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ABSTRACT 
Additive Manufacturing (AM) is a technology capable of 

producing designs that challenge those from traditional 

manufacturing methods. AM is of high interest for advanced 

capabilities such as leveraging free complexity and having the 

ability to manufacture multi-part products that are manufactured 

as a single assembled. By leveraging design heuristics for AM, 

the final design can be manufactured in a shorter timeframe with 

less material consumption while still maintaining the initial 

engineering goals of the design. Despite the promising potential 

of AM, there is a growing concern that designers are not utilizing 

the design heuristics that embody successful AM. When 

designers resort to using design heuristics for Traditional 

Manufacturing (TM) with the unintentional purpose of 

translating these heuristics to AM, they are not creating efficient 

designs for AM and are unable to reap the benefits of using AM. 

To remedy this problem, intervening early in the design process 

can help address any concerns regarding the use of AM design 

heuristics. This work explores the design heuristics that students 

use in creating designs in the context of TM and AM. Once the 

common design heuristics students use in their designs are 

identified, future studies will further investigate the specific 

features that these students are using to address them through 

early interventions. This work found that incorporating complex 

shapes and geometries and considering the minimum feature size 

are significant axioms for influencing the manufacturability of a 

design for both TM and AM. 
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Heuristics 

 

1. INTRODUCTION 
Additive Manufacturing (AM) is a still a relatively new 

method of producing designs. By utilizing the technology’s 

approach to developing designs by adding material to an empty 

build volume, the wasted material that comes from the 

subtractive principles of Traditional Manufacturing (TM) are 

significantly mitigated. Additional benefits of AM over TM 

include its ability to produce far more complex designs [1] and 

its capability to directly assemble multiple parts together during 

the manufacturing process [2,3], thereby eliminating the time 

needed to assemble the product. AM has already demonstrated 

itself viable in applications ranging from prototypes [4] and end 

use products [5].  

Manufacturing processes have associated design 

considerations that can help create a better design for a certain 

manufacturing process. Design for Manufacturing (DfM) 

provides the guidelines or heuristics for creating designs that 

leverage the chosen manufacturing process [6]. Relevant to this 

work, there are two sets of DfM heuristics that are highlighted: 

Design for Traditional Manufacturing (DfTM) and Design for 

Additive Manufacturing (DfAM). The key difference between 

these two sets of heuristics is that DfTM often favors simple 

designs, while DfAM favors those that are complex [1]. It is 

crucial to keep these sets of heuristics tied to their respective 

manufacturing process, as using the wrong set of heuristics for a 

different manufacturing process can lead to inefficient designs 

that don’t take advantage of the selected process [7]. Because 

TM may likely be more familiar to designers due to its longevity 

compared to AM, these designers, who may be heavily 

influenced by their prior experience [8] may end up instinctively 

using DfTM heuristics in their designs, regardless of the 

manufacturing process they actually intend to use. For those 
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looking to create designs for AM, this behavior is strongly 

discouraged and needs to be remedied. By leveraging the 

advantages that AM offers, such as the ability to produce pre-

assembled products [9,10] and create replicas of scanned objects 

[11], designs that were previously impossible to manufacture 

using TM are now conceivable with AM because of the 

differences in limitations of each process [12]. 

One possible solution for addressing a designer’s natural 

tendencies is to focus efforts early in the design process. It has 

been found in prior literature that the best opportunity to fix a 

design without wasted costs is the concept generation phase [13]. 

By addressing the usage of design heuristics in the concept 

generation stage, the designs can be better tailored to the chosen 

manufacturing process. Prior research has explored interventions 

in the concept generation phase [14], where specific focus has 

been given to the AM space [7,15,16]. Despite these efforts to 

investigate the ability to influence designers with DfAM 

heuristics, there is currently no in-depth analysis given to the 

heuristics that students instinctively use when they create 

designs. By understanding the heuristics that embody the designs 

that students produce, we can have a better understanding of the 

decision-making that takes place during the concept generation 

phase [17]. The purpose of this work is to identify the common 

heuristics that designers use in an effort towards building proper 

intervention methods. 

 
2. LITERATURE REVIEW 

To contextualize the research in this paper, it is important to 

understand the importance of DfM heuristics in concept 

generation (Section 2.1), and why it is necessary to focus efforts 

towards leveraging DfAM heuristics in this stage (Section 2.2). 

 

2.1 The Importance of Design for Manufacturing 
Heuristics in Concept Generation 

Design heuristics are a beneficial tool that can be used to 

describe an object. A design heuristic can be used to help 

designers identify features and flaws that manifest in designs 

[18]. One key aspect of design heuristics is that they are 

subjective in nature, which means they may be susceptible to 

influence from cognitive biases [19]. Despite this, design 

heuristics are still predominantly used in identifying the 

distinguishing characteristics of an object. Design heuristics 

have been used across a wide range of applications, including 

design evaluation [20], aiding in design development [21], and 

assisting in design education [22]. Design heuristics are of 

particular interest for the manufacturing assessment in this paper, 

as they have been previously used to classify designs based on 

their identified feature sets [23]. 

Design heuristics are also a critical aspect of the design 

process that can be implemented as guidelines for design 

considerations. Design heuristics act as cognitive principles that 

guide designers for interpreting designs and their potential 

variations [24]. Design heuristics have been recognized as 

valuable tools in the design process, both for providing guidance 

in design creation [21] and for use as an assessment tool for 

evaluating designs [20]. It is because of this significance that it 

is critical for design heuristics to be established early in the 

design process to ensure that the finished product embodies the 

proper principles. 

Identifying relevant design heuristics early in the concept 

generation stage can help address any problems that may arise in 

the final product. By addressing problems early in the concept 

generation stage, it is easier to fix the designs and saves any 

potential wasted costs, as stated by Lough et al. [13]. In their 

work, they explore the benefits of design adjustment in the 

context of risk aversion, but they did not specifically explore the 

benefits of addressing the design to improve manufacturability. 

Yilmaz et al. [25] explored various intervention techniques in the 

concept generation stage, where it was found that interventions 

can influence the type of design thinking encouraged. Their 

results indicate that interventions are successful in getting 

designers to rethink their designs as they develop them in the 

concept generation stage. Part of these interventions involve 

determining which design heuristics should be presented, as 

there are many different types based on the relevant context. 

 

2.2 The Differences in Heuristics for DfTM and DfAM  
Design heuristics can be further isolated into different 

applications based on specific use cases. Relevant to this work, 

there are a set of heuristics for DfTM and a set for DfAM that 

are tailored for TM and AM, respectively. The design heuristics 

for traditional manufacturing have long been in place and 

introduce standard considerations for creating simple designs 

suitable for TM [26]. Newer DfAM heuristics narrow the breadth 

of design properties to those that are advantageous when AM is 

being used for production. DfAM heuristics were derived by 

Blösch-Paidosh and Shea [27] as they collected and analyzed the 

key functions and features of 275 AM artifacts. Through their 

creation of the DfAM heuristics, they allude to various DfAM 

concepts manifesting in designs, with no constraints put on how 

many heuristics may be present for any given design and the 

frequency with which these heuristics are identified relative to 

the total number of sampled artifacts. These design heuristics 

have been used across the engineering design process, ranging 

from design ideation [28] to design inspection [29,30] and 

redesigning [31,32]. These DfAM heuristics have useful 

applications within the design process and how it relates to AM, 

as evidenced in the review conducted by Valjak et al. [33].   

Design heuristics for AM drastically differ from those 

geared towards TM. While designs for AM favor complexity, 

designs for TM prefer simplicity [1]. It is because of these 

differences that design considerations must be implemented 

early in the concept generation process to create designs that are 

best suited for one process over another. Designs can be 

inefficient or outright not be manufacturable when these design 

considerations (e.g., DfTM vs DfAM) are mixed and matched 

[12,34]. To reduce the chance of these considerations being 

mixed into one design, there is a need to address the differences 

between DfTM and DfAM early in the design process. One 

method for achieving this is to perform an intervention prior to 

or during the design process, as was found by Prabhu et al. [16] 

and by Schauer et al. [7]. 
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While prior literature has explored intervening to improve 

designs for AM, they do not consider the specific heuristics that 

represent the design itself in the context of both AM and TM. 

Blösch-Paidosh and Shea presented their developed heuristics in 

the form of cards and objects in an effort to stimulate design 

thinking towards AM [32]. While their findings of presenting 

heuristics to these yielded increased usage of DfAM heuristics 

in their designs, the students were likely framed towards AM 

from the beginning of the experiment [35] as the activities 

leading up to the design task were narrowed to AM-related topics 

only. Similarly, Prabhu et al. [16] leveraged the DfAM heuristics 

that were derived from Laverne et al. [9]. These heuristics 

separate the principles of DfAM into two categories: Restrictive 

(R-DfAM) and Opportunistic (O-DfAM), which correspond to 

the limitations and capabilities of AM, respectively. While their 

research analyzed the manufacturability of the designs through 

AM, they do not account for the use of DfTM heuristics and how 

designs might be improved for AM. Sinha et al. [36] explored 

the comparison of designs for TM and AM while controlling for 

any prior formal training. While their work encourages the 

continuation of DfAM education based on the students’ abilities 

to create more elegant designs, their assessment process for 

dissecting the designs did not reach the heuristic level. There is 

a lack of research focusing on the evaluation of designs through 

lens of the two sets of DfM heuristics when the students are not 

heavily skewed towards one manufacturing process over 

another; there is a need to investigate the specific heuristics that 

designers may naturally gravitate towards using in their designs. 

By understanding the DfTM and DfAM heuristics that students 

are leveraging in their designs, interventions can be used to help 

designers reframe their thinking and overcome any fixation they 

may have towards their initial concepts [37,38]. 

This work focuses on performing an in-depth assessment of 

designs for their manufacturability in the context of traditional 

manufacturing and additive manufacturing. Design heuristics are 

the foundational basis for an assessment analogous to this, but 

the process is both vague [33] and complex [23] for novel work 

such as this one. Therefore, there is a need to conduct an 

assessment using explicit criteria so that future studies can build 

on this work by integrating design heuristics into this 

manufacturability assessment. The alternative presented in this 

work utilizes axioms in place of heuristics. Axiomatic design 

leverages design axioms for which its principles are well defined 

and are undisputed [39,40]. The approach to utilizing axioms has 

shared commonalities with heuristics [41] and there are 

applications where they are interchangeable [42]. The 

similarities between these two sets of design principles make 

using design axioms in place of design heuristics sufficient for 

this work, as the assessment of designs for their 

manufacturability will be done using precise criteria.        

 

3. RESEARCH OBJECTIVES 
The objective of this paper is to determine whether the 

students’ perceived assessment of their designs is accurate when 

compared to expert assessment. By identifying where students 

differ from experts in how they perceive DfM axioms in their 

designs, future interventions can address these differences so 

students can have a better understanding of the axioms present 

in their designs. Further, the work seeks to determine the axioms 

that significantly influence the manufacturability of a design. 

There is a need to understand the axioms that students are 

utilizing in their designs so future interventions can address these 

axioms to create improved designs for either traditional 

manufacturing or additive manufacturing. The following 

research questions are proposed: 

 

(1) How does the students’ self-assessment of axiom usage 

correlate to the expert’s assessment? 

We hypothesize that students having prior experience with 

manufacturing (either TM or AM) will report an accurate 

perception of the axioms used that are associated with their prior 

manufacturing experience relative to their actual use.  In 

contrast, students with no prior manufacturing experience will 

inaccurately perceive and assess axioms in their designs 

compared to their actual used. When controlling for experience, 

those with higher experience have demonstrated in prior research 

to report more DfM axioms than those with lower experience 

[43]. Because DfAM is still in its relative infancy while having 

a niche audience [44], exposure to related axioms is expected to 

be limited. Therefore, by expressing high levels of expertise, it 

is anticipated that the students are aware of DfAM and can 

therefore provide a more accurate assessment of their designs 

when compared to the experts.  

 

(2) To what extend will different DfM axioms predict the 

appropriateness of a design concept for TM or AM?  

We hypothesize that students will inherently create designs 

that favor TM, where the design axioms that will significantly 

influence the manufacturability of the designs will be to avoid 

intricate shapes and to leverage low-labor-cost operations. 

Because students tend to create simple designs [45], it is 

anticipated that students will resort to designs that do not 

incorporate any form of shape complexity. Additionally, because 

these simple shapes can be treated with simple manufacturing 

steps [46], complex techniques will not be necessary. 

 

4. EXPERIMENTAL METHODS 
To answer the research questions, an experiment was 

developed to investigate the axioms used in students’ generated 

designs. The experiment consisted of two stages: (1) a pre-

intervention survey, and (2) a design challenge followed by 

students’ self-evaluations of their designs. The study was 

reviewed and approved by the Institutional Review Board, and 

implied consent was obtained from the participants prior to the 

experimentation. In this experiment, the participants first 

reported their current level of expertise with TM and AM. Next, 

they were asked to complete an open-ended, manufacturing-

agnostic design challenge. From there, they completed the 

experiment by self-evaluating their designs for TM and AM 

based on the axioms presented in the pre-intervention survey. 

Finally, after the design activity, participants’ designs were 

evaluated by manufacturing domain experts. The following 
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subsections discuss further details behind experimentation and 

analysis. 

 

2.2 Participants 
116 participants were recruited from a third-year 

undergraduate mechanical engineering design course. Some 

participants’ data (not included in this numerical total) were 

removed from consideration due to incompleteness in the 

activity where key information was critical (i.e., the self-reported 

evaluation for the design considering the manufacturing size) or 

the key information was not filled in properly (I.e., the self-

reported evaluation for avoiding large, flat regions had two 

scores filled in when only one was requested). The experiment 

was implemented during the middle of the Fall 2022 semester to 

allow students to gain manufacturing experience in their class 

prior to the experiment’s design challenge. 

 

2.2  Procedure and Metrics 
2.2.2  Pre-Intervention Survey 

At the outset of the activity, participants were given 5 

minutes to complete a survey that asked about their previous 

experience with TM and AM. They were also asked to evaluate 

their familiarity with a series of 14 different DfTM and DfAM 

axioms (7 for each) on a 5-point Likert-type scale [47], with a 

score of 1 representing “Never heard about it” and a score of 5 

representing “Could regularly integrate it with my design 

process.” This survey, which was modified from the studies done 

by Prabhu et al. [48–50], provides the research team with an 

understanding of participants’ current levels of TM and AM 

experience and familiarity with the respective DfM axioms. The 

DfTM axioms were extracted from Bralla [26], while the DfAM 

axioms were extracted from Prabhu et al. [51]. A list of the 

axioms used in this experiment are presented in Table 1. 

 

Table 1. DfM Axioms 

DfTM Axiom DfAM Axiom 

Simplify designs to reduce part 

count without greatly increasing 

manufacturing complexity 

Incorporate complex shapes and 
geometries to reduce material usage 

Rely on low-labor-cost operations 
that minimize human 

manufacturing steps 

Combine what might typically be 
multiple parts into a single product 

or assembly 

Avoid intricate shapes that require 
multiple manufacturing operations 

or repositioning 

Avoid large, flat regions that may be 

susceptible to distortion and warping 

Leverage standard materials, 

components, and tooling for 
manufacturing 

Orient overhanging surfaces to 

reduce the need for support material 

Avoid sharp corners; use fillets to 

improve manufactured accuracy 
and reduce stresses 

Consider the minimum feature size 

that can be resolved by the 
manufacturing process 

Maintain a uniform wall thickness 
throughout individual parts 

Orient curved surfaces to reduce 

surface roughness and increase part 

accuracy 

Provide ample spacing between 

holes so they can be made without 
tooling weakness 

Account for potential variations in 

material properties in different 
directions 

 

2.2.2 Design Challenge and Procedure 

Following the survey, students were given the design 

prompt that they would be solving. The provided design prompt 

was as follows. “"You are tasked with designing a solution to 

hold three hollow tubes securely in place and parallel to each 

other. All tubes must be held 2 inches away from a fixed wall 

(measuring from the wall to the closest edge of the tubes). The 

tubes are 1 inch in diameter and 3 inches long”" To accompany 

this text description, participants were also presented with the 

visuals seen in Figure 1. This design challenge was previously 

used by Prabhu et al. [52] and Pearl et al. [50], was selected for 

this study because its open-ended nature creates a wide design 

space [52], allowing for solutions that can be produced using 

both TM and AM. Additionally, the design challenge falls in line 

with the shift towards problem-based learning [53]. To remove 

any manufacturing biases in the design challenge, students did 

not receive any manufacturing constraints in the design prompt 

itself. Furthermore, to understand how students would naturally 

create designs and evaluate them for their axiom manifestation, 

the students were not primed on any DfM concepts. The work 

from Pearl et al. [50], which has a similar experimental 

procedure to this work, had the students primed with DfTM and 

DfAM concepts before proceeding with the design challenge. By 

omitting the priming element of the procedure, the students have 

no exposure to understanding what each axiom entails, meaning 

their ability to create and evaluate their designs will be based 

primarily on their prior experience. 

 

 
Figure 1. Design Challenge Visual Provided to Participants 

 

After reading through the design challenge prompt, students 

spent 10 minutes using the provided design sheets to individually 

create as many solutions as possible. They were instructed to use 

both sketches as well as text to illustrate their designed solutions. 

While the students were creating designs in the concept 

generation session, they were also asked to describe the 

advantages and disadvantages of each design concept. An 

example of a completed design sheet is shown in Figure 2. 
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Figure 2. Example of Completed Design Sheet 

 

Following the concept generation session, participants were 

given 7 minutes to identify a final design. They were informed 

that their final design could be any of the following: a reused or 

modified design from the initial concept generation period, a 

combination of any of the previous designs, or an entirely new 

idea. As with the initial concept generation session, participants 

were asked to list the advantages and disadvantages of their final 

design. 

After identifying their final design and discussing its 

strengths and weaknesses, participants were asked to evaluate 

their solution as designed based on the 7 DFTM axioms and 7 

DfAM axioms presented in the pre-intervention survey to the 

best of their ability. Specifically, participants were presented 

with each axiom and asked, “To what extent do you agree with 

the following statements about manufacturing as they apply to 

your final design?” They then evaluated the design using a 5-

point Likert scale, where 1 represented Strongly Disagree and 5 

represented Strongly Agree. This self-evaluation allows the 

researchers to observe which DfM axioms are commonly 

identified by the students and will be used to compare to the 

expert assessment, which is discussed in the following section. 

 

4.2.3 Expert Design Evaluation 

To evaluate participants’ final designs, three raters (two 

experts and one quasi-expert in design for manufacturing 

processes) used the Consensual Assessment Technique (CAT) as 

developed by Amabile [54]. This technique has expert judges 

evaluate creativity in their specialty domain [55]. Pertinent to the 

research in this paper, the CAT has also previously been used to 

evaluate suitability of design concepts for manufacturing 

[52,56]. Both expert raters have graduate degrees, have at least 6 

years of experience with creating and evaluating designs for AM, 

and previously published papers in the relevant field. The quasi-

expert is currently progressing through graduate coursework and 

has experience with creating and evaluating designs for AM. The 

three raters evaluated the final designs based on both their 

traditional manufacturability and additive manufacturability. 

Both categories were evaluated on a 1-6 scale, with higher scores 

indicating greater suitability for that manufacturing process type. 

A brief description of each category is as follows: 

• Traditional manufacturability: The suitability of the 

design for TM based on expert assessment. Though a variety of 

traditional processes are possible, scoring is based on the 

assessment of applicable DfM principles. A higher score 

represents a design that utilizes the general principles of TM 

(simple shapes, rounded corners, ample spacing between holes, 

etc.) while a lower score represents a design that is either very 

difficult or impossible to manufacture using TM processes. 

• Additive manufacturability: The suitability of the 

design for AM based on expert assessment. The category here 

focuses on the use of both R-DfAM and O-DfAM principles in 

the design and how they apply to the various AM processes. A 

higher score represents the use of most R-DfAM and O-DfAM 

principles, while a lower score represents little to no identifiable 

R-DfAM and O-DfAM principles. Intermediate scores tend to 

exhibit suitable R-DfAM, but lack in O-DfAM. 

After evaluating the designs for their manufacturability, the 

raters proceeded to assess the designs for use of the 14 DfM 

axioms. The three raters first jointly scored 5 randomly selected 

designs together to establish the evaluation criteria and have 

general agreement. Next, each rater individually scored the same 

set of 25 randomly selected designs which were then compared 

for consistency. To calculate the inter-rater reliability, the scores 

were validated for consistency using the interclass coefficient 

(ICC) [57–59]. The ICC values were calculated using SPSS v.29. 

A secondary meeting was held among the raters to discuss any 

discrepancies, review the scores, and refine the rubric for 

assessing the designs after the initial ICC calculation yielded a 

poor Cronbach’s Alpha (α) for some of the DfM axioms. From 

there, an additional 40 designs were independently assessed, and 

the cumulative scores were compared for agreement. The 

manufacturability scores maintained a strong agreement, while 

the axioms ranged from moderate to strong agreement. The raters 

were then asked to evaluate the remaining designs and a final 

reliability test was performed. The inter-rater reliability results 

are shown in Table 2. 

Table 2 presents α values that range from moderate 

reliability (0.50<α<0.75) to good reliability (0.75<α<0.90) [60]. 

These α values were also significant with a p-value of <0.001 

using a 95% confidence interval. This means that for each design 

the raters were giving comparable scores for their 

manufacturability and usage of DfM axioms. This indicates a 

good agreement between the raters for all experimental 
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conditions. After the raters evaluated all the designs, the average 

TM CAT score and average AM CAT score were calculated for 

each student by averaging the respective CAT scores provided 

by the raters. This process was also repeated for the DfM axioms. 

The resulting average expert rater is associated with 2 

manufacturability scores (TM and AM) and 14 DfM axioms (7 

DfTM and 7 DfAM) for 116 participants. 

 

Table 2. ICC Results for the Three Raters  

Evaluation Criteria 
Cronbach’s 

Alpha (α) 

Traditional Manufacturability 0.771 

Additive Manufacturability 0.828 

Reduce Part Count 0.834 

Rely on Low-Labor-Cost Operations 0.723 

Avoid Intricate Shapes 0.740 

Leverage Standard Materials, Components, and Tooling 0.715 

Avoid Sharp Corners by Using Fillets 0.842 

Maintain a Uniform Wall Thickness 0.769 

Provide Ample Spacing Between Holes 0.713 

Incorporate Complex Shapes and Geometries 0.858 

Combine Multiple Parts into a Single Part or Assembly 0.847 

Avoid Large, Flat Regions 0.848 

Orient Overhanging Surfaces 0.769 

Consider the Minimum Feature Size 0.793 

Orienting Curved Surfaces 0.755 

Account for Potential Variations in Material Properties 0.694 

 

5. RESULTS 
To communicate data collected through this study, this 

section details the distribution of students’ manufacturing 

experience (Section 5.1), followed by statistical analysis using 

SPSS v.29 to answer the research questions for self-reported 

assessment against expert assessment (Section 5.2) and 

presenting a model for manufacturability (Section 5.3). 

 

5.1 Experience Distribution 
Before a concise comparison can be made between the 

students’ self-reported assessment and the expert-evaluated 

scores, it is necessary to classify the students based on their 

experience level. To do this, the students’ designs were 

categorized into groups based on the 5 available TM experience 

levels and the 5 available AM experience levels, resulting in 10 

manufacturing experience groups. A breakdown of the number 

of students in each group is shown in Table 3. 

 

Table 3. Participant Breakdown 

Experience 

Level 

Number of Students with 

TM Experience 

Number of Students with 

AM Experience 

1 14 7 

2 51 55 

3 33 38 

4 16 11 

5 2 5 

Total 116 116 

 

Within these groups, the students’ self-reported scores were 

compared for general agreement by calculating the inter-rater-

reliability.  ICC values were calculated for the students’ self-

reported assessments using SPSS v.29. where all but one group 

yielded moderate reliability (the lone exception being the AM 

experience level of 4). With general agreement observed in each 

manufacturing experience group, the students’ self-reported 

scores for each axiom within the groups were averaged out. This 

process gives us 10 average students (5 with TM experience at 

levels 1-5 and 5 with AM experience at levels 1-5), with each 

individual average student having 14 DfM axiom scores 

associated with them. 

 

5.2 Self-Reported Scores Against Expert Assessment 
To answer the first research question, a series of Paired T-

Tests were performed comparing the 10 average students to the 

average expert rater. This test was chosen because we wanted to 

compare the average of two related groups (the self-reported 

scores against the expert scores across each manufacturing 

experience level) to determine if there is a significant difference 

between the groups [61]. For both groups, the assumptions of 

normality were met and no outliers were detected as assessed 

from the histograms [62] generated in SPSS v.29. With the 10 

student containers previously defined, 10 new containers were 

created for the expert-assessed data. The process for categorizing 

and averaging the data was identical to the students’ self-

reported data, but now the average of the expert raters’ scores for 

all individual designs is used. With 10 generated average 

students (5 students with TM experience ranging from 1-5 and 5 

students with AM experience ranging from 1-5) and 10 

generated average experts (5 experts linked to evaluate the 

designs from the 5 students with TM experience ranging from 1-

5 and 5 experts linked to evaluate the designs from the 5 students 

with AM experience ranging from 1-5) 10 Paired T-Tests were 

performed, with the results shown in Table 4.  

 

Table 4. Paired T-Test Results for Self-Reported Versus Expert 

Assessment 
Student 

Container 

Expert 

Container 

T-Test 

Statistic 

Two-Tailed 

P-Value 

Cohen’s 

d 

TM Experience 
Level 1 (TM1) 

Evaluation 
for TM1 

1.524 0.151 
0.407 

TM Experience 

Level 2 (TM2) 

Evaluation 

for TM2 
2.833 0.014** 

0.757 

TM Experience 

Level 3 (TM3) 

Evaluation 

for TM3 
3.347 0.005** 

0.894 

TM Experience 

Level 4 (TM4) 

Evaluation 

for TM4 
3.524 0.004** 

0.942 

TM Experience 
Level 5 (TM5) 

Evaluation 
for TM5 

4.628 <0.001** 
1.237 

AM Experience 

Level 1 (AM1) 

Evaluation 

for AM1 
-0.745 0.470 

-0.199 

AM Experience 
Level 2 (AM2) 

Evaluation 
for AM2 

2.844 0.014** 
0.760 

AM Experience 

Level 3 (AM3) 

Evaluation 

for AM3 
3.936 0.002** 

1.052 

AM Experience 

Level 4 (AM4) 

Evaluation 

for AM4 
2.001 0.067* 

0.535 

AM Experience 
Level 5 (AM5) 

Evaluation 
for AM5 

5.723 <0.001** 
1.529 

*:p<0.1    **:p<0.05 
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As Table 4 shows, the only non-significant pairings between 

the students and raters were at the TM experience level of 1 and 

the AM experience level of 1. This means that for all other cases, 

the students evaluated their designs differently than the experts. 

Furthermore, the T-Test Statistic is positive in all but one 

instance (the pairing involving students with an additive 

manufacturing experience level of 1). This means for the 

majority of pairwise comparisons, the students overestimated 

their usage of DfM axioms in their designs compared to the 

expert assessment. Most of the Cohen’s d values presented in 

Table 4 are of at least moderate correlation [63], indicating a 

large practical effect observed between the students and experts. 

To understand which axioms the students and expert raters 

differed, additional Paired T-Tests were performed. Here, the 

average of the expert’s scores were compared against all the 

students’ scores in each of the 10 containers. The significant 

differences between the students and experts’ scores are shown 

in Table 5 (the non-significant differences in assessments were 

omitted). The results in Table 5 show that except for the axiom 

“Account for Potential Variations in Material Properties” (which 

did not have any significant differences in assessment) and the 

five instances where the students assigned lower scores for their 

perceptions of DfM axioms in their designs compared to the 

expert assessment (these instances are indicated with a negative 

T-Test Statistic in Table 5), the students were assigned higher 

scores for their perceptions of DfM axioms in their designs 

compared to the expert assessment. Additionally, there were 7 

axioms where at least 5 of the 10 manufacturing experience 

groups significantly differed from the experts: (1) Reduce Part 

Count, (2) Leverage Standard Materials, Components, and 

Tooling, (3) Avoid Sharp Corners and Use Fillets, (4) Maintain 

a Uniform Wall Thickness, (5) Provide Ample Spacing Between 

Holes, (6) Incorporate Complex Shapes and Geometries, and (7) 

Combine Multiple Parts into a Single Product or Assembly. 

Further expanding on these findings, we observe that 5 of these 

axioms are for TM, while 2 of these axioms are for AM. 

Additionally, most of the Cohen’s d values presented in Table 5 

are of at least strong correlation [63], indicating a large practical 

effect observed between the students and experts. 

 

5.3 A Model for Predicting Manufacturability Based on 
DfM Axioms 

To answer the second research question, a stepwise multiple 

linear regression was performed. This test was chosen because 

unlike forward or backward regression, stepwise both adds and 

removes predictor variables as necessary to get a resulting model 

[64]. The objective of the linear regression model was to predict 

the average of the expert-assessed traditional manufacturability 

and additive manufacturability based on the average of the 

expert-assessed DfM axiom scores. To equate the 

manufacturability scales (1-6) to the DfM axiom scales (1-5) 

both scales were normalized from 0 to 1, which was made 

possible by the lack of outliers detected [65]. The models 

generated from SPSS v.29 to predict traditional 

manufacturability and additive manufacturability are shown in 

Tables 6a and 6b, respectively. 

Table 5. Axiom Differences between Students and Experts 

Axiom 

Manufacturing 

Experience 

Level 

T-Test 

Statistic 

Two-Tailed 

P-Value 

Cohen’s 

d 

Reduce Part 
Count 

TM2 3.523 0.001** 1.352 

TM3 4.045 0.000** 1.807 

TM4 2.959 0.010** 1.436 

AM2 3.537 0.001** 1.487 

AM3 5.985 0.000** 1.464 

AM5 2.828 0.047** 1.581 

Low-Labor-
Cost Operations 

TM3 3.376 0.002** 1.341 

AM2 2.106 0.040** 1.537 

AM3 2.488 0.017** 1.370 

AM5 2.449 0.070* 1.095 

Avoid Intricate 
Shapes 

TM3 1.844 0.074* 1.416 

AM3 2.811 0.008** 1.558 

AM5 2.449 0.070* 0.548 

Leverage 
Standard 

Materials, 

Components, 
and Tooling 

TM2 5.953 0.000** 1.294 

TM3 2.635 0.013** 1.321 

TM4 3.873 0.002** 1.291 

AM2 4.886 0.000** 1.297 

AM3 4.762 0.000** 1.294 

AM4 2.319 0.043** 1.300 

AM5 2.746 0.052* 1.140 

Avoid Sharp 
Corners and 

Use Fillets 

TM2 5.708 0.000** 1.447 

TM3 5.013 0.000** 1.042 

TM4 3.529 0.003** 1.063 

AM2 6.708 0.000** 1.206 

AM3 4.755 0.000** 1.194 

AM4 2.609 0.026** 1.618 

Maintain a 

Uniform Wall 
Thickness 

TM2 2.517 0.015** 1.391 

TM3 3.802 0.001** 1.236 

TM4 4.226 0.001** 1.183 

AM2 3.296 0.002** 1.432 

AM3 4.338 0.000** 1.234 

AM4 1.896 0.087* 1.272 

AM5 2.746 0.052* 1.140 

Provide Ample 

Spacing 
Between Holes 

TM2 3.915 0.000** 1.180 

TM3 5.164 0.000** 1.011 

AM2 4.579 0.000** 1.090 

AM3 3.058 0.004** 1.220 

AM4 2.055 0.067* 1.027 

Incorporate 

Complex 

Shapes and 
Geometries 

TM2 4.860 0.000** 1.239 

TM3 2.517 0.017** 1.591 

TM4 3.578 0.003** 1.328 

AM2 3.662 0.001** 1.436 

AM3 3.612 0.001** 1.392 

AM4 3.786 0.004** 1.433 

Combine 
Multiple Parts 

into a Single 
Product or 

Assembly 

TM2 1.685 0.098* 1.662 

TM3 4.608 0.000** 1.587 

AM2 2.397 0.020** 1.631 

AM3 3.468 0.001** 1.590 

AM5 3.138 0.035** 1.140 

Avoid Large, 
Flat Regions 

TM3 -3.376 0.002** 1.341 

AM2 -1.932 0.059* 1.675 

AM3 -4.120 0.000** 1.063 

Orient 
Overhanging 

Surfaces 

AM5 2.138 0.099* 0.837 

Consider the 

Minimum 
Feature Size 

AM4 2.390 0.038** 1.514 

AM5 2.250 0.088* 1.789 

Orient Curved 

Surfaces 

AM2 -2.122 0.038** 1.462 

AM3 1.850 0.072* 1.841 

AM4 -2.043 0.068* 1.328 

*:p<0.1    **:p<0.05 
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Table 6a. Traditional Manufacturability Model 

DfM Axiom Coefficient 
T-Test 

Statistic 
P-Value 

Pearson 

R 

Constant Term in 

Regression Model 
0.243 2.884 0.005** - 

Avoid Intricate Shapes 0.189 2.176 0.032** 0.683 

Rely on Low-Labor-

Cost Operations 
0.271 3.564 <0.001** 0.590 

Leverage Standard 
Materials, 

Components, and 

Tooling 

0.174 2.883 0.005** 0.266 

Incorporate Complex 
Shapes and 

Geometries 

-0.219 -2.778 0.006** -0.661 

Consider the 
Minimum Feature Size 

0.121 2.181 0.031** 0.320 

**:p<0.05  R=0.776   R2=0.602 

 

Table 6b. Additive Manufacturability Model 

DfM Axiom Coefficient 
T-Test 

Statistic 
P-Value Pearson R 

Constant Term 

in Regression 
Model 

0.096 2.011 0.047** - 

Incorporate 

Complex 

Shapes and 
Geometries 

0.490 9.954 <0.001** 0.622 

Consider the 

Minimum 
Feature Size 

0.206 4.065 <0.001** 0.193 

Orient 

Overhanging 

Surfaces 

0.118 2.174 0.032** 0.019 

**:p<0.05  R=0.699   R2=0.489 

 

Tables 6a and 6b present the DfM axioms that can be used 

to predict the manufacturability of a design for TM and AM, 

respectively. The stepwise regression method, like other 

regression method techniques [64] can lead to predictors being 

removed from final model. This result is either due to certain 

predictors not having statistical significance or these predictors 

having a high correlation with one or more of the predictors in 

the final model (i.e., if predictors X and Y are highly correlated, 

knowing the manufacturability of a design based on predictor X 

leads to knowing the manufacturability of a design based on 

predictor Y). The justification for removing certain axioms from 

both models is not initially provided. This information is 

important to gather for this work because we need to understand 

which axioms were removed from the models yet have high 

correlation with the axioms present in the final models so they 

can be included in future interventions.  While the data satisfied 

the assumption of non-multicollinearity (VIF<10 [66]), an in-

depth exploration into the correlation values was performed to 

see which axioms had a moderate correlation (r>0.3 [67]). Table 

7 presents all moderate positive/negative correlations (+/-) 

within the pairwise comparisons of axioms (note that strong 

correlations of r>0.5 are called out). The significantly correlated 

axioms that merit inclusion in interventions will be highlighted 

in the discussion section. 

 

Table 7. Correlations Between Axioms 

Axiom 1 Axiom 2 
Pearson R 

Correlation 
+/- 

P-

Value 

Reduce Part 

Count 

Rely on Low-Labor 

Cost Operations 
0.488 + 0.000 

Reduce Part 

Count 

Leverage Standard 

Materials, 

Components, and 
Tooling 

0.483 - 0.000 

Reduce Part 
Count 

Combine Multiple 

Parts into a Single 

Product or Assembly 

0.754* + 0.000 

Reduce Part 

Count 

Avoid Large, Flat 

Regions 
0.310 - 0.000 

Rely on Low-

Labor Cost 
Operations 

Avoid Intricate Shapes 0.606* + 0.000 

Rely on Low-

Labor Cost 
Operations 

Provide Ample 

Spacing Between 
Holes 

0.365 + 0.000 

Rely on Low-

Labor Cost 

Operations 

Incorporate Complex 

Shapes and 

Geometries 

0.512* - 0.000 

Rely on Low-

Labor Cost 

Operations 

Avoid Large, Flat 
Regions 

0.525* - 0.000 

Rely on Low-

Labor Cost 

Operations 

Consider the 

Minimum Feature 

Size 

0.324 + 0.000 

Rely on Low-
Labor Cost 

Operations 

Orient Curved 

Surfaces 
0.367 + 0.000 

Avoid Intricate 
Shapes 

Orient Overhanging 
Surfaces 

0.342 + 0.000 

Avoid Intricate 

Shapes 

Orient Curved 

Surfaces 
0.380 + 0.000 

Provide Ample 
Spacing 

Between Holes 

Consider the 
Minimum Feature 

Size 

0.373 + 0.000 

Avoid Intricate 

Shapes 

Incorporate Complex 

Shapes and 
Geometries 

0.764* - 0.000 

Avoid Intricate 

Shapes 

Avoid Large, Flat 

Regions 
0.582* - 0.000 

Leverage 
Standard 

Materials, 

Components, 
and Tooling 

Combine Multiple 

Parts into a Single 

Product or Assembly 

0.569* - 0.000 

Incorporate 

Complex 
Shapes and 

Geometries 

Avoid Large, Flat 
Regions 

0.630* + 0.000 

Orient 
Overhanging 

Surfaces 

Orient Curved 

Surfaces 
0.481 + 0.000 

Orient Curved 

Surfaces 

Variations in Material 

Properties 
0.313 - 0.000 

*:r>0.5 

 

6. DISCUSSION 
Based on the experimental results, there are several key 

findings that merit more in-depth discussion 

• Students perceive more DfM axioms present in their 

designs when compared to expert assessment. 
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• Incorporating complex shapes and geometries and 

considering the minimum feature size can significantly 

influence the manufacturability of a design.  

 

6.1 Students perceive more design axioms present in 
their designs when compared to expert assessment.  

The hypothesis for the first research question stated that 

there would be fewer discrepancies between the students and 

experts’ evaluation of the designs as the experience level 

increased. It was believed that having manufacturing expertise 

would improve the familiarity and therefore improve their self-

assessment of their designs [48], thereby aligning with the 

experts’ assessment. It was found that in addition to significant 

discrepancies in the assessment of the designs, the students 

significantly reported more DfM axioms compared to the 

experts. 

There are some reasons that explain this phenomenon. One 

factor could be a lack of intervention to help students in assisting 

with the self-assessment. As Gordon found in his work 

comparing the self-assessment of trainees in health professions 

against the assessment of experts [68], the self-assessment by the 

trainees was improved when an intervention took place that 

clarified the criteria for success and compared preliminary 

assessments by the students to those of the experts. In the context 

of design, priming students with relevant content before having 

them begin concept development was shown to have no 

significant impact on the self-assessment of the designs 

produced, as was found by the work done from Pearl et al. [50]. 

Simply presenting axioms to the students at the beginning of the 

design process is an insufficient method to changing how 

students perceive DfM axioms in their designs. This finding 

supports the experimental results obtained from Liao et al. [69], 

who found that introducing relevant priming content in the 

middle of the design process changed both the types of designs 

that were created and the self-assessment of the designs. This 

signifies that having an intervention in the middle of the design 

process, can help students improve the self-assessment of the 

designs. 

In the work done by Abadel et al. [70], where they compared 

the clinical competency of medical graduates’ self-assessment 

against the experts’ assessment and obtained similar results, they 

attributed the discrepancies to the students overestimating their 

abilities and competency. In aligning with DfM, the work by 

Sinha et al. [36] confirms the problems of translating what is 

taught into practice. In their work, they found that students 

improved the elegance of their designs, but their 

manufacturability did not change. This emphasizes the 

importance of needing to identify what is critical to present in an 

intervention, which will be discussed in the following section.     

 

6.2 Incorporating complex shapes and geometries and 
considering the minimum feature size can significantly 
influence the manufacturability of a design. 

The hypothesis for the second research question stated that 

the design axioms that would have significant influence on the 

manufacturability of a design would be to avoid intricate shapes 

and to rely on low-labor-cost operations because of their 

anticipated usage relative to the rest of axioms under 

observation. The most notable finding from the two generated 

regression models for predicting the manufacturability of the 

designs were the two identified axioms that significantly 

influence manufacturability: incorporating complex shapes and 

considering the minimum feature size. Regarding the axiom 

“Incorporate Complex Shapes and Geometries, Tables 6a and 6b 

this axiom was negatively correlated with TM and positively 

correlated with AM, respectively. This means that leveraging 

this axiom will improve the design for AM, while avoiding this 

axiom will improve the design for TM. This makes sense when 

considering that DTM favors simple designs, while DfAM 

favors those that are complex [1]. As for considering the 

minimum feature size, this axiom was positively correlated for 

both AM and TM. This significant DfAM axiom makes sense 

when considering that minimum feature size is frequently 

associated with AM [71]. As for its significance with TM, this is 

likely due to the connection between features and the tolerances 

within these features [72], the latter of which was not explicitly 

defined as part of the 7 DfTM axioms (tolerances was a subset 

of the “Ample Spacing Between Holes” design heuristic, where 

no significant correlations were found from this axiom. 

There were also other significant axioms that were present 

in both manufacturability models. The traditional 

manufacturability model included avoiding intricate shapes, 

relying on low-labor-cost operations, and leveraging standard 

materials, components, and tooling, while the additive 

manufacturability model added in orienting overhanging 

surfaces. All these axioms were found to have positive 

correlations within their respective models. This means that for 

improving a design’s manufacturability, it is important to 

emphasize these specific axioms based on the selected 

manufacturing process. For future interventions, the content that 

should be presented to the students to improve a design’s 

manufacturability for AM is summarized in Table 8. 

 

Table 8. Content Material for DfAM Intervention 

DfM Axiom Intent of Emphasizing Axiom 

Incorporate Complex Shapes and 

Geometries 
Encourage in Design 

Consider the Minimum Feature Size Encourage in Design 

Orient Overhanging Surfaces Encourage in Design 

Avoid Large, Flat Regions Encourage in Design 

Provide Ample Spacing Between Holes Encourage in Design 

Orient Curved Surfaces Encourage in Design 

Rely on Low-Labor-Cost Operations Discourage in Design 

Avoid Intricate Shapes Discourage in Design 

  
 

7. CONCLUSION 
The design considerations that accompany AM are critical 

to implement as it dictates if a design leverages the advantages 
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and opportunities that AM provides. In understanding the 

purpose of creating suitable designs for AM, it is important to 

address any natural design tendencies early that may prohibit 

suitable AM designs from being created. In this work, it was 

found that incorporating complex shapes and geometries and 

considering the minimum feature size can significantly influence 

the manufacturability of a design. These findings provide insight 

into what needs to be addressed during potential interventions. 

Future work will explore the effect of varying the prompt to 

observe if providing additional criteria leads to improved designs 

that can be better assessed for their manufacturability. Additional 

work will further investigate the specific features that students 

incorporate into their designs (such as rectangular blocks or 

lattice structures) and the frequency with which they are 

incorporated. Lastly, interventions will be implemented to 

observe if they can change the students’ perception of axioms in 

their designs and their potential to successfully have students 

rethink their designs as they develop them in the concept 

generation stage. 
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