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ABSTRACT
Parallelism is key to efficiently utilizing high-speed research
networks when transferring large volumes of data. How-
ever, the monolithic design of existing transfer applications
requires the same level of parallelism to be used for read,
write, and network operations for file transfers. This in turn
overburdens system resources since setting the parallelism
level for the slowest component results in unnecessarily high
parallelism for other components. Using more than neces-
sary parallelism lead to high overhead on system resources
and unfair resource allocation among competing transfers.
In this paper, we introduce modular file transfer architec-
ture, Marlin, to separate I/O and network operations for
file transfers such that parallelism can be adjusted for each
component independently. Marlin adopts online gradient
descent algorithm to swiftly search the solution space and
find the optimal level of parallelism for read, transfer, and
write operations. Experimental results collected under vari-
ous network settings show that Marlin minimizes system
overhead significantly by identifying a minimum parallelism
level for each component. We also show that it ensures fair-
ness among competing transfers despite requiring a different
level of I/O parallelism. Finally, separating network trans-
fers from write operations allows Marlin to outperform the
state-of-the-art solutions by more than 2𝑥 when transferring
small datasets.
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Figure 1: While transfer parallelism (aka concurrency)
is necessary to achieve high transfer throughput, its
optimal level is not the same for all components of file
transfers (a). Setting concurrency level based on slow-
est operation leads to unfair resource sharing between
transfers (b)

1 INTRODUCTION
Distributed science projects such as LargeHadronCollider [4]
and Vera Rubin Observatory [2] require high-performance
data transfers in the orders to tens of gigabits-per-second
to move data between geographically distant locations in
timely manner. Research networks (e.g., Internet-2 and ES-
net) provide high-speed connectivity between research and
education institutions with up to 100𝐺𝑏𝑝𝑠 bandwidth to sep-
arate scientific data transfers from internet traffic thereby
facilitating large-scale data movements. However, legacy file
transfer applications (e.g., scp and FTP) fail to reach high
utilization in these networks mainly because they adopt one
file at-a-time approach which limits their I/O and network
throughput significantly. Similar to compute jobs, file trans-
fers also require I/O and network parallelism to reach high
speeds since single file read/write performance as well as sin-
gle network connection performance is well below available
I/O and network bandwidth in research networks.

A standard approach to overcome the limitations of legacy
transfer applications is transferring multiple files simultane-
ously (henceforth concurrency) as it can improve aggregate
I/O throughput by reading and writing multiple files and
overall network throughput by creating multiple network
connections [24]. Hence, most previous work in this area
focused on finding the optimal level of concurrency that can
maximize transfer throughput [13, 14, 24, 27, 31]. However,
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the monolithic architecture of existing file transfer applica-
tions requires the same level of concurrency to be used for
I/O and network operations, incurring unnecessary overhead
to some system resources. Figure 1(a) presents the through-
put of disk-to-disk (D2D) and memory-to-memory (M2M)
transfers in a network with 40Gbps bandwidth and 1 ms
delay. D2D transfer moves 1000 × 1𝐺𝐵 files from the disk of
the source node to the disk of destination node. Both servers
are equipped with four NVMe SSD disks configured in a
RAID-0 storage. M2M transfer, on the other hand, transfers
dummy data from the memory of source node (/dev/zero)
to the memory of the destination node (/dev/null). When
concurrency is not used (i.e., concurrency level of one), M2M
transfer obtains around 18Gbps whereas D2D transfer attains
8Gbps. When concurrency is set to three, the throughput of
the M2M transfer reaches to maximum possible performance
in this network, 40 Gbps. On the other hand, D2D transfer
yields at most 26 Gbps when the concurrency is set to 9− 10.
Despite the speed mismatch between read, write, and

network operations, the current implementation of concur-
rency in file transfers results in the same level of paral-
lelism in all components of the transfers. In the D2D ex-
ample, setting the concurrency value to 10 will create 10
transfer threads/processes in the source node to read 10
separate files from the file system and transfer them using
10 separate network connections. Similarly, there will be
10 threads/processes on the destination end to receive data
packets from the network and write to the file system. Al-
though using a high level of concurrency is harmless to
transfer performance, it can have adverse impacts on re-
source usage. For example, previous studies show that high
transfer concurrency causes up to 50% increase in energy
consumption of data transfer nodes due to an increase in
CPU utilization [7, 8].
The monolithic design of existing transfer applications

also leads to unfair resource sharing when concurrency is
used. Figure 1(b) shows the throughput of two transfers
between two separate server pairs. The transfers share a net-
work link with a capacity of 100Mbps. We throttled the read
I/O throughput of each thread to 10Mbps for Transfer-2 to
simulate increased I/O performance bymeans of multithread-
ing similar to parallel file systems. Transfer-1, on the other
hand, does not have any I/O limitations and can attain close
to 1Gbps read/write I/O throughput using a single transfer
thread. Assume that users are aware of existing bottlenecks
and set the concurrency level to optimal values to maximize
transfer throughput, which is 1 for Transfer-1 (because single
I/O and network thread is sufficient to attain reach 100Mbps
throughput) and 10 for Transfer-2 (since we need 10 threads
to increase read I/O throughput to 100Mbps). When the first
transfer starts, it obtains 100Mbps throughput by transfer-
ring one file at-a-time (concurrency=1). When Transfer-2

joins, it sets its concurrency level to 10 to overcome the I/O
limitation and attain maximum throughput. However, a con-
currency value of 10 requires 10 connections to be created
due to the monolithic architecture of existing file transfer
applications. This in turn causes unfair bandwidth allocation
since Transfer-2 creates more network connections and thus
yields nearly 90% of the available bandwidth. Therefore, while
concurrency is necessary for speeding up the file transfers in
high-speed networks, its current implementation results in in-
creased resource usage and unfair resource sharing between
competing transfers.
Although researchers proposed solutions to separate I/O

and network operations for file transfers (e.g. mdtmFTP [33]
and FDT [1]) to overcome the limitations of monolithic de-
signs, these solutions require manual tuning for concurrency
to perform well. Moreover, they solely focus on increasing
the throughput of transfers without considering system over-
head (e.g., memory footprint and network congestion), hence
they fall short to offer fully automated, low-overhead alterna-
tives to existing solutions. Thus, in this work, we introduce
a modular file transfer architecture, Marlin, to tune concur-
rency for read, transfer, and write operations independently.
Marlin utilizes a game-theory-inspired utility function with
online optimization algorithm to discover the optimal con-
currency level for each component. The utility function is
used to evaluate the fitness of different concurrency values
in terms of increasing throughput and decreasing resource
consumption (i.e., minimal number of threads/processes and
low network packet loss). Since it is important to swiftly scan
the solutions space for concurrency levels for I/O and read
operations in real-time, we implemented Gradient Descent
and Bayesian Optimization algorithms that can converge to
the optimal in 10 − 15 search intervals. Our extensive eval-
uations using both isolated and production systems show
that Marlin mostly obtains similar throughput compared
to the state-of-the-art solutions that use the same level of
concurrency for both I/O and network operations despite
minimizing system overhead significantly. We also show that
it addresses the fairness issue between competing transfers
with different I/O performance behavior. Finally, we show
that Marlin can speed up the network performance of small
transfers by almost 2𝑥 when write I/O is the bottleneck as it
can take advantage of high network performance to transfer
files to the cache space (e.g., main memory or NVMe buffer)
on the receiver end. In summary, the contributions of this
paper are as follows:

• We introduce amodular file transfer framework, Marlin,
to separate read, transfer, and write operations of file
transfers to overcome the limitations of the legacy
monolithic design of state-of-the-art solutions. We
show that the modular architecture allows transfers
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to use “just enough” concurrency to keep the system
overhead low and ensure fairness while still achieving
high transfer throughput.

• We develop a game theory-inspired utility function
to evaluate the performance of different concurrency
values for read, transfer, and write operations. We fur-
ther implement an online gradient descent algorithm
to quickly and accurately discover component-specific
concurrency values in real time.

• We conduct extensive experiments to demonstrate the
performance of Marlin in both emulated and real-
world production networks. In particular, we show
that Marlin can automatically discover the slowest
operation of file transfers and tunes its concurrency
in real-time to maximize the performance while keep-
ing the concurrency for other operations at a mini-
mum.We also show that Marlin provides fair resource
sharing between competing transfers, which is criti-
cal for production systems to ensure shared network
resources are allocated to users/jobs in a fair manner.

• Finally, we show that Marlin can speed up the through-
put of small transfers (i.e., less than 100GiB) by more
than 2𝑥 when transfers are write-limited by quickly
transferring data to cache space on receiver ends. Since
more than 80% of transfer jobs in research networks
transfer less than 100GiB, optimizing them is key to
offering performance enhancements to most transfers.

2 RELATED WORK
Most of the existing work on the optimization of wide-area
data transfers focused on designing new congestion control
algorithms such as TCP BBR [17] and Vivace [18]. TCP BBR
achieves higher performance than legacy TCP variants such
as TCP Cubic in the presence of random packet losses. How-
ever, since file transfers in high-speed networks often face
I/O performance limitations, improving the performance
of congestion control algorithms is not sufficient to over-
come the performance issues in today’s high-performance
networks.

Researchers also proposed application-layer transfer opti-
mization solutions such as pipelining transfer commands [16],
creating parallel network connections [19], transferring mul-
tiple files concurrently [24], setting TCP buffer size [22],
tuning I/O block size [28], and distributing transfer load
to multiple DTNs [9] to address the performance problems
of file transfers. However, finding the optimal transfer set-
ting in a timely manner has risen as a challenging problem
due to having a large search space. Previous work proposed
heuristic [10], historical analysis [13, 23, 27], and real-time
optimization [11, 25, 31, 32] approaches to discover the op-
timal configuration for some of the transfer settings. As an

example, Ito et al. [21] proposed Golden Section Search to
automatically adjust the number of parallel TCP connec-
tions for the GridFTP transfers. Prasanna et al. [15] proposed
direct search optimization to dynamically tune transfer pa-
rameters on the fly based on measured throughput for each
transferred chunk.

Globus [3] is a widely-adopted data transfer service used
to schedule, maintain, and optimize large data transfers in
high-speed networks. It either relies on system administra-
tors to configure transfer settings or relies on a heuristic
model to estimate the optimal transfer settings for some of
the application-layer transfer parameters such as pipelining,
parallelism, and concurrency. To avoid overwhelming end
system and network resources, it typically underestimates
the value of some critical settings such as the number of
concurrent transfers, and thus fails to achieve high perfor-
mance in most networks. Yun et al. proposed ProbData [32]
to tune the number of parallel streams and buffer size for
memory-to-memory TCP transfers using stochastic approxi-
mation. ProbData can identify near-optimal configurations,
but it takes several hours to find a solution, which makes it
impractical to use as most transfers in high-speed networks
only runs for a few minutes [26].

Yildirim et al. proposed PCP [30] to tune the values of com-
mand pipelining, concurrent file transfers, and concurrent
network connections. It uses a simple hill-climbing method
to scan the optimal solution for each parameter in a sequen-
tial way, thus it is neither fast nor precise. Arslan et al. pro-
posed heuristic [14] and historical data-based (HARP [13])
models to determine the transfer settings for file transfers
that can maximize the throughput. While heuristic models
fail to guarantee high performance, the performance of his-
torical data-based solutions is bound to the availability of
large-scale, up-to-date historical data collected under various
background loads, datasets, and transfer settings. However,
collecting such datasets in a periodic manner is a daunting
task for isolated networks and nearly impossible for pro-
duction systems. Arifuzzaman et al. developed an online
learning model, Falcon, to discover the optimal concurrency
for file transfers that can maximize the transfer throughput
while ensuring fairness among competing flows [11]. While
Falcon addresses fairness issues when competing transfers
have similar file system configurations (i.e., the same level
of I/O parallelism is needed for competing transfers), it fails
to do so when transfers have different I/O characteristics.
Furthermore, Falcon adopts a monolithic transfer applica-
tion structure, thus it fails to address the wasteful use of
concurrency. Fast Data Transfer (FDT) [1] and Multicore-
aware Data Transfer Middleware (mdtmFTP) implemented
the idea of separating I/O and network operations, however,
they both require users to tune transfer settings such as the
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Figure 2: Marlin introduces modular file transfer architecture to enable fine-granular, adaptive parallelism for
end-to-end transfers.

number of concurrent I/O and network threads and mem-
ory size. This is rather a challenging task even for domain
experts as the optimal settings change over time.

3 MARLIN: MODULAR FILE TRANSFER
APPLICATION

To scale file transfers to high speeds while avoiding to over-
load system resources, we build a modular file transfer appli-
cation, Marlin, as illustrated in Figure 2. Specifically, Marlin sep-
arates I/O and network operations at source and destination
servers to be able to tune their parallelism independently.
This allows it to take advantage of I/O and network paral-
lelism when needed to increase transfer throughput while
avoiding unnecessary parallelism on well-performing com-
ponents.

When selecting a concurrency level for read, transfer, and
write operations, Marlin uses two criteria as low-overhead
and high performance. That is, it searches for “just enough”
concurrency values for each operation that leads to close-
to-maximum performance using as minimal concurrency as
possible. Hence, we adopted utility function proposed in [11]
that rewards high throughput and penalizes high concur-
rency. While [11] searches for one concurrency value for
read, transfer, and write operations due to using a mono-
lithic transfer architecture, Marlin tunes each component
separately. Thus, Marlin extends the utility function to meet
the unique design of the proposed modular transfer archi-
tecture. Since identifying the optimal concurrency level for
read, transfer, and write operations quickly is key to reach-
ing maximum and stable transfer speed, Marlin uses online
gradient descent algorithm as it can converge to the optimal
solution with only a few sample transfers. We next discuss
the details of the utility function and online optimization
algorithms.

3.1 Utility Function
Utility functions are used to quantify the fitness of a config-
uration in terms of maximizing the benefit and minimizing
the cost. In the context of file transfers, we aim to maxi-
mize the throughput and minimize the number of concur-
rent read/write threads and network connections. Including

a punishment term into a utility function does not only help
to lower the resource overhead, but also play an important
role to converge to a fair and optimal solution in the presence
of competition [20, 29, 34]. Hence, we adopted the following
utility function as proposed in [11]

𝑢 (𝑛𝑖 , 𝑡𝑖 , 𝐿𝑖 ) =
𝑛𝑖𝑡𝑖

𝐾𝑛𝑖
(1)

where 𝑛𝑖 is the number of concurrent files to transfer (i.e.,
concurrency) and 𝑡𝑖 is the average throughput of each file
transfer, and 𝐾 is a constant coefficient that is used to deter-
mine the severity of punishment for the concurrency level.
Although previous studies show that the utility functions
that incorporate monotonically increasing penalty terms in
linear form guarantee high performance for single transfer
and optimal and fair convergence for competing transfers
(i.e., Nash Equilibrium) [20, 34], it is challenging to achieve
both high-performance and fair and optimal convergence
when the penalty for concurrency is incorporated in a linear
form as shown in [11]. Thus, we adopted a nonlinear form
for concurrency penalty that experimentally satisfies both
higher performance and fairness between competing agents.
As the throughput improvement ratio is not directly propor-
tional to increased concurrency (i.e., the ratio of gain starts
to lower at higher concurrency values), the value of 𝐾 can be
tuned to require small but non-negligible gain (e.g., 1%) for
increasing concurrency values. By doing so, we ensure that
the utility will increase as long as a non-negligible amount
of throughput gain is observed and decrease upon exceeding
the optimal concurrency value.

While the utility function given in Equation 1 is sufficient
to lower resource overhead for read and write I/O opera-
tions, it is not sufficient for network transfers since it does
not capture the impact on the network adequately. More
specifically, one can attain higher network throughput with
increased concurrency at the expense of causing or exacer-
bating congestion in the network. Hence, we incorporated
the packet loss ratio as an additional cost for the transfer
operations to keep the network congestion at a minimum.
Please note that while congestion control algorithms already
take packet loss into account while determining a sending
rate (i.e., congestion window) for transfers, they do it on
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individual connection levels. This in turn does not capture
the full impact of concurrent file transfers (that are part of
the same transfer job) on the network. As an example, a file
transfer that uses a concurrency level of 10 for network con-
nections can lead to a high (e.g., 1%) packet loss rate despite
individual network connections experiencing a relatively
small packet loss rate (e.g., 0.1%). Consequently, we calculate
a total packet loss rate for all network connections and add it
to the utility function as a penalty term to lower the severity
of network congestion as

𝑢 (𝑛𝑖 , 𝑡𝑖 , 𝐿𝑖 ) =
𝑛𝑖𝑡𝑖

𝐾𝑛𝑖
− 𝑛𝑖𝑡𝑖𝐿𝑖 × 𝐵 (2)

where 𝐵 is a constant coefficient that is used to determine
the severity of punishment for packet loss penalty. We ob-
serve that 𝐵 = 10 works well for the most commonly used
TCP variants (i.e., TCP Cubic and Reno, and HSTCP) by keep-
ing packet loss rate below 1 − 2% while achieving over 95%
network utilization. As a result, the utility function in the
form of Equation 2 can be used to prevent high packet losses
caused by suboptimal concurrency settings.
As Marlin is designed to tune the concurrency level for

read, transfer, and network operations to different values,
we have two main options in designing a search algorithm.
In the first approach, we can come up with a single utility
function that combines the performance of each operation
to produce a single value and utilize multi-parameter opti-
mization algorithms (e.g., conjugate gradient descent and
Bayesian optimization) to search for the optimal concurrency
for all operations simultaneously. In the second approach, we
can utilize a separate utility function and search algorithm
to tune the concurrency level of each stage of file transfers
independently. For the first approach, the utility function
needs to reward increased throughput for read throughput,
network throughput, and write throughput while penalizing
increased concurrency level for each operation as well as
increased packet loss rate. Hence, we can calculate the utility
of each operation using Equation 1 and 2 as

𝑢 (𝑛𝑖 , 𝑡𝑖 , 𝐿𝑖 ) =
𝑡𝑟

𝐾𝑛𝑟
+ 𝑡𝑛

𝐾𝑛𝑛
+ 𝑡𝑤

𝐾𝑛𝑤
− 𝑡𝑛𝐿 × 𝐵 (3)

where 𝑡𝑟 , 𝑡𝑛 , 𝑡𝑤 are the throughput of read, transfer, and
write operations; 𝑛𝑟 , 𝑛𝑛 , 𝑛𝑤 are the concurrency level of read,
transfer, and write operations, and 𝐿𝑛𝑛 is the packet loss
rate. We show in the evaluations that the convergence rate
of optimization algorithms is extremely slow when using
a combined utility function. This is mainly because of the
dependence between the concurrency levels which prevents
the evaluation of some settings. As an example, if the net-
work speed is faster than the read I/O throughput, it may not
be possible to evaluate a setting with a large network con-
currency level and a small read I/O concurrency level due to

(a) Univariate Gradient Descent (b) Conjugate Gradient Descent

Figure 3: Convergence comparison of univariate and
conjugate gradient descent algorithms in terms of con-
vergence speed. While conjugate gradient can find the
optimal concurrency solution for read, transfer, and
write operations altogether, it takes almost three times
longer to find the solution compared to using separate
but concurrent univariate gradient descent algorithms.

a lack of data in the stage-in area. Hence, Marlin adopted a
separate optimization approach to tune the concurrency level
for each operation independently. Please note that optimiza-
tion algorithms can be executed concurrently to minimize
the solution time.

Utility functions in the form of Equation 1 and Equation 2
converge to a fair and optimal state in the presence of mul-
tiple competing transfers due to being in the concave form.
The term 1 − 𝐿𝑖 × 𝐵 in Equation 2 follows a monotonically
decreasing pattern for the increasing number of concurrent
transfers since packet loss either stays the same or increases
as the number of concurrent connection increase. Thus, both
Equations 1 and 2 are guaranteed to be concave as long as
𝑛𝑖𝑡𝑖
𝐾𝑛𝑖

is concave. It is proved in [11] that for a value of𝐾 = 0.02,
𝑛𝑖𝑡𝑖
𝐾𝑛𝑖

is guaranteed to be strictly concave as long as𝑛𝑖 less than
100, which we find to be true in all production networks.

3.2 Online Search Algorithm
Naive algorithms such as brute force search may be feasi-
ble for scanning small search spaces or when the cost of
evaluating a setting is minimal. However, neither of these
conditions is true for file transfers as the search space is
very large and it takes several seconds to accurately test a
concurrency setting. As an example, there are 8, 000 possible
combinations of the concurrency values for read, transfer,
and write operations even when restricting concurrency val-
ues to 20 (20 × 20 × 20). Hence, it is important to devise a
search algorithm that can quickly converge to the optimal
solution.
Online Gradient Descent (OGD) is known to accelerate

optimization processing significantly with the help of adap-
tive step size. OGD works by testing two close settings and
calculating the gradient of the utility of these settings. As
an example, assume that we test the concurrency values of
2 and 3 in two consecutive intervals. We then calculate the
utility value for these two concurrency levels, say 𝑢1 and
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𝑢2 using the utility function (Equation 1 for I/O operations
and Equation 1 for network transfer), and calculate the gra-
dient using 𝑢2−𝑢1

2−1 . The gradient value is then used to decide
which direction to continue the search as well as how big
of a jump to make. As an example, if the gradient value is a
large positive value in the above example, OGD can jump to
a concurrency value of 10 instead of testing 4 or 5. By doing
this, it can take large steps when current evaluated values are
far from optimal to converge to the optimal solution quickly.

Moreover, OGD can be easily extended to keep searching
continuously in case of the optimal solution changes over
time. This is especially relevant for long-running transfers
since network and I/O congestion may change over time so
does the optimal solution. Since OGD does not have memory,
it can avoid being stuck in earlier solutions and respond to
changing conditions by converging to the new optimal, a
key requirement to ensure fairness and high performance in
shared environments. Yet, we observe that OGD can still be
stuck in suboptimal regions due to a lack of differentiable dif-
ferences when comparing concurrency values in suboptimal
regions. For example, if the optimal concurrency is 12 but
OGD ended up testing concurrency values around 20 (say it
is testing 19 and 20 to calculate the gradient) and then it may
not be able to learn that a lower concurrency value is better
because both evaluated concurrency values return similar
utility value. To overcome this limitation, we extended the
base OGD implementation to keep track of the optimal con-
currency setting with the highest utility value. By doing so,
the OGD can avoid being stuck in the suboptimal region and
continue the search around the optimal. For example, if we
observed the maximum utility value at a concurrency value
of 10 in the last 20 intervals (interval duration is equal to
the duration of testing a setting, which is three seconds, by
default.), but OGD is currently stuck at around 20 in the last
few intervals, then it will come back to 10 as its utility value
is highest among all concurrency values it has tested in last
20 intervals.
The conjugate gradient is commonly used to find a solu-

tion for multiple variables. Hence, we implemented both con-
jugate gradient descent and independent univariate gradient
descent algorithm. The conjugate gradient uses Equation 3
as a utility function to evaluate the fitness of concurrency
combination 𝑛𝑟 , 𝑛𝑛, and 𝑛𝑤 for read, transfer, and network
operations, respectively. The univariate gradient descent, on
the other hand, uses a separate OGD to identify the optimal
concurrency value for each operation independently. Instead
of running the three OGDs sequentially, we execute them in
parallel to lower solution time as well as to capture the inter-
play between read, transfer, and write operations. Figure 3
presents the convergence time for univariate gradient and
conjugate gradient algorithms. We set up the experiment
in a way that the optimal concurrency is 10 for all three

operations. It takes nearly 35 sample transfers (each sample
transfer lasts for three seconds) for the conjugate gradient
to find the optimal solution for each operation while it takes
around 15 sample transfers when using a univariate gradient
descent algorithm. Even worse, the conjugate gradient can be
stuck in suboptimal regions for a long period of time before
converging to the optimal. Section 4.1 presents further eval-
uations for the performance of Marlin when using different
online search algorithms including univariate gradient de-
scent, conjugate gradient descent, and bayesian optimization.
Despite offering fast alternatives for multivariate parame-
ter optimization, we find that both conjugate gradient and
bayesian optimization require extensive tuning to perform
well, thus we settled on univariate gradient descent as a
search algorithm for Marlin.
Another challenge for a search algorithm is the depen-

dence between I/O and network operations, which makes
it difficult to test any random setting. As we use memory
space as a stage-in area for read and transfer operations as
well as transfer and write operations and memory capacity
is limited, it may not be possible to evaluate a concurrency
setting properly if the stage-in area is full or there is not
enough data in the stage-in area to move. As an example, if
read I/O performance is faster than network transfer perfor-
mance (either due to lack of network parallelism or because
of hardware performance differences), then the stage-in area
can reach the limit. This in turn will prevent testing higher
I/O concurrency values accurately because I/O threads will
not be able to operate at the full speed. In the opposite sce-
nario, if the read throughput is slower than the network
throughput and there is little to no data in the stage-in area,
it is not possible to test higher concurrency values for the
transfer operation if there is not enough data to transfer. A
similar relationship exists between the transfer and write op-
erations at the receiver end. Under such scenarios, we ignore
the outcome of sample transfers due to misleading results.
As an example, if we try to test a concurrency value of 5 by
opening five connections to transfer files over the network
but only three connections are able to work at full speed due
to lack of enough data in the staging area, we cannot use
the measured network throughput as “true” performance of
concurrency value 5.

4 EVALUATION
We assess the performance of Marlin in four networks as
listed in Table 1 out of which Expanse [6] and Bridges-2 [5]
are production HPC clusters, HPCLab is an isolated lab clus-
ter, and Emulab is an emulated network testbed. Except for
Emulab, all clusters have parallel file systems or RAID arrays
as storage due to which the use of concurrency is required to
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(a) Univariate Gradient Descent (b) Conjugate Gradient Descent (c) Bayesian Optimization

Figure 4: Comparisons of different search algorithms. While conjugate gradient descent and bayesian optimization
algorithms can tune multiple parameters at the same time, their long convergence time as well as poor prediction
accuracy make them hard to adapt. Univariate gradient descent, on the other hand, works well as it can converge
to optimal quickly and does not require extensive tuning.

Source Destination Storage Bandwidth RTT
Emulab Emulab RAID-0 SSD 1G 2ms
HPCLab HPCLab RAID-0 SSD 20G 0.1ms
HPCLab Expanse (SDSC) Lustre 10G 15ms

Bridges2 (PSC) Expanse (SDSC) Lustre 10G 58ms

Table 1: Specifications of experimental networks. Em-
ulab is an emulated network testbed and HPCLab is
an isolated lab cluster. Expanse [6] and Bridges-2 [5]
are production supercomputers that are connected via
high-speed research networks.

maximize I/O performance. Since Emulab nodes have direct-
attached single disk storage volumes, we throttle per process
disk read throughput to necessitate concurrent I/O accesses
to reach maximum performance, similar to parallel file sys-
tems. We use Bridges-2 and Expanse clusters for real-world
wide-area experiments. HPCLab servers are located in the
same local-area network, thus delay between the hosts is
less than a millisecond. Unless otherwise states, we used
datasets containing multiple 1 GiB files. The number of files
is adjusted based on achievable throughput in each network.
We compare Marlin against the state-of-the-art monolithic
transfer application Falcon [11]. Similar to Marlin, Falcon
uses the online gradient descent algorithm to search for the
optimal transfer concurrency. Falcon is shown to outperform
other file transfer applications (HARP [12] and Globus [10])
by up to 2×, thus we believe that comparison to Falcon would
be sufficient to evaluate the efficiency of Marlin.

4.1 Evaluation of Optimization Algorithms
We created a testbed with 300Mbps link bandwidth, 60Mbps
read I/O limitation per thread, and 30Mbps network lim-
itations for per network connection to compare the per-
formance of different optimization algorithms. Hence, the

optimal concurrency is 5 for the read operation, 10 for the
network operation, and 1 for the write operation. Figure 4
presents convergence behavior when using univariate gra-
dient descent, conjugate gradient descent, and bayesian op-
timization. Gradient Descent quickly discovers that the op-
timal concurrency for the network is around 10. However,
it keeps increasing read concurrency until it hits the mem-
ory limit because increased read concurrency leads to an
increase in read throughput until the staging area becomes
full. Then, it reduces the number of read threads to around
5 to match the speed of the network transfer. Conjugate
gradient descent, on the other hand, chooses a particular
search direction and keeps exploring that direction until it
converges. This behavior leads to undesired behavior when
increasing read concurrency results in a temporary increase
in read throughput despite slower network speed due to
having a high-performance staging area. As can be seen in
Figure 4(b), the conjugate gradient descent increases read
concurrency to almost 50 because of misleading information
collected in the first 20 intervals during which increasing
read concurrency resulted in an almost proportional increase
in the read throughput. It eventually lowers the number of
read threads but never falls short to find the optimal concur-
rency for the network thread. Bayesian optimization, similar
to conjugate gradient, can tune all three concurrency val-
ues simultaneously using Equation 3 as a utility function. It
starts with a few random concurrency combinations to start
building a Gaussian surrogate model. It updates the model
after each new observation (i.e., new sample transfer with
a different concurrency setting), and predicts new values to
test in the next interval. The performance of the bayesian
optimization is highly dependent on the accuracy of obser-
vations. Throughput fluctuations and a temporary increase
in read throughput in turn cause the bayesian optimization
to build an incorrect model, which then affects its ability
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(a) Read I/O Bottleneck (b) Network Bottleneck (c) Write I/O Bottleneck

Figure 5: Marlin can identify the bottleneck operation in file transfers and tune the concurrency accordingly to
maximize transfer performance while keeping the overhead on other components at a minimum.

Figure 6: Due to its monolithic design, Falcon chooses
the same concurrency level for read, write, and trans-
fer operations based on the lowest-performing compo-
nent.

to make accurate predictions. The simplicity of the univari-
ate gradient descent algorithm along with the absence of
memory makes it the perfect choice for Marlin. Please note
however that it can be possible to tame conjugate gradient
descent and bayesian optimization algorithms using a differ-
ent utility function and/or restricting their memory, but we
leave it as a future work and utilize the univariate gradient
descent in the rest of the paper.

4.2 Fine-Tuning Concurrency
We next evaluate the performance of Marlin in terms of
its ability to detect the bottleneck operation in a transfer
and find the optimal concurrency to reach maximum uti-
lization. Figure 5 presents the Marlin’s performance when
concurrency is needed only for one of the read, transfer,
and write operations. We used Emulab to manually restrict
the throughput for I/O and network operations per thread
and connection. For example, in Figure 5(a), read threads
are limited to 30Mbps, network connections are limited to
100Mbps, and write threads are throttled to 100Mbps. We
also limited bandwidth from the source node to the destina-
tion node to 300Mbps. Since the maximum total I/O speed

is 1Gbps, the transfer task can attain 300Mbps at most (lim-
ited by network capacity) if the right concurrency values are
configured. In the read bottleneck scenario (Figure 5(a)), the
optimal concurrency levels are 10, 3, and 3, for read, transfer,
and write operations, respectively. We observe that although
Marlin initially increases the concurrency for all three oper-
ations, it lowers them for transfer and write operations after
a few iterations while keeping it between 9 − 11 for the read
operation.
In the case of network bottleneck (Figure 5(b)), the op-

timal concurrency for read and write operations is 3 and
transfer is 10. We can see that the concurrency level for both
read and write operations settle at around 3 − 4 while trans-
fer concurrency changes around 8 − 11. The main reason
for the fluctuations in concurrency value is the continuous
search functionality of the OGD. While it is possible to run
OGD once and keep using the selected values, it is not de-
sired in shared environments as the optimal concurrency is
dependent on the level of congestion. Hence, OGD keeps
searching around higher and lower values even after find-
ing the optimal to be able to react to changing conditions
quickly. Finally, Marlin is again performs well in the write
bottleneck scenario(Figure 5(c)) by increasing write concur-
rency to around 10 while keeping the network and transfer
concurrency at around 2−4. We also executed Falcon in read
I/O bottlenecks settings (Figure 6) to find what concurrency
values it picks. In the first transfer (Transfer 1), three read
threads (i.e., concurrency) are needed to reach maximum
transfer throughput while a single network connection and
write thread is sufficient. In the second transfer (Transfer-2),
a concurrency level of 10 is needed for the read operation
whereas a concurrency level of 1 is sufficient for transfer
and write operations. It is clear that Falcon is able to find
the optimal concurrency level quickly for both scenarios,
however, it creates the same number of read, transfer, and
write threads, unnecessarily overloading the network and
receiver node.
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(a) Falcon (Different Read I/O Performance) (b) Marlin (Different Read I/O Performance) (c) Marlin (Similar Read I/O Performance)

Figure 7: Fairness analysis for Falcon and Marlin. Falcon causes unfair network bandwidth allocation between
competing transfers due to using the same concurrency for network and I/O operations. On the other hand,
Marlin is able to identify I/O bottlenecks and tune the concurrency for transfer and I/O operations separately,
which helps it to ensure fairness between transfers regardless of I/O characteristics.

4.3 Fairness Analysis
We next compare the performance of independent transfers
competing for the same bottleneck link in Emulab as shown
in Figure 7. We run two transfers between two different
source-destination pairs with different read concurrency re-
quirements. Specifically, read I/O throughput per thread is
limited to 300Mbps for the first (Transfer-1), whereas it is
limited to 30Mbps for the second transfer (Transfer-2). The
transfers share a network link whose capacity is limited to
300Mbps. Thus, single write and transfer threads are suf-
ficient for both transfers to attain the maximum possible
throughput (i.e., 300Mbps) in this network as no limitations
are injected for write and transfer operations. On the other
hand, Transfer-2 requires 10 concurrent read threads to at-
tain 300Mbps read I/O throughput.

Figure 7(a) presents the results for two competing Falcon trans-
fers. When Transfer-1 starts, it settles on a concurrency value
between 1−3 as small concurrency is sufficient for it to reach
300Mbps throughput. When Transfer 2 joins, it tests higher
concurrency values than 3 and observes a considerable in-
crease in the utility function due to an increase in read I/O
throughput. As the same concurrency level is used for read,
transfer, and write operations in Falcon, this in turn causes
Transfer-2 to attain a higher share in the network. That is,
the capacity of the bottleneck link is shared between Transfer
1 and Transfer 2 in proportion to the number of concurrent
network connections they create. Since Transfer-2 chooses
a higher concurrency value than Transfer-1, it initially ob-
tains almost three times higher network throughput than
Transfer-1. Although Transfer-1 responds to this by increas-
ing its concurrency value to around 5, it does not observe a
sufficient increase in utility to increase it even further. As
a result, bottleneck link capacity is shared in a 2-1 ratio
between Transfer-2 and Transfer-1.

Figure 7(b) shows results for Marlin for the same config-
uration as Falcon transfers are executed. Unlike Falcon, both
transfers choose to create 1−3 network connections (on aver-
age 2.25 for Transfer 1 and 2.53 for Transfer-2) and share the
network bandwidth almost equally (47% to 53%) despite hav-
ing different read I/O concurrency requirement. Figure 7(c)
shows two competing Marlin transfers with network limi-
tations of 30Mbps, thus 10 concurrent transfer threads are
needed to fully utilize the network capacity of 300Mbps.
Transfer-1 converges to concurrency level 10 for the transfer
operation when it is the only transfer in the network. When
Transfer-2 joins, Transfer-1 lowers its network concurrency
as it realizes that concurrency value 5 − 6 is sufficient to at-
tain its fair share in the network (i.e., around 150Mbps) while
minimizing the packet loss rate. Transfer-2 also converges to
a concurrency level of 5 − 6 and obtains its fair share. When
Transfer-1 completes, Transfer-2 is able to claim the free
network bandwidth by increasing its network concurrency
with the help of the continuous search functionality of the
OGD.

4.4 Evaluations in Production Systems
Figure 8 compares the performance comparison of Falcon and
Marlin in production high-performance networks. While
both Expanse and Bridges-2 supercomputers are equipped
with high-performance Lustre file systems, have high-speed
connectivity to research networks, and utilize dedicated data
transfer nodes, transfers need parallelism to unleash the
available capacity. In particular, Bandwidth Delay Product is
69MiB (10Gbps×58ms) for Bridges-2 to Expanse communi-
cation, thus, TCP requires nearly 70MiB buffer space to reach
10Gbps throughput using a single connection. However, the
maximum TCP buffer size is limited to 5.8 MiB in Bridges-2
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(a) Bridges2-Expanse (Concurrency) (b) Bridges2-Expanse (Throughput) (c) HPCLab-Expanse (Concurrency) (d) HPCLab-Expanse (Throughput)

Figure 8: Performance comparison for Falcon and Marlin in real-world networks. Marlin attains competitive results
in transfer throughput while lowering the concurrency value significantly.

(a) HPCLab (Concurrency) (b) HPCLab (Throughput)

Figure 9: Performance comparison for Falcon and
Marlin in HPCLab network with 20Gbps bandwidth.

nodes, which is nearly twelve times smaller than the require-
ment. Since end users cannot change the TCP buffer size, the
use of multiple concurrency network connections is the only
way to mitigate TCP buffer size limitation as each connection
can attain a separate TCP buffer space equal to a maximum
value (i.e., 5.8MiB). Figure 8(a) and 8(b) show the concur-
rency and throughput values using Falcon and Marlin. As
TCP buffer size is the main limitation for the performance,
both Falcon and Marlin chooses a high concurrency value
(around 20) for the network. On the other hand, Marlin re-
alizes 3 − 5 read and write threads are sufficient to read and
write files at the Figure 8 compares the performance compar-
ison of Falcon and Marlin in production high-performance
networks. While both Expanse and Bridges-2 supercomput-
ers are equipped with high-performance Lustre file systems,
have high-speed connectivity to research networks, and uti-
lize dedicated data transfer nodes, transfers need parallelism
to unleash the available capacity. In particular, Bandwidth
Delay Product (BDP) is 69MiB (10Gbps×58ms) for Bridges-2
to Expanse communication, thus, TCP requires nearly 70MiB
buffer space to reach 10Gbps throughput using a single con-
nection. However, the maximum TCP buffer size is limited
to 5.8 MiB in Bridges-2 nodes, which is nearly twelve times
smaller than the requirement. Since end users cannot change
the TCP buffer size, the use of multiple concurrency network
connections is the only way to mitigate TCP buffer size limi-
tation as each connection can attain a separate TCP buffer
space equal to a maximum value (i.e., 5.8MiB). Figure 8(a)
shows the concurrency values using Falcon and Marlin. As

TCP buffer size is the main limitation for the performance,
both Falcon and Marlin chooses a high concurrency value
(around 20) for the network. On the other hand, Marlin real-
izes that 4−6 read and write threads are sufficient to increase
read and write throughput to maximize transfer through-
put. Figure 8(b) shows that both Falcon and Marlinare able
to obtain 8Gbps throughput. As a result, while achieving
similar performance to Falcon, Marlin is able to lower the
number of I/O processes used to read and write files. More
specifically, Falcon creates 20 − 30 read and write threads on
end servers while Marlin only creates 4 − 6 threads.
TCP buffer size limitation is still an issue in HPCLab-

Expanse transfers (Figure 8(c) and 8(d)) since Expanse nodes
are configured with 8MiB maximum TCP buffer size while
BDP is around 17MiB ((10Gbps×15ms). In addition to TCP
buffer size limitation, both read and write I/O operations
require parallelism to overcome the I/O limitations. Specif-
ically, a concurrency value of 6 is needed to reach close to
8Gbps write I/O throughput on the receiver end, Expanse.
While read operation also needs parallelism, it can reach
8Gbps throughput with a slightly smaller concurrency value.
Similar to Bridges2-Expanse transfers, Marlin attains com-
parable throughput to Falcon despite using a lower read and
transfer threads. Finally, Figure 9 presents Marlin’s perfor-
mance in a local-area network with 20Gbps bandwidth. The
optimal concurrency level for read, transfer, and write op-
erations is almost the same, around 5. Hence, both Falcon
and Marlin performs similarly both in terms of concurrency
values and throughput.

4.5 Performance Enhancements for Short
Transfers

A previous analysis of the data transfers in the research net-
works showed that the median dataset size is 10GiB andmore
than 80% all transfers move less than 128GiB data. Thus, it is
important to improve the performance of small transfers that
last a few seconds to minutes. In most cases, I/O performance
is the bottleneck for small transfers. Hence, optimizing I/O
performance is critical to enhancing the throughput of short
transfers. One possible solution is placing high-performance
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Data Size Falcon (Sec) Marlin (Sec) Improvements (%)
10 GB 9.8 7.4 24.5
25 GB 21.7 14.1 35.1
50 GB 43.8 24.3 44.5
75 GB 65.6 34.2 47.8
100 GB 86.9 42.1 51.6

Table 2: Performance comparisons of Falcon and
Marlin for the transfer of small datasets when write
I/O is the bottleneck of the transfers. Since Marlin is
able to cache files on staging area (RAM), it can attain
higher read and network throughput and move entire
dataset to the destination node quicker.

storage caches (e.g., NVMe SSD, nonvolatile memory) on
data transfer nodes such that files can be staged at a faster
speed than directly reading/writing from parallel file sys-
tems (as illustrated in Figure 2) similar to burst buffers in
HPC clusters. It is important to note small transfers are more
likely to observe a significant gain through this approach
because large transfers are likely to hit the capacity limit of
the staging area and lower their speed to the speed of the
file system.

Marlin lends itself to this idea as its modular architecture
allows it to stage in files to temporary space before transfer-
ring to the network and writing to file systems. Although we
utilized volatile main memory as a staging area between read
and transfer operations and between transfer and write op-
erations, it can be replaced with NVMe SSDs or nonvolatile
memory units to ensure that data will not be lost in the event
of a power outage. Table 2 presents the transfer duration
for Falcon and Marlin when transferring small datasets in
HPCLab. To simulate a scenario in which the write speed
of staging space for Marlin is significantly (more than 2×)
higher than the write speed of a file system, we limited the
write speed to 10 Gbps while the read I/O speed is 30 Gbps,
network bandwidth is 20Gbps. Thus, it is possible to trans-
fer files to the staging area at around 20 Gbps speed. On
the other hand, only 10Gbps throughput can be attained if
a monolithic file transfer application is used to write data
directly to the file system. Clearly, Marlin can move the files
to the staging area of the destination node by more than 2𝑥 ,
reducing the transfer time by up to 51.6%.

4.6 Impact of Memory Limit
Marlin uses main memory (tmpfs) on sender and receiver
nodes as a staging area between network and I/O operations.
Hence, it is important to limit memory usage to avoid saturat-
ing the whole memory space for a single transfer application.
We, therefore, define a hard limit for memory usage on both

the sender and receiver sides. By default, we set the limit to
be 30% of free memory space. Figure 10 evaluates the impact
of memory limit for HPCLab transfers. We varied the buffer
limit on the source node between 3GiB and 100GiB. Since the
speed of transfers is around 20Gbps, 3GiB allows Marlin to
store around 0.6 seconds worth of data on memory before
hitting the limit. This value becomes 4 seconds when using
the buffer size limit of 10GiB and 40 seconds when setting
the memory limit to 100GiB. The figures show that using a
very small memory limit causes Marlin to experience sig-
nificant fluctuations in the concurrency value of read and
transfer operations. The number of read threads often hit 1
since it cannot create and test multiple read threads accu-
rately due to lack of memory space. As a result, the transfers
take 60% longer compared to using 10GiB or 100GiB memory
space as shown in Figure 11. Therefore, Marlin necessitates
a memory space that is at least as big as to hold a couple
of seconds’ worth of data. We believe this is a reasonable
expectation as the memory capacity of data transfer nodes in
production systems is high enough to accommodate this. As
an example, the Expanse transfer node has a 64GiB memory
and the Bridges-2 transfer node has a 128GiB memory.

5 CONCLUSION
Similar to compute jobs, data transfers in wide-area high-
performance networks require parallelism to overcome I/O
and network limitations. However, the implementation of
transfer parallelism (aka concurrency) in existing transfer
applications has two main issues. First, it creates the same
level of parallelism for read, transfer, and write operations
when transferring files. This in turn overburdens some sys-
tem resources since not all operations require the same level
of parallelism to achieve a similar throughput. Second, it
causes unfair resource allocation when multiple transfers
with different I/O characteristics share the bottleneck net-
work link. Instead of trying to overcome these problems by
manipulating existing monolithic transfer applications, we
propose a modular file transfer application, Marlin, to sepa-
rate read, transfer and write operations. Marlin combines
game theory-inspired utility functions with online gradient
descent algorithm to swiftly discover the fair and optimal
parallelism levels for each operation.

We evaluated the performance of Marlin both in emulated
and real-world networks to show that it is able to identify the
minimum concurrency level for read, transfer, and write op-
erations to maximize transfer throughput while minimizing
system overhead and ensuring fairness among competing
transfers. We also show that the modular architecture of
Marlin lends itself to the implementation of burst buffer
design in data transfer nodes to expedite the transfer of
small datasets by caching data on high-performance storage
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(a) 3GB Buffer (b) 10GB Buffer (c) 100GB Buffer

Figure 10: Impact of memory space on the performance of Marlin. Clearly, 10GiB is sufficient for Marlinto perform
normally and attain high performance.

Figure 11: Throughput of Marlin with different mem-
ory limits. It requires at least 10GiB memory space to
achieve 20 Gbps throughput in HPCLab network.

spaces (e.g., NVMe SSD and PMEM). Specifically, we find
that Marlin can speed up the transfer performance of short
transfers by more than 2×.
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