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Abstract

In this work we present a new stochastic framework for obtaining optimal treatment
regimes in prostate cancer. We model the realistic scenario of randomized clinical trials
for incorporating randomness related to interaction between a prostate cancer cell and
androgen cell quota, due to cancer heterogeneities, across different patients in a given
group, using a Liouville partial differential equation. We then solve two optimization
problems: one for determining the model parameters to fit the measured data and the
second to determine the optimal androgen deprivation therapy. The optimization prob-
lems are implemented using a positive, stable, and conservative finite volume solver for
the Liouville equations and the projected non-linear conjugate gradient method. Several
numerical results, including comparison with ordinary differential equations modeling
framework, demonstrate the robustness and accuracy of our proposed framework to
obtain optimal treatment regimes in real time.
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1 Introduction

Prostate cancer is one of the most common and dangerous type of non-skin cancer, and
is considered the second leading cause of death among men in the United States [1]. One
out of every six men is estimated to be diagnosed with prostate cancer at some point in their
life [2]. According to the American Cancer Society, there are around 268,490 new cases of
prostate cancer in the United States, with 34,500 deaths in 2022 [3]. There are more than
3.1 million American men currently living with prostate cancer, which is nearly equal to
the population of Chicago, Illinois. Globally, prostate cancer is becoming more common,
although it is particularly prevalent in poorer countries [4]. The World Health Organization
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reported 9.6 million cancer deaths and 18.1 million new cancer cases in 2018. By the year
2040, it is expected that there will be 29.5 million new cases of cancer and 16.5 million deaths
[5]. Therefore, the disease remains a highly discussed and researched topic in cancer studies
[6].

Prostate cancer begins when some of the cells in the prostate gland start growing uncon-
trollably. It usually starts as a tumor without any signs or symptoms in young men, typically
between the ages of 20 and 30. However, the problem is that symptoms only become no-
ticeable after a long time, when the disease has already become dangerous. This means that
by the time symptoms appear, the available treatment options for the patient are reduced,
and the chances of survival are also lower |7, 8]. Although it is difficult to determine the
exact causes of prostate cancer, age, race, and inherited factors are the most strongly estab-
lished risk factors for it [9]. Thus, it is imperative to determine fast and effective treatment
strategies for prostate cancer patients.

Doctors and researchers began to study the growth and effects of prostate cancer, and
most studies and research were done in clinics. However, there are many challenges exist
in clinical prostate cancer research. Some of them require clinical studies to understand
the complex mechanisms of cancer and associated treatments. Another significant clinical
challenge is obtaining an effective treatment strategy for each patient individually, or at
least identifying a subset of patients who could benefit from a particular treatment. In
addition, testing even one therapy during clinical trials is costly. These obstacles show the
necessity of continuous research efforts to improve our understanding of prostate cancer and
optimize treatment options for better patient results. There is a significant lack of detailed
knowledge of the intricate mechanisms behind prostate cancer and the results of different
therapies, and it is for this reason that some researchers have found new research methods
using mathematical models to more effectively understand how prostate cancer progresses
[10].

In the past years, a lot of mathematical models have been created and analyzed through
collaborations with doctors to explore various aspects of prostate cancer, such as treatment
choices and timetables for those treatments [11]. Through these collaborations, important
discoveries have been made about how prostate cancer develops and changes over time. In the
most notable of these discoveries, the authors in [11] created a simple model to describe and
explain how prostate cancer grows and progresses. In [12], the authors formulated mathe-
matical models to determine prostate cancer growth while on intermittent androgen therapy.
The authors in [13] developed a mathematical model of the cancer with the treatment of
androgen deprivation therapy, and this is the first clinically validated dynamical model for
the disease. In [14], the authors built a new population model for vaccination and androgen
deprivation therapy. The authors in [15] introduced a two-sub-population model for prostate
cancer undergoing androgen suppression therapy. For other models, see e.g., [16, 17, 18].

The success of some previous works [15, 10] led to the development of several models to
study the cancer’s progression and devise treatment strategies. One of the frequently used
methods for prostate cancer treatment is androgen deprivation therapy (ADT), which uses
drugs to block or lower levels of androgen and starve the prostate cancer cells of androgen.
This method was based on the significant cancer research discovery made by the authors in
[19]. They found that removing the testicles (castration) can help reduce the size of prostate
tumors. This discovery highlighted the significant role of androgen, a male sex hormone, in



the growth of prostate cancer cells. Their research opened the possibility of treating some
cancers using chemical treatments, making this an essential development in the field.

Typically, ADT thrives at the beginning of treatment because it targets the primary
tumor cells that rely on androgen for their growth. However, in many cases, ADT has
some side effects [20], like relapse of the cancer. This happens because, after a few years,
the androgen-dependent (AD) tumor cells resist treatment and transform into androgen-
independent (AI) cells. These Al cells can continue multiplying even in an environment
with limited androgen availability [21]. Some research indicates that only specific groups
of patients may experience benefits from intermittent androgen deprivation therapy, but
the determination of those specific groups is still an ongoing process [22, 23|. Although
mathematical models have suggested that intermittent androgen deprivation therapy might
extend the time until androgen-independent relapse, there is currently no solid proof from
clinical trials to support this claim [24]. Moreover, doctors have no agreement about the
treatment’s duration or intervals [25]. The results shown in these studies show that prostate
cancer can go into near extinction during the on-treatment interval before coming back
during the off-treatment break. Also, the mechanism used for the method to incorporate
androgen into growth and death rates is ineffective when androgen independence (Al) cells
overtake androgen dependence (AD) cells. Thus, developing and assessing the optimal ADT
method for prostate cancer is essential.

Most of the previous optimal control models, for cancer therapy in different cancer types,
had the objective to minimize total tumor volume. The authors in [26] provided the first
cancer treatment applications of optimal control theory. The optimal dose schedule is con-
sidered good when the goal of the therapy is to reduce the variance in tumor burden over a
period of time. Over time, researchers have applied optimal control theory to explore various
cancer treatments, including chemotherapies, inhibitors, immunotherapy, and radiotherapy
(see e.g.,[27, 28, 29]). In context of prostate cancer, there has been a growing interest in
using optimal control to find the best schedule of androgen-dependent therapy [30, 31]. The
authors in [32] used optimal control theory to find the best treatment schedule, using abi-
raterone, for metastatic castrate resistant prostate cancer patients. There are also some
clinical trials that support optimal ADT for prostate cancer [33, 34]. This work presents a
new optimal control framework for determining the best ADT for a prostate cancer patient.

An important goal of mathematical models in prostate cancer is to be able to provide
accurate patient classifications for evaluating treatment efficacies in clinical trials [11]. A
common protocol for assessing clinical trial outcomes with various treatments is the use of
randomized trials [35, 36, 37]. In this setup, participants are randomly grouped together
into various subgroups and prescribed different treatments to assess the behavior and out-
comes. The treatments are administered based on certain features, classifying the different
subgroups and, for this purpose, it is important to identify the dynamical behavior of the
prostate cancer mechanism. Since, individuals in a particular subgroup exhibit different
cancer characteristics, due to the inherent heterogeneities of prostate cancer, the dynamics
of prostate cancer in each of these subgroups exhibit a degree of randomness. Thus, the
collective dynamics of each subgroup cannot be accurately represented using deterministic
models. Since these cancer heterogeneities are one of the probable causes of clinical trial
failures [38], it is important to develop an accurate and robust modeling setup for classifica-
tion and evaluation of participants. One such accurate modeling framework can be obtained



through the use of random dynamical variables, governing the prostate cancer dynamics,
whose evolution is given by the Liouville equations. Such equations are used in different
fields like biology, finance, mechanics, and physics to describe how density functions change
over time. These equations help us understand the collective behavior of individuals in
non-interacting systems [39).

Effects and response to treatments can be modeled as optimal control problems governed
by Liouville equations, where the control represents the drug dosage/frequency and its suc-
cess in treating prostate cancer is to measure its efficacy in driving the Liouville cancer state
to a disease-free controlled state. While the focus on control problems governed by Liouville
equations has been limited, there are advantages in using the Liouville framework [40, 41| for
modeling and control of prostate cancer since it incorporates the behavior across multiple dy-
namical trajectories. This perspective is helpful for modeling systems with uncertain initial
data and exploring robust control strategies and feedback mechanisms, potentially leading to
new successful outcomes [42]. In this work, we develop a Liouville dynamical model to rep-
resent the prostate cancer dynamics and, furthermore, formulate and implement an optimal
control strategy for ADT in prostate cancer.

The paper is organized as follows: In the next section, we develop a Liouville model for
prostate cancer dynamics. Section 3 presents the parameter estimation and optimal control
problems with the Liouville equations. Section 4 presents some theoretical results about
the optimization problems. In Section 5, we present some numerical schemes to solve the
Liouville optimality systems. Section 6 is devoted to the numerical results with our proposed
Liouville framework. A section of conclusions and acknowledgement concludes the work.

2 A Liouville model for prostate cancer

We start off with an ODE-based mathematical cell quota model (Figure 1), proposed by
[13], to describe the dynamics of prostate cancer, where the model variables are as follows

Xi(t):  Androgen dependent (AD) - cells
X,(t) :  Androgen independent (AI) - cells

O

(t):  The cell quota for androgen - nM
Time - /day

~



Androgen

)
Figure 1: Schematic of the processes that occur in the model

The AD and AI cell populations are modeled by

% = lbm (1 — %) X —di1 X, — ml(Q>X1 + mQ(Q)X27
(1)
% = lm (1 — %) Xy — dy Xy — ma(Q)Xo +mi(Q) X1

The proliferation rate of the AD cell population is zero when Q(t) is at the minimum cell
quota q. As Q(t) increases, the growth rate approaches its maximum value p,,. The AD cell
population’s apoptosis rate and the Al population’s net growth rate, excluding mutation,
are constant. We also have the following expressions for the AD to Al mutation rate, m;(Q),
and the Al to AD mutation rate my(Q)

L, H
Q= Gy 2)
)@
TR

We remark that mq(Q) is low for normal androgen levels and high for low androgen levels.
In contrast, my (@) is high for normal androgen levels and low for low androgen levels, where
n is the Hill’s coefficient that describes the cell switching sensitivity to the cell quota level.
We considered n = 1 for ultra sensitivity [43]. The cell quota for androgen within the AD
cells is modeled by

@ - qm — Q A

G = U (@ 5) — b 3)

2.1 The non-dimensional modeling

This section will convert the system from its current form with specific values to a non-
dimensional form. That has two purposes: First, it helps simplify our equations by grouping
parameters, making them cleaner and easier to handle. Second, non-dimensionalization
is often done to reduce the computational cost of solving the system and guarantee the
numerical algorithms’ stability. We non-dimensionalize the ODE system using the following



non-dimensionalized states, time variables, and parameters:

X* Xo*
Xl* = lle — Xl = ! , XQ* = ZQXQ — X2 = 2
Il Iy (4)
Q=05 - Q=—, =l > t=—
l3 l4

The non-dimensionalized parameters will be:

P = /;—7 dy = l_la dy” = Z—Q, Q" =l3q1, " =13q2, k1" = I3k, ko™ = l3ko,
4 4 4
C1 C2 l3 (5>
CT = 7 C; - 7 Um* = 7 Um, Qm* - l3¢]m; s' = 1387 Uh* - l3vh7 b* = 7 A" = Z3A
ly ly ly ly

Then (1)-(3) can be transformed in the following way:

dX ( )X* Xy Xy (T) Xy
11 q1 1 1 1 1 3 2
= lm |1 =5 | — —dy — 7 + 77 ,
G T) b h (%) +r b (%) +m b
Which gives us
dXi* Hm l3(l1) dy C1 (l3k1)n l Q™"
=ty D R e N 12 VAR ' S S
a1 ( O ) T T LT k) T L QT o (k)

Using the non-dimensional parameters, we have

= " 1— X —di' X - Xt o X0
dt H ( Q* 1 1 1 1 Q*n—i-kf 1 2 Q*”~|—k§ 2

Using similar computations, we have

dXQ* Q2* Q*n k)fn
ar " ( Q*) TR e g T
dQ” g — Q" A
— m* _ m* * _ * o b* *'
a Gm* — 8* A* + vp* pon” (@7 = 57) @

Without loss of generality, we can remove the * and rewrite the non-dimensional ODEs as
follows

% = <,Um (1 — %) X —di Xs —my (Q) X1 +me (Q) Xg) =F (X1,X5,Q,0), X.(0)=1

2 (um (1 - %) X — dy X = m3 (Q) Xz + my <@>X1) = B (X1, %,,Q.0), X(0)=1

d m — A
_Q_Umci]m—gA—I—vh ~Hm(Q@ = 8) —bQ = £ (X1, X2, Q.6), Q0)=1

(6)



We now consider a reduced model, corresponding to (6), wherein the AD and Al prostate
cancer cells are combined together as a single cell type X. The dynamics of prostate cancer
is then described through the following set of equations

dX 5 k™
9 _, =@ 4 090

Um
dt Gm — S A+ vy,

(7)

Such a choice is motivated by the work of the authors in [15|, where they found that the
reduced order model (7) matched the clinical data better than (6). In randomized clinical
trials, different groups of individuals are administered different treatments to test for the
outcomes in each group. Even though the individuals in a group are provided with the
same treatment protocol based on similar characteristics in that group, each individual still
has different cancer characteristics, which can be considered as randomness, that needs to
be taken into account for obtaining accurate clinical outcomes. To model this behavior
accurately, the aforementioned deterministic setup is inappropriate. Rather, one needs to
consider X (0),Q(0) to be random (corresponding to different individuals in a particular
group) and drawn from some appropriate distribution. This renders X, () to be random
variables. Correspondingly, the ODE system (7) represents each trajectory in the ensemble
dynamics of prostate cancer, initiating from different initial conditions.

Let p(x,q,t) be the joint probability density function associated to X, @, i.e., P(X(t) =
z,Q(t) = q) = p(x,q,t). Then the ensemble dynamics of (7) can be represented by the
following Liouville equation

dp

= TV (@ g)p(e, ¢, 1) =0,

p(mv% 0) = p0($7Q)

(8)

where
b(l‘, q) = (bl(xu Q); bQ(xa q))

with the initial condition at ¢ = 0 given by p(x,q,0) = po(z, q), (x,q) € RTU {0} xRTU {0},
V=(Z 2) and

8z dq
bl(xaQ)zum<1_E>x_dl‘_cnk n
q "+ k (9)
bo(,q) = vy a—— (¢ —s)—bg
2 3 mqm—SA+Uh Hm )

Note that by, by are essentially the right hand sides of the ODE (7), replacing X with x
and () with ¢q. We also remark that P can be chosen as any probability density function and
an accurate choice can be made by statistically analyzing the characteristics of the initial
conditions of the individuals in a particular group. As a special case, if P is chosen to be a
Dirac delta function, then (6) reduces to (7).



3 Liouville optimization problems

3.1 Parameter estimation

Let 6 = {im, s,d, A} be the vector of the unknown patient specific parameters in (7). The
reason for this choice is because these parameters show wide variability amongst different
patients. The other parameters in (7) are more specific to the cancer type and, thus, can be
considered fixed and known across patients (see e.g., [17]).

Parameter Meaning Value and units | Reference
L Maximum proliferation rate 0.025-0.045/day [44]
s Minimum AD cell quota 0.175-0.45 nM [45]
k AD to AI mutation half-saturation level 0.08 nM [13]
d AD cell apoptosis rate 0.015-0.02/day [44]
c Maximum AD to AI mutation rate 0.00015/day [12]
b Cell quota degradation rate 0.09/day [12]
Im Maximum cell quota 5 nM [13]
Um Maximum cell quota uptake rate 0.275 nM/day [13]
Up, Uptake rate half-saturation level 4 nM [13]
A Maximum serum androgen level 27-35 nM [46]

Table 1: Biological reference range for the parameters

Our goal is to estimate 6, given some data about x,q. For this purpose, we solve the
following constrained optimization problem for finding 6

. a 1 2 B
i J.0) =5 [ [ (p0.0) = (o, 0.0))" dadad + S0 (10)
0

subject to the Liouville equations (8) where Q@ = R* U {0} xR U {0}, p(z1,22,¢,0) =
po(z1,79,q) in Q, pd(x,q,t) is the probability density function of given data observations
from the patient, and || - || is the standard Euclidean {? norm of vectors. The set T, is the
admissible set of # defined as

T.q=1{0€R*:0(i) €[0,M;], M; >0},

with M; chosen based on the non-dimensionalized version of the observed biological reference
range of the parameters, as given in Table 1.



3.2 Optimal treatment

We next consider the second optimization problem to control the Liouville prostate cancer
dynamics. For this purpose, we consider a controlled Liouville equation
dp
% + V- (b(..'[', q, U’)p(xv q, t)) = 07
p(xﬂ q, 0) = pO(xa Q)

(11)

where
b(x,q,u) = (bi(x,q), ba(x,q,u))

with the initial condition at ¢t = 0 given by p(z, ¢,0) = po(z, q), (x,q) € RTU {0} xR*TU {0},

V= (a%, 8%), and

kn
bi(x,q) = pim (l—§>$—da:—c

e

q q" 4 k"

qm — 4 A
" — s A+

(12)
bZ(xa Q) =

— tn(q — 8) — bg — yug.

Here, u(t) is a function that represents an androgen receptor blocker drug to control the
androgen level () and ~ is the androgen clearance rate. Our goal is to determine the optimal
dosage of u(t) that can control the androgen production in cancer cells. We look for « in the
admissible set

Uga = {u(t) € L*([0,7T]) : 0 < u(t) < u,}, Vt € (0,77,

where wu, is the maximum tolerable dose. This can be formulated through the following
optimal control problem
T
[ (13)
0

subject to the controlled Liouville equations (11), where p? (z, ¢,t) is the desired distribution
of the dynamics that represents a successful treatment regime.

Mltb

T
min J,,(p, u) = %//(p(%q,t)—pd (,q,1))" ddqdt +
0 Q

4 Theory of the optimization problems

In this section, we present some theoretical results related to the two optimization prob-
lems (10) and (13). We start with the existence and uniqueness of the solutions of (8) and
(11), whose proof can be found in [47].

Proposition 1. Let py € HY(Q) with pg > 0, 0 € T,q, and u € U,q. Then, there erists an
unique non-negative solution of (8) and (11) giwven by C([0,T]; H'(Q)).

We also have the following conservativeness property of the Liouville equations (8) and

(11).

Proposition 2. The Liouville equations (8) and (11) are conservative.

9



Proof. Multiplying (8) and (11) by v € H'(Q) and integrating by parts, we obtain the
following

0
L opdr = / (bp) - V) da. (14)
o Ot Q
Choosing ¢ = 1, we obtain [, p(x,q,t)dz = [, po(x)dx for all t € (0,7] and this proves the
result. O]

We also have the following stability estimate of the Liouville equations (8) and (11) from
[47].

Proposition 3. The solutions p1,pa of (8) and (11), respectively, satisfies the following
stability estimate

T
0

where C; is independent of p, po, T

The aforementioned results implies that p as functions of # and u is continuous. Fur-
thermore, it can also be shown that these functions are Fréchet differentiable. We now state
some properties of the functionals J, J,, given in (10) and (13), respectively, that can be
proved using the fact that the PDF p is non-negative.

Proposition 4. The objective functionals J,J,, given in (10) and (13), are sequentially
weakly lower semi-continuous (w.l.s.c.), bounded from below, coercive on Tuq,Usq. Tespec-
tively, and are Fréchet differentiable.

We finally state and prove the existence of the optimal parameter set #* and the optimal
drug dosage concentration vector u* in the following theorem.

Theorem 4.1. Let py € H(Q) and let J, J, be given as in (10) and (13). Then, there exists
pairs (p,6*) € C([0,T]; H'(?)) x Tua and (p3,u*) € C([0,T); H'()) x Uua such that pi, p;
are solutions of (8) and (11), respectively, and 0%, u* minimize J, J,, in Toq, Usa, respectively.

Proof. First, we prove the existence of minimizer of J, given in (10). Due to the fact that
Ji is bounded below, there exists a minimizing sequence (0™) € T,4. Furthermore, J being
coercive in T,4, this sequence is bounded, and, thus, it contains a convergent subsequence
(0™) in T,q with 6™ — #*. Correspondingly, the sequence (p™) = p(6™) is bounded in
L*(0,T; H(Q2)) by (15), while the sequence of the time derivatives, (9;p™), is bounded in
L2(0,T; H1(£2)). Therefore, both the sequences converge weakly to p; and 9;p}, respectively.
We, thus, obtain weak convergence of the sequence (b(6™*)) in L?(0,T, L*(Q2)). This implies
that the pair (pf, #*) minimizes J.

The existence of a minimizer of .J,, given in (13), can be proved following the same argu-
ments as above noting the fact that since U,q is a closed subspace of a Hilbert space and J,
being coercive in Uy,q, there exists a weakly convergent subsequence (u,,) of a minimizing
sequence (u,,) for J,, and the compactness result of Aubin-Lions [48| yields strong conver-
gence of subsequence (p™ = p(uy,)) in L2(0,T; L*(€2)). We, thus, obtain weak convergence
of the sequence (b(u™)) in L*(0,T; L*(Q2)). This implies that the pair (pj, «*) minimizes
Jy- O

10



The differentiability of J,J,, given in (10) and (13), respectively, gives the following
optimality systems:

1. Optimality system for parameter estimation:

dp

=~V (0@ 9)p(@, 4, 1)) =0,

p(:c,q,O) = pO(xvq)'

(FOR:LIOUV)

dw
— +b(z,q) - Vw(z,q,t) = a (p—p7),

at (ADJ:LIOUV)
w(x, q, T) =0.
! 5 Ow Ow
0 Q
’ mdL Oow
_ Hmd ow . e
(Bs i /ﬂ ( . p(z,q,t) 6x) dxdgdt) - v, — s] > 0,
g Ow
(Bd + / zp(z, q,t) - 7 dxdqdt) - [vs — d] > 0,
0 Q xr
’ dm — (4 Un Ow
(ﬁA_ 0 L(Umq _8(A+U )2p<x7Q7t>8_q) dﬂ?dth)[v4—A] 207
(OPT:LIOUV)

for all v = (v, vg,v3,04) € Tyy.

2. Optimality system for optimal treatment:

dp
= — V- (b, ¢, w)p(r, ¢, 1)) = 0, (FORU:LIOUV)
p(z,q,0) = po(z, q).
24 o) Vo0, 0) = o (p— 9
dt e X2 ’ (ADJU:LIOUV)
w(xa q, T) = 0

/0 pu(t) — / (—’yqp(x, q’t)%) dxdq | [v(t) —u(t)] dt >0, Yv € Upg.
"’ (OPTU:LIOUV)

5 Numerical schemes for solving the optimality systems

In this section, we present and analyze some numerical schemes to solve the two optimal-
ity systems (FOR:LIOUV)-(OPTU:LIOUV). We first note that even though the Liouville

11



equations (8) and (11) are theoretically setup in an unobunded domain, for practical imple-
mentation, we need to consider a large but bounded domain Q = (—B, B) x (—B, B) C R
For the initial PDF pg, we choose a smooth density that is numerically compactly supported
in 2. We then solve (8) and (11) in £ x [0,7], choosing homogeneous Dirichlet boundary
conditions on Jf2. Using the results and techniques proposed in [47, 49|, one can prove exis-
tence and uniqueness of smooth solutions of (8) and (11) in © x [0,7]. We also choose the
final time 7" such that the solutions of the Liouville equations (8) and (11) are still contained
in ) away from its boundary.

We now consider a numerical grid that partitions €2 in N, x N,, with N, > 1, equally-
spaced non-overlapping square cells of side length h = 2B/N,. On this grid, we develop a
cell-centered finite-volume scheme with the PDF p and its adjoint w defined at the centers
of the square cells. These nodal points are given by

) 1 ) 1
S — B J=17—= — B.
T <z 2)h , q (] 2>h

Therefore, the elementary cell is defined as

w}f::{(m,q)eQ ‘ xe[x‘—g,xl—l—i}, qe{qj—i,q]—i-g]}.

This results in the computational domain as given below

Nz
Qh = U (.U;l].

i,j=1

In a similar way, the time interval [0,77] is divided in N; > 1 subintervals of length At = %

and the points t* are given by
th = kA€, k=0,...,N,.

Then the time grid is given by I'a; := {t* € [0,T], k =0,..., N;}. Thus, corresponding to
the space-time cylinder @ := 2 x [0, 7] we have the numerical grid as Qp ¢ := Qp, X ay.

We now define the cell average of the PDF p (and any other integrable function) on the
cell with centre (z¢,¢7) at time t* as follows

Zit1/2 git1/2

o= [ [ seatdads (16)
’ i=1/2 Jgi-1/2

The initial condition is then given by

'L+1/2 q]+1/2

pi=p == / / pol(z,q) dgdz.
J J zi=1/2 Jgi-1/2

In the aforementioned finite-volume setting, the unknown variables are the cell-average
values p. Thus, we will formulate numerical schemes to determine these unknown cell-
averages as the numerical approximations to the solutions of the Liouville equations and its
adjoints. Without loss of generality, we denote the cell-averages without the bars.

12



For the control function u, we use a piecewise constant approximation, where we denote
with u**1/2 the value of the control in the time interval [t*,#**!). We then project the
continuous v to the corresponding numerical grid by setting u#+/? = u(tk). For a function

g defined on @y ¢, we also define the discrete norms || - ||1 4 and || - ||oo,n as follows:
Ny
k _ 12 k k _ k
Hg(7 '7t )Hl,h =h Z ‘gi,j‘ ’ Hg<> '7t )Hoo,h - i,jirll,ia.:fo |gi7j| )
7-]

where g, = g(z', ¢/, t*), and (2, ¢, t*) denotes a grid point in Q x [0, 7.

5.1 A Euler-Kurganov-Tadmor scheme for solving the Liouville equa-

tions

In this section, we discuss a numerical scheme for solving the Liouville equations (8) and
(11) in Q2 x [0, T]. For the spatial discretization, we consider a finite-volume scheme proposed
by Kurganov-Tadmor (KT) in [50], combined with a generalized MUSCL flux. To describe
this scheme, the flux in the Liouville equations can be considered as a function of p and is
denoted by H(p) = bp. Then the KT scheme for the Liouville equation in semi-discretized
form is given as follows

i ) (t) _ _E‘gﬁrl/z,j(p*,p*;t) — 3{1/27j(p+,p’;t)
dtpl’] = -

 Ep 0T t) — F (07075 0)

h )

(17)

where the F*(p*,p~;t), F(p*,p~;t) are the numerical fluxes in the z and ¢ directions,
respectively. These numerical fluxes are defined as follows:

R Dy () + 0 P, () Ve, (0 _
5 - 5 |:pi+1/2,j<t) T Piyiy2 (t))} ;

(18)

Fﬁkl/&j (pT,p3t) =

W00 0) + W2 (055000(0) Vi -
5 - 5 [pi,j+1/2<t) - pi,j+1/2(t))} ,

(19)

‘F;‘(ij+1/2 (p+, pit) =

where H = (h', h?) = (b'p,b*p). In the aforementioned formulae, the so-called local speeds
V®(t), Vi(t) are given by

Vfiz+1/2,j(t> - | bl (xi+1/27 qja t; u(t)) | ’ sz+1/2<t> = { bQ(‘ria qj+1/27 t; u(t)) | ) (2())

since H(p) = bp is linear in p.
The approximation of p at the cell edges in (19) is given by following intermediate values

h h

i1 (1) = pigr(t) — §(px)i+1,j(t)> Pit1ya;(t) = pi;(t) + 5(]%)1‘7]' (t).  (21)
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The partial derivatives of p are approximated using the minmod function as follows: In
direction x, we have

Pij(t) = pic1; () Piy1;() —pic1;(t) piga;(t) — pm(ﬂ) (22)
h ’ 2h ’ h '

An analogous expression holds in the direction ¢. Here the multivariable minmod function

for vectors x € R? is given by

(p2)ij(t) = minmod(

min;{z;} if z; >0, Vj €[l,d]
minmod(z1, zs, ..., %q) = { max;{z;} if z; <0, Vj €[l,d]
0 otherwise.

For the time discretization of the Liouville equations (8) and (11), we use the standard
first order Euler finite differencing scheme. Together with the the KT flux discretization in
the spatial variables, we obtain the fully discrete approximation of the Liouville equations
that we call as the Euler-KT (EKT) scheme. This scheme is implemented as follows: Given
initial condition pﬁj, in (¢, t5+1) we have

pﬁjl = p?,j + At G(Pﬁj)~ (23)
Here, we use the following definition of the fully discrete fluxes

ok o pmk o pak o pak
G(pﬁj) _ i+1/2,5 i—1/2,5 . 1,j+1/2 7,,_]71/2' (24>

h h

where F' m’“ , F qk denotes F*, F9, as given in (19), corresponding to the time step tF.

We now analyze some properties of the EKT scheme, given in (23). We begin with a
strong stability property of the EKT scheme that can be proved using arguments given in
[51, Lemma 2.1]

Proposition 5. The EKT scheme has the following strong stability property
12" oo < D" lloo k=0,....,N,— L
We next show the conservativeness property of the EKT scheme.

Lemma 5.1 (Conservativeness). The EKT scheme is conservative, in the sense that

Ng Ny
pr,j:ngjy k=1,..., N

ij=1 ij=1

Proof. For a fixed k € {0,...,N;}, summing up both the sides in (23) over all indices
i,7 € {1,..., N, } and using the fact that the solution has zero flux on the boundary, due to
the fact that it has compact support in €2, we obtain

N, N,
k+1 k
Z bij = Z Dy j-

ij=1 ij=1

14



[terating over k, we have

N, N,
Zpﬁj:Zpgﬁj, k=1,...,N;

ij=1 ij=1
which gives us the desired result. O

We next show that, under some restriction on At, the EKT scheme is positive, i.e.,
starting with p, > 0, we obtain p¥ > 0 for all k. For this purpose, we define the CFL-
number as

At
A= —. 25
= (25)
We then impose that the function b satisfies the following conditions
M|t <! A ||p? <1 (26)
1] e oy < 7 15| o o.zioe ey < 7

Under the CFL condition (26), we can prove the following lemma on the positivity of the
EKT scheme.

Lemma 5.2 (Positivity). Under the CFL-condition (26), the numerical solutions to the
Liouville equations (8) and (11), computed with the EKT scheme, given in (23) is non-
negative, that is,

>0 = pf, >0, ij=1,...,N,, k=1,...,N, (27)

Proof. Let pk > 0 for fixed 0 < k < N;. We will show that p’l“rl >0foralli,j=1,...,N,.
For this purpose, we note that the EKT scheme can be written alternatively in the following
form

A A

k _

pz,jl - 5 (’b1+1/2,]’ bl+1/27]) z++1/2] 2 (’bz 1/2,]’ + bilfl/Q,j)pi_l/z’j
)\

A _
(’b ,J+1/2’ ,j+1/2)p;t7'+1/2 + 5(’()?,3'71/2’ + bzzjfl/Q)pi,j—lﬂ

2
L b bt N L b bt *
+|:4 ‘ i+1/2,5 + i+1/2,j)]pi+1/27]‘ + [ (| i— 1/2,j| ifl/z,j)]pi_l/gd'
1 1
+[4 (‘b j+1/2‘ +b,]+1/2)] Piji1)2 + [ (|b ij— 1/2| ,J 1/2)] j]—1/2

where all discrete quantities on the right are considered at the timestep t*. We note that
if i, J2.4° pfj 4172 = 0, then the first four terms on the right hand side in (28) are always

non-negative. The other terms are non-negative under the CFL-condition (26). Thus, we
only need to show that p 12,0 pE >0foralle,;=1,..., N,, where pfj is given as in
(21).

For this purpose, we will consider each expression of (px)iC j» given in (22)(a similar analysis

1,j+1/2

Eo_pk
also holds for (p,)F;). For the first case, we assume (pw)f i = %. We then have

1 1
+ _ k k
pi+1/2,j - §pi+1,j + ipi,ja

15



. . . . k . . o — _
which is non-negative, since p;; > 0 for all 7,5 = 1,...,N,. We also have, Pivijo; =
P Pio1y

ko o_pk .
pﬁj + % [T} If % > 0, we then have Piy1ja; > 0 On the other hand, if

pk.—pk 1,9 oy . . . pl-c-—pl.C 1.5 p].C 1 —pk
—bo=2l < 0, then by the definition of the minmod limiter, we have —l—=1 > —o—n,
This implies

k k k k
_ k Piv1j —Pij| _ Piv1j T Pij
pi+1/2’j 2 pi,j + 5 h - 9 Z 0.
The other cases for the value of (px)f ; # 0 follow analogously. If (px)f ; =0, then pirl o =
pit+1,; = 0 and pjtjﬂ/? = pij+1 = 0. This completes the proof. O

We next prove the discrete L! stability of the EKT scheme.

Lemma 5.3 (Stability). The solution pf; obtained with the EKT-scheme in (23) is discrete
L' stable in the sense that

k — 1,0 _
140, = 12, b=l N,
under the CFL condition (26).
Proof. The conservativeness property in Lemma 5.1 implies
N Na
prﬁ:zp?’)’ k:].,...,Nt.
i,j=0 i,j=0

The positivity property from Lemma 5.2 implies

Ny Ny
lef,j|22|p2]|7 kzl?“'aNta

i,j=0 i,j=0
which proves the desired result. ]

We next aim at proving the L' convergence of the EKT scheme. For this purpose, we
state the following stability result, whose proof can be found in [49].

Lemma 5.4. Let pf; be the numerical solution to the Liowville equations (8) and (11), with
a Lipschitz continuous right-hand side g(x, q,t), obtained with the EKT scheme. Then under
the CFL condition (26), this solution satisfies the following stability estimate

k
15 < P+ 28 3 92

m=0

where g;; = gzt g7 t™).
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We now consider the local consistency error of our EKT at the point (z¢,¢’, t*) defined
as

o Pt @ ) —p ) L e ik

where

Z+1/2,j z+1/2,] z+1/27] i+1/2, ]| + bl+1/2,j 7,+1/2j

=(1o: )Pty — (10 )pi
+(| i— 1/2j|+bz 1/2;) b 1/2] (| i—1/2,j b 1/29) Pi—1/2,5
= (1o )P Tias — ( )}

]+1/2’ ,]+1/2 7]+1/2 ‘ 1]—&-1/2‘ + bz j+1/2 1]+1/2

(|b i,5— 1/2|+b,] 1/2) z] 1/2 (‘b i,j— 1/2‘ J 1/2) fj_1/2
The accuracy result for the KT scheme, given in [49], the MUSCL reconstruction error given
in Equation (60) in [52, Section 4.4] for the case when x = 0, give us the following result

Lemma 5.5. Let p € C? be the exact solution of the Liouville equations (8) and (11) Under
the CFL condition (26), the consistency error Tf] satisfies the following error estimate

T3] = O(h?) + O(At)

except possibly at the points of extrema of p where the consistency error can be first-order in

h.

We now define the error at the point (2, ¢7,t*) as
eﬁj = pi] - p(:cl7 qja tk)

We then note that e satisfies (23) with the source term given by —ﬂ’fj. Lemma 5.4 gives us

k
el < el + A D7,

m=0

With the aforementioned preparation, we now have the following result on the L! convergence
of the solution obtained using the EKT scheme.

Theorem 5.1. Let p € C? be the exact solution of the Liouville equations (8) and (11),
with finite many extrema, and let ||p°. — po(- th O(h). Under the CFL condition (26),

the solution pm- obtained with the EKT scheme given by (23), is first-order accurate in the
discrete L'-norm as follows

||pk, - P(', 'vtk)”l’h < D(T,Q,)\) h.

For the adjoint equations (ADJ:LIOUV) and (ADJU:LIOUV), we first convert the equa-
tions into a divergence form, which results in additional zeroth order terms in w. We then use
the Euler time discretization and the K'T' spatial derivative discretization to solve the adjoint
equations numerically. For the optimization problems, we use a well-known gradient-based
algorithm called the nonlinear conjugate gradient (NCG) algorithm. The NCG algorithm
can be used to solve both the parameter estimation (finite-dimensional) and optimal treat-
ment (infinite dimensional) optimization problems using a modified gradient update step,
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where the descent directions are modified from the negative gradient directions, leading to
faster and accurate solutions of the optimality system compared to the traditional gradient
descent method. Such a method has been used in past in context of solving parameter esti-
mation and optimal treatment problems in colon and esophageal cancer cancer |28, 53, 29|,
crowd-motion control problems [54, 42, 55, 56|, and parameter estimation problems related
to statistical cure rate models [57, 58, 59]. We also remark that besides the NCG and the
associated class of gradient based methods for solving optimal control problems, there are
other classes of optimal control algorithms that are based on approximations of the opti-
mality system using basis functions, e.g., pseudospectral methods [60, 61| and the control
parameterization methods [62, 63], which also might be used as an alternate solution method
for the proposed optimal treatment problem.

6 Numerical results

In this section, we present the results of numerical simulations with the Liouville pa-
rameter estimation and optimal control frameworks. For the parameter estimation problem,
given in (10), we choose our domain = (0,6)* and discretize it using N, = 51 points.
The final time ¢ is chosen to be 1.0 and the maximum number of time steps N, is chosen to
be 1000. We generate the patient data, using different true parameter values of 8, by first
considering target PDFs pd(x), i = 1,--- N with N = 100, where p¢ are described by a
normal distribution about the measured mean value E[p¢] and variance 0.05. We then use a
3D interpolation to obtain the data function p?(z, ¢,t) at all discrete times ¢, k =1,--- , N;.
The regularization parameters are chosen to be a =1, = 0.1.

6.1 Parameter estimation results

Test Case 1: In the first test case, the true parameters and the initial guess for the
NCG algorithm are given in Table 2. We then solve the Liouville parameter estimation
problem, given in (10). For comparison purposes, we use the reduced ODE system (7) and
use the parameter estimation framework similar to as presented in Section 3.1 by solving the
following constrained optimization problem

pin 16,00 = 5 [ (X0 - X0 + @) - @) el (9
subject to the ODE system (7). The results of this comparison are shown in Figure 2.
Parameters b d s A
True 3.3 1.7 | 0.9 3.9
Guess 2.5 0.5 | 0.1 3

Table 2: Test case 1: Patient-specific parameter values
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True density f and trajectory at t = 0.490 Initial guess density f and trajectory at t = 0.490 Obtained density f and trajectory at t = 0.490
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Figure 2: Test Case 1: Comparison between the ODE and Liouville parameter estimation
case

In the first row of Figure 2, the first figure represents the PDF obtained by solving the
Liouville equation (8) with the true parameters at ¢ = 0.49. The small dot represents the
corresponding trajectory point of the ODE (7) and is at the same location across all the
figures in the first row. We note that the center of the PDF approximately matches the
trajectory point, which is because the expected value of the Liouville PDF should give the
solution of the ODE (7). The second figure in the first row represents the PDF obtained
by using the initial guess for the parameters. We note that the center of this PDF does
not match the trajectory point, which means we are not close to the true parameters. By
solving the parameter estimation problem, we obtain the PDF in the third figure of the
first row whose center now is very close to the trajectory point. On the other hand, the
ODE parameter estimation framework results are shown in the second row and we clearly
see that the trajectory for the X variable does not resemble the true trajectory. This implies
the accuracy of our Liouville parameter estimation framework over the ODE parameter
estimation framework.

Test Case 2: In our second test case, we now have a set of different true parameters and,
correspondingly, different initial guesses, given in Table 3.

Parameters L d s A

True 3.5 1.9 | 1.1 3.9

Initial guess 4 1.0 | 0.5 3.0

Table 3: Test case 2: Patient-specific parameter values

We again perform a comparison between the Liouville parameter estimation framework
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and the ODE parameter estimation framework. The results are shown in Figure 3.

True density f and trajectory at t = 0.490 Initial guess density f and trajectory at t = 0.490 Obtained density f and trajectory at t = 0.490

55 55 55
45 45 45
e — -
[ezr -] _ _ e
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Figure 3: Test Case 2: Comparison between the ODE and Liouville parameter estimation
case.

Using a similar analysis as in Test Case 1, we again note that the Liouville parameter
estimation framework provides more accurate results as compared to the ODE parameter
estimation framework. We also compute the respective relative L? errors for the 2 test cases.
The relative L? error between 2 functions X (t) and X4(t) is defined as

1 X — X Ly0,11)

Err(X,X?) =
( ) X Ly (fo,77)

whereas the relative L2error between 2 functions p(x,q,t) and p?(z,q,t) is defined as

_d
Erry(p, p) = P — Pl Laex oy

1p%]] L (@2x[0,17)

Test Case | Err(X', X{) | Err(Q,Q%) | Erry(p,p?)

1 0.4761 0.0803 0.1314
2 0.3312 0.0347 0.1219

Table 4: L? error table

From Table 4, we observe that the error between the ODE solution (X!, Q') and the data
is far more higher than the corresponding difference between the Liouville PDF p and the
data function p?. This further shows that the Liouville modeling and parameter estimation
framework is more accurate than the ODE framework.
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6.2 Optimal control results

We now present the results of our optimal control framework. For this purpose, we
consider the patient-specific parameters obtained from Test Case 1 in Section 6.1. We then
considered a PDF along a desired trajectory and the goal of the optimal control problem is
to drive the uncontrolled PDF to the desired PDF. We consider two such cases whose plots
are shown in Figures 4 and 5.

Desired trajectory Without control With control

52 52
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2 2
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Figure 4: Test Case 1: Optimal control results
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Desired density f at t = 0.490 R Non-controlled density f at t = 0.490 N Controlled density f at t = 0.490

s s
Es——4 - . P

Figure 5: Test Case 2: Optimal control results

In each set of plots, the first row is composed of three figures. The first figure represents
the desired trajectory, the second figure represents the trajectory without control, and the
third figure represents the trajectory with control strategies. Progressing to the following row,
again composed of three figures, the first figure represents the desired Probability Density
Function (PDF) at the specific time point of t = 0.49. The second figure in this row represents
the PDF without control, and the last figure represents the controlled PDF. Concluding the
sequence, the last row contains the plot of the controls.

We observe that in both cases, the control drives the PDF to the desired state in an
accurate way. The major difference between the two test cases is the asymptotic level of the
desired value of (), which is lower in the second case. For this reason, we also observe that
the control value is higher in the second case compared to the first case.

7 Conclusions

In this chapter, we have presented a Liouville framework for parameter estimation and
optimal control in prostate cancer. The main rationale behind this framework is the uncer-
tainty in carrying out similar trials in a given environment, which leads to random evolution
mechanisms. We presented a comparison of the Liouville parameter estimation framework
and the ODE parameter estimation framework, and demonstrated that the Liouville pa-
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rameter estimation framework provides a more accurate and robust parameter estimation
technique. Finally, we also implemented the Liouville optimal control framework and the
results validated the robustness and accuracy of our proposed methods.
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