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CONSPECTUS: Functional nanoparticles (NPs) have been studied
extensively in the past decades for their unique nanoscale properties and
their promising applications in advanced nanosciences and nanotechnolo-
gies. One critical component of studying these NPs is to prepare :
monodisperse NPs so that their physical and chemical properties can be [ ¢
tuned and optimized. Solution phase reactions have provided the most
reliable processes for fabricating such monodisperse NPs in which metal—
ligand interactions play essential roles in the synthetic controls. These
interactions are also key to stabilizing the preformed NPs for them to show
the desired electronic, magnetic, photonic, and catalytic properties. In this | Function ‘TIL‘
Account, we summarize some representative organic bipolar ligands that

have recently been explored to control NP formation and NP functions. These include aliphatic acids, alkylphosphonic acids,
alkylamines, alkylphosphines, and alkylthiols. This ligand group covers metal—ligand interactions via covalent, coordination, and
electrostatic bonds that are most commonly employed to control NP sizes, compositions, shapes, and properties. The metal—ligand
bonding effects on NP nucleation rate and growth can now be more thoroughly investigated by in situ spectroscopic and theoretical
studies. In general, to obtain the desired NP size and monodispersity requires rational control of the metal/ligand ratios,
concentrations, and reaction temperatures in the synthetic solutions. In addition, for multicomponent NPs, the binding strength of
ligands to various metal surfaces needs to be considered in order to prepare these NPs with predesigned compositions. The selective
ligand binding onto certain facets of NPs is also key to anisotropic growth of NPs, as demonstrated in the synthesis of one-
dimensional nanorods and nanowires. The effects of metal-ligand interactions on NP functions are discussed in two aspects,
electrochemical catalysis for CO, reduction and electronic transport across NP assemblies. We first highlight recent advances in
using surface ligands to promote the electrochemical reduction of CO,. Several mechanisms are discussed, including the
modification of the catalyst surface environment, electron transfer through the metal—organic interface, and stabilization of the CO,
reduction intermediates, all of which facilitate selective CO, reduction. These strategies lead to better understanding of molecular
level control of catalysis for further catalyst optimization. Metal—ligand interaction in magnetic NPs can also be used to control
tunneling magnetoresistance properties across NPs in NP assemblies by tuning NP interparticle spacing and surface spin
polarization. In all, metal—ligand interactions have yielded particularly promising directions for tuning CO, reduction selectivity and
for optimizing nanoelectronics, and the concepts can certainly be extended to rationalize NP engineering at atomic/molecular
precision for the fabrication of sensitive functional devices that will be critical for many nanotechnological applications.
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polybenzoxazole. Nanoscale 2022, 14, 6162—6170.> The
phosphonic acid ligand was used to control the synthesis of
monodisperse Cu nanoparticles, their oxidation to Cu,0
nanoparticles, and enhanced catalysis for tandem reactions
leading to green chemistry synthesis of polybenzoxazole.
Fu, J.; Zhu, W,; Chen, Y,; Yin, Z.; Li, Y.; Liu, J.; Zhang,
H.; Zhu, J.-J.; Sun, S. Bipyridine-Assisted Assembly of
Au Nanoparticles on Cu Nanowires to Enhance the
Electrochemical Reduction of CO,. Angew. Chem. Int.
Ed. 2019, $8, 14100—14103.> The ligand bipyridine
served as a linker between Au nanoparticles and Cu
nanowires to enable tandem electrocatalysis in CO,
reduction.

Lv, Z.-P.; Luan, Z.-Z.; Wang, H.-Y,; Liu, S.; Li, C.-H,;
Wu, D.; Zuo, J.-L.; Sun, S. Tuning Electron-Conduction
and Spin Transport in Magnetic Iron Oxide Nano-
particle Assemblies via Tetrathiafulvalene-Fused Li-
gands. ACS Nano 20185, 9, 12205—12213.% The
tetrathiafulvalene-COOH ligand was used to stabilize
Fe;0, nanoparticles and to control magneto-electronic
transport in the Fe;0, nanoparticle array.

1. IMPORTANCE OF LIGAND BINDING IN
NANOPARTICLE CHEMISTRY

Over the past decades, nanosized (1—100 nm) particles, or
more commonly nanoparticles (NPs), have received ever-
growing interest due to their unique properties that have
emerged in this length scale, which are not seen from either
their bulk or molecular counterparts.”® The distinctive optical,
electronic, magnetic, and surface properties demonstrated by
these NPs have shown great application potentials in
electronics, photonics, magnetics, catalysis, and biomedi-
cine.””"* As these properties are dictated by NP sizes, shapes,
compositions, and structures, it has become critically
important to prepare NPs with controllable functions,
manageable stability, and tunable performance for the targeted
applications.

Both inorganic and organic materials can be made into NPs.
In this Account, we focus on NPs containing inorganic
materials, especially metals and metal oxides, with distinctive
physical and chemical functions. Each of these NPs is
composed of a functional inorganic core and an organic ligand
shell. This shell is formed by an array of organic ligands (also
commonly denoted as surfactants, stabilizing agents, or
capping agents) and plays important roles in controlling NP
growth, stabilization, and postsynthetic modification for
various applications.>~"® These ligands often contain polar
head groups, which are used to bind to metals on the NP
surface, and nonpolar tails, which are packed on the NP
surface, stabilizing NPs against aggregation and controlling NP
functionality. The binding chemistry between the polar heads
and NP surface atoms is similar to metal—ligand interactions in
coordination chemistry and is critical to NP formation and
stabilization. A variety of head groups have been explored to
saturate the dangling bonds of the exposed atoms on the NP
surfaces for NP passivation and stabilization.'® The direct
metal—ligand binding can be used to control the growth of
NPs into different sizes and geometric shapes, while the steric
bulkiness of the hydrocarbon chains can influence the
permeability of the reactant to the surface of NPs, which
determines the directional growth rate of the NPs. Longer or
branched ligands can form a densely packed coating around
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each NP and often result in the formation of smaller NPs."”
Furthermore, the postsynthetic modification of the existing
ligands or replacement of the original ligands with new ones
have been essential for extending the versatility of NPs to
better suit the end applications. For example, to prepare NPs
for biomedical applications, the NPs need to be biocompatible,
traceable, and target-specific.'® This is usually achieved by
modifying the NP surfaces with a group of biocompatible
molecules, such as organic dyes, polymers, peptides, DNAs, or
antibodies. The surface ligands can also help to promote NP’s
catalytic activity, selectivity, and durability via their electronic/
steric effects.

In this Account, we summarize some representative metal—
ligand interactions and their roles in controlling NP formation
and functions. We first introduce a series of common ligands
and their typical binding modes on NP surfaces. The strength
of these metal—ligand interactions can be tuned by changing
the coordination environment. We will then review the ligand
effects on NP growth and stabilization in solution phase
synthesis conditions. Representative examples on how to use
ligands and their combinations to control NP sizes, shapes, and
compositions are highlighted. Lastly, we discuss how to use
ligand coating to enhance NP catalytic activity and selectivity,
as well as to control interparticle spacing in NP arrays to
improve electron transport across the arrays. NP modification
with ligands for biomedical applications is an extremely
important topic in the nanomedicine field and has been
extensively reviewed elsewhere.'””>* Readers who are inter-
ested in learning these biomedical aspects of NPs are suggested
to check these or other reviews.

2. COMMON LIGANDS AND THEIR BINDING MODES

For a ligand to be applicable to bind to NPs, it must first be
chemically stable in NP synthetic conditions with only the
polar group interacting with the surface atoms of the NPs and
the tail group providing a layer of coating around each NP.
This makes the bipolar molecules with a functional headgroup
and a stable hydrocarbon tail a universal ligand choice in
organic phase reactions for the synthesis of monodisperse NPs.
The capability of a ligand to influence the surface energy and
growth of a NP is strongly dependent on the available binding
modes of the ligand to the metal atoms, and if this binding
event can reach equilibrium in the reaction condition then too
strong a binding may render the metal precursor too stable to
nucleate, while too weak a binding may not provide enough
protection to the formed NPs against the uncontrollable
growth and aggregation from the reaction medium. Various
ligands used for the NP synthesis have been re-
ported.ﬁ’“"m’m_25 Here we focus on some common organic
ligands that have been extensively explored in recent years for
the synthesis of monodisperse NPs in organic phase reactions
with the desired function controls. These include aliphatic
acids (RCOOH), alkylphosphonic acids (RPO;H), alkyl-
amines (RNH,), trialkylphosphines (R;P), and alkylthiols
(RSH), each of which contains a functional group that can
bind to different metals with unique binding modes and
binding affinities. Figure 1 illustrates different binding modes
of these functional groups on a metal (M) surface via covalent
(RCOO-M, RPO;-M, and RS-M), coordination (RNH, — M,
R;P — M), and electrostatic (R,N*) bonding modes.”” In
general, the binding affinity is increased in the order of
electrostatic, coordination, covalent interactions, and can be
better explained by the “hard and soft (Lewis) acids and bases”
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Figure 1. Binding modalities of common ligand functional groups to
the surface of a generic metal NP.

concept.”’~* For example, the “harder” O-based ligands are
better applied to bind the first-row transition metal (M) via
RCOO-M, while the “softer” RS-based or R;P-based ligands
are more suitable to bind to late transition/noble metals via
RS-M or R;P-M. RNH, has a borderline Lewis basicity when
compared to “O”- and “S”-based binding groups and can be
applied to bind to either first-row or late transition metals in
the synthesis. Exactly what kind of ligand to choose to modify
NPs is dependent on the need for next-step studies. For
example, Au NPs are commonly prepared in the presence of a
thiol ligand, where the strong Au—S covalent bond offers a
robust protection of Au NPs for long-term stability. However,
when studying the catalytic properties of these Au NPs, this
strong Au—S bonding can deactivate Au NPs, making them
catalytically inactive.”” The strong Au—S bonding also makes it
difficult to remove thiol coating without affecting NP
properties. A synthetic solution to this problem is to use
RNH, as a ligand to control the Au NP growth and
stabilization.”’ Au NPs modified with RNH, can be easily
activated for catalysis studies even for the Au NPs that are
sensitive for further treatment.” The RNH,-M binding affinity
can also be tuned easily in the reaction medium. A good
example of this tunable binding mode change is seen in the
RNH,—Pt NPs under basic and acidic conditions. The
spectroscopic study on the binding modes showed that the
strong coordination bonding from RNH, to Pt shifted to a

much weaker electrostatic interaction at lower pH due to the
protonation of RNH,.”> Such a pH-induced bonding mode
change between RNH, and noble metals has been commonly
used as a method for amine-based ligand removal from noble
metal NPs.' Therefore, it has become a routine strategy to
remove amine coating on the noble metal NP surface by a
simple acid washing process. Ligand binding affinity can be
further enhanced by controlling the binding mode from
monodentate to polydentate (Figure 1). The polydentate
ligand binding is often applied to where the ligand is required
to bind NPs tightly so that the ligand shell is not disrupted in
next-step applications, as seen in stabilizing NPs for biomedical
applications.

3. LIGAND EFFECTS ON CONTROLLING
NANOPARTICLE FORMATION

In the organic phase synthesis of NPs, a ligand plays an
essential role in controlling NP formation and growth, as
outlined in Figure 2a. First, the common metal precursor is
generally a salt, which is not easily dissolved in a high-boiling
hydrocarbon solvent that is used to facilitate fast nucleation
and growth of NPs unless an organic ligand is present. Second,
the ligand binding helps to control at what stage the metal
atoms can form stable nuclei, a process that is thermodynami-
cally unfavored and requires energy input (often via increasing
the reaction temperature) to accomplish. Third, once the
nuclei are formed, the following growth process is
thermodynamically favored and spontaneous as long as there
are enough metal precursors present in the reaction system.
Therefore, the ligand coating at this growth stage is also
essential for capturing NPs at their proper size range and
stabilizing them in the solution state against uncontrolled
growth into aggregates. Fourth, the hydrocarbon nature of the
ligand tails renders the NPs hydrophobic, which makes it
possible to separate these NPs from the reaction mixture by
adding a polar solvent. Finally, the ligand captured NPs can be
easily purified and dispersed in a fresh solvent for further use.
Recently, more detailed understanding of ligand effects on NP
nucleation and growth is demonstrated by using in situ small-
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lamellar polymer.*®

angle X-ray scattering during the synthesis of Pd NPs in the
presence of trioctylphosphine.”* The study shows a clear
correlation between nucleation/growth rates and the thermo-
dynamics of metal—ligand/solvent binding (Figure 2b): when
the nucleation rate decreases, the growth rate increases in the
order of toluene, piperidine, 3,4-lutidine, and pyridine. This
indicates that when the solvent has no coordination power,
such as in toluene, the atomic state Pd is much better stabilized
by the phosphine coating, making it difficult to nucleate/grow.
When the ligand binding power increases from piperidine, 3,4-
lutidine, and pyridine, the phosphine ligand binding is
interrupted due to the N-binding competition, leading to
easy nucleation and growth of NPs. This is further supported
by density functional theory (DFT) calculated Gibbs free
energies of the solvent-dependent dominant Pd-complex and
the solvent-NP binding energy (Figure 2c). It shows that the
stronger the ligand (solvent) binding, the slower the nucleation
rate due to the metal precursor being better stabilized, making
it more difficult to reduce the metal precursor. On the other
hand, strong ligand binding power also slows the rate of NP
growth due to the lack of active sites on the preformed NP
surface.

In the NP formation process, the relative molar ratio of
metal precursors to ligand, as well as their concentrations, in
the reaction system can also have dramatic effects on the NP
size and stability. This has been broadly demonstrated in
solution phase synthesis of NPs, including the recent synthesis
of monodisperse Cu NPs by reduction of the copper acetate
(CuOAc) precursor in the presence of the tetradecylphos-
phonic acid (TDPA) ligand.”** By controlling the relative
metal-to-ligand molar ratio to 1:0.5, 1:0.75, and 1:1,
respectively, monodisperse 7, 9, and 12 nm Cu NPs were
made, as shown in Figure 3a.” 16 nm Cu NPs were prepared
by increasing the concentration of both CuOAc and TDPA
from 0.1 mol/L to 0.2 mol/L while using the same 1:0.5 ratio
as in the 7 nm Cu NP synthesis. The ligand effect can be
observed directly through an in situ X-ray characterization
study on the synthesis of Cu NPs.>* In the similar synthetic
condition, the TDPA ligand was found to form a lamellar
coordination polymer with Cu" ions at 180 °C, which was
identified as a nucleation hotspot for the size monodispersity
(Figure 3b). Careful in situ analysis with small-angle X-ray
scattering and X-ray diffraction during the Cu NP synthesis
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clearly illuminates the Cu metal transition from Cu* — Cu’
and the formation and decomposition of the TDPA-Cu’
lamellar structures as temperature increases (Figure 3c).
Using this information, Cu NPs with size range of 3—26 nm
were synthesized.

Metallic alloy or other multicomponent NPs can be
synthesized by controlling M-L interactions as long as each
component has similar M-L binding properties, as seen in the
oleylamine-mediated synthesis of various alloy NPs.’**’
However, when M-L binding chemistry differs greatly from
each other, to control alloy NP composition requires the use of
different ligands to ensure nucleation and growth of NPs with
composition controls. The synthesis of FePt NPs is a good
example to highlight the importance of different ligand effects
on the controllable formation of multicomponent NPs.***’
FePt NPs were synthesized by thermal decomposition of
Fe(CO); and reduction of Pt(acac), (acac, acetylacetonate).
These two precursors have very different reaction chemistry as
Fe(CO); is easily decomposed to form magnetic Fe NPs, while
Pt(acac), is easily reduced. When only an oleylamine ligand
was used in the synthesis, the synthesis tended to yield Pt-rich
FePt NPs. To obtain Fe-rich FePt NPs, oleic acid must also be
present. More oleic acid led to Fe-rich FePt NPs, while more
oleylamine resulted in Pt-rich FePt NPs. To prepare FePt NPs
with near 1/1 Fe/Pt ratio for magnetic property control, oleic
acid and oleylamine should be present in equal molar ratio.
Under this synthetic condition, both RCOO-Fe and RNH,-Pt
need to be present to control Fe/Pt nucleation/growth and to
stabilize the FePt NPs after the synthesis (Figure 4a,b). This
combination of ligand effects has become a reliable approach
to prepare various NPs with surfaces having multicompositions
or multioxidation states.*’

As the M-L binding affinity depends not only on orbital
energy but also on orbital symmetry,*' this binding can be
anisotropic on a NP surface with different crystal facet
exposures, which infers that a NP can grow into an anisotropic
shape if the synthetic condition and M-L binding strength are
carefully controlled. An under-stabilized facet is prone to grow
at a faster rate than the stabilized one, which leads to
anisotropic growth of NPs, as seen in the growth of CdSe
nanorods in the presence of hexylphosphonic acid (HPA,
C¢H,5P(O)(OH),) and the synthesis of Cu,S nanodiscs in the
presence of alkylthiol ligand.*” CdSe nanorods are formed due

https://doi.org/10.1021/acs.accounts.3c00156
Acc. Chem. Res. 2023, 56, 1591—-1601
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Figure 4. (a) Schematic surface binding of different ligands for
composition-controlled synthesis and stabilization of FePt NPs. (b)
TEM image of FePt NPs stabilized by RCOO-Fe and RNH,-Pt.*® (¢)
Nanorod surrounded by an elongated micellar coating. (d) TEM
image of the Au nanorods synthesized using a CTAB-NaOL mixture
in the growth solution. (e) EELS carbon compositional map of a
CTAB-coated Au nanorod. Scale bar = 10 nm.**

to the selective HPA binding to the {100} and {110} facets of
the seeding NPs, which promotes the growth of NPs preferably
along the [001] direction, yielding a rod-shape. For Cu,S NPs,
alkylthiol can strongly bind to the {001} faces, suppressing the
growth along this direction, and resulting in the formation of
disc-shaped Cu,S NPs. The anisotropic shape of NPs can also
be controlled by seed-mediated growth of polyhedral NPs in a
nonspherical reverse micelle structure formed by ligand
assembly in the reaction solution. In this micellar structure,
NP growth can be further facilitated along the micellar
structure as long as there is enough NP-precursor present in
the reaction solution. The formation of Au nanorods is an
excellent example to demonstrate this concept.”’ These Au
nanorods are formed via the seed-mediated growth of Au NPs
in the presence of the structure-directing ligand, cetyltrime-
thylammonium bromide (CTAB). CTAB preferentially binds
to the sides of the rod-shaped NPs, stabilizing the sides more
efficiently, and allowing the fast growth at both ends where
ligands are less densely packed, leading to the formation of Au
nanorods (Figure 4c). The quality of the nanorod product can
be further improved by introducing a coligand to the CTAB
system. For example, by mixing CTAB with sodium oleate
(RCOONa, NaOL), more uniform Au nanorods are prepared
(Figure 4d). This anisotropic distribution of the ligands around
each Au nanorod was recently visualized and quantified by
electron energy loss spectroscopy (EELS) (Figure 4e).** The
study proves that the distribution of CTAB on Au nanorods is
anisotropic, and the ligand at the ends has a 30% decrease in
density compared with that around the sides. Oleylamine is
also a popular ligand to use to form reverse micelle structures
in which nanowires can grow. This have been demonstrated in
the synthesis of ultrathin Au and MPt nanowires.””* For
example, in preparing FePt nanowires via thermal decom-
position of Fe(CO); and reduction of Pt(acac),, the nanowire
length control was realized by tuning the volume ratio between
oleylamine (ligand) and I-octadecene (solvent): FePt nano-
wires longer than 200 nm were made when only oleylamine
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was used as both surfactant and solvent, while a ligand/solvent
ratio of 3:1 gave 100 nm FePt nanowires and a 1:1 volume
ratio led to 20 nm FePt nanowires. When a larger volume of
solvent was used, for example, ligand/solvent ratio = 1/3, the
cylinder-shaped reverse micelle was disrupted by the presence
of a large amount of solvent, and as a result, 3 nm spherical
FePt NPs were obtained. DFT calculations have been used to
understand the origin of specific shape formation by comparing
the adsorption energy between the ligands and low index metal
NP surfaces. Previous studies found that the formation of the
AgPt alloy nanowires was mostly driven by the interplay
between the binding energy of ligands on the alloy surface and
the diffusion of atoms at the interface upon their collision with
primary NPs.*

4. LIGAND EFFECTS ON CONTROLLING
NANOPARTICLE FUNCTIONS

4.1. Ligand Effect on Nanoparticle Catalysis

Understanding M-L binding chemistry has become an
important topic in NP catalysis, especially electrocatalysis for
energy conversion reactions, such as the electrochemical CO,
reduction reaction (CO,RR).*” Traditionally, the ligand
molecules binding on the surface are believed to block the
surface sites and thus lower the catalytic activity.*® However, in
recent decades, there have been numerous studies exploring
the beneficial role of ligands in defining the catalytic
environment and enhancing the electrocatalytic performance
by various mechanisms.” In fact, the presence of ligands on
metal surfaces introduces additional complexities to this
metal—organic system, including the modification of the
catalyst surface environment, electron transfer through the
metal—organic interface, and stabilization of the CO,
reduction intermediates.”’ All these effects due to metal—
ligand interaction could contribute to better activity,
selectivity, and durability for the CO, electrocatalysis.

The common organic ligand used for metal, especially noble
metal, NP surface modification is RSH due to its great binding
affinity to noble metals. There have been numerous studies in
modifying catalyst surfaces with thiols to improve the CO,RR
selectivity. Thiol-terminated imidazolium with different alkyl
chain length was used to modify the Au electrode to improve
the CO, reduction selectivity for the formation of ethylene
glycol.>" In this study, the Au catalysis exhibited a ligand
length-dependent property with 1-(-2-mercaptoethyl)-3-meth-
ylimidazolium bromide (IL-2)-modified Au showing the
highest Faradaic efficiency (FE) of 87% toward ethylene
glycol. Such enhancement in selectivity to ethylene glycol was
attributed to more efficient coupling of imidazolium aldehyde
intermediates in the reaction condition. In the presence of a
longer ligand chain on the Au surface, the interaction between
imidazolium and Au gets weaker, limiting the charge transfer
for the formation of imidazolium aldehyde intermediates.
Despite the evident impact of these thiols on metal catalysis,
the long-standing catalyst durability issue in the CO,RR
remains. Efforts have been made to improve the stability of NP
catalysts in CO, reduction reactions through the introduction
of N-heterocyclic carbene (NHC) ligands.”**>* NHCs bind
with metals by utilizing the lone electron pair on carbon,
creating a strong M-C ¢ bond.>* This bond has been applied to
modify the surfaces of different metals, enhancing their
stability.” Furthermore, the o-donation from NHCs increases
the charge density on metal surfaces, resulting in better metal
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binding with CO, as an electrophile. In one study, two NHC formation of a hydrophobic layer to suppress hydrogen
polymers (P1 and P2) were grafted onto the 14 nm Au NPs for evolution reaction (HER) (Figure Sb). The NHC-modified
CO,RR (Figure 5a).>> Both Au—P1/C and Au—P2/C showed Au nanocatalysts showed an activity retention of 86% at —0.9
higher activity and selectivity than the Au/C due to the V after CO, electrolysis for 11 h, which is much higher than
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that for the unmodified Au of 10% (Figure Sc). Compared
with other thiol and amine ligands, the NHC can effectively
stabilize NPs against aggregation under reductive potentials
(Figure Sd—g).

The ligands can also bridge two different catalysts so that
their catalysis can be coupled to promote tandem catalysis. In a
recent demonstration, Au NPs were attached to Cu nanowires
through a 4,4’-bipyridine (bipy) linker to form the new
composite catalyst Au-bipy-Cu (Figure 6a).” Au is known to be
selective in catalyzing CO,RR to CO, while Cu is more active
to catalyze the CO reduction to hydrocarbon products.
Because of the close proximity between Au and Cu, the
newly formed CO around Au can be transferred to Cu sites
where it is reduced to multicarbon products. This process is
further enhanced by the presence of bipy between Au and Cu
that, as a Lewis base center, can help to stabilize the CO,™*
intermediates and enrich protons near the catalyst surface,
facilitating the CO,RR. The catalysis of the Au-bipy-Cu
catalyst can also be tuned by the Au/Cu atomic ratios. The Au-
bipy-Cu catalyst with the Au/Cu atomic ratio of S0% (Figure
6b) catalyzed the CO,RR to carbon products with a total FE
reaching 90% at —0.9 V versus RHE (Figure 6¢). Similarly,
Nafion was used as a polymeric linker to couple Cu NPs with
the Ag electrode to enhance the tandem electroreduction of
CO, (Figure 6d).°° As a hydrophilic polymer, Nafion is
believed to facilitate mass transport of the reactive CO
intermediates and protons, enabling the stepwise reaction
pathway and enhancing the CO,RR selectivity. As such, CO, is
first reduced to CO on Ag, and then CO, along with protons, is
regulated by Nafion to Cu NPs and subsequently reduced to
C,H,. Due to the synergistic effect among Ag-Nafion-Cu, the
composite catalyst showed a high selectivity toward C,H,
(76% FE) (Figure Ge).

Recently, a new strategy was developed to improve CO,RR
in a pseudocapacitive NP/ligand interlayer.”” In this study, the
interlayer structure was first built by binding tetradecylphosph-
onate (CH,(CH,);;PO;*") on the Ag NP surface via a
bidentate bonding mode (Figure 7a). The ligand layer is tightly
associated and can adsorb/desorb reversibly from each Ag NP
under biased conditions (Figure 7b). In the reductive CO,RR
condition, the adsorbed phosphonate ligands dissociated from
the Ag NP surface, creating a pseudocapacitive pocket without
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disrupting the overall ligand assembly structure, allowing K* to
diffuse in to balance the charge. The hydrophobic coating
around the pocket structure facilitates the diffusion of CO,,
while inhibiting the diffusion of water/protons, into the
interlayer structure, favoring CO, conversion over the HER
(Figure 7c). As a result, the CO, to CO conversion reached
97%. In a gas diffusion electrode in 1 M KHCO3, the structure
catalyzed CO,RR with 98.1% CO selectivity at 400 mA/cm?
and 2921 A/g,,. This idea can be extended to couple oleate
(CH;(CH,),CH = CH(CH,),COO~) and other NPs, such as
Au and Pd NPs, creating similar interlayer structures to
enhance NP-catalysis for the CO, reduction to CO.

4.2. Ligand Effects on Electron Transport Across
Assembled Nanoparticles

Ligand effects on NP assemblies have been extensively studied,
and such studies continue to be a hot topic in the
nanomaterials research field."****” Ligand coating on the NP
surface provides an effective way to control interparticle
spacing in a NP array, facilitating the study of the correlated
properties arising from the interactive NP network. Here we
focus on one example on understanding magneto-transport of
electrons across the NP arrays for potential nanoelectronic
applications.”*>" In the past, magnetoresistance (MR) effect
of the layered nanostructures has led to the development of
highly sensitive magnetic devices, including tunneling magne-
toresistance (TMR) devices, for sensing applications.®
Magnetic NPs prepared from solution phase synthesis with
tunable surface ligands and magnetic NP arrays formed from
their self-assemblies are ideal for studying TMR. Among
various NPs that have been studied for TMR, half-metallic
magnetic Fe;O, NPs are especially promising as a practical
material because of its strong ferrimagnetism, high spin
polarization at the Fermi level, and high Curie temperature.62
Despite their potential as demonstrated in studies of spin-
dependent transport, Fe;O, NPs face a significant drawback
that they are prone to oxidation under ambient conditions,
resulting in a loss of conductivity and limiting their practical
use. To stabilize the Fe;O, NPs and regulate their assembly
properties, tetrathiafulvalene carboxylic acid (TTF-COOH)
was applied to modify the NP surface.* TTF units have a rigid
planar structure and are excellent electron donors, which help
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to control both NP stability (against oxidation) and
interparticle spacing (Figure 8a). Furthermore, the TTF-
COO-Fe binding can also help to compensate the O-deficiency
on the Fe;O, NP surface, improving the spin polarization of
the Fe;O,. After coating the TTF unit around 6 nm Fe;O,
NPs, their assemblies showed a 5% TMR ratio at room
temperature. The NP array with shortest-chain ligand (L;-
NPs) has the largest MR ratio because it has the closest
interparticle spacing in the NP assembly, which is controlled
by the ligand chain length (Figure 6b,c). Besides the ligand
length, the binding density of the TTF ligand can also be used
to tune the MR ratio. A subsequent study investigated the
impact of binding density of the TTF ligand by introducing an
extra —COOH group on the basis of L,.® It showed that the
extra O-chelate bonding led to a higher degree of the spin
polarization on the Fe;O, NP surface, thus higher TMR ratios
in spin-dependent electron transport.

To further improve spin polarization and TMR properties,
rod-shaped NPs are better adopted in the NP assembly due to
the shape-induced magnetic anisotropy and higher interfacial
area as compared to the spherical NPs."” Recently, oleylamine-
coated Fe;O, nanorods were synthesized, assembled, and
tested for TMR (Figure 9a).°* Magnetically aligned nanorods
showed that the TMR was enhanced by a factor of 1.4 at room
temperature as compared to randomly oriented nanorods
(Figure 9b). The TMR value reached a maximum of 31% at
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the Verwey transition temperature (120 K), and the spin
polarization was calculated to be 46% at room temperature.
This study also found that the shorter the nanorods, the
smaller the TMR, suggesting that engineering NP anisotropic
shape and ligand binding is a promising approach to tune the
TMR behavior of Fe;O, nanostructures for broad spintronic
applications.

5. CONCLUSION AND FUTURE OUTLOOK

Metal—ligand binding plays important roles in NP chemistry.
Both binding mode and binding affinity can dictate NP
formation, stabilization, and applications. The binding
characteristics may be qualitatively explained by “hard and
soft (Lewis) acids and bases” theory, and ligands selected for
NP chemistry must facilitate NP growth, stabilization, and
post-synthetic modification. The ligand chain should also be
chemically stable in the NP synthetic process so that the metal-
ligand roles in NP chemistry can be better understood. In this
Account, we summarize the binding modes of some
representative ligands that have been used extensively for
synthesis and stabilization of monodisperse NPs. In general, a
covalent bond is stronger than a coordination or an
electrostatic one, and the metal-ligand binding can also be
tailored to accommodate the next step reaction by tuning the
solution pH and number of binding sites. We highlight some
representative examples to show how to use metal-ligand
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interactions to control NP sizes, compositions, and shapes in
the synthetic reactions. The in situ X-ray studies and
theoretical calculations further provide an obvious correlation
between thermodynamics of metal-ligand binding and NP
nucleation/growth rates. The composition of alloy NPs can be
controlled by adjusting ratios of different ligands based on their
preferential binding to the metals. Such metal-ligand binding
chemistry is also extended to control anisotropic growth of
NPs via selective ligand binding onto certain facets of NP
surface or via seed-mediated growth of NPs in the anisotropic
reverse micelles that are pre-formed by ligand molecule
assembly in the synthetic solution. The ligand binding effects
on NP functions have become a hot topic recently. We focus
on ligand binding controlled electrochemical reduction of CO,
with much improved activity, selectivity, and stability. As
ligand length can be rationally tuned prior to its binding to
NPs, interparticle spacing and electron transport across NP
network can be more rationally regulated to show optimum
performance. In all, the metal-ligand binding has played critical
roles in NP synthesis, assembly, and property control.

The promising data presented in metal—ligand binding and
their effects on NP chemistry call for in-depth understanding
of metal—-ligand binding thermodynamics and kinetics at NP—
ligand interfaces and how these bindings affect properties of
single NPs and ensembles of NPs. This requires not only
precision synthesis but also timely advances of analytical and
computational tools to guide the ligand selection and its
molecular-level interactions at nanoscale interfaces. Precise
engineering of NP-ligand interactions is essential to control NP
formation, stability, and properties, which could have a huge
impact on real-world applications. Recent studies have shown
that ligand binding to NP surface provides a unique interfacial
structure to control mass transport and electron tunneling
across NPs. In electrocatalytic reduction of CO,, this
represents a particularly promising direction for tuning the
reduction selectivity toward a specific carbon product, and, in
nanoelectronics, this provides an atomic level approach to
functional devices that will be critical for spintronics and many
other nanotechnological applications.
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