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ABSTRACT

Additive Manufacturing (AM) is a technology capable of
producing designs that challenge those from traditional
manufacturing methods. AM is of high interest for advanced
capabilities such as leveraging free complexity and having the
ability to manufacture multi-part products that are manufactured
as a single assembled. By leveraging design heuristics for AM,
the final design can be manufactured in a shorter timeframe with
less material consumption while still maintaining the initial
engineering goals of the design. Despite the promising potential
of AM, there is a growing concern that designers are not utilizing
the design heuristics that embody successful AM. When
designers resort to using design heuristics for Traditional
Manufacturing (TM) with the wunintentional purpose of
translating these heuristics to AM, they are not creating efficient
designs for AM and are unable to reap the benefits of using AM.
To remedy this problem, intervening early in the design process
can help address any concerns regarding the use of AM design
heuristics. This work explores the design heuristics that students
use in creating designs in the context of TM and AM. Once the
common design heuristics students use in their designs are
identified, future studies will further investigate the specific
features that these students are using to address them through
early interventions. This work found that incorporating complex
shapes and geometries and considering the minimum feature size
are significant axioms for influencing the manufacturability of a
design for both TM and AM.
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1. INTRODUCTION

Additive Manufacturing (AM) is a still a relatively new
method of producing designs. By utilizing the technology’s
approach to developing designs by adding material to an empty
build volume, the wasted material that comes from the
subtractive principles of Traditional Manufacturing (TM) are
significantly mitigated. Additional benefits of AM over TM
include its ability to produce far more complex designs [1] and
its capability to directly assemble multiple parts together during
the manufacturing process [2,3], thereby eliminating the time
needed to assemble the product. AM has already demonstrated
itself viable in applications ranging from prototypes [4] and end
use products [5].

Manufacturing processes have associated design
considerations that can help create a better design for a certain
manufacturing process. Design for Manufacturing (DfM)
provides the guidelines or heuristics for creating designs that
leverage the chosen manufacturing process [6]. Relevant to this
work, there are two sets of DfM heuristics that are highlighted:
Design for Traditional Manufacturing (DfTM) and Design for
Additive Manufacturing (DfAM). The key difference between
these two sets of heuristics is that DfTM often favors simple
designs, while DfAM favors those that are complex [1]. It is
crucial to keep these sets of heuristics tied to their respective
manufacturing process, as using the wrong set of heuristics for a
different manufacturing process can lead to inefficient designs
that don’t take advantage of the selected process [7]. Because
TM may likely be more familiar to designers due to its longevity
compared to AM, these designers, who may be heavily
influenced by their prior experience [8] may end up instinctively
using DfTM heuristics in their designs, regardless of the
manufacturing process they actually intend to use. For those
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looking to create designs for AM, this behavior is strongly
discouraged and needs to be remedied. By leveraging the
advantages that AM offers, such as the ability to produce pre-
assembled products [9,10] and create replicas of scanned objects
[11], designs that were previously impossible to manufacture
using TM are now conceivable with AM because of the
differences in limitations of each process [12].

One possible solution for addressing a designer’s natural
tendencies is to focus efforts early in the design process. It has
been found in prior literature that the best opportunity to fix a
design without wasted costs is the concept generation phase [13].
By addressing the usage of design heuristics in the concept
generation stage, the designs can be better tailored to the chosen
manufacturing process. Prior research has explored interventions
in the concept generation phase [14], where specific focus has
been given to the AM space [7,15,16]. Despite these efforts to
investigate the ability to influence designers with DfAM
heuristics, there is currently no in-depth analysis given to the
heuristics that students instinctively use when they create
designs. By understanding the heuristics that embody the designs
that students produce, we can have a better understanding of the
decision-making that takes place during the concept generation
phase [17]. The purpose of this work is to identify the common
heuristics that designers use in an effort towards building proper
intervention methods.

2. LITERATURE REVIEW

To contextualize the research in this paper, it is important to
understand the importance of DfM heuristics in concept
generation (Section 2.1), and why it is necessary to focus efforts
towards leveraging DfAM heuristics in this stage (Section 2.2).

21 The Importance of Design for Manufacturing
Heuristics in Concept Generation

Design heuristics are a beneficial tool that can be used to
describe an object. A design heuristic can be used to help
designers identify features and flaws that manifest in designs
[18]. One key aspect of design heuristics is that they are
subjective in nature, which means they may be susceptible to
influence from cognitive biases [19]. Despite this, design
heuristics are still predominantly used in identifying the
distinguishing characteristics of an object. Design heuristics
have been used across a wide range of applications, including
design evaluation [20], aiding in design development [21], and
assisting in design education [22]. Design heuristics are of
particular interest for the manufacturing assessment in this paper,
as they have been previously used to classify designs based on
their identified feature sets [23].

Design heuristics are also a critical aspect of the design
process that can be implemented as guidelines for design
considerations. Design heuristics act as cognitive principles that
guide designers for interpreting designs and their potential
variations [24]. Design heuristics have been recognized as
valuable tools in the design process, both for providing guidance
in design creation [21] and for use as an assessment tool for
evaluating designs [20]. It is because of this significance that it

is critical for design heuristics to be established early in the
design process to ensure that the finished product embodies the
proper principles.

Identifying relevant design heuristics early in the concept
generation stage can help address any problems that may arise in
the final product. By addressing problems early in the concept
generation stage, it is easier to fix the designs and saves any
potential wasted costs, as stated by Lough et al. [13]. In their
work, they explore the benefits of design adjustment in the
context of risk aversion, but they did not specifically explore the
benefits of addressing the design to improve manufacturability.
Yilmaz et al. [25] explored various intervention techniques in the
concept generation stage, where it was found that interventions
can influence the type of design thinking encouraged. Their
results indicate that interventions are successful in getting
designers to rethink their designs as they develop them in the
concept generation stage. Part of these interventions involve
determining which design heuristics should be presented, as
there are many different types based on the relevant context.

2.2 The Differences in Heuristics for DFTM and DfAM

Design heuristics can be further isolated into different
applications based on specific use cases. Relevant to this work,
there are a set of heuristics for DfTM and a set for DfFAM that
are tailored for TM and AM, respectively. The design heuristics
for traditional manufacturing have long been in place and
introduce standard considerations for creating simple designs
suitable for TM [26]. Newer DfAM heuristics narrow the breadth
of design properties to those that are advantageous when AM is
being used for production. DfAM heuristics were derived by
Blosch-Paidosh and Shea [27] as they collected and analyzed the
key functions and features of 275 AM artifacts. Through their
creation of the DfAM heuristics, they allude to various DfAM
concepts manifesting in designs, with no constraints put on how
many heuristics may be present for any given design and the
frequency with which these heuristics are identified relative to
the total number of sampled artifacts. These design heuristics
have been used across the engineering design process, ranging
from design ideation [28] to design inspection [29,30] and
redesigning [31,32]. These DfAM heuristics have useful
applications within the design process and how it relates to AM,
as evidenced in the review conducted by Valjak et al. [33].

Design heuristics for AM drastically differ from those
geared towards TM. While designs for AM favor complexity,
designs for TM prefer simplicity [1]. It is because of these
differences that design considerations must be implemented
early in the concept generation process to create designs that are
best suited for one process over another. Designs can be
inefficient or outright not be manufacturable when these design
considerations (e.g., DfTM vs DfAM) are mixed and matched
[12,34]. To reduce the chance of these considerations being
mixed into one design, there is a need to address the differences
between DfTM and DfAM early in the design process. One
method for achieving this is to perform an intervention prior to
or during the design process, as was found by Prabhu et al. [16]
and by Schauer et al. [7].
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While prior literature has explored intervening to improve
designs for AM, they do not consider the specific heuristics that
represent the design itself in the context of both AM and TM.
Blosch-Paidosh and Shea presented their developed heuristics in
the form of cards and objects in an effort to stimulate design
thinking towards AM [32]. While their findings of presenting
heuristics to these yielded increased usage of DfAM heuristics
in their designs, the students were likely framed towards AM
from the beginning of the experiment [35] as the activities
leading up to the design task were narrowed to AM-related topics
only. Similarly, Prabhu et al. [16] leveraged the DfAM heuristics
that were derived from Laverne et al. [9]. These heuristics
separate the principles of DfAM into two categories: Restrictive
(R-DfAM) and Opportunistic (O-DfAM), which correspond to
the limitations and capabilities of AM, respectively. While their
research analyzed the manufacturability of the designs through
AM, they do not account for the use of DfTM heuristics and how
designs might be improved for AM. Sinha et al. [36] explored
the comparison of designs for TM and AM while controlling for
any prior formal training. While their work encourages the
continuation of DfFAM education based on the students’ abilities
to create more clegant designs, their assessment process for
dissecting the designs did not reach the heuristic level. There is
a lack of research focusing on the evaluation of designs through
lens of the two sets of DfM heuristics when the students are not
heavily skewed towards one manufacturing process over
another; there is a need to investigate the specific heuristics that
designers may naturally gravitate towards using in their designs.
By understanding the DfTM and DfAM heuristics that students
are leveraging in their designs, interventions can be used to help
designers reframe their thinking and overcome any fixation they
may have towards their initial concepts [37,38].

This work focuses on performing an in-depth assessment of
designs for their manufacturability in the context of traditional
manufacturing and additive manufacturing. Design heuristics are
the foundational basis for an assessment analogous to this, but
the process is both vague [33] and complex [23] for novel work
such as this one. Therefore, there is a need to conduct an
assessment using explicit criteria so that future studies can build
on this work by integrating design heuristics into this
manufacturability assessment. The alternative presented in this
work utilizes axioms in place of heuristics. Axiomatic design
leverages design axioms for which its principles are well defined
and are undisputed [39,40]. The approach to utilizing axioms has
shared commonalities with heuristics [41] and there are
applications where they are interchangeable [42]. The
similarities between these two sets of design principles make
using design axioms in place of design heuristics sufficient for
this work, as the assessment of designs for their
manufacturability will be done using precise criteria.

3. RESEARCH OBJECTIVES

The objective of this paper is to determine whether the
students’ perceived assessment of their designs is accurate when
compared to expert assessment. By identifying where students
differ from experts in how they perceive DfM axioms in their

designs, future interventions can address these differences so
students can have a better understanding of the axioms present
in their designs. Further, the work seeks to determine the axioms
that significantly influence the manufacturability of a design.
There is a need to understand the axioms that students are
utilizing in their designs so future interventions can address these
axioms to create improved designs for either traditional
manufacturing or additive manufacturing. The following
research questions are proposed:

(1) How does the students’ self-assessment of axiom usage
correlate to the expert’s assessment?

We hypothesize that students having prior experience with
manufacturing (either TM or AM) will report an accurate
perception of the axioms used that are associated with their prior
manufacturing experience relative to their actual use. In
contrast, students with no prior manufacturing experience will
inaccurately perceive and assess axioms in their designs
compared to their actual used. When controlling for experience,
those with higher experience have demonstrated in prior research
to report more DfM axioms than those with lower experience
[43]. Because DfAM is still in its relative infancy while having
a niche audience [44], exposure to related axioms is expected to
be limited. Therefore, by expressing high levels of expertise, it
is anticipated that the students are aware of DfAM and can
therefore provide a more accurate assessment of their designs
when compared to the experts.

(2) To what extend will different DfM axioms predict the
appropriateness of a design concept for TM or AM?

We hypothesize that students will inherently create designs
that favor TM, where the design axioms that will significantly
influence the manufacturability of the designs will be to avoid
intricate shapes and to leverage low-labor-cost operations.
Because students tend to create simple designs [45], it is
anticipated that students will resort to designs that do not
incorporate any form of shape complexity. Additionally, because
these simple shapes can be treated with simple manufacturing
steps [46], complex techniques will not be necessary.

4. EXPERIMENTAL METHODS

To answer the research questions, an experiment was
developed to investigate the axioms used in students’ generated
designs. The experiment consisted of two stages: (1) a pre-
intervention survey, and (2) a design challenge followed by
students’ self-evaluations of their designs. The study was
reviewed and approved by the Institutional Review Board, and
implied consent was obtained from the participants prior to the
experimentation. In this experiment, the participants first
reported their current level of expertise with TM and AM. Next,
they were asked to complete an open-ended, manufacturing-
agnostic design challenge. From there, they completed the
experiment by self-evaluating their designs for TM and AM
based on the axioms presented in the pre-intervention survey.
Finally, after the design activity, participants’ designs were
evaluated by manufacturing domain experts. The following
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subsections discuss further details behind experimentation and
analysis.

2.2 Participants

116 participants were recruited from a third-year
undergraduate mechanical engineering design course. Some
participants’ data (not included in this numerical total) were
removed from consideration due to incompleteness in the
activity where key information was critical (i.e., the self-reported
evaluation for the design considering the manufacturing size) or
the key information was not filled in properly (L.e., the self-
reported evaluation for avoiding large, flat regions had two
scores filled in when only one was requested). The experiment
was implemented during the middle of the Fall 2022 semester to
allow students to gain manufacturing experience in their class
prior to the experiment’s design challenge.

2.2 Procedure and Metrics
2.2.2 Pre-Intervention Survey

At the outset of the activity, participants were given 5
minutes to complete a survey that asked about their previous
experience with TM and AM. They were also asked to evaluate
their familiarity with a series of 14 different DfTM and DfAM
axioms (7 for each) on a 5-point Likert-type scale [47], with a
score of 1 representing “Never heard about it” and a score of 5
representing “Could regularly integrate it with my design
process.” This survey, which was modified from the studies done
by Prabhu et al. [48-50], provides the research team with an
understanding of participants’ current levels of TM and AM
experience and familiarity with the respective DfM axioms. The
DfTM axioms were extracted from Bralla [26], while the DfAM
axioms were extracted from Prabhu et al. [51]. A list of the
axioms used in this experiment are presented in Table 1.

Table 1. DM Axioms
DfAM Axiom

DfTM Axiom

Simplify designs to reduce part
count without greatly increasing

manufacturing complexity

Incorporate complex shapes and
geometries to reduce material usage

Rely on low-labor-cost operations

Combine what might typically be

that minimize human
manufacturing steps

multiple parts into a single product
or assembly

Avoid intricate shapes that require
multiple manufacturing operations

or repositioning

Avoid large, flat regions that may be
susceptible to distortion and warping

Leverage standard materials,

components, and tooling for
manufacturing

Orient overhanging surfaces to
reduce the need for support material

Avoid sharp corners; use fillets to
improve manufactured accuracy
and reduce stresses

Consider the minimum feature size
that can be resolved by the
manufacturing process

Maintain a uniform wall thickness
throughout individual parts

Orient curved surfaces to reduce
surface roughness and increase part
accuracy

Provide ample spacing between

Account for potential variations in

holes so they can be made without
tooling weakness

material properties in different
directions

2.2.2  Design Challenge and Procedure

Following the survey, students were given the design
prompt that they would be solving. The provided design prompt
was as follows. “"You are tasked with designing a solution to
hold three hollow tubes securely in place and parallel to each
other. All tubes must be held 2 inches away from a fixed wall
(measuring from the wall to the closest edge of the tubes). The
tubes are 1 inch in diameter and 3 inches long”" To accompany
this text description, participants were also presented with the
visuals seen in Figure 1. This design challenge was previously
used by Prabhu et al. [52] and Pearl et al. [50], was selected for
this study because its open-ended nature creates a wide design
space [52], allowing for solutions that can be produced using
both TM and AM. Additionally, the design challenge falls in line
with the shift towards problem-based learning [53]. To remove
any manufacturing biases in the design challenge, students did
not receive any manufacturing constraints in the design prompt
itself. Furthermore, to understand how students would naturally
create designs and evaluate them for their axiom manifestation,
the students were not primed on any DfM concepts. The work
from Pearl et al. [50], which has a similar experimental
procedure to this work, had the students primed with DfTM and
DfAM concepts before proceeding with the design challenge. By
omitting the priming element of the procedure, the students have
no exposure to understanding what each axiom entails, meaning
their ability to create and evaluate their designs will be based
primarily on their prior experience.

Top View

} 2 Inches

O O O}~

Front View

I I I o

wall

Side View

Figure 1. Design Challenge Visual Provided to Participants

After reading through the design challenge prompt, students
spent 10 minutes using the provided design sheets to individually
create as many solutions as possible. They were instructed to use
both sketches as well as text to illustrate their designed solutions.
While the students were creating designs in the concept
generation session, they were also asked to describe the
advantages and disadvantages of each design concept. An
example of a completed design sheet is shown in Figure 2.
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Idea Generation Card

D | y N £ o 4
Last twa characters of Mather's Last two characters of Risth City Birth Month
first name: [#.£- Born In Atianta wosild be TA) {eg. Janwusry would be 01)
(.8 Sally wowld be 1Y)

Use these boxes to produce a5 many ideas as you can during the time aliotted. Use a new box for each
different idea. Please include a both a sketch and brief description of the idea, along with notes on its
strengths (+) and weaknesses (-).

Idea 1 +

+ Uhen bokong ke secd O

2
Idea +

Figure 2. Example of Completed Design Sheet

Following the concept generation session, participants were
given 7 minutes to identify a final design. They were informed
that their final design could be any of the following: a reused or
modified design from the initial concept generation period, a
combination of any of the previous designs, or an entirely new
idea. As with the initial concept generation session, participants
were asked to list the advantages and disadvantages of their final
design.

After identifying their final design and discussing its
strengths and weaknesses, participants were asked to evaluate
their solution as designed based on the 7 DFTM axioms and 7
DfAM axioms presented in the pre-intervention survey to the
best of their ability. Specifically, participants were presented
with each axiom and asked, “To what extent do you agree with
the following statements about manufacturing as they apply to
your final design?” They then evaluated the design using a 5-
point Likert scale, where 1 represented Strongly Disagree and 5
represented Strongly Agree. This self-evaluation allows the
researchers to observe which DfM axioms are commonly
identified by the students and will be used to compare to the
expert assessment, which is discussed in the following section.

4.2.3 Expert Design Evaluation

To evaluate participants’ final designs, three raters (two
experts and one quasi-expert in design for manufacturing
processes) used the Consensual Assessment Technique (CAT) as
developed by Amabile [54]. This technique has expert judges

evaluate creativity in their specialty domain [55]. Pertinent to the
research in this paper, the CAT has also previously been used to
evaluate suitability of design concepts for manufacturing
[52,56]. Both expert raters have graduate degrees, have at least 6
years of experience with creating and evaluating designs for AM,
and previously published papers in the relevant field. The quasi-
expert is currently progressing through graduate coursework and
has experience with creating and evaluating designs for AM. The
three raters evaluated the final designs based on both their
traditional manufacturability and additive manufacturability.
Both categories were evaluated on a 1-6 scale, with higher scores
indicating greater suitability for that manufacturing process type.
A brief description of each category is as follows:

+  Traditional manufacturability: The suitability of the
design for TM based on expert assessment. Though a variety of
traditional processes are possible, scoring is based on the
assessment of applicable DfM principles. A higher score
represents a design that utilizes the general principles of TM
(simple shapes, rounded corners, ample spacing between holes,
etc.) while a lower score represents a design that is either very
difficult or impossible to manufacture using TM processes.

+ Additive manufacturability: The suitability of the
design for AM based on expert assessment. The category here
focuses on the use of both R-DfAM and O-DfAM principles in
the design and how they apply to the various AM processes. A
higher score represents the use of most R-DfAM and O-DfAM
principles, while a lower score represents little to no identifiable
R-DfAM and O-DfAM principles. Intermediate scores tend to
exhibit suitable R-DfAM, but lack in O-DfAM.

After evaluating the designs for their manufacturability, the
raters proceeded to assess the designs for use of the 14 DfM
axioms. The three raters first jointly scored 5 randomly selected
designs together to establish the evaluation criteria and have
general agreement. Next, each rater individually scored the same
set of 25 randomly selected designs which were then compared
for consistency. To calculate the inter-rater reliability, the scores
were validated for consistency using the interclass coefficient
(ICC) [57-59]. The ICC values were calculated using SPSS v.29.
A secondary meeting was held among the raters to discuss any
discrepancies, review the scores, and refine the rubric for
assessing the designs after the initial ICC calculation yielded a
poor Cronbach’s Alpha (a) for some of the DfM axioms. From
there, an additional 40 designs were independently assessed, and
the cumulative scores were compared for agreement. The
manufacturability scores maintained a strong agreement, while
the axioms ranged from moderate to strong agreement. The raters
were then asked to evaluate the remaining designs and a final
reliability test was performed. The inter-rater reliability results
are shown in Table 2.

Table 2 presents o values that range from moderate
reliability (0.50<a<0.75) to good reliability (0.75<a<0.90) [60].
These o values were also significant with a p-value of <0.001
using a 95% confidence interval. This means that for each design
the raters were giving comparable scores for their
manufacturability and usage of DfM axioms. This indicates a
good agreement between the raters for all experimental
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conditions. After the raters evaluated all the designs, the average
TM CAT score and average AM CAT score were calculated for
each student by averaging the respective CAT scores provided
by the raters. This process was also repeated for the DfM axioms.
The resulting average expert rater is associated with 2
manufacturability scores (TM and AM) and 14 DfM axioms (7
DfTM and 7 DfAM) for 116 participants.

Table 2. ICC Results for the Three Raters

b

Evaluation Criteria CArf;l:):zl;)s
Traditional Manufacturability 0.771
Additive Manufacturability 0.828
Reduce Part Count 0.834
Rely on Low-Labor-Cost Operations 0.723
Avoid Intricate Shapes 0.740
Leverage Standard Materials, Components, and Tooling 0.715
Avoid Sharp Corners by Using Fillets 0.842
Maintain a Uniform Wall Thickness 0.769
Provide Ample Spacing Between Holes 0.713
Incorporate Complex Shapes and Geometries 0.858
Combine Multiple Parts into a Single Part or Assembly 0.847
Avoid Large, Flat Regions 0.848
Orient Overhanging Surfaces 0.769
Consider the Minimum Feature Size 0.793
Orienting Curved Surfaces 0.755
Account for Potential Variations in Material Properties 0.694

5. RESULTS

To communicate data collected through this study, this
section details the distribution of students’ manufacturing
experience (Section 5.1), followed by statistical analysis using
SPSS v.29 to answer the research questions for self-reported
assessment against expert assessment (Section 5.2) and
presenting a model for manufacturability (Section 5.3).

yielded moderate reliability (the lone exception being the AM
experience level of 4). With general agreement observed in each
manufacturing experience group, the students’ self-reported
scores for each axiom within the groups were averaged out. This
process gives us 10 average students (5 with TM experience at
levels 1-5 and 5 with AM experience at levels 1-5), with each
individual average student having 14 DfM axiom scores
associated with them.

5.2 Self-Reported Scores Against Expert Assessment

To answer the first research question, a series of Paired T-
Tests were performed comparing the 10 average students to the
average expert rater. This test was chosen because we wanted to
compare the average of two related groups (the self-reported
scores against the expert scores across each manufacturing
experience level) to determine if there is a significant difference
between the groups [61]. For both groups, the assumptions of
normality were met and no outliers were detected as assessed
from the histograms [62] generated in SPSS v.29. With the 10
student containers previously defined, 10 new containers were
created for the expert-assessed data. The process for categorizing
and averaging the data was identical to the students’ self-
reported data, but now the average of the expert raters’ scores for
all individual designs is used. With 10 generated average
students (5 students with TM experience ranging from 1-5 and 5
students with AM experience ranging from 1-5) and 10
generated average experts (5 experts linked to evaluate the
designs from the 5 students with TM experience ranging from 1-
5 and 5 experts linked to evaluate the designs from the 5 students
with AM experience ranging from 1-5) 10 Paired T-Tests were
performed, with the results shown in Table 4.

Table 4. Paired T-Test Results for Self-Reported Versus Expert

5.1 Experience Distribution Assessment
. . H 9
Before a concise comparison can be made between the Student Expert T-Test | Two-Tailed | Cohen’s
5 Container Container Statistic P-Value d
students’ self-reported assessment and the expert-evaluated - -
.. . . TM Experience Evaluation 0.407
scores, it is necessary to classify the students based on their Level 1 (TM1) for TM1 1.524 0.151
experience .level. To do this, the students designs were TM Experience | Evaluation » 0757
categorized into groups based on the 5 available TM experience Level 2 (TM2) for TM2 2.833 0.014
levels and the 5 avall'able AM experience levels, resulting in 10 T™ Experience Evaluation » 0.894
manufacturing experience groups. A breakdown of the number Level 3 (TM3) for TM3 3.347 0.005
of students in each group is shown in Table 3. T™ Experience Evaluation o o004 0.942
Level 4 (TM4) for TM4 ’ ’
Table 3. Participant Breakdown TM Experience Evaluation 18 0001 1237
Experience Number of Students with Number of Students with Level 5 (TM5) for TMS ’ ’
Level TM Experience AM Experience AM Experience Evaluation 0745 0470 -0.199
1 14 7 Level 1 (AM1) for AM1 . .
2 31 25 AM Experi Evaluati 0.760
xperience valuation s -
i ?é ?? Level 2 (AM2) for AM2 2.844 0.014
5 2 5 AM Experience Evaluation 3036 0.002%* 1.052
Total 116 116 Level 3 (AM3) for AM3 ’ ’
AM Experience Evaluation 2001 0.067* 0.535
Within these groups, the students’ self-reported scores were Level 4 (AM4) for AM4 ' '
compared for general agreement by calculating the inter-rater- AM Experience Evaluation o 1.529
reliability. ICC values were calculated for the students’ self- Level 5 (AMS) for AMS5 3723 <0.001
reported assessments using SPSS v.29. where all but one group *:p<0.1 #%:0<0.05
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As Table 4 shows, the only non-significant pairings between
the students and raters were at the TM experience level of 1 and
the AM experience level of 1. This means that for all other cases,
the students evaluated their designs differently than the experts.
Furthermore, the T-Test Statistic is positive in all but one
instance (the pairing involving students with an additive
manufacturing experience level of 1). This means for the
majority of pairwise comparisons, the students overestimated
their usage of DfM axioms in their designs compared to the
expert assessment. Most of the Cohen’s d values presented in
Table 4 are of at least moderate correlation [63], indicating a
large practical effect observed between the students and experts.

To understand which axioms the students and expert raters
differed, additional Paired T-Tests were performed. Here, the
average of the expert’s scores were compared against all the
students’ scores in each of the 10 containers. The significant
differences between the students and experts’ scores are shown
in Table 5 (the non-significant differences in assessments were
omitted). The results in Table 5 show that except for the axiom
“Account for Potential Variations in Material Properties” (which
did not have any significant differences in assessment) and the
five instances where the students assigned lower scores for their
perceptions of DfM axioms in their designs compared to the
expert assessment (these instances are indicated with a negative
T-Test Statistic in Table 5), the students were assigned higher
scores for their perceptions of DfM axioms in their designs
compared to the expert assessment. Additionally, there were 7
axioms where at least 5 of the 10 manufacturing experience
groups significantly differed from the experts: (1) Reduce Part
Count, (2) Leverage Standard Materials, Components, and
Tooling, (3) Avoid Sharp Corners and Use Fillets, (4) Maintain
a Uniform Wall Thickness, (5) Provide Ample Spacing Between
Holes, (6) Incorporate Complex Shapes and Geometries, and (7)
Combine Multiple Parts into a Single Product or Assembly.
Further expanding on these findings, we observe that 5 of these
axioms are for TM, while 2 of these axioms are for AM.
Additionally, most of the Cohen’s d values presented in Table 5
are of at least strong correlation [63], indicating a large practical
effect observed between the students and experts.

5.3 A Model for Predicting Manufacturability Based on
DfM Axioms

To answer the second research question, a stepwise multiple
linear regression was performed. This test was chosen because
unlike forward or backward regression, stepwise both adds and
removes predictor variables as necessary to get a resulting model
[64]. The objective of the linear regression model was to predict
the average of the expert-assessed traditional manufacturability
and additive manufacturability based on the average of the
expert-assessed DfM  axiom scores. To equate the
manufacturability scales (1-6) to the DfM axiom scales (1-5)
both scales were normalized from 0 to 1, which was made
possible by the lack of outliers detected [65]. The models
generated from SPSS v.29 to predict traditional
manufacturability and additive manufacturability are shown in
Tables 6a and 6b, respectively.

Table 5. Axiom Differences between Students and Experts

Axiom Mgzggggzzng T-"ljes? Two-Tailed | Cohen’s
Statistic P-Value d
Level
T™2 3.523 0.001** 1.352
T™3 4.045 0.000** 1.807
Reduce Part T™4 2.959 0.010** 1.436
Count AM2 3.537 0.001** 1.487
AM3 5.985 0.000** 1.464
AMS 2.828 0.047** 1.581
T™3 3.376 0.002** 1.341
Low-Labor- AM2 2.106 0.040%** 1.537
Cost Operations AM3 2.488 0.017** 1.370
AMS 2.449 0.070* 1.095
Avoid Intricate ™3 1.844 0.074* 1416
Shapes AM3 2.811 0.008** 1.558
AMS 2.449 0.070* 0.548
T™M2 5.953 0.000** 1.294
Leverage T™3 2.635 0.013** 1.321
Standard T™4 3.873 0.002%** 1.291
Materials, AM2 4.886 0.000** 1.297
Components, AM3 4.762 0.000** 1.294
and Tooling AM4 2.319 0.043%* 1.300
AMS5 2.746 0.052* 1.140
T™2 5.708 0.000%** 1.447
. T™3 5.013 0.000** 1.042
‘é‘(’)‘r’;‘irssifg ™4 3.529 0.003** 1.063
Use Fillets AM2 6.708 0.000** 1.206
AM3 4.755 0.000%** 1.194
AM4 2.609 0.026** 1.618
™2 2.517 0.015%* 1.391
™3 3.802 0.001** 1.236
Maintain a TM4 4.226 0.001** 1.183
Uniform Wall AM?2 3.296 0.002%** 1.432
Thickness AM3 4.338 0.000** 1.234
AM4 1.896 0.087* 1.272
AMS5 2.746 0.052* 1.140
T™M2 3.915 0.000** 1.180
Provide Ample T™3 5.164 0.000%** 1.011
Spacing AM?2 4.579 0.000** 1.090
Between Holes AM3 3.058 0.004** 1.220
AM4 2.055 0.067* 1.027
T™M2 4.860 0.000** 1.239
Incorporate ™3 2.517 0.017** 1.591
Complex T™4 3.578 0.003** 1.328
Shapes and AM?2 3.662 0.001** 1.436
Geometries AM3 3.612 0.001** 1.392
AM4 3.786 0.004** 1.433
Combine T™2 1.685 0.098* 1.662
Multiple Parts T™3 4.608 0.000%** 1.587
into a Single AM?2 2.397 0.020%* 1.631
Product or AM3 3.468 0.001** 1.590
Assembly AMS5 3.138 0.035%* 1.140
Avoid Large ™3 -3.376 0.002%* 1.341
Flat Regions’ AM?2 -1.932 0.059* 1.675
AM3 -4.120 0.000%** 1.063
Orient
Overhanging AMS 2.138 0.099%* 0.837
Surfaces
Consider the AM4 2.390 0.038** 1.514
Minimum
Feature Size AMS5 2.250 0.088* 1.789
. AM2 -2.122 0.038** 1.462
Orient Curved AM3 1.850 0.072* 1.841
Surfaces
AMA4 -2.043 0.068%* 1.328
*:p<0.1 **:p<0.05
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Table 6a. Traditional Manufacturability Model

Table 7. Correlations Between Axioms

. . T-Test Pearson . . Pearson R P-
DfM Axiom Coefficient Statistic P-Value R Axiom 1 Axiom 2 Correlation +/- Value
Constant Term in - Reduce Part Rely on Low-Labor
Regression Model 0.243 2.884 0.005 ) Count Cost Operations 0.488 * 0.000
Avoid Intricate Shapes 0.189 2.176 0.032%* 0.683 Leverage Standard
Rely on Low-Labor- 0271 3564 <0.001%* 0,590 Reduce Part Materials, 0.483 ) 0.000
Cost Operations Count Components, and
Leverage Standard Tooling
Materials, sk Combine Multiple
Components, and 0.174 2.883 0.005 0.266 Re(éuocsnlt’art Parts into a Single 0.754* + 0.000
Tooling Product or Assembly
Incorporate Complex Reduce Part Avoid Large, Flat 0310 ) 0.000
Shapes and -0.219 -2.778 0.006** -0.661 Count Regions ) )
Geometries Rely on Low-
' 'Cons1der the ) 0.121 2181 0.031%* 0320 Labor Cost Avoid Intricate Shapes 0.606 + 0.000
Minimum Feature Size Operations
**:p<0.05 R=0.776 R?=0.602 Rely on Low- Provide Ample
Labor Cost Spacing Between 0.365 + 0.000
Table 6b. Additive Manufacturability Model Operations Holes
T-Test Rely on Low- Incorporate Complex
DM Axiom | Coefficient | ¢~ ti::ic P-Value | Pearson R Labor Cost Shapes and 0.512% - | 0.000
Constant Term Operations Geometries
- . Rely on Low- .
* -
in Regression 0.096 2.011 0.047* Labor Cost Avoid Lqrge, Flat 0.525% ) 0.000
Model . Regions
Incorporate Operations
C P ) Rely on Low- Consider the
ShOmP ex p 0.490 9.954 | <0.001%* 0.622 Labor Cost Minimum Feature 0.324 + | 0.000
G a}:jzs tiin Operations Size
Co?sidir tilse Rely on Low- Orient Curved
"
Minimum 0.206 4065 | <0.001** 0.193 Ic‘)abor Cost Surfaces 0367 0.000
. perations
Feature Size Avoid Intricate Orient Overhangin,
Orient v Shanes survfaces sing 0.342 + | 0.000
Overhanging 0.118 2.174 0.032%* 0.019 Sapes :
Avoid Intricate Orient Curved
Surfaces Shapes Surfaces 0.380 + 0.000
Kk — 2
P<0.05 R=0.699 R=0.489 Provide Ample Consider the
) Spacing Minimum Feature 0.373 + 0.000
Tables 6a and 6b present the DfM axioms that can be used Between Holes Size
to pred.ict the manufacturgbility of a.design for TM.and AM, Avoid Intricate Incorgﬁrate Coglplex 0764k 0.000
respectively. The stepwise regression method, like other Shapes Ge?iﬁzt??es : - :
regression method techniques [§4] can l'ead’to predictors belqg Avoid Intricate Avoid Large, Flat . 0,000
removed from final model. This result is either due to certain Shapes Regions : - :
predictors not having statistical significance or these predictors Leverage
having a high correlation with one or more of the predictors in Sta“d?fld Combine Mlsl!tlplle 05600 0,000
the final model (i.e., if predictors X and Y are highly correlated, cg/lﬁ;eéiﬁts Pf(?;fj.scin(;?;ssl;ﬁbiy = - :
knowing the manufacturability of a design based on predictor X and Tooling’
leads to knowing the manufacturability of a design based on Incorporate
predictor Y). The justification for removing certain axioms from Complex Avoid Large, Flat * +
: soss : s : : Shapes and Regions 0.630 0.000
both models is not initially provided. This information is Geometries
important to gather for this work because we need to understand Orient )
which axioms were removed from the models yet have high Overhanging Or'gg;fgglged 0.481 + | 0.000
correlation with the axioms present in the final models so they Surfaces _ i
can be included in future interventions. While the data satisfied O”Se“tfcur"ed Var‘at;)"“s “;tMate”a' 0.313 - | 0.000
the assumption of non-multicollinearity (VIF<10 [66]), an in- T PR

depth exploration into the correlation values was performed to
see which axioms had a moderate correlation (r>0.3 [67]). Table
7 presents all moderate positive/negative correlations (+/-)
within the pairwise comparisons of axioms (note that strong
correlations of r>0.5 are called out). The significantly correlated
axioms that merit inclusion in interventions will be highlighted
in the discussion section.

6. DISCUSSION
Based on the experimental results, there are several key
findings that merit more in-depth discussion
e Students perceive more DfM axioms present in their
designs when compared to expert assessment.
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e Incorporating complex shapes and geometries and
considering the minimum feature size can significantly
influence the manufacturability of a design.

6.1 Students perceive more design axioms present in
their designs when compared to expert assessment.

The hypothesis for the first research question stated that
there would be fewer discrepancies between the students and
experts’ evaluation of the designs as the experience level
increased. It was believed that having manufacturing expertise
would improve the familiarity and therefore improve their self-
assessment of their designs [48], thereby aligning with the
experts’ assessment. It was found that in addition to significant
discrepancies in the assessment of the designs, the students
significantly reported more DfM axioms compared to the
experts.

There are some reasons that explain this phenomenon. One
factor could be a lack of intervention to help students in assisting
with the self-assessment. As Gordon found in his work
comparing the self-assessment of trainees in health professions
against the assessment of experts [68], the self-assessment by the
trainees was improved when an intervention took place that
clarified the criteria for success and compared preliminary
assessments by the students to those of the experts. In the context
of design, priming students with relevant content before having
them begin concept development was shown to have no
significant impact on the self-assessment of the designs
produced, as was found by the work done from Pearl et al. [50].
Simply presenting axioms to the students at the beginning of the
design process is an insufficient method to changing how
students perceive DfM axioms in their designs. This finding
supports the experimental results obtained from Liao et al. [69],
who found that introducing relevant priming content in the
middle of the design process changed both the types of designs
that were created and the self-assessment of the designs. This
signifies that having an intervention in the middle of the design
process, can help students improve the self-assessment of the
designs.

In the work done by Abadel et al. [70], where they compared
the clinical competency of medical graduates’ self-assessment
against the experts’ assessment and obtained similar results, they
attributed the discrepancies to the students overestimating their
abilities and competency. In aligning with DfM, the work by
Sinha et al. [36] confirms the problems of translating what is
taught into practice. In their work, they found that students
improved the elegance of their designs, but their
manufacturability did not change. This emphasizes the
importance of needing to identify what is critical to present in an
intervention, which will be discussed in the following section.

6.2 Incorporating complex shapes and geometries and
considering the minimum feature size can significantly
influence the manufacturability of a design.

The hypothesis for the second research question stated that
the design axioms that would have significant influence on the
manufacturability of a design would be to avoid intricate shapes

and to rely on low-labor-cost operations because of their
anticipated usage relative to the rest of axioms under
observation. The most notable finding from the two generated
regression models for predicting the manufacturability of the
designs were the two identified axioms that significantly
influence manufacturability: incorporating complex shapes and
considering the minimum feature size. Regarding the axiom
“Incorporate Complex Shapes and Geometries, Tables 6a and 6b
this axiom was negatively correlated with TM and positively
correlated with AM, respectively. This means that leveraging
this axiom will improve the design for AM, while avoiding this
axiom will improve the design for TM. This makes sense when
considering that DTM favors simple designs, while DfAM
favors those that are complex [1]. As for considering the
minimum feature size, this axiom was positively correlated for
both AM and TM. This significant DfAM axiom makes sense
when considering that minimum feature size is frequently
associated with AM [71]. As for its significance with TM, this is
likely due to the connection between features and the tolerances
within these features [72], the latter of which was not explicitly
defined as part of the 7 DfTM axioms (tolerances was a subset
of the “Ample Spacing Between Holes” design heuristic, where
no significant correlations were found from this axiom.

There were also other significant axioms that were present
in both manufacturability models. The traditional
manufacturability model included avoiding intricate shapes,
relying on low-labor-cost operations, and leveraging standard
materials, components, and tooling, while the additive
manufacturability model added in orienting overhanging
surfaces. All these axioms were found to have positive
correlations within their respective models. This means that for
improving a design’s manufacturability, it is important to
emphasize these specific axioms based on the selected
manufacturing process. For future interventions, the content that
should be presented to the students to improve a design’s
manufacturability for AM is summarized in Table 8.

Table 8. Content Material for DfAM Intervention
DfM Axiom

Intent of Emphasizing Axiom

Incorporate Complex Shapes and

. Encourage in Design
Geometries g g

Consider the Minimum Feature Size Encourage in Design

Orient Overhanging Surfaces Encourage in Design

Avoid Large, Flat Regions Encourage in Design

Provide Ample Spacing Between Holes Encourage in Design

Orient Curved Surfaces Encourage in Design

Rely on Low-Labor-Cost Operations Discourage in Design

Avoid Intricate Shapes Discourage in Design

7. CONCLUSION
The design considerations that accompany AM are critical
to implement as it dictates if a design leverages the advantages
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and opportunities that AM provides. In understanding the
purpose of creating suitable designs for AM, it is important to
address any natural design tendencies early that may prohibit
suitable AM designs from being created. In this work, it was
found that incorporating complex shapes and geometries and
considering the minimum feature size can significantly influence
the manufacturability of a design. These findings provide insight
into what needs to be addressed during potential interventions.

Future work will explore the effect of varying the prompt to
observe if providing additional criteria leads to improved designs
that can be better assessed for their manufacturability. Additional
work will further investigate the specific features that students
incorporate into their designs (such as rectangular blocks or
lattice structures) and the frequency with which they are
incorporated. Lastly, interventions will be implemented to
observe if they can change the students’ perception of axioms in
their designs and their potential to successfully have students
rethink their designs as they develop them in the concept
generation stage.
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