Feature Size | 6.30
Reducing Overhangs 5.78
Reducing Bridges 5.87
Increasing Self-Supporting Angles | 5.35
Increasing Surface Accuracy 5.33
Reducing Structure Anisotropy 5.22
Increasing Cross-Sectional Ratio 4.70
Reducing Cross-Sectional Area 4.35
Reducing Sharp Corners 3.79

3.6 R-DfAM Scoring Weights Implementation

The proposed framework begins with evaluation of R-DfAM considerations. The overall flow of this section is

outlined in Figure 5. It outlines the tool’s process at each question where the user’s answer (a, b, or ¢) multiplies the

overall restrictive score (Table 3) for that question and the individual process scores for that question, and continuously

sums the scores throughout the restrictive section.
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Figure 5. Restrictive flow.

As the user selects each option (a, b, or ¢) which corresponds to an answer score (1, 2 or 3). This answer score is
multiplied with the expert weights (Table 3) for that specific question to produce a weighted answer score. For
example, if the user selects b for reducing overhangs, that question will have a score of 11.56 (5.78 * 2). As the user
continues to answer each question, the output of each question is cumulatively summed each time, until they submit
the last restrictive question. To output the value as a percentage (Ry) to the user, the value is normalized between the
minimum and maximum possible sum of weighted scores, where the minimum score (Rmin) is determined by
answering ¢ for every question and the maximum score (Rmax) is obtained by answering a for every question. Equation

1 shows this calculation.

Ry, = 100 — (—=Fmin_ , 100) (1)

Rmax— Rmin

Simultaneously, the individual process scores obtained through the survey are multiplied by the same answer score
(1,2 or 3) and cumulatively summed after each response. This will output a list of raw summed scores for each process

which are then ranked (from lowest sum to highest) to recommend processes to the user.

3.7 O-DfAM Process Elimination
Unlike the restrictive elements, which incorporate an expert-derived weight for each question, each O-DfAM
question specifically has an equal weight. The reasoning behind the different approach for this is that O-DfAM has

no clear hierarchy of importance because it has no objective measure of print success, unlike R-DfAM, where direct
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causality can be established between design features and the likelihood of build failure. Figure 6 displays the overall

flow of the opportunistic section of the framework.

a  |-(3x)
Process
Rempval (If o
Overall AM - Applicable) rocess
Score Opportunistic b |l Specific
o Question N Weight for
Opportunistic
(Opportu ) Question N
—
[ {1x)-

Add Output, Store Reccomendation (If Applicable)

Figure 6. Opportunistic flow.

Though it isn't subject to the same weighting scheme as restrictive, there is still the potential that a particular AM
process might be removed from consideration due opportunistic elements not being technically possible or feasible
using a specific AM process. Table 4 displays processes that are removed in this tool at specific questions, with

references for each process.

Table 4. Process removals during opportunistic analysis.

Multiple Materials Embedded Internal Components
VP [38]
Processes PBF,
BJ [39]
Removed DED [41]
PBF [40]

3.8 Numerical Recommendation Ranges
As described earlier in the section, the tool outputs percentage scores to the user for both R-DfAM and O-DfAM.
To assist in the evaluation of their design, the framework output also includes a key as with previously published

worksheets [10], to help the user interpret the meaning of these percentages.

The following is presented for the restrictive section:
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e 0-59% Major redesign required

e 60-79% Some redesign required

e 80-100% Will likely print with few issues

The following is presented for the opportunistic section:
e 0-19% Consider other processes/adding features
e 20-29% AM is a good candidate

e 30-100% AM is a great candidate

The above values are a preliminary estimation of what might be presented to the user. The values themselves are
indicative of the current climate of DfAM, in which R-DfAM dominates and O-DfAM has a much lesser consideration
in the current design space [14]. In Section 4, an initial study reveals a more empirical presentation of this scale, as

well as a potential method to produce these values.

3.9 Digital Format

As presented throughout this section, there are various features that are included in this tool. To maximize
usability and interactivity, simplify the tool, and effectively include each attribute, a digital format is the ideal way to
communicate each of the previous tool functionalities to the user. To produce a prototype, a concept was produced
via Qualtrics, an online survey builder. Custom HTML, JS, and CSS were injected into the survey to provide all the

required components. Figure 7 displays the UI presented to the user.



20

Does your part have any curved surfaces oriented
perpendicular to the build plate?

- | Almost all curved surfaces are oriented perpendicular to the build plate.

b Some curved surfaces are oriented perpendicular to the build plate.

C No curved surfaces are oriented perpendicular to the build plate.

Figure 7. DfAM tool user interface with 3D models.

From a front-end perspective, the digital app allows the user to interact with each question, one at a time, to allow
them to focus on each element individually. This added layer of interactivity with a digital tool can produce more
positive learning motivation and more positive effects on learning outcome [42]. Furthermore, cognitive fit theory
proposes that when the representation (information visualization) of a problem more closely fits the problem-solving
task, there is an improvement in the accuracy and speed of the problem/decision-solving process [43]. The higher
accuracy of visualizations through clear images and 3D models will provide greater detail that will allow designers to
more accurately problem solve within the design stage.

Furthermore, in digitizing the tool, it is possible to automate the variety of added calculations that are being
included in the framework allowing the user to focus on the primary task. Additionally, the generation of the output
(workable DfAM scores, ranked process list and potential re-design recommendations) can also be generated,

providing the user with a practical and straightforward result. Potential outputs are shown in Figure 8, in which a
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positive restrictive and negative opportunistic score is shown, with a plain language presentation of the score’s

significance.

Your Restrictive "Can I Print This" Score is: 83%

The print will likely encounter no issues.

Your Opportunistic "Should I Print This" Score is: 14%

Consider using other manufacturing processes or adding features to increase your score.

Figure 8. Example of potential tool output.

This section has provided a detailed overview of a novel design evaluation framework. It builds upon previous
literature and combines various approaches to provide a comprehensive tool for novice designers to accurately
determine if their part can and should be printed. It provides features not previously represented in a tool of this nature,
with a digital interface, dual-DfAM approach and expert weighting system. However, there is still a need to robustly

validate the usefulness of the tool through user studies, in a way that most existing tools have not yet been validated.

4. FRAMEWORK APPLIED IN PRACTICE

Given the existing body of research, and the proposed design tool structure presented in Section 3, it is crucial to
evaluate the effectiveness of the tool when evaluating designs to be additively manufactured. An experiment was
developed to test the effectiveness of the proposed digital DfAM tool. The experiment consisted of two parts: (1) a
control survey in which participants were shown a series of designs and asked to evaluate how appropriate each design

was for AM and (2) a survey in which different participants were shown the same designs and asked to evaluate the
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designs using the proposed digital DfAM tool detailed in Section 3. The study was reviewed and approved by the

Institutional Review Board, and implied consent was obtained from the participants prior to the experimentation. Both
surveys included a pre-survey demographic collection in which participants were asked to provide demographic data

as well as information regarding their experience with AM.

4.1 User Study Design

To accurately evaluate the hypotheses, the study required responses from participants in both the novice and
expert levels of AM for the two surveys (with and without the use of the DfAM tool). The novice pool was obtained
from first year engineering students from a large northeastern university, while the expert pool was expanded to
universities and institutions worldwide, given the challenges associated with identifying a sufficiently large expert
pool at a single institution. To identify a participant’s expert level, the following prompt was given within the
demographics section of both surveys: “Select the option that most closely resembles your comfort level with 3D

printing:” with the following experience level options (this scale has been validated in a previous research study [44]):

(1) Thave never heard about 3D printing

(2) Thave some informal knowledge about 3D printing

(3) Ihave received some formal 3D printing training

(4) Ihave received lots of formal and/or informal 3D printing training

(5) Tam an expert in 3D printing and can proficiently manufacture parts

Table 5 displays the responses for both surveys by experience level. At this point the distinction between expert
and novice was made that responses 1 - 3 represented the novice class and responses 4 and 5 represented the expert
as early survey responses indicated very few individuals who met the first group criteria, with most individuals having
a general understanding of the concept of AM. While the number of responses in Table 5 may appear to be unbalanced
across the two surveys, the DfAM tool survey required a greater investment from participants than the control survey
and thus generated collected fewer design evaluations per respondent. It is important to note that the survey does not
ask evaluators to describe which AM process types they are basing their responses on; it is likely that many

respondents, especially at the lower levels, are basing their knowledge entirely on the material extrusion process. Such
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knowledge may not fully translate to other AM process types, which could affect the results of the tool’s deployment.

In future work, the research team will look to expand the amount of detail to be supplied by evaluators to better

understand which process they may be envisioning when conducting their evaluation.

Table 5. Survey Respondent Totals

Control Survey DfAM Tool Survey
Novice Total 90 217
Expert Total 44 68

A series of 24 designs were produced for use across both surveys. The designs were self-rated by participants in
the control survey and the same set of designs were presented to the second group of participants in the DfAM tool
survey. The designs were presented to the participants in the form of a manipulable 3D object.

The first 12 designs varied elements that correspond to restrictive DfAM and the latter 12 varied opportunistic
elements. The designs were first presented to and reviewed by a group of AM experts. To capture a wide variety of
design feedback, the degree of restrictive and opportunistic DFAM varied across all the designs, presenting some
participants with a design that would be suitable for AM and some with a design that would not be. Figure 9 shows

example designs of varying levels of quality from both the restrictive and opportunistic sets.
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Figure 9. Examples of restrictive (upper 3) and opportunistic (lower 3) design examples

4.1.1.  Control Survey

The control survey was developed to evaluate how both novice designers and expert designers evaluate parts to
be 3D printed without the aid of the proposed digital DFAM tool. With this data, the variation within the novice and
expert designer groups can be evaluated for specific designs as well evaluating the difference between the novice and
expert groups for those designs.

Participants were shown and asked to rate a set of 4 designs relating to restrictive design elements and a set of 4
designs relating to opportunistic elements, providing 8 data points per participant. The order in which the restrictive
and opportunistic sets were shown to participants was randomized to reduce order bias. Participants were shown each
design one at a time and prompted the user to rate the design on either a restrictive design scale or opportunistic design
scale. The participants were informed to answer questions specific to material extrusion; a brief description of the
technology was included for novice participants. Figure 10 displays an example of a question presented to the user —
the left shows a restrictive question, the right shows an opportunistic question. The user is shown a design which they
can rotate, zoom, and pan in 3D space to fully understand the geometry. Participants are asked to evaluate the design

with 3 options. The language utilized in these options and the number of options is identical to that of the output of
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the digital DfFAM tool, as discussed at the end of Section 3. This allows a more direct comparison of the control survey

with the DfAM tool survey.

For the design shown below, determine if the part should be printed using material

extrusion:
E h: 22118 @

PRI e S iy
g 1

\'\‘ .’( y

For the design shown below, determine if the part can be printed using material extrusion

Other manufacturing
processes should be 3D printing is a good 3D printing is a great
considered or more candidate for this part candidate for this part

. features should be added.
Major redesign would be Some redesign would bs This part could be printed

required to print this part required to print this part as-is.

Figure 10. Example of restrictive(left) and opportunistic (right) question presented to user

4.1.2.  DfAM Tool Survey

The DfAM tool survey was developed to evaluate how both novice designers and expert designers evaluate parts
to be 3D printed with the aid of the proposed digital DfAM tool. Like the control survey, the variation within the
novice and expert designer groups can be independently evaluated for specific designs as well evaluating the
difference between the novice and expert groups for those designs. This will then allow an evaluation to determine if
expert analysis remains consistent with and without the design tool, if variation within the novice group is reduced
when using the design tool, and if novice design ratings are more consistent with expert design ratings when
introducing the design tool.

The DfAM Tool survey was developed by modifying the digital DFAM design tool to include designs from the
set of experimental set on the inset, picture-in-picture on the side the survey screen. The same demographic questions
were presented to the participant as well as a brief pre-survey tutorial and explanation of the overall interface and
designs that the user will be rating. Each participant was introduced to a design from the restrictive set and then
answered the 10 restrictive questions. An example of a question presented to the user is shown in Figure 11. Once
completing the restrictive portion, the participant was introduced to a design from the opportunistic set and completed

the 7 opportunistic questions from the design tool.
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Does your part allow access to
internal cavities?

You are rating this design. a I I b I I [ |

a Internal cavities, channels, or holes do not generally have openings for access.

b The gaps for internal access are generally small and difficult to navigate.

C Internal cavities, channels, or holes (if any) have significant maneuvering
space and are generally easy to access.

Figure 11. Example of DfAM tool survey question presented to the user

4.1 Results of User Study

The data collection took place over a period of 2 months. The control survey collected 536 restrictive and 536
opportunistic design data points. The DfAM tool survey collected 285 restrictive and 285 opportunistic design data
points. The data was exported to MATLAB, where the data was encoded and sorted. This allows an output of average
scores for each design, for both the non-tool and DfAM tool survey, which allows a direct comparison of the two data
sets by mapping the output score of the DfAM survey to a 1-3 scale of the non-tool survey. The percent difference
from the non-tool reported average and the DfAM output average was calculated, using Equation 2, for the expert

class (starting with the restrictive designs).

R, (%DIF) = 100 * A(bs(

Rntool_Rnnon—tool) (2)

ntool"'R"nun—toal)/z

Then, an average of all 12 percent differences was calculated to provide an overall comparison of experts

evaluating them both with the tool and without. The mapping stage was then optimized for both the restrictive and
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opportunistic design sets to provide an expert-informed range for what makes a successful design in terms of restrictive

and opportunistic DFAM. This results in the modified ranges as follows:

The following is presented for the restrictive section:

. 0-16% Major redesign required.
. 17-55% Some redesign required.
. 56-100% Will likely print with few issues.

The following is presented for the opportunistic section:

. 0-15% Consider other processes/adding features.
. 16-58% AM is a good candidate.
. 59-100% AM is a great candidate.

The initial interpretation of these scales contrasts the preliminary estimations on the current state of AM and the
degree to which experts believe the quantity of restrictive or opportunistic elements are important. Our initial analysis
provided a surprising result, that the experts within our study considered the opportunistic and restrictive elements to
have essentially equal importance when evaluating a part for AM appropriateness. This contradicts our initial
assumption that the current state of R-DfAM dominates and O-DfAM has a much lesser consideration in the design
space. This may be due to a variety of reasons. Our initial prediction of the current climate may not have been accurate;
a lack of research involving direct comparisons between these two restrictive and opportunistic spaces limits our

understanding of the true way experts evaluate parts.

Next, to evaluate the accuracy of novice designers when compared to experts, the optimized maps were
implemented into the analysis. The average score for each design was calculated for both the novice and expert classes.
Firstly, the percentage difference was calculated between the control novice group (no tool) and the expert control
group. Next, the percentage difference was calculated between the novices with-tool group and the expert with-tool

group. These two percent differences were compared to determine if the introduction of the DfAM tool reduces the
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gap between novice and expert designers. The average values of these percent differences across the 12 restrictive and

12 opportunistic designs are shown in Table 6.

Table 6. Restrictive and Opportunistic % Differences between Novice & Experts.

Restrictive Opportunistic
Without Tool Without Tool
With Tool (DfAM) With Tool (DfAM)
(Control) (Control)
Expert — Novice
10.3% 12.2% 15.7 3.99
%Dif

Within the restrictive design set, a small increase in percent difference was observed with the introduction of the
tool. A student’s two-sample equal variance t-test was performed to determine the statistical significance of this
percent difference. A non-significant difference between the absence and presence of the tool was found (p = 0.583,
two-tailed). This indicates that there was no significant shift in the novice class towards the expert class when
evaluating the series of restrictive designs. By contrast, within the opportunistic design set, a decrease in percentage
difference was observed with the introduction of the tool. A student’s two-sample equal variance t-test was run to
determine the statistical significance of this percent difference. A statistically significant difference between the
absence and presence of the tool was found (p < 0.05, two-tailed). This indicates that there was a significant
improvement in novice designer ratings of opportunistic designs when compared to experts with the introduction of
the tool.

The reason for this discrepancy leads the way for future research. However, an initial analysis into the questions
themselves may indicate a preliminary area of interest and potential for the future development of such a tool. Figure
12 plots the percentage differences between novices and experts, separating each question. The plot divides the
restrictive and opportunistic questions. As shown, questions two, four and five present higher variations when
compared against the other questions. These questions specifically ask about overhangs, self-supporting angles, and
sharp corner intensity, respectively. One potential reasoning behind this is that there may be an overlap in how the

novice designers interpreted some of the more complex geometry categorizations. When evaluating the overall
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difference between both sections, it is possible that novice designers may find it easier to interpret and spot the

presence of more obvious opportunistic features, such as lattice structures, embedded components, or multi-material

prints than potentially more nuanced restrictive elements.
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Figure 12. Question variation in novice-expert percent difference

Lastly, the same class groups were compared to evaluate the percent difference in design ratings when introducing
the design tool. Here, the expectation is that the percent difference for experts will be lower than novices, as the tool
should be representative of expert analysis without using the tool. Table 7 presents the percentages for both restrictive
and opportunistic design sets. As shown, the results presented confirm our expected results, with experts in both

restrictive and opportunistic sides presenting an average lower percent difference than novices.

Table 7. Restrictive and Opportunistic % Differences between Novice & Experts.

Restrictive Opportunistic

Novice-Novice % Dif Expert-Expert % Dif Novice-Novice % Dif Expert-Expert % Dif

21.1% 10.4% 13.1% 8.88%
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5. CONCLUSIONS AND FUTURE WORK

The framework presented in this paper built upon the functionality of previous approaches in producing a DfAM
tool. As explored through the literature, there are several key studies examining the foundational approaches necessary
to better suit the design process for AM, and previous tools have utilized some of these approaches, but none have
fully integrated several key elements. Dual DfAM was implemented into this tool due to the growing research in
exploring its impact on the design process, and conclusive evidence to assert it outputs more useful, unique, and
technically good designs. A preliminary study showed that AM experts score the importance of various features
differently across their own domain and that there is variation in scores for specific design features across different
processes. Therefore, the inclusion of a novel weighting system was presented and showcased with a preliminary set
of data, which is used in the end-user R-DfAM score. Additionally, this data was utilized to internally score processes
at each stage and output a ranked list of processes which builds on the evaluation that different processes have different
technical limitations or benefits. A user study evaluated both the restrictive and opportunistic sections and found that
at this time, there is not a statistically significant change in novice design evaluation when compared to experts using
the restrictive side. However, the study shows that the opportunistic side was able to significantly bring novices up to
the expert level when evaluating if parts should be printed. Additionally, the output percentages were able to be
categorized by comparing self-evaluations from experts with expert outputs from the DfAM tool. This presents a
method for future work and a preliminary quantification of the current state of both opportunistic and restrictive
DfAM.

While the initial study indicated that such a design evaluation tool can be effective in bridging the gap between
novice and expert designers when evaluating designs for AM, it is crucial to continue the work, specifically on the
restrictive side. A greater sample size should be obtained for experts, which is crucial as this group drives the entire
functionality and categorization of design evaluation outputs. Furthermore, various question languages/content could
be implemented to verify what language and questions should be implemented to reduce ambiguity and variation
across novice users, particularly on the restrictive front. Overall, a greater sample set of both experts and novices
should be utilized to maximize the data points. Because the surveys collected information from 24 designs, the end
data points were relatively limited. Furthermore, both experts and novices were concentrated in a Northeastern US
university, further work should be done to collect a broader range of respondents. As stated throughout the paper, the

need for such a design evaluation tool is growing. The fundamental approach to designing a part is in strong contrast



31

to how parts are traditionally designed. Not only are the core concepts of dual-DfAM important for novice designers
to grasp, but the fundamental design philosophy when using AM shifts the status quo to how parts are designed. DFAM
is centered around design freedom, optimization of performance and functionality, and the ability to quickly iterate
and produce complex parts with minimal material waste. These concepts are critical to STEM based curricula which
incorporate AM or DfAM, and providing a design evaluation tool that effectively captures this new design landscape

will help the designers of the future fully leverage this technology and produce innovative designs.
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