
Creation and Assessment of a Novel Design Evaluation Tool for Additive Manufacturing 

 

Alexander Cayley 

Engineering Design 

The Pennsylvania State University 

301 Engineering Unit B 

University Park, PA – 16802 

alex.cayley@psu.edu 

 

Jayant Mathur 

Mechanical Engineering 

The Pennsylvania State University 

301 Engineering Unit B 

University Park, PA – 16802 

jayant@psu.edu 

 

Nicholas A. Meisel1 

Engineering Design 

The Pennsylvania State University 

323 Engineering Design and Innovation Building 

University Park, PA – 16802 

nam20@psu.edu 

 

  

 
1 Corresponding Author 

mailto:alex.cayley@psu.edu
mailto:jayant@psu.edu
mailto:nam20@psu.edu


2 
ABSTRACT 

Additive manufacturing (AM) is a rapidly growing technology within the industry and education sectors. Despite this, 

there lacks a comprehensive tool to guide AM-novices in evaluating the suitability of a given design for fabrication 

by the range of AM processes. Existing design for additive manufacturing (DfAM) evaluation tools tend to focus on 

only certain key process-dependent DfAM considerations. By contrast, the purpose of this research is to propose a 

tool that guides a user to comprehensively evaluate their chosen design and educates the user on an appropriate 

DfAM strategy. The tool incorporates both opportunistic and restrictive elements, integrates the seven major AM 

processes, and outputs an evaluative score and recommends processes and improvements for the input design. This 

paper presents a thorough framework for this evaluation tool and details the inclusion of features such as dual-DfAM 

consideration, process recommendations, and a weighting system for restrictive DfAM. The result is a detailed 

recommendation output that helps users to determine not only “can you print your design?” but also “should you 

print your design?” by combining several key research studies to build a comprehensive user design tool. This 

research also demonstrates the potential of the framework through a series of user-based studies, in which the 

opportunistic side of the tool was found to have significantly improved novice designers’ ability to evaluate designs. 

The preliminary framework presented in this paper establishes a foundation for future studies to refine the tool’s 

accuracy using more data and expert analysis.  
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1. INTRODUCTION 

Additive manufacturing (AM) is rapidly growing in industry, academia, and medicine as a technology to both 

prototype and manufacture end products. In 2014, AM’s market worth was around $4 billion and is expected to reach 

$23.33 billion by 2026 [1], [2]. AM offers many benefits when compared to traditional manufacturing (TM), such as 

geometric complexity, functional material grading and mass customization. Therefore, many designers and engineers 

are adopting or transitioning to the new technology in order to leverage its potential benefits for their products [3]. 

However, to ensure the maximum potential of these designed products, it is crucial that engineers consider design for 

additive manufacturing (DfAM). Though understanding of DfAM is evolving quickly, it is still considered an 

emerging field. Currently, TM processes still dominate in most industries due to high upfront costs of entering the 

AM product landscape and a general lack of knowledge in how to incorporate the AM technology into the design and 

manufacturing process [4]. Additionally, while creating complex geometries suitable for AM is possible, the current 

approaches require applicability that is not yet fully defined [5]. There is still ample room for expansion in using AM; 

in design contexts where it is appropriate, AM can be cheaper, faster, and more sustainable [6] than traditional 

subtractive manufacturing. Additionally, there is yet another realm where AM serves as simply one of numerous 

options to be considered alongside traditional manufacturing techniques. Such design with AM is beneficial when AM 

acts as an initial step on the way toward using more traditional manufacturing techniques (e.g., using material extrusion 

to create a form-and-fit test prior to investing in injection molding tooling). While not the central focus of this paper, 

design with AM serves as a relevant corollary to design for traditional manufacturing and DfAM. 

Despite the AM spread, specific guidelines for new users still lack. Designers are challenged with a lack of 

knowledge of AM capabilities, process-related limitations and constraints and their effects on the final product. 

Because of this, there is a need for new methods to assist in selecting ideal AM process settings, associated materials, 

or appropriate designs for a given AM process [7]–[9]. This is further compounded by AM's growing popularity: a 

wide span of people, ranging from middle-school students to senior engineers, are showing interest in 3D printing. 

Both academia and industry need generalized guidelines [10]. With AM continuing to diffuse into many industries 

and STEM curricula[11], it is imperative that a comprehensive and effective tool is presented to novice designers to 

allow them to effectively evaluate parts. The design guidelines and tools that have long served TM processes may no 

longer be relevant or useful for AM because parts created using these new DfAM principles are geometrically 

contrasting to their TM counterparts. 
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The purpose of this research is to establish an initial framework capable of providing comprehensive guidance to 

novice designers in understanding the benefits and limitations of AM. The framework aims to achieve this by 

providing tailored outputs for individual designs through scoring systems and design recommendations. Though a 

range of design evaluation tools have begun to arise in research [3], they offer a piecemeal approach to design 

evaluation, often limited in the DfAM rules that they consider or in the AM process types that they incorporate 

guidance for. By developing a more comprehensive approach that can accommodate a range of AM process types 

along with an expansive view of DfAM, the likelihood of successful and meaningful prints should increase. This 

framework is then evaluated through an initial user-testing study where both novice and expert designers evaluate a 

series of designs for AM appropriateness with and without the proposed tool. The output scores from the use of the 

framework are compared to the self-evaluation scores without the framework to determine (1) consistency across 

expert groups, (2) if the novice group is collectively advanced towards the expert group, and (3) if the novice group’s 

internal consistency is improved. These results will be presented and discussed, with potential future work outlined.    

 

2. RELATED WORK 

Design for AM literature has emphasized the need for a shift in design thinking when utilizing AM processes 

over traditional manufacturing processes. Research has outlined that product innovation and design methods that were 

previously used need to be revamped to be applicable to the AM procedure [12]. Initial research observed the trend of 

AM moving towards end product manufacturing and the need to reconsider traditional design methods during or before 

the initial design stage [13]. With the unprecedented possibilities that AM offers as well as the added limitations, it is 

crucial to recognize that conventional design for manufacturing steps may hinder the advancement of AM within the 

design space. 

 

2.1 Considering the Duality of DfAM 

While traditional design for manufacturing approaches tend to guide designers in side-stepping the limitations 

inherent in traditional manufacturing processes, DfAM, by contrast, challenges users to consider both the opportunities 

and restrictions that AM poses to design. Laverne et al. [14] identified these two sides of DfAM and was the first in 

defining the concept of Restrictive DfAM (R-DfAM) and Opportunistic DfAM (O-DfAM). Within the design making 

stage, traditional design for manufacturing methods do not apply to the AM design process and new methods are 
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essential in the creation of innovative design solutions. R-DfAM has been emphasized in a significant amount of 

ongoing research and aims to outline AM-specific limitations and presents design rules that ensure manufacturability 

[15]. R-DfAM can be seen as a set of guidelines that maximizes the quality and expected outcome of a print by 

accommodating process limitations. These limitations are inherent in the fundamental difference of layer-wise 

manufacturing when being compared to conventional subtractive processes [16]. However, limitations within AM 

vary process-to-process due to the fundamental differences in the technologies. For example, the consideration of 

support materials in overhangs or self-supporting angles is negligible when dealing with most powder-based processes 

as layers are being supported by loose powder [17], [18] whereas in material extrusion supports must be present to 

hold up deposited layers of material. Conversely, access to cavities or crevices may be a greater design concern for 

powder-based than other processes due to the presence of loose powder during the print. 

 On the other side, O-DfAM is a series of considerations intended to lead designers to optimize their part and 

leverage the benefits of AM. AM offers an array of opportunities that was not previously possible with TM, such as 

utilizing generative design tools (topology optimization, lattice structures, biomimicry), mass customization, and 

monolithic multi-material structures [19]. Despite the benefits AM has to offer, its consideration in the design space 

is currently limited in contrast to R-DfAM which may hinder the overall adoption of AM. This can generally be 

attributed to a lack of knowledge in how to fully integrate and optimize the process into existing work flows [20], 

generally requiring designers to understand when their design is worth creating with AM. Similar to R-DfAM, various 

processes can offer varying opportunities. For example, embedding components is possible for low-temperature 

processes such as material extrusion, but high temperature processes such as DED are not able to take advantage of 

this feature [21].  

 A dual-DfAM approach combines the concept of both “should I print this” (O-DfAM) and “can I print this?” (R-

DfAM) to consider both sides of this new design thinking. This dual-DfAM design approach is holistic in that it 

encourages designers to maximize the utility of AM while considering the limitations within the design space. Pradel 

and coauthors offer one of the most extensive investigations of how such dual-DfAM currently manifests across the 

field of DfAM study [22]. They performed a critical review of 81 articles to establish a framework centered on the 

role of DfAM when considered across a generic design process, including in the conceptual design, embodiment 

design, detailed design, process planning, and process selection stages. Despite the significance for innovation, dual 

DfAM methods only account for approximately 30% of existing DfAM methods in research [14]. However, the 
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benefits of dual-DfAM consideration are becoming clearer. For example, in educational settings, students trained in 

dual-DfAM produce more useful, unique, technically good and overall creative designs than those with only R-DfAM 

education (within a competition-structured DfAM task) [23]. Despite the quantity of research in presenting and 

demonstrating the importance of rethinking design in the face of AM, there lacks a methodology to support designers 

in comprehensive consideration of dual-DfAM when evaluating the suitability of designs for AM. 

 

2.2 Existing DfAM Evaluation Approaches 

 There are several emerging design tools that accommodate the growing need to support novice AM designers in 

the evaluation of candidate parts for printing. However, these tools often provide narrow process scopes and focus on 

either the opportunistic or restrictive side of AM rather than utilizing a holistic approach with dual-DfAM. 

Certain tools allow designers to evaluate their designs through a rapid, intuitive scoring system. Booth [10] presents 

a tool to allow user to quickly analyze printability of designs in order to reduce the number of printing and prototyping 

failures. The user is presented with a physical worksheet that prompts them to interact with 3-point or 5-point scales, 

with a predominant focus on R-DfAM elements. There are 8 elements of which each element is equally weighted. The 

user sums their selections and utilizes a key to determine the necessity of redesign. There are elements of opportunistic 

evaluations present with certain starred ratings indicating consideration of a different manufacturing process, but there 

is no direct ranking of the opportunistic side. After the worksheet was implemented, both the rate of print failures and 

reprinted parts fell roughly 40%. Bracken [24] presented a similar tool catered specifically towards Powder Bed Fusion 

design analysis. The user is presented with a three-point scale in which they score either 1, 3 or 5 depending on how 

restrictive their design is. This worksheet freely uses specific values within the questions as it is catered towards a 

single process. When utilized in a design workshop, 77% of respondents either agreed or strongly agreed that this 

worksheet was useful for design for AM. 

 On the other end of the spectrum, there are tools that cater towards the opportunistic side. As an example, design 

heuristics cards can be used to educate designers on how to take advantage of O-DfAM to improve their designs [25]. 

These heuristics include a series of figure and text-based cards to inspire designers with process-independent design 

methods to maximize the capability of AM during the idea generation stage. The cards present case studies as well as 

a description of each opportunistic element. Such heuristics positively impact the generated designs by novice 

designers and are found to be more effective at communicating DfAM concepts in the early phases of re-design than 
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a lecture on DfAM alone. A similar approach by Perez [26] presents users with design principles containing textual 

descriptions, simplified visuals and a real world example. In early-stage design, the cards were found to significantly 

improve the quality and novelty of users’ ideas and assist in innovative ideation. Additional studies showed the 

effectiveness of these cards in producing significantly improving the novelty and quality of ideas [27]. 

 Computational and automated tools have also been presented to cater to this growing need of early stage design 

evaluation for AM. Kumke [15] presents a criteria-based evaluation tool which recommends appropriate design 

methods in the context of conceptual DfAM and is further aided by digital and physical models to assist in visualizing 

the design concepts which simplifies the Semantic network of the wide array of AM design potentials. Novice 

participants in a design workshop, however, perceived this tool to contain too much design information and may be 

overwhelmed. Yang further extends the idea of automating the identification of relevant AM part candidates [28]. 

Specifically, machine learning was used to establish a more efficient screening system that reduces the experience-

dependency seen in other decision support systems. Many emerging frameworks aim to provide process 

recommendations to the users, but require post-design knowledge such as production quantity [29], material cost [30] 

or surface roughness [30], [31] which limits the user accessibility and further complicates the approach for novice 

users. The fundamental dual-DfAM design approach presented will be utilized as a foundation for how the tool is 

constructed and previous DfAM evaluation approaches will be utilized to provide inspiration and support for various 

aspects of the tool. 

 As presented, there are a variety of approaches and growing research in the field of DfAM education and design 

analysis tools for AM. Generally, the research and approaches have targeted specific areas of DfAM, such as the 

DfAM heuristics (O-DfAM) or the Booth worksheet (R-DfAM). However, there is yet to be a comprehensive approach 

that combines the benefits of previous work to give designers a holistic and easy-to-use tool to evaluate both can a 

part be printed and if it should be printed. The next section outlines a novel framework for such a tool. 

 

3. PROPOSED DECISION FRAMEWORK 

 This paper presents a solution for a framework that builds upon prior research and improves upon the previous 

points in Section 2. The solution assumes users to be AM novices or perhaps intermediate users of AM technologies; 

that is, users who understand the basic concepts behind AM, especially for the material extrusion process, but lack 

extensive understanding of DfAM. Given a design tool generated from the proposed framework, this solution further 
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assumes that users can manipulate, visualize, and select the appropriate options on the tool with little to no difficulty 

and does not thoroughly accommodate for those users who may face difficulty in working with the tool. These 

assumptions, though limitations of this work, were necessary considerations to incorporate key features that enable 

interactive, self-guided, and holistic DfAM decision making. Specifically, this proposed framework aims to 

incorporate the following features to support the DfAM decision making process: 

• Dual-DfAM Approach: Implement both restrictive and opportunistic elements to utilize a Dual-DfAM approach 

for a more holistic evaluation if AM is an appropriate approach. 

• Weighing System – Features: Implement a weighting system that more accurately evaluates the importance of 

each design element rather than assuming each element is of equal importance.  

• Weighing System – Process: Implement a weighting system that accounts for variation in elements across process 

types rather than assuming each element is of equal importance between different processes. 

• Process Agnostic Language: Implement a set of questions that relate to elements using process-agnostic language 

to ensure the tool has a wider usability. 

• Feature Based Evaluation: Leverage a feature-based approach that enables a wide range of use cases by focusing 

predominately on the geometry of the design rather than the way in which it is being used. 

• Inclusion of Visual Aids: Increasing the user engagement and detail of the tool by providing manipulable 3D 

models as detailed and clear visual aids to accompany each response level in a question.   

• Transparent Design Recommendations: Generate a series of detailed redesign recommendations based on user 

input to provide score transparency and informative outputs. 

• Standalone Digital Framework: Integrate all the above features into a single approach via a digital application. 

This also enables automation of any required calculations to increase simplicity and increase usability. 

 

Each of these features, as well as how they are both measured and determined to be successful, are collected 

in Table 1. Additional detail on each feature is presented in the subsections that follow. The high-level structure of the 

framework that encompasses these features is shown in Figure 1. It outlines the major segments of the framework that 

enables an input design to be evaluated and scored. 
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Table 1. Identification and Evaluation of Framework Features 

Framework Feature Evidence of Inclusion Success Threshold 

Dual DfAM Approach 
Number of questions related to 

each O-DfAM and R-DfAM 

Less than 50% difference in 

number of O-DfAM and R-DfAM 

questions 

Weighting System – Features 

Quantitative feature weighting 

value associated with 

individual R-DfAM questions 

All R-DfAM questions have a 

weighting value associated with 

them 

Weighting System -- Processes 

Quantitative process weighting 

value associated with 

individual R-DfAM questions 

Each R-DfAM question has a 

weighting value for at least 5 of the 

7 main AM process types 

Process-Agnostic Language 
Multiple-choice questions with 

absence of quantitative values 

 3+ response levels offered as 

options for each question 

Feature-Based Evaluation 

Questions can be answered 

without context beyond the 

provided geometry 

All O-DfAM and R-DfAM 

questions can be addressed through 

the geometry 

Inclusion of Visual Aids 

Manipulable visuals 

accompany the R-DfAM and 

O-DfAM questions 

All questions include 3D visuals of 

each response level and can be 

rotated at minimum 360 degrees in 

the XY 

Transparent Design Recommendations 

Final output includes 

numerical percentage and plain 

language recommendations 

O-DfAM and R-DfAM categories 

each result in a score between 0-

100% that is explained in plain 

language  

Standalone Digital Application 

All framework features are 

combined into a self-contained 

digital application 

 Digitized framework requires no 

external feature dependencies to 

make informed DfAM 

recommendations 

 

 

 

Figure 1. Overall framework flow. 
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 As shown in Figure 1, the user starts with their early-stage initial design. The fidelity of the provided design is 

flexible, though the initial assumption in the framework is that the designer can provide a preliminary STL file. The 

design features are evaluated in the framework via an R-DfAM question set and then an O-DfAM question set. The 

user can respond to each question using a 3-point scale which determines the design’s suitability along the spectrum 

of R-DfAM and O-DfAM. As the user enters each response, the framework calculates R-DfAM scores, O-DfAM 

scores and after the last question a final Restrictive score and an Opportunistic score is output to the user to indicate 

the relevance of AM to their design input. In answering each question, the framework simultaneously generates 

specific design improvement suggestions based on the user’s input for each question. Lastly, in utilizing a pre-

determined weighting system for AM processes, specific processes are ranked and recommended to the user for their 

design. Final recommendations compiled and output to through in a digital format. Based on the tool output the user 

can choose to either redesign the part and restart the process or proceed with the print. The following subsections 

present each of the key features inherent to the novelty of the approach and provide additional detail to support its 

relevance to the proposed framework. 

 

3.1 Inclusion of Dual-DfAM 

 Laverne’s study [14] presented that dual-DfAM methods are the most suitable within an innovation context as 

they are correlated with a systemic level of product description. Prabhu [23] concluded that in a study, students with 

dual-DfAM knowledge generated ideas with “higher technical goodness and overall creativity compared to the 

showcase-structured task.” Considering this, it is important to establish a framework that evaluates using a dual DfAM 

approach. 

 While it is crucial to educate and inform the user on if their print can be printed within the confines of AM 

limitations, it is also very important to realize that there are often cases in which AM is not the ideal manufacturing 

method to use. To account for the needs of both R-DfAM and O-DfAM, the proposed framework includes the 17 dual-

DfAM considerations presented in Table 2. 

 

Table 2.  Dual-DfAM Considerations Included in Framework. 

Restrictive DfAM Opportunistic DfAM 
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 The considerations featured in Table 2 were selected through consideration of previous R-DfAM and O-DfAM 

tools presented throughout this paper, as well as previous work performed by the authors of this paper.  Upon 

validating the proposed framework, future work may derive more restrictive and opportunistic DfAM concepts from 

other established tools to improve Table 2. In addition, Table 2 omits advantages related to the economic benefits of 

small batch sizes in AM so that the considerations remain, crucially, functionality-independent; this ensures a feature-

based approach, where the evaluator does not necessarily need to know the actual use case for the final product, only 

the information that is contained in the STL file. 

 

3.2 Feature-Based Approach 

 To maximize the tool’s generality, users score their designs on the absence or presence of geometric features 

rather than how the design will be applied in use. Such feature-based approaches are demonstrated in prior DfAM 

research. Zhang [32] presents a multi-attribute decision making process in which part orientation is optimized and 

examines a ranking method based on expert evaluations and accommodates individual user requirements. Similarly, 

Internal Access Geometric Complexity – Freeform/Organic Structures 

Unsupported Features – Overhangs 

Geometric Complexity – 

Lattice Structures 

Unsupported Features – Bridges Customization 

Unsupported Features – 

Self-Supporting Angles 

Part Consolidation – 

Monolithic Assemblies 

Cross-Sectional Geometry – 

Sharp Corners 

Part Consolidation – 

Assemblies with Relative Motion 

Cross-Sectional Geometry – Size/Area Multiple Materials 

Small Features Embedded Internal Components 

Cross-Sectional Ratio  

Surface Accuracy  

Structure Anisotropy  
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Tedia [33] presents a method in which a three-dimensional voxel array is evaluated for infeasible features, minimum 

feature size, support material, orientation and manufacturing time for different build orientations and was successful 

in accurately analyzing build time estimations utilizing its feature-based approach.   

 By establishing the proposed framework around a similar feature-based approach, this ensures that the tool is 

context-agnostic and can be applied to a wider array of designs. By removing context of a design’s use, it does not 

confine the tool and its’ questions to specific conditions, and it enables anyone within a product cycle to evaluate a 

design’s printability. However, emphasizing only a design’s geometric features in the evaluation framework is not 

without its limitations. By removing the use case consideration, you may limit the scope as to how appropriate AM is 

for a specific design.  

 

3.3 Question Language 

 Each question in both the restrictive and opportunistic section presents a different element for the user to analyze 

their design. The question inquires the user on the presence of specific features present in their design. Since this tool 

is being developed to be accessible by AM novices, certain questions have additional descriptions that explain what 

the elements mean to reduce any knowledge barriers. 

 Previous approaches have incorporated both 3- and 5-point scales for user input [10]. This tool presents a solution 

in which the user is presented with a 3-point scale (with answers nominally denoted as a, b, and c) for every question 

presented to the user. Owing to those previous approaches, and other use of scales in similar tools [24], this tool 

maintains a similar structure for the questions which provides sufficient resolution for early-stage design. Each 

restrictive question follows a general format of answer option “a” increasing the difficulty of the print success and 

answer option “c” reflecting minimal effect on printing difficulty as shown in Figure 2. 

 

 

Figure 2. Restrictive question example. 
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 While previous research into evaluation worksheets have opted for specific numerical values throughout the R-

DfAM evaluation questions, doing so limits the tools applicability to the wide range of available AM processes. As 

such, the language used in this framework avoids specifying certain metrics that may be process specific, as shown in 

Figure 2. However, when general consistency exists across processes, a numeric value can be utilized to define an 

initial boundary for the user while still maintaining a scope to maximize process agnosticism.  

 The opportunistic questions follow a similar format (Figure 3) in which answer option a does not leverage the 

benefits presented by AM and answer option “c” maximizes the benefits of AM. Again, the language and structure 

of these questions are presented in a way that does not actively focus on a single process. The language here not only 

provides relevance to the question but guides the user in the DfAM process. 

 

 

Figure 3. Opportunistic question example. 

 

3.4 Interactive Models  

 Another key factor included within this framework is the refinement of the visual representations of each option. 

Previous restrictive DfAM worksheets present a solution in which the focus of each element is presented via text, with 

low-fidelity sketches to serve as a visual aid [10] [24]. Design heuristics cards focus more on the visual aspect with 

more detailed, colored, and real-world examples to convey each opportunistic element at a high level [25]. 

 The approach presented in the current paper attempts to bridge the benefits offered by existing tools and further 

refine the advantages of visual aids as both an educational tool for novices and one that clearly communicates the 

definition of each element and option. Visual learning has been extensively studied and proven to promote user 

interaction, improve information retention and increase content clarity. Presentation modalities for heuristics are 

explored and research [40] has shown when given 3D models representing modalities, experts were shown to produce 



14 
higher novelty redesigns of parts. These studies motivate the focus on presenting clear and concise visuals within the 

early-stage design process.  

 As shown in Figure 4, the framework presents the user with 3D models that correspond to each answer choice. A 

specific model was generated and modified for each answer choice to provide a unified example for each question. 

These models were generated internally by DfAM domain researchers to represent an idea of the final application. 

They provide the user with a clear and concise representation of the element to reduce ambiguity and allow the user 

to interpret each element quicker. These models can be interacted with by the user, which allows them to pan, zoom 

and rotate around the build plate. 

 

 

Figure 4. Interactive model example. 

 

 This added layer of interactivity presents additional information to the user and may create a more engaging tool. 

Alvarez [34] showed that for a specific academic class, 100% of the students were satisfied with the inclusion of 3D 

models in their learning environment and believed they were useful to their education. Similarly, Taleyarkhan [35] 

investigated the impact on students’ CAD utilization in design projects and found that the utilization of this method 

helped individual students progress from beginner designers towards adept and informed designers across several 

design strategies by exploring concepts through a three-dimensional space. This previous work supports the benefit 

of including 3D models within the framework to complement the existing renders shown previously. 
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3.5 Scoring 

 The scoring systems from previous worksheets assume that each DfAM element has equal importance when 

determining print success. This framework differs in that a weighted system is incorporated between elements. Due 

to the technical limitations and benefits of certain processes, it cannot be assumed that when observing the entire AM 

landscape, each design consideration is of equal importance across different AM processes. For example, with powder-

based processes such as binder jetting, there is a minimal design consideration for support structures because the  loose 

powder supports each layer [17] whereas with most other processes support structures are required due to the method 

of deposition [36]. Furthermore, within the process itself, the design considerations may vary in importance. With 

binder jetting, support structures require minimal consideration within the design stage. However, since the process is 

powder-based, improving internal access requires greater design consideration within the context of just binder jetting 

[37]. Therefore, it is important to build a tool that both considers every process and accommodates the differences 

between considerations, it is important to construct a weighting system. 

 To further investigate this process variation and to identify preliminary weights for a range AM processes, a 

survey was internally distributed to a series of AM domain experts. They were asked to identify the AM process they 

considered themselves to be an expert in and independently weigh each restrictive element found in Table 2 from 0-

10 for their chosen process, where a score of 10 denotes a restrictive consideration that is essential for a given process 

and a score of 0 suggesting that the consideration is not at all important. After all scores were collected from each 

expert, all scores for each restrictive element were averaged across process types to arrive at the values shown in Table 

3. In this way, the average score for the restrictive element acts as a signifier for how important that element is broadly 

considered to be by experts across all AM process types. Despite being an average score for all process types, for the 

initial testing of this framework, the values shown in Table 3 are utilized for the restrictive scoring. As the table shows, 

there is variation across the AM landscape for various restrictive elements. Unfortunately, in the current DfAM 

landscape it is difficult to recruit domain experts across all seven main AM process types, especially for those 

processes that are less commonly utilized (e.g., sheet lamination). Because of this, the values in Table 3 are an average 

of expert assessments across all process types (i.e., the restrictive scores of powder-bed fusion experts were also 

averaged with those of material extrusion experts). Though this limits the usefulness of the tool in identifying 

restrictive DfAM nuance between processes, the fundamental approach underpinning the collection and use of these 

weights presented in this study can be used to expand the collection of inter-process data in future work. Although 
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these scores are preliminary and would require more data to accurately represent the elements, the initial values already 

demonstrate the need to account for restrictive DfAM variability across AM. 

 

Table 3.  Results from expert analysis AM study. 

Restrictive Element Average Weighting Factor 

Improving Internal Access 6.57 

Increasing Minimum Feature Size 6.30 

Reducing Overhangs 5.78 

Reducing Bridges 5.87 

Increasing Self-Supporting Angles 5.35 

Increasing Surface Accuracy 5.33 

Reducing Structure Anisotropy 5.22 

Increasing Cross-Sectional Ratio 4.70 

Reducing Cross-Sectional Area 4.35 

Reducing Sharp Corners 3.79 

 

 

3.6 R-DfAM Scoring Weights Implementation 

 The proposed framework begins with evaluation of R-DfAM considerations. The overall flow of this section is 

outlined in Figure 5. It outlines the tool’s process at each question where the user’s answer (a, b, or c) multiplies the 

overall restrictive score (Table 3) for that question and the individual process scores for that question, and continuously 

sums the scores throughout the restrictive section. 
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Figure 5. Restrictive flow. 

 

 As the user selects each option (a, b, or c) which corresponds to an answer score (1, 2 or 3). This answer score is 

multiplied with the expert weights (Table 3) for that specific question to produce a weighted answer score. For 

example, if the user selects b for reducing overhangs, that question will have a score of 11.56 (5.78 * 2). As the user 

continues to answer each question, the output of each question is cumulatively summed each time, until they submit 

the last restrictive question. To output the value as a percentage (R%) to the user, the value is normalized between the 

minimum and maximum possible sum of weighted scores, where the minimum score (Rmin) is determined by 

answering c for every question and the maximum score (Rmax) is obtained by answering a for every question. Equation 

1 shows this calculation. 

 

𝑅% = 100 − (
𝑅−𝑅𝑚𝑖𝑛

𝑅𝑚𝑎𝑥− 𝑅𝑚𝑖𝑛
∗ 100)     (1) 

 

Simultaneously, the individual process scores obtained through the survey are multiplied by the same answer score 

(1, 2 or 3) and cumulatively summed after each response. This will output a list of raw summed scores for each process 

which are then ranked (from lowest sum to highest) to recommend processes to the user. 

 

3.7 O-DfAM Process Elimination 

 Unlike the restrictive elements, which incorporate an expert-derived weight for each question, each O-DfAM 

question specifically has an equal weight. The reasoning behind the different approach for this is that O-DfAM has 

no clear hierarchy of importance because it has no objective measure of print success, unlike R-DfAM, where direct 



18 
causality can be established between design features and the likelihood of build failure. Figure 6 displays the overall 

flow of the opportunistic section of the framework.  

 

Figure 6. Opportunistic flow. 

 

 Though it isn't subject to the same weighting scheme as restrictive, there is still the potential that a particular AM 

process might be removed from consideration due opportunistic elements not being technically possible or feasible 

using a specific AM process. Table 4 displays processes that are removed in this tool at specific questions, with 

references for each process.  

 

Table 4.  Process removals during opportunistic analysis. 

 Multiple Materials Embedded Internal Components 

Processes 

Removed 

VP [38] 

BJ [39] 

PBF [40] 

PBF, 

DED [41] 

 

 

3.8 Numerical Recommendation Ranges 

 As described earlier in the section, the tool outputs percentage scores to the user for both R-DfAM and O-DfAM. 

To assist in the evaluation of their design, the framework output also includes a key as with previously published 

worksheets [10], to help the user interpret the meaning of these percentages.  

 

 The following is presented for the restrictive section: 
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• 0-59% Major redesign required 

• 60-79% Some redesign required 

• 80-100% Will likely print with few issues 

 

 The following is presented for the opportunistic section: 

• 0-19% Consider other processes/adding features 

• 20-29% AM is a good candidate 

• 30-100% AM is a great candidate 

 

 The above values are a preliminary estimation of what might be presented to the user. The values themselves are 

indicative of the current climate of DfAM, in which R-DfAM dominates and O-DfAM has a much lesser consideration 

in the current design space [14]. In Section 4, an initial study reveals a more empirical presentation of this scale, as 

well as a potential method to produce these values.  

 

3.9 Digital Format 

 As presented throughout this section, there are various features that are included in this tool. To maximize 

usability and interactivity, simplify the tool, and effectively include each attribute, a digital format is the ideal way to 

communicate each of the previous tool functionalities to the user. To produce a prototype, a concept was produced 

via Qualtrics, an online survey builder. Custom HTML, JS, and CSS were injected into the survey to provide all the 

required components. Figure 7 displays the UI presented to the user. 
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Figure 7. DfAM tool user interface with 3D models. 

 

 From a front-end perspective, the digital app allows the user to interact with each question, one at a time, to allow 

them to focus on each element individually. This added layer of interactivity with a digital tool can produce more 

positive learning motivation and more positive effects on learning outcome [42]. Furthermore, cognitive fit theory 

proposes that when the representation (information visualization) of a problem more closely fits the problem-solving 

task, there is an improvement in the accuracy and speed of the problem/decision-solving process [43]. The higher 

accuracy of visualizations through clear images and 3D models will provide greater detail that will allow designers to 

more accurately problem solve within the design stage. 

 Furthermore, in digitizing the tool, it is possible to automate the variety of added calculations that are being 

included in the framework allowing the user to focus on the primary task. Additionally, the generation of the output 

(workable DfAM scores, ranked process list and potential re-design recommendations) can also be generated, 

providing the user with a practical and straightforward result. Potential outputs are shown in Figure 8, in which a 
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positive restrictive and negative opportunistic score is shown, with a plain language presentation of the score’s 

significance. 

 

 

 

Figure 8. Example of potential tool output. 

 

 This section has provided a detailed overview of a novel design evaluation framework. It builds upon previous 

literature and combines various approaches to provide a comprehensive tool for novice designers to accurately 

determine if their part can and should be printed. It provides features not previously represented in a tool of this nature, 

with a digital interface, dual-DfAM approach and expert weighting system. However, there is still a need to robustly 

validate the usefulness of the tool through user studies, in a way that most existing tools have not yet been validated. 

 

4. FRAMEWORK APPLIED IN PRACTICE 

 Given the existing body of research, and the proposed design tool structure presented in Section 3, it is crucial to 

evaluate the effectiveness of the tool when evaluating designs to be additively manufactured. An experiment was 

developed to test the effectiveness of the proposed digital DfAM tool. The experiment consisted of two parts: (1) a 

control survey in which participants were shown a series of designs and asked to evaluate how appropriate each design 

was for AM and (2) a survey in which different participants were shown the same designs and asked to evaluate the 
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designs using the proposed digital DfAM tool detailed in Section 3. The study was reviewed and approved by the 

Institutional Review Board, and implied consent was obtained from the participants prior to the experimentation. Both 

surveys included a pre-survey demographic collection in which participants were asked to provide demographic data 

as well as information regarding their experience with AM. 

 

4.1 User Study Design 

 To accurately evaluate the hypotheses, the study required responses from participants in both the novice and 

expert levels of AM for the two surveys (with and without the use of the DfAM tool). The novice pool was obtained 

from first year engineering students from a large northeastern university, while the expert pool was expanded to 

universities and institutions worldwide, given the challenges associated with identifying a sufficiently large expert 

pool at a single institution. To identify a participant’s expert level, the following prompt was given within the 

demographics section of both surveys: “Select the option that most closely resembles your comfort level with 3D 

printing:” with the following experience level options (this scale has been validated in a previous research study [44]):  

 

(1) I have never heard about 3D printing 

(2) I have some informal knowledge about 3D printing 

(3) I have received some formal 3D printing training 

(4) I have received lots of formal and/or informal 3D printing training 

(5) I am an expert in 3D printing and can proficiently manufacture parts 

 

 Table 5 displays the responses for both surveys by experience level. At this point the distinction between expert 

and novice was made that responses 1 - 3 represented the novice class and responses 4 and 5 represented the expert 

as early survey responses indicated very few individuals who met the first group criteria, with most individuals having 

a general understanding of the concept of AM. While the number of responses in Table 5 may appear to be unbalanced 

across the two surveys, the DfAM tool survey required a greater investment from participants than the control survey 

and thus generated collected fewer design evaluations per respondent. It is important to note that the survey does not 

ask evaluators to describe which AM process types they are basing their responses on; it is likely that many 

respondents, especially at the lower levels, are basing their knowledge entirely on the material extrusion process. Such 
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knowledge may not fully translate to other AM process types, which could affect the results of the tool’s deployment. 

In future work, the research team will look to expand the amount of detail to be supplied by evaluators to better 

understand which process they may be envisioning when conducting their evaluation. 

 

Table 5. Survey Respondent Totals 

 Control Survey DfAM Tool Survey 

Novice Total 90 217 

Expert Total 44 68 

 

 A series of 24 designs were produced for use across both surveys. The designs were self-rated by participants in 

the control survey and the same set of designs were presented to the second group of participants in the DfAM tool 

survey. The designs were presented to the participants in the form of a manipulable 3D object.  

 The first 12 designs varied elements that correspond to restrictive DfAM and the latter 12 varied opportunistic 

elements. The designs were first presented to and reviewed by a group of AM experts. To capture a wide variety of 

design feedback, the degree of restrictive and opportunistic DfAM varied across all the designs, presenting some 

participants with a design that would be suitable for AM and some with a design that would not be. Figure 9 shows 

example designs of varying levels of quality from both the restrictive and opportunistic sets. 
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Figure 9. Examples of restrictive (upper 3) and opportunistic (lower 3) design examples 

 

4.1.1. Control Survey 

 The control survey was developed to evaluate how both novice designers and expert designers evaluate parts to 

be 3D printed without the aid of the proposed digital DfAM tool. With this data, the variation within the novice and 

expert designer groups can be evaluated for specific designs as well evaluating the difference between the novice and 

expert groups for those designs.  

 Participants were shown and asked to rate a set of 4 designs relating to restrictive design elements and a set of 4 

designs relating to opportunistic elements, providing 8 data points per participant. The order in which the restrictive 

and opportunistic sets were shown to participants was randomized to reduce order bias. Participants were shown each 

design one at a time and prompted the user to rate the design on either a restrictive design scale or opportunistic design 

scale. The participants were informed to answer questions specific to material extrusion; a brief description of the 

technology was included for novice participants. Figure 10 displays an example of a question presented to the user – 

the left shows a restrictive question, the right shows an opportunistic question. The user is shown a design which they 

can rotate, zoom, and pan in 3D space to fully understand the geometry. Participants are asked to evaluate the design 

with 3 options. The language utilized in these options and the number of options is identical to that of the output of 
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the digital DfAM tool, as discussed at the end of Section 3. This allows a more direct comparison of the control survey 

with the DfAM tool survey. 

 

 

Figure 10. Example of restrictive(left) and opportunistic (right) question presented to user 

 

4.1.2. DfAM Tool Survey 

 The DfAM tool survey was developed to evaluate how both novice designers and expert designers evaluate parts 

to be 3D printed with the aid of the proposed digital DfAM tool. Like the control survey, the variation within the 

novice and expert designer groups can be independently evaluated for specific designs as well evaluating the 

difference between the novice and expert groups for those designs. This will then allow an evaluation to determine if 

expert analysis remains consistent with and without the design tool, if variation within the novice group is reduced 

when using the design tool, and if novice design ratings are more consistent with expert design ratings when 

introducing the design tool. 

 The DfAM Tool survey was developed by modifying the digital DfAM design tool to include designs from the 

set of experimental set on the inset, picture-in-picture on the side the survey screen. The same demographic questions 

were presented to the participant as well as a brief pre-survey tutorial and explanation of the overall interface and 

designs that the user will be rating. Each participant was introduced to a design from the restrictive set and then 

answered the 10 restrictive questions. An example of a question presented to the user is shown in Figure 11. Once 

completing the restrictive portion, the participant was introduced to a design from the opportunistic set and completed 

the 7 opportunistic questions from the design tool.  
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Figure 11. Example of DfAM tool survey question presented to the user 

 

4.1 Results of User Study 

 The data collection took place over a period of 2 months. The control survey collected 536 restrictive and 536 

opportunistic design data points. The DfAM tool survey collected 285 restrictive and 285 opportunistic design data 

points. The data was exported to MATLAB, where the data was encoded and sorted. This allows an output of average 

scores for each design, for both the non-tool and DfAM tool survey, which allows a direct comparison of the two data 

sets by mapping the output score of the DfAM survey to a 1-3 scale of the non-tool survey. The percent difference 

from the non-tool reported average and the DfAM output average was calculated, using Equation 2, for the expert 

class (starting with the restrictive designs). 

 

𝑅𝑛(%DIF) = 100 ∗
Abs(Rntool

−𝑅𝑛𝑛𝑜𝑛−𝑡𝑜𝑜𝑙
)

(Rntool
+𝑅𝑛𝑛𝑜𝑛−𝑡𝑜𝑜𝑙

)/2
    (2) 

 

 Then, an average of all 12 percent differences was calculated to provide an overall comparison of experts 

evaluating them both with the tool and without. The mapping stage was then optimized for both the restrictive and 
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opportunistic design sets to provide an expert-informed range for what makes a successful design in terms of restrictive 

and opportunistic DfAM.  This results in the modified ranges as follows:  

 

 The following is presented for the restrictive section: 

• 0-16% Major redesign required. 

• 17-55% Some redesign required. 

• 56-100% Will likely print with few issues. 

 The following is presented for the opportunistic section: 

• 0-15% Consider other processes/adding features. 

• 16-58% AM is a good candidate. 

• 59-100% AM is a great candidate. 

 

 The initial interpretation of these scales contrasts the preliminary estimations on the current state of AM and the 

degree to which experts believe the quantity of restrictive or opportunistic elements are important. Our initial analysis 

provided a surprising result, that the experts within our study considered the opportunistic and restrictive elements to 

have essentially equal importance when evaluating a part for AM appropriateness. This contradicts our initial 

assumption that the current state of R-DfAM dominates and O-DfAM has a much lesser consideration in the design 

space. This may be due to a variety of reasons. Our initial prediction of the current climate may not have been accurate; 

a lack of research involving direct comparisons between these two restrictive and opportunistic spaces limits our 

understanding of the true way experts evaluate parts.  

 

 Next, to evaluate the accuracy of novice designers when compared to experts, the optimized maps were 

implemented into the analysis. The average score for each design was calculated for both the novice and expert classes. 

Firstly, the percentage difference was calculated between the control novice group (no tool) and the expert control 

group. Next, the percentage difference was calculated between the novices with-tool group and the expert with-tool 

group. These two percent differences were compared to determine if the introduction of the DfAM tool reduces the 
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gap between novice and expert designers. The average values of these percent differences across the 12 restrictive and 

12 opportunistic designs are shown in Table 6.  

 

Table 6. Restrictive and Opportunistic % Differences between Novice & Experts. 

 

Restrictive Opportunistic 

Without Tool 

(Control) 

With Tool (DfAM) 

Without Tool 

(Control) 

With Tool (DfAM) 

Expert – Novice 

%Dif 

10.3% 12.2% 15.7 3.99 

 

 

 Within the restrictive design set, a small increase in percent difference was observed with the introduction of the 

tool. A student’s two-sample equal variance t-test was performed to determine the statistical significance of this 

percent difference. A non-significant difference between the absence and presence of the tool was found (p = 0.583, 

two-tailed). This indicates that there was no significant shift in the novice class towards the expert class when 

evaluating the series of restrictive designs. By contrast, within the opportunistic design set, a decrease in percentage 

difference was observed with the introduction of the tool. A student’s two-sample equal variance t-test was run to 

determine the statistical significance of this percent difference. A statistically significant difference between the 

absence and presence of the tool was found (p < 0.05, two-tailed). This indicates that there was a significant 

improvement in novice designer ratings of opportunistic designs when compared to experts with the introduction of 

the tool. 

 The reason for this discrepancy leads the way for future research. However, an initial analysis into the questions 

themselves may indicate a preliminary area of interest and potential for the future development of such a tool. Figure 

12 plots the percentage differences between novices and experts, separating each question. The plot divides the 

restrictive and opportunistic questions. As shown, questions two, four and five present higher variations when 

compared against the other questions. These questions specifically ask about overhangs, self-supporting angles, and 

sharp corner intensity, respectively. One potential reasoning behind this is that there may be an overlap in how the 

novice designers interpreted some of the more complex geometry categorizations. When evaluating the overall 
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difference between both sections, it is possible that novice designers may find it easier to interpret and spot the 

presence of more obvious opportunistic features, such as lattice structures, embedded components, or multi-material 

prints than potentially more nuanced restrictive elements. 

 

 

Figure 12. Question variation in novice-expert percent difference 

 

 Lastly, the same class groups were compared to evaluate the percent difference in design ratings when introducing 

the design tool. Here, the expectation is that the percent difference for experts will be lower than novices, as the tool 

should be representative of expert analysis without using the tool. Table 7 presents the percentages for both restrictive 

and opportunistic design sets. As shown, the results presented confirm our expected results, with experts in both 

restrictive and opportunistic sides presenting an average lower percent difference than novices. 

 

Table 7. Restrictive and Opportunistic % Differences between Novice & Experts. 

Restrictive Opportunistic 

Novice-Novice % Dif Expert-Expert % Dif Novice-Novice % Dif Expert-Expert % Dif 

21.1% 10.4% 13.1% 8.88% 
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5. CONCLUSIONS AND FUTURE WORK 

 The framework presented in this paper built upon the functionality of previous approaches in producing a DfAM 

tool. As explored through the literature, there are several key studies examining the foundational approaches necessary 

to better suit the design process for AM, and previous tools have utilized some of these approaches, but none have 

fully integrated several key elements. Dual DfAM was implemented into this tool due to the growing research in 

exploring its impact on the design process, and conclusive evidence to assert it outputs more useful, unique, and 

technically good designs. A preliminary study showed that AM experts score the importance of various features 

differently across their own domain and that there is variation in scores for specific design features across different 

processes. Therefore, the inclusion of a novel weighting system was presented and showcased with a preliminary set 

of data, which is used in the end-user R-DfAM score. Additionally, this data was utilized to internally score processes 

at each stage and output a ranked list of processes which builds on the evaluation that different processes have different 

technical limitations or benefits. A user study evaluated both the restrictive and opportunistic sections and found that 

at this time, there is not a statistically significant change in novice design evaluation when compared to experts using 

the restrictive side. However, the study shows that the opportunistic side was able to significantly bring novices up to 

the expert level when evaluating if parts should be printed. Additionally, the output percentages were able to be 

categorized by comparing self-evaluations from experts with expert outputs from the DfAM tool. This presents a 

method for future work and a preliminary quantification of the current state of both opportunistic and restrictive 

DfAM.  

 While the initial study indicated that such a design evaluation tool can be effective in bridging the gap between 

novice and expert designers when evaluating designs for AM, it is crucial to continue the work, specifically on the 

restrictive side. A greater sample size should be obtained for experts, which is crucial as this group drives the entire 

functionality and categorization of design evaluation outputs. Furthermore, various question languages/content could 

be implemented to verify what language and questions should be implemented to reduce ambiguity and variation 

across novice users, particularly on the restrictive front. Overall, a greater sample set of both experts and novices 

should be utilized to maximize the data points. Because the surveys collected information from 24 designs, the end 

data points were relatively limited. Furthermore, both experts and novices were concentrated in a Northeastern US 

university, further work should be done to collect a broader range of respondents. As stated throughout the paper, the 

need for such a design evaluation tool is growing. The fundamental approach to designing a part is in strong contrast 
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to how parts are traditionally designed. Not only are the core concepts of dual-DfAM important for novice designers 

to grasp, but the fundamental design philosophy when using AM shifts the status quo to how parts are designed. DfAM 

is centered around design freedom, optimization of performance and functionality, and the ability to quickly iterate 

and produce complex parts with minimal material waste. These concepts are critical to STEM based curricula which 

incorporate AM or DfAM, and providing a design evaluation tool that effectively captures this new design landscape 

will help the designers of the future fully leverage this technology and produce innovative designs. 
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