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DUAL DESCENT AUGMENTED LAGRANGIAN METHOD AND
ALTERNATING DIRECTION METHOD OF MULTIPLIERS\ast 
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Abstract. Classical primal-dual algorithms attempt to solve max\mu minx\scrL (x,\mu ) by alternately
minimizing over the primal variable x through primal descent and maximizing the dual variable \mu 
through dual ascent. However, when \scrL (x,\mu ) is highly nonconvex with complex constraints in x, the
minimization over x may not achieve global optimality and, hence, the dual ascent step loses its
valid intuition. This observation motivates us to propose a new class of primal-dual algorithms for
nonconvex constrained optimization with the key feature to reverse dual ascent to a conceptually
new dual descent, in a sense, elevating the dual variable to the same status as the primal variable.
Surprisingly, this new dual scheme achieves some best iteration complexities for solving nonconvex
optimization problems. In particular, when the dual descent step is scaled by a fractional constant,
we name it scaled dual descent (SDD), otherwise, unscaled dual descent (UDD). For nonconvex
multiblock optimization with nonlinear equality constraints, we propose SDD-alternating direction
method of multipliers (SDD-ADMM) and show that it finds an \epsilon -stationary solution in \scrO (\epsilon  - 4)
iterations. The complexity is further improved to \scrO (\epsilon  - 3) and \scrO (\epsilon  - 2) under proper conditions. We
also propose UDD-augmented Lagrangian method (UDD-ALM), combining UDD with ALM, for
weakly convex minimization over affine constraints. We show that UDD-ALM finds an \epsilon -stationary
solution in \scrO (\epsilon  - 2) iterations. These complexity bounds for both algorithms either achieve or improve
the best-known results in the ADMM and ALM literature. Moreover, SDD-ADMM addresses a long-
standing limitation of existing ADMM frameworks.

Key words. augmented Lagrangian method, alternating direction method of multipliers

MSC codes. 65K05, 90C26, 90C30, 90C46

DOI. 10.1137/21M1449099

1. Introduction. In this paper, we consider the following problem:

min
x\in Rn

\Biggl\{ 
f(x) +

p\sum 
i=1

gi(xi)
\bigm| \bigm| \bigm| p\sum 

i=1

hi(xi) = 0

\Biggr\} 
,(1.1)

where the variable x \in Rn has the block-coordinate form x = [x\top 
1 , . . . , x

\top 
p ]

\top with
each xi \in Rni for i \in [p] := \{ 1,2, . . . , p\} and

\sum p
i=1 ni = n. We assume f : Rn \rightarrow R

has a Lipschitz gradient, and each gi : Rni \rightarrow R := R \cup \{ +\infty \} is proper, lower-
semicontinuous, and possibly nonconvex; in addition, for each i \in [p], constraints
hi : Rni \rightarrow Rm are continuously differentiable over the domain of gi. Denote g(x) :=\sum p

i=1 gi(xi) and h(x) :=
\sum p

i=1 hi(xi).
The augmented Lagrangian method (ALM), which was proposed in the late 1960s

[21, 42], provides a powerful algorithmic framework for constrained optimization prob-
lems including (1.1). Define the augmented Lagrangian function as

\scrL \rho (x,\mu ) := f(x) + g(x) + \langle \mu ,h(x)\rangle + \rho 

2
\| h(x)\| 2,(1.2)
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1680 KAIZHAO SUN AND XU ANDY SUN

where \mu \in Rm and \rho > 0. In the (k+1)th iteration, the ALM first obtains the primal
iterate xk+1 by minimizing the augmented Lagrangian function with dual variable \mu k

fixed, possibly in an inexact way,

xk+1 \approx argmin
x\in Rn

\scrL \rho (x,\mu 
k),(1.3)

and then updates the dual variable using primal residuals,

\mu k+1 = \mu k + \varrho kh(x
k+1),(1.4)

where \varrho k > 0 is a positive dual step size.
The ALM framework is flexible: xk+1 in (1.3) is allowed to be (some approximate

counterpart of) a global minimum [45], a local minimum [4], or just a stationary point
[1]. Another possibility is to update blocks of variables (x1, . . . , xp) in a coordinate
fashion, i.e., through a Gauss--Seidel or Jacobi sweep; when h is affine, algorithms
of this type are commonly known as the alternating direction method of multipli-
ers (ADMM). The dual update (1.4) is motivated by the fact that the augmented
Lagrangian dual function

d(\mu ) := min
x\in Rn

\scrL \rho (x,\mu )(1.5)

is concave, and  - h(xk+1) \in \partial \epsilon ( - d)(\mu k) with any xk+1 such that \scrL \rho (x
k+1, \mu k) \leq 

d(\mu k)+\epsilon . In this case, the update (1.4) is essentially maximizing the concave function
d using an inexact subgradient of  - d. We refer to (1.4) as a dual ascent step. A
motivation for this paper is that the classic interpretation of dual ascent of (1.4)
is not valid anymore if the gap between d(\mu k) and \scrL \rho (x

k+1, \mu k) is large or cannot
be uniformly bounded over iterations, especially when xk+1 is a local minimum, a
stationary point, or a coordinatewise solution of the nonconvex function \scrL \rho (\cdot , \mu k).

This observation opens up new possibilities for algorithmic design within the aug-
mented Lagrangian framework. Given \mu k \in Rm, let xk+1 represent a coordinatewise
solution of \scrL (\cdot , \mu k). Notably, since xk+1 does not provide valid zero-/first-order infor-
mation of d at \mu k, the intuition of the dual ascent (1.4) is lost. Instead of maximizing
d, the fact that \nabla \mu \scrL \rho (xk+1, \cdot ) = h(xk+1) suggests an alternative approach. By ``min-
imizing"" \scrL \rho with respect to \mu and assuming an approximate stationary point can be
attained, it is expected that the primal residual \| h(xk+1)\| will be small. To pursue
this idea, one might be inclined to employ block-coordinate descent algorithms [57, 58]
for \scrL \rho (x1, . . . , xp, \mu ); however, the linearity of the function \scrL \rho (x, \cdot ) renders \scrL \rho poten-
tially unbounded in the dual variable \mu . To address this, we introduce a regularized
augmented Lagrangian function,

\scrP (x,\mu ) :=\scrL \rho (x,\mu ) +
\omega 

2\rho 
\| \mu \| 2,(1.6)

where we include a quadratic term in \mu with \omega > 0. Once xk+1 is obtained, for
example, through a Gauss--Seidel sweep of proximal gradient updates, we can update
\mu k+1 using the following formulation,

\mu k+1 = argmin
\mu \in Rm

\scrP (xk+1, \mu ) +
\tau \omega 

2\rho 
\| \mu  - \mu k\| 2 = \tau 

1 + \tau \underbrace{}  \underbrace{}  
scaled

\bigl( 
\mu k  - \tau  - 1\omega  - 1\rho h(xk+1)

\bigr) \underbrace{}  \underbrace{}  
dual descent

,(1.7)

where \tau > 0 and this update is referred to as the scaled dual descent (SDD).
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DUAL DESCENT ALM AND ADMM 1681

The above update ensures (1) sufficient descent and lower-boundedness of \scrP and
(2) boundedness of the sequence \{ \mu k+1\} k\in N, which are critical for the convergence
rate analysis of ALM-based algorithms. In particular, we show that, with a near-
feasible initialization, the SDD update gives an \epsilon -stationary solution of (1.1) in \scrO (\epsilon  - 4)
iterations, which can be further improved to \scrO (\epsilon  - 3) and \scrO (\epsilon  - 2) under additional
verifiable assumptions. Inspired by a comment from a referee, we have made an
intriguing observation. By using a different proximal center \^\mu k instead of \mu k in (1.7),
defined as

\^\mu k := \mu k +
\rho 

\omega \tau 
h(xk+1),(1.8)

we find that the dual variable vanishes in all iterations when initialized with zeros.
This realization highlights the versatility of the SDD framework, as it not only intro-
duces a novel class of dual updates but also encompasses the classic penalty method
when combined with a traditional dual ascent step (1.8). Consequently, we provide
a unified convergence analysis for both SDD and the penalty method, with the com-
plexity results for the latter being novel contributions to the literature.

A natural question then arises: what will happen if we simply perform an unscaled
dual descent (UDD) update, i.e.,

\mu k+1 = \mu k  - \varrho \nabla \mu \scrL \rho (x
k+1, \mu k) = \mu k  - \varrho h(xk+1),(1.9)

where \varrho > 0 is a fixed dual step size. The analysis of UDD presents a main technical
challenge in establishing the boundedness of the dual variable to prevent the aug-
mented Lagrangian function from becoming unbounded from below. In this paper,
we provide some positive theoretical results and preliminary empirical observations
for the UDD update. From a theoretical perspective, we demonstrate that when some
regularity condition holds at the primal limit point, regardless of the choice of \varrho > 0,
the dual sequence has a bounded subsequence and hence the augmented Lagrangian
function is lower bounded; as a result, the UDD update finds an \epsilon -stationary solution
in \scrO (\epsilon  - 2) iterations. On the empirical side, we observe that UDD converges on a
simple consensus problem when the step size \varrho is close to zero. In this scenario, the
UDD update (1.9) describes the limiting behavior of the SDD update (1.7) with \tau 
converging to +\infty and \omega remaining constant. Essentially, the empirical convergence
of UDD could be attributed to the penalty method, where the update of the dual
variable is relatively negligible.

To our knowledge, references [25, 26] are the only two works that use a related
idea of dual descent. The authors consider a special case of (1.1) with two blocks
of variables with continuously differentiable coupling constraints. In each iteration,
the proposed algorithm first solves two quadratic programs (QPs), and then uses
the solutions to determine the primal and dual descent directions of the augmented
Lagrangian function. Assuming boundedness of dual variables, convergence to a sta-
tionary point is proved with an iteration complexity of \scrO (\epsilon  - 2) QP oracles. The
proposed dual descent framework in this paper is different from [25, 26] in several
nontrivial perspectives. We summarize our contributions in the next subsection.

1.1. Contributions. We summarize our contributions as follows. We introduce
SDD within the augmented Lagrangian framework to solve nonlinear constrained
nonconvex problem (1.1). In iteration k+ 1, we obtain xk+1 through a Gauss--Seidel
sweep of proximal gradient updates, and then update the dual variable \mu k+1 via an
SDD step. We call the resulting algorithm SDD-ADMM when p > 1, and SDD-ALM
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1682 KAIZHAO SUN AND XU ANDY SUN

when p = 1. In contrast to most existing ADMM and ALM works considering only
affine constraints (see section 2 for a detailed review), the proposed SDD-ADMM
and SDD-ALM are able to handle nonlinear smooth coupling constraints of the form\sum p

i=1 hi(xi) = 0, and therefore are applicable to a broader class of problems.
In addition to being able to handle nonlinear constraints, SDD-ADMM (p > 1)

achieves better iteration complexities under a more general setting. Compared to
existing multiblock nonconvex ADMM works [17, 24, 27, 38, 37, 55], we do not impose
restrictive assumptions on problem data (see section 2.2), and we show that SDD-
ADMM obtains an \epsilon -stationary solution in \scrO (\epsilon  - 4) iterations, which can be further
improved to \scrO (\epsilon  - 3) or \scrO (\epsilon  - 2) under suitable conditions. Our \scrO (\epsilon  - 4) and \scrO (\epsilon  - 3)
estimates significantly improve the existing \scrO (\epsilon  - 6) [27] and \scrO (\epsilon  - 4) [54] complexities,
respectively, and our \scrO (\epsilon  - 2) estimate complements the above-mentioned references.
Moreover, our iteration complexities are measured by first-order oracles, i.e., gradient
oracles of f and h and proximal oracles of gi's, which are in general more tractable
than the subproblem oracles considered in [27, 54].

For SDD-ALM (p= 1), our iteration complexities slightly improve the best-known
results in [33] (without a technical assumption) and [31] (with a technical assumption)
by getting rid of the logarithmic dependency on \epsilon  - 1. Another feature of SDD-ALM
is that the algorithm is single-looped, which might be preferable over double- or
triple-looped ALM and penalty methods [31, 33, 48, 56] from an implementation
point of view, i.e., the technicality of choosing the inner-loop stopping criteria is
avoided. In addition, our convergence analysis and complexity estimates also apply
to an interesting single-looped first-order penalty method.

To further understand the behavior of dual descent, we introduce UDD within the
augmented Lagrangian framework and name the resulting algorithm UDD-ALM. We
first investigate UDD-ALM for weakly convex minimization with affine constraints
and show that when a certain regularity condition holds at the primal limit point,
UDD-ALM finds an \epsilon -stationary solution in \scrO (\epsilon  - 2) iterations. UDD-ALM is single-
looped and our iteration complexity is again measured by first-order oracles of f and
g. We do not restrict g to be an indicator function of a box or polyhedron and, hence,
our result complements those in [60, 61]. Finally, we extend the analysis of UDD-
ALM to handle nonconvex g and nonlinear constraints h by assuming a novel descent
oracle of each proximal augmented Lagrangian relaxation over the domain of g. We
would like to acknowledge that there is still a need for a deeper understanding of the
behavior of UDD, particularly concerning the implicit impact of the dual step size on
the regularity assumption we imposed on the primal limit point. We do not claim
or advocate the superiority of UDD over existing algorithms, but simply share our
current theoretical understanding and empirical observations on this counterintuitive
approach. Our hope is that both SDD and UDD can serve as catalysts for inspiring
further algorithmic developments that go beyond traditional approaches.

1.2. Notations. We denote the set of positive integers up to p by [p], the set
of nonnegative integers by N, the set of real numbers by R, the set of an extended
real line by R := R \cup \{ +\infty \} , and the n-dimensional real Euclidean space by Rn. For
x, y \in Rn, the inner product of x and y is denoted by \langle x, y\rangle , and the Euclidean norm of
x is denoted by \| x\| ; for A\in Rm\times n, \| A\| and \sigma min(A) denote the largest and smallest
singular value of A, respectively. For X \subseteq Rn, we use \delta X to denote the 0/\infty -indicator
function of X. Denote dist(x,x) := infy\in X \| y  - x\| . When x \in Rn has the block-
coordinate form [x\top 

1 , . . . , x
\top 
p ]

\top with xi \in Rni for i \in [p] and
\sum p

i=1 ni = n, we denote
x\leq i = [x\top 

1 , . . . , x
\top 
i ]

\top and x\geq i = [x\top 
i , . . . , x

\top 
p ]

\top for i\in [p], and similarly for x<i and x>i.
We use the following notations for x when it is necessary to distinguish variable blocks
(specifically when x is an argument of a function): (x\leq i, x>i), (x<i, xi, x>i), (x<i, x\geq i),
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DUAL DESCENT ALM AND ADMM 1683

or (x \not =i, xi). Finally, we adopt the following notations for complexity analysis. Let
\varepsilon > 0 and K > 0. We write K =\scrO (\varepsilon ) if K \leq B\varepsilon for some 0<B <+\infty , and K =\Theta (\varepsilon )
if b\varepsilon \leq K \leq B\varepsilon for some 0< b<B <+\infty .

1.3. Organization. The rest of the paper is organized as follows. Section 2
reviews related works in ALM and ADMM. In section 3, we introduce the SDD-
ADMM algorithm, present its convergence analysis as well as an adaptive version,
and discuss its connection with existing algorithms. In section 4, we establish the
convergence of UDD-ALM under the setting where p = 1, h(x) is affine, and g is
convex, and further extend the analysis to handle nonconvex g and nonlinear h. We
present some numerical experiments in section 5 and finally conclude this paper in
section 6.

2. Related works. This section reviews the literature of ALM and ADMM.

2.1. ALM. The asymptotic convergence and convergence rate of ALM have
been extensively studied for convex programs by [30, 44, 45] and smooth nonlinear
programs [1, 4]. In this subsection, we review some recent developments on ALM-
based algorithms applied to nonconvex problems of the form

min
x\in Rn

\{ F (x) | hE(x) = 0, hI(x)\leq 0\} .(2.1)

Often the objective F is assumed to admit a composite form f + g, where f has
Lipschitz gradient and g is a nonsmooth convex function.

2.1.1. Convex constraints. Works [18, 22, 29, 39, 53, 59, 60, 61] consider affine
constraints, i.e., hE(x) = Ax - b = 0, while inequality constraints hI(x) \leq 0 are not
present. For a special case with g= 0, Hong [22] proposed a proximal primal-dual al-
gorithm (prox-PDA) that finds an approximate stationary point in \scrO (\epsilon  - 2) iterations,
where \epsilon > 0 measures both first-order stationarity and feasibility (``\epsilon -stationary point""
hereafter). When g is a compactly supported convex function, Hajinezhad and Hong
[18] proposed a perturbed prox-PDA that achieves an iteration complexity of \scrO (\epsilon  - 4).
Zeng, Yin, and Zhou [59] proposed a Moreau envelope ALM for handling a general
weakly convex objective function F , which achieves the \scrO (\epsilon  - 2) iteration complexity.
Authors of [53] proposed two variants of ALM with \scrO (\epsilon  - 2) iteration estimates when
F is a difference-of-convex function.

In contrast to previously mentioned works where iteration complexities are mea-
sured by the number of times a (proximal) augmented Lagrangian relaxation is solved,
the following works study iteration complexities in terms of first-order oracles, i.e., the
number of proximal gradient steps. Melo, Monteiro, and Wang [39] applied an accel-
erated composite gradient (ACG) method [2] to solve each proximal ALM subproblem
and showed that an \epsilon -stationary point can be found in \~\scrO (\epsilon  - 3)1 ACG iterations, which
can be further reduced to \~\scrO (\epsilon  - 5/2) with mildly stronger assumptions. Later, Kong,
Melo, and Monteiro [29] embedded this inner acceleration scheme into a proximal
ALM with full dual multiplier update and derived an iteration complexity of \~\scrO (\epsilon  - 3)
ACG iterations. Zhang and Luo proposed a single-looped proximal ALM and estab-
lished an \scrO (\epsilon  - 2) iteration estimate when g is an indicator function of a hypercube
[60] or a polyhedron [61].

Works [28, 32] study the setting where convex nonlinear constraints hI(x) \leq 0
are explicitly present. When F is weakly convex and hE(x) is affine, Li and Xu [32]
combined an inexact ALM and a quadratic penalty method, and they showed that an
\epsilon -stationary point can be found in \~\scrO (\epsilon  - 5/2) adaptive accelerated proximal gradient
(APG) steps. Kong, Melo, and Monteiro [28] studied a more general setting: convex

1The notation \~\scrO hides logarithmic dependence on \epsilon  - 1.
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1684 KAIZHAO SUN AND XU ANDY SUN

nonlinear constraints take the form  - hI(x) \in \scrK , where \scrK is a closed convex cone.
Under the same inner acceleration scheme as in [29], they showed that the proposed
proximal ALM finds an \epsilon -stationary solution in \~\scrO (\epsilon  - 3) ACG iterations.

2.1.2. Nonconvex constraints. Works [31, 33, 48, 56] consider nonlinear and
nonconvex constraints. Sahin et al. [48] studied problem (2.1) with only the equality
constraints hE(x) = 0, and proposed a double-looped inexact ALM (iALM), where
the augmented Lagrangian relaxation is solved by the accelerated gradient method
in [14], and then the dual variable is updated with a small step size, which ensures
that the sequence of dual variables is uniformly bounded. Assuming a technical regu-
larity condition that provides a convenient workaround to control primal infeasibility
using dual infeasibility, the proposed iALM achieves an \~\scrO (\epsilon  - 4) iteration complexity.2

Assuming the same regularity condition, Li et al. [31] later improved the iteration
complexity to \~\scrO (\epsilon  - 3), which is achieved through a triple-looped iALM.

For problems where the aforementioned regularity condition is not satisfied, the
inexact proximal point penalty method proposed by Lin, Ma, and Xu [33] finds an
\epsilon -stationary solution in \~\scrO (\epsilon  - 4) adaptive APG steps under the requirement that the
initial point is feasible. Xie and Wright [56] proposed a proximal ALM that finds an
\epsilon -stationary solution in \scrO (\epsilon  - 5.5) Newton-CG iterations.

2.2. ADMM. The ADMM was proposed in the mid-1970s [13, 15], while the
underlying idea has deep roots in maximal monotone operator theory [11] and nu-
merical methods for partial differential equations [10, 41]. Commonly regarded as a
variant of ALM, ADMM solves the augmented Lagrangian relaxation by alternately
optimizing through blocks of variables and in this way subproblems become decoupled.
Such a feature has gained ADMM considerable attention in distributed optimization
[6, 36, 51]. The convergence of ADMM with two block variables is proved for convex
optimization problems [11, 12, 13, 15] and a convergence rate of \scrO (1/K) is estab-
lished [19, 20, 40], where K is the iteration index. See also [7, 9, 16, 23, 34] on convex
multiblock ADMM.

In recent years, researchers have extended the ADMM framework to solve noncon-
vex multiblock problem (1.1), where hi(xi) =Aixi is affine for all i\in [p] [17, 24, 27, 38,
37, 55]. The asymptotic convergence and an iteration complexity of \scrO (\epsilon  - 2) are estab-
lished based on two crucial conditions on the problem data: (a) gp = 0 and (b) the col-
umn space of Ap contains the column space of the concatenated matrix [A1, . . . ,Ap - 1].
Condition (a) provides a way to control dual iterates by primal iterates, while con-
dition (b) is required for ADMM to locate a feasible solution in the limit. See also
[54, Table 1] for a summary of other assumptions. These two assumptions are almost
necessary for the convergence of nonconvex ADMM. Namely, when either one of the
two assumptions fails to hold, divergent examples have been found.

There are also several works investigating the convergence of nonconvex ADMM
without conditions (a) and (b). In particular, Jiang et al. [27] proposed to run
ADMM on a penalty relaxation of (1.1). Sun and Sun [54, 52] proposed a two-level
framework that embeds a structured three-block ADMM inside an ALM. For weakly
convex minimization over affine constraints, works [59, 60] demonstrate two ADMM
variants that do not require assumptions (a) or (b).

Zhu, Zhao, and Zhang [62] considered nonlinear coupling constraints of the form
h(x1)+Bx2 = 0. Assuming condition (a) and a straightforward extension of condition
(b), i.e., the range of the nonlinear mapping h belongs to the column space of the
matrix B, the authors derived the \scrO (\epsilon  - 2) iteration complexity.

2The complexity presented in [48] is claimed to be wrong and corrected to \~\scrO (\epsilon  - 4) by [31].
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DUAL DESCENT ALM AND ADMM 1685

3. SDD ADMM.

3.1. Assumptions and stationarity. In this subsection, we formally state our
assumptions on the problem data and define stationarity for problem (1.1).

Assumption 3.1.
1. For i \in [p], the function gi : Rni \rightarrow R is proper and lower-semicontinuous

with an effective domain denoted by Xi = dom gi := \{ x \in Rn | gi(x) < +\infty \} .
Moreover, the proximal oracle of gi is available, i.e., given zi \in Rni and a
sufficiently large constant \eta > 0, we can solve the following problem:

min
xi\in Rni

gi(xi) +
\eta 

2
\| xi  - zi\| 2.(3.1)

Denote g(x) =
\sum p

i=1 gi(xi) and X =
\prod p

i=1Xi.
2. The function f : Rn \rightarrow R has Lipschitz gradient over X, i.e., there exists a

positive constant Lf such that \| \nabla f(x) - \nabla f(z)\| \leq Lf\| x - z\| for any x, z \in X.
3. The mapping h : Rn\rightarrow Rm is given by h(x) =

\sum p
i=1 hi(xi), where hi : Rni \rightarrow 

Rm is continuously differentiable over Xi, and there exist positive constants
Mhi

, Khi
, Jhi

, and Lhi
such that for all i\in [p] and xi, zi \in Xi, we have

max
xi\in Xi

\| hi(xi)\| \leq Mhi
, \| hi(xi) - hi(zi)\| \leq Khi

\| xi  - zi\| ,(3.2a)

max
xi\in Xi

\| \nabla hi(xi)\| \leq Jhi
,\| \nabla hi(xi) - \nabla hi(zi)\| \leq Lhi

\| xi  - zi\| ,(3.2b)

where \nabla hi(xi) = [\nabla hi1(xi), . . . ,\nabla him(xi)] \in Rni\times m, and \| \cdot \| denotes the
Euclidean norm for vectors or the induced norm for matrices.

4. The following constants are finite:

\scrP := sup
x\in X

f(x) +

p\sum 
i=1

gi(xi)<+\infty and(3.3a)

\scrP := inf
x\in X

f(x) +

p\sum 
i=1

gi(xi)> - \infty .(3.3b)

For ease of later presentation, let

Mh :=

p\sum 
i=1

Mhi , Kh :=max
i\in [p]
\{ Khi\} , Jh :=max

i\in [p]
\{ Jhi\} , and Lh :=max

i\in [p]
\{ Lhi\} .(3.4)

Remark 3.2. We make some remarks regarding the above assumptions.
1. We allow gi to be nonconvex as long as its proximal oracle is available. With-

out loss of generality, we may assume any \eta \geq Lf suffices to carry out the
minimization in (3.1) exactly.

2. Any gi of the form \delta Xi + \~gi, where Xi is a compact set and \~gi is continuous
over Xi ensures that constants in (3.2) and (3.3) are well-defined. However,
we do not explicitly require the compactness of Xi's because many nonconvex
gi's such as smoothly clipped absolute deviation (SCAD), minimax concave
penalty (MCP), and capped-\ell 1 are defined over Rni and uniformly bounded
from above, and nonlinear mappings including the sine, cosine, arctangent,
and sigmoid functions can ensure (3.2) without Xi's being compact. In addi-
tion, it is possible to further relax condition (3.3a); see Remark 3.9.
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1686 KAIZHAO SUN AND XU ANDY SUN

3. Suppose each hij :Rn\rightarrow R satisfies that \| \nabla hij(xi) - \nabla hij(zi)\| \leq Lhij\| xi - zi\| 
and \| \nabla hij(xi)\| \leq Jhij for all xi, zi \in Xi, then we can obtain the following
estimates: Lhi

=
\surd 
mmaxj\in [m]Lhij

and Jhi
=Khi

=
\surd 
mmaxj\in [m] Jhij

.

We define approximate stationarity as follows.

Definition 3.3 (approximate stationary point). Given \epsilon > 0, we say x \in X is
an \epsilon -stationary point of problem (1.1) if there exists \lambda \in Rm such that

max
i\in [p]

\Bigl\{ 
dist

\Bigl( 
 - \nabla if(x) - \nabla hi(xi)\lambda ,\partial gi(xi)

\Bigr) \Bigr\} 
\leq \epsilon and \| h(x)\| \leq \epsilon ,

where \partial gi(xi) denotes the general subdifferential of gi at xi \in Xi [46, Definition 8.3].

3.2. The proposed algorithm. Recall the augmented Lagrangian function in
(1.2). We also separate out the smooth components in \scrL \rho (x,\mu ) as

\scrK \rho (x,\mu ) :=\scrL \rho (x,\mu ) - 
p\sum 

i=1

gi(xi) = f(x) + \langle \mu ,h(x)\rangle + \rho 

2
\| h(x)\| 2.(3.5)

Notice that for i\in [p], \nabla xi
\scrK \rho (x,\mu ) =\nabla if(x) +\nabla hi(xi)(\mu + \rho h(x)). It can be verified

that \nabla xi
\scrK \rho (x,\mu ) is Lipschitz. The calculation is straightforward and hence omitted.

Lemma 3.4. For any i\in [p], xi, zi \in Xi, and fixed xj \in Xj with j \not = i, we have

\| \nabla xi
\scrK \rho (x<i, xi, x>i, \mu ) - \nabla xi

\scrK \rho (x<i, zi, x>i, \mu )\| \leq Lip(\mu ,\rho )\| xi  - zi\| ,
where

Lip(\mu ,\rho ) :=Lf + \| \mu \| Lh + \rho (JhKh +MhLh).(3.6)

Lemma 3.4 allows us to update each xi via a single proximal gradient step. The
SDD ADMM (SDD-ADMM) is presented in Algorithm 3.1.

Remark 3.5. We make some remarks on Algorithm 3.1.
1. We update xk+1

i 's through p proximal gradient updates, and then obtain \mu k+1

by minimizing \scrP (xk+1, \mu ) plus a proximal term as in (3.8). Due to the strong
convexity of \scrP in \mu , \tau is allowed to be 0.

Algorithm 3.1. SDD-ADMM.
1: Input x0 \in X, \rho > 0, \omega \geq 4, \theta > 1, \tau \geq 0;
2: initialize \mu 0 = 0\in Rm;
3: for k= 0,1,2, \cdot \cdot \cdot do
4: for i= 1,2, \cdot \cdot \cdot , p do

5: update xk+1
i through a proximal gradient step:

xk+1
i = argmin

xi\in Rni

gi(xi)+\langle \nabla xi
\scrK \rho (x

k+1
<i , xk

\geq i, \mu 
k), xi  - xk

i \rangle +
\theta Lip(\mu k, \rho )

2
\| xi - xk

i \| 2;

(3.7)

6: end for
7: update \mu k+1 by

\mu k+1 = argmin
\mu \in Rm

\scrP (xk+1, \mu ) +
\tau \omega 

2\rho 
\| \mu  - \mu k\| 2 = 1

1+ \tau 

\bigl( 
\tau \mu k  - \omega  - 1\rho h(xk+1)

\bigr) 
;(3.8)

8: end for
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DUAL DESCENT ALM AND ADMM 1687

2. If we perturb the proximal term by a specific linear term to cancel out the
inner product in \scrP (xk+1, \mu ), and update \mu k+1 as

\mu k+1 = argmin
\mu \in Rm

\scrP (xk+1, \mu ) +
\tau \omega 

2\rho 
\| \mu  - \mu k\| 2 + \langle  - h(xk+1), \mu \rangle ,(3.9)

then, since we initialize with \mu 0 = 0, (3.9) recovers the penalty method, i.e.,
\mu k+1 = 0 for all k \in N. When \tau > 0, (3.9) is also equivalent to the SDD
update with a different proximal center:

\mu k+1 = argmin
\mu \in Rm

\scrP (xk+1, \mu ) +
\tau \omega 

2\rho 

\bigm\| \bigm\| \bigm\| \mu  - \Bigl( 
\mu k +

\rho 

\omega \tau 
h(xk+1)

\Bigr) \bigm\| \bigm\| \bigm\| 2

.(3.10)

It is interesting that the new proximal center is a dual ascent iterate, which
recovers the penalty method in combination with the SDD framework.

3. The lower bound of the parameter \omega is chosen to be 4 mainly for the ease of
analysis, e.g., in Lemma 3.10. Other values are possible as well.

When p = 1, we call the algorithm SDD-ALM. One key observation is that, al-
though xi's are updated in a Gauss--Seidel fashion in Algorithm 3.1, we can also
apply a Jacobi-type update, i.e., replace \nabla xi

\scrK \rho (x
k+1
<i , xk

\geq i, \mu 
k) by \nabla xi

\scrK \rho (x
k, \mu k) in

(3.7) and then solve the p subproblems in parallel. This is a special case when we
treat x= [x\top 

1 , . . . , x
\top 
p ]

\top as a single block variable and apply SDD-ALM, where decom-
position is achieved within this single block update and assembles a Jacobi sweep.
Such a feature might be favored in a distributed optimization setting. We present the
convergence of SDD-ADMM in the form of Algorithm 3.1 in the next subsection.

3.3. Convergence analysis. In this subsection, we analyze the convergence of
Algorithm 3.1 under dual updates (3.8) and (3.9) in a unified framework. We first
show that when the initial point is almost feasible, SDD-ADMM finds an \epsilon -stationary
solution in \scrO (\epsilon  - 4) iterations. Then under an additional assumption regarding h and
g, we can further improve the complexity by one or even two orders of magnitude to
\scrO (\epsilon  - 3) and \scrO (\epsilon  - 2), respectively.

Although our analysis encompasses both the SDD update (3.8) and the penalty
method update (3.9), the technical claims presented below are stated within the con-
text of the SDD update (3.8), which explicitly involves the dual variable \mu . This
choice is motivated by our initial goal of minimizing the augmented Lagrangian func-
tion in both the primal and dual variables. However, throughout each proof, we
accommodate the analysis to incorporate the penalty method update (3.9) whenever
necessary. By adopting this approach, we ensure that our results are applicable to
both the SDD and the penalty method, providing a comprehensive understanding of
their convergence properties.

3.3.1. An \bfscrO (\bfitepsilon 
 - 4

) iteration complexity. Due to that fact that \nabla f is Lip-
schitz, we have \| \nabla if(x<i, xi, x>i) - \nabla if(x<i, zi, x>i)\| \leq Lf\| xi  - zi\| for any i \in [p],
xi, zi \in Xi, and fixed xj for j \not = i; this will be invoked several times in the analysis.
We first show that the sequence \{ \scrP (xk, \mu k)\} k\in N is nonincreasing.

Lemma 3.6 (one-step progress of SDD-ADMM). Suppose Assumption 3.1 holds.
For all k \in N,

\scrP (xk, \mu k) - \scrP (xk+1, \mu k+1)

\geq 
\biggl( 
\theta  - 1

2

\biggr) 
Lip(\mu k, \rho )

p\sum 
i=1

\| xk+1
i  - xk

i \| 2 +
\biggl( 
\tau +

1

2

\biggr) 
\omega 

\rho 
\| \mu k+1  - \mu k\| 2.
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1688 KAIZHAO SUN AND XU ANDY SUN

Proof. We first establish the descent in x. Let i\in [p], then it holds that

\scrP (xk+1
\leq i , xk

>i, \mu 
k) =

\sum 
j\leq i

gj(x
k+1
j ) +

\sum 
j>i

gj(x
k
j ) +\scrK \rho (x

k+1
\leq i , xk

>i, \mu 
k) +

\omega 

2\rho 
\| \mu k\| 2

\leq 
\sum 
j\leq i

gj(x
k+1
j ) +

\sum 
j>i

gj(x
k
j ) +\scrK \rho (x

k+1
<i , xk

\geq i, \mu 
k) + \langle \nabla xi\scrK \rho (x

k+1
<i , xk

\geq i, \mu 
k), xk+1

i  - xk
i \rangle 

+
Lip(\mu k, \rho )

2
\| xk+1

i  - xk
i \| 2 +

\omega 

2\rho 
\| \mu k\| 2

\leq 
\sum 
j<i

gj(x
k+1
j ) +

\sum 
j\geq i

gj(x
k
j ) +\scrK \rho (x

k+1
<i , xk

\geq i, \mu 
k) +

\omega 

2\rho 
\| \mu k\| 2

 - 
\Bigl( \theta  - 1

2

\Bigr) 
Lip(\mu k, \rho )\| xk+1

i  - xk
i \| 2

=\scrP (xk+1
<i , xk

\geq i, \mu 
k) - 

\biggl( 
\theta  - 1

2

\biggr) 
Lip(\mu k, \rho )\| xk+1

i  - xk
i \| 2,

where the first inequality is due to \nabla xi
\scrK \rho (x,\mu 

k) being Lipschitz and the second
inequality is due to the optimality of xk+1

i in (3.7). Summing the above inequality
from i= 1 to p, we have

\scrP (xk, \mu k) - \scrP (xk+1, \mu k)\geq 
\biggl( 
\theta  - 1

2

\biggr) 
Lip(\mu k, \rho )

p\sum 
i=1

\| xk+1
i  - xk

i \| 2.(3.11)

Next we derive the descent in \mu . The strong convexity of the objective in (3.8) implies

\scrP (xk+1, \mu k) - \scrP (xk+1, \mu k+1)\geq 
\biggl( 
\tau +

1

2

\biggr) 
\omega 

\rho 
\| \mu k+1  - \mu k\| 2.(3.12)

In view of (3.9), the above inequality holds as well since \mu k = \mu k+1 = 0. Combining
(3.11) and (3.12) proves the lemma.

Remark 3.7. We assume that the proximal mapping (3.1) of gi can be carried out
exactly, which can be satisfied for many nonconvex functions such as SCAD, MCP,
capped-\ell 1, and indicator functions of sphere or annulus constraints. This assumption
is mainly used to establish the descent property of \scrP (xk+1

<i , \cdot , xk
>i, \mu 

k), whereas the
global optimality of xk+1

i in (3.7) is not necessary. As an alternative, we may directly
assume a descent oracle on gi: we can find a stationary point xk+1

i of (3.7) such that
\scrP (xk+1

<i , xk+1
i , xk

>i, \mu 
k)\leq \scrP (xk+1

<i , xk
i , x

k
>i, \mu 

k) - \nu \| xk+1
i  - xk

i \| 2 for some \nu > 0. See also
Assumption B.3. This is in general more realistic when gi is highly complicated and
reasonable if some nonconvex solver can be warm-started.

Next we show that the sequence \{ \scrP (xk, \mu k)\} k\in N is bounded from below; con-
sequently, we can further control \| h(xk)\| and \| \mu k\| . To this end, we require the
infeasibility of the initial point x0 to be controlled in the following sense.

Assumption 3.8. There exists a constant C \geq 0 such that for any finite \alpha > 0, we
can find an initial point x0 \in X such that \| h(x0)\| 2 \leq C

\alpha .

Remark 3.9. Assumption 3.8 is a slight relaxation of the requirement that
h(x0) = 0. As we will see in Theorem 3.12, in order to find an \epsilon -stationary solu-
tion, we will need to satisfy Assumption 3.8 with \alpha = \rho = \Theta (\epsilon  - 2) and hence the
initial point is required to be almost feasible, i.e., \| h(x0)\| =\scrO (\epsilon ). It can be satisfied
by solving a convex program when X is convex and h is affine, or when there exists
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DUAL DESCENT ALM AND ADMM 1689

i \in [p] such that hi(xi) = Aixi  - b, where Ai has full row rank. We also note that
this (near-)feasibility assumption on the initial point is commonly adopted in the lit-
erature to establish iteration complexity estimates for nonlinear programs [5, 33, 56].
In addition, it suffices to replace \scrP defined in (3.3a) by any finite upper bound on
f(x0) + g(x0) in case f is not bounded from above over X.

Lemma 3.10 (bounds on dual variable and primal residual). Suppose Assump-
tions 3.1 and 3.8 hold. Recall \scrP and \scrP from (3.3), constant C from Assumption 3.8,
and further define

\Delta :=\scrP  - \scrP +
C

2
,(3.13)

which is a constant independent of the penalty \rho . Then \scrP (xk, \mu k) \geq \scrP for all k \in N.
Moreover, it holds that

\| h(xk)\| \leq 
\biggl( 
4\Delta 

\rho 

\biggr) 1/2

and \| \mu k\| \leq (\rho \Delta )
1/2

.(3.14)

Proof. Let x0 be an initial point supplied to SDD-ADMM satisfying Assump-
tion 3.8 with \alpha = \rho . Moreover, since \mu 0 = 0, we have

\scrP (x0, \mu 0) =f(x0) +

p\sum 
i=1

gi(x
0
i ) +

\rho 

2
\| h(x0)\| 2 \leq \scrP +

C

2
.

By Lemma 3.6, for all k \in N, we have \scrP (x0, \mu 0) is greater than

\scrP (xk, \mu k) = f(xk) +

p\sum 
i=1

gi(x
k
i ) + \langle \mu k, h(xk)\rangle + \rho 

2
\| h(xk)\| 2 + \omega 

2\rho 
\| \mu k\| 2

\geq inf
x\in X

\biggl\{ 
f(x) +

p\sum 
i=1

gi(xi)

\biggr\} 
+

\rho 

4
\| h(xk)\| 2 + 1

\rho 
\| \mu k\| 2 =\scrP +

\rho 

4
\| h(xk)\| 2 + 1

\rho 
\| \mu k\| 2 \geq \scrP ,

where the second inequality is due to \langle \mu k, h(xk)\rangle \geq  - \rho 
4\| h(x

k)\| 2  - 1
\rho \| \mu 

k\| 2 and \omega \geq 4.
The above inequality further gives the bounds in (3.14).

Lemma 3.10 holds under both dual updates (3.8) and (3.9). If (3.9) is performed,
then (3.14) can be improved to \| h(xk)\| \leq (2\Delta /\rho )1/2 and \| \mu k\| = 0. Though xk+1

i

is obtained by a single proximal gradient step, it still is an approximate stationary
solution in the following sense.

Lemma 3.11 (bound on dual residual). Suppose Assumption 3.1 holds. For all
k \in N and i\in [p],

dist
\Bigl( 
 - \nabla if(x

k+1) - \nabla hi(x
k+1
i )\~\mu k+1, \partial gi(x

k+1
i )

\Bigr) 
\leq (\theta + 1)Lip(\mu k, \rho )

\sum 
j\geq i

\| xk+1
j  - xk

j \| ,

where \~\mu k+1 := \mu k + \rho h(xk+1).

Proof. The update of xk+1
i gives \xi k+1

i \in \nabla if(x
k+1)+\partial gi(x

k+1
i )+\nabla hi(x

k+1
i )\~\mu k+1,

where

\xi k+1
i :=\nabla if(x

k+1) - \nabla if(x
k+1
<i , xk

\geq i) - \theta Lip(\mu k, \rho )(xk+1
i  - xk

i )

+\nabla hi(x
k+1
i )(\mu k + \rho h(xk+1)) - \nabla hi(x

k
i )

\left(  \mu k + \rho 
\sum 
j<i

hi(x
k+1
j ) + \rho 

\sum 
j\geq i

hj(x
k
j )

\right)  .
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1690 KAIZHAO SUN AND XU ANDY SUN

The last two terms in the definition of \xi k+1
i can be bounded by

\| (\nabla hi(x
k+1
i ) - \nabla hi(x

k
i ))(\mu 

k + \rho h(xk+1)\| + \rho \| \nabla hi(x
k
i )\| 

\sum 
j\geq i

\| hj(x
k+1
j ) - hj(x

k
j )\| 

\leq (Lh\| \mu k\| + \rho LhMh)\| xk+1
i  - xk

i \| + \rho JhKh

\sum 
j\geq i

\| xk+1
j  - xk

j \| ;

by the smoothness of f and the definition of Lip(\mu k, \rho ) in (3.6), \| \xi ki \| is bounded by

(Lf + \rho JhKh)
\sum 
j\geq i

\| xk+1
j  - xk

j \| + (Lh\| \mu k\| + \rho LhMh + \theta Lip(\mu k, \rho ))\| xk+1
i  - xk

i \| 

\leq (\theta + 1)Lip(\mu k, \rho )
\sum 
j\geq i

\| xk+1
j  - xk

j \| .

This completes the proof.

With the help of the previous lemmas, we are now ready to present an iteration
complexity upper bound for SDD-ADMM.

Theorem 3.12. Suppose Assumptions 3.1 and 3.8 hold, and let \epsilon > 0. Recall
parameters (Mh,Kh, Jh,Lh) from (3.4) and \Delta in (3.13), and define constants

\kappa 1 := JhKh +MhLh, \kappa 2 :=Lh

\surd 
\Delta + \kappa 1 + 1.(3.15)

Further choose \rho \geq max\{ 1,Lf ,4\Delta \epsilon  - 2\} , and let x0 \in X be an initial point satisfying
Assumption 3.8 with \alpha = \rho . Then SDD-ADMM with input (x0, \rho ,\omega , \theta , \tau ) finds an
\epsilon -stationary solution of (1.1) in at most K(\rho ) iterations, where

K(\rho ) :=

\biggl\lceil 
2p\Delta (\theta + 1)2\kappa 2

2\rho 

(\theta  - 1)\kappa 1\epsilon 2

\biggr\rceil 
=\scrO (\rho \epsilon  - 2).(3.16)

In particular, if we choose \rho =\Theta (\epsilon  - 2), then K(\rho ) =\scrO (\epsilon  - 4).

Proof. We first show that Lip(\mu k, \rho ) =\Theta (\rho ). Since \rho \geq max\{ 1,Lf\} , by the second
inequality in (3.14) of Lemma 3.10, we have \| \mu k\| \leq 

\surd 
\rho \Delta \leq \rho 

\surd 
\Delta and

\rho \kappa 1 \leq Lip(\mu k, \rho ) =Lf + \| \mu k\| Lh + \rho (JhKh +MhLh)\leq \rho \kappa 2.(3.17)

The above lower bound of Lip(\mu k, \rho ) and Lemma 3.6 together give

(\theta  - 1)\kappa 1

2
\rho 

p\sum 
i=1

\| xk+1
i  - xk

i \| 2 \leq \scrP (xk, \mu k) - \scrP (xk+1, \mu k+1).

Summing the above inequality from k= 0 to some positive index K  - 1, we have

(\theta  - 1)\kappa 1

2
\rho 
K - 1\sum 
k=0

p\sum 
i=1

\| xk+1
i  - xk

i \| 2 \leq \Delta .(3.18)

As a result, there exists an index 0\leq \=k\leq K  - 1 such that

p\sum 
i=1

\| x\=k+1
i  - x

\=k
i \| \leq 

\surd 
p

\Biggl( 
p\sum 

i=1

\| x\=k+1
i  - x

\=k
i \| 2

\Biggr) 1/2

\leq 
\biggl( 

2p\Delta 

\rho (\theta  - 1)\kappa 1K

\biggr) 1/2

.(3.19)
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DUAL DESCENT ALM AND ADMM 1691

By (3.14) in Lemma 3.10 and the choice that \rho \geq 4\Delta \epsilon  - 2, we have \| h(x\=k+1)\| \leq \epsilon .
Moreover, recall \~\mu 

\=k+1 = \mu 
\=k + \rho h(x

\=k+1); Lemma 3.11, the upper bound in (3.17), and
(3.19) imply that

max
i\in [p]

\Bigl\{ 
dist

\Bigl( 
 - \nabla if(x

\=k+1) - \nabla hi(x
\=k+1)\~\mu 

\=k+1, \partial gi(x
\=k+1
i )

\Bigr) \Bigr\} 
\leq (\theta + 1)Lip(\mu 

\=k, \rho )

p\sum 
i=1

\| x\=k+1
i  - x

\=k
i \| \leq (\theta + 1)\kappa 2\rho 

\biggl( 
2p\Delta 

\rho (\theta  - 1)\kappa 1K

\biggr) 1/2

\leq \epsilon ,

where the last inequality holds by the upper bound K = K(\rho ) in (3.16). This com-
pletes the proof.

In view of Lemma 3.10 and Theorem 3.12, the primal infeasibility is bounded by\sqrt{} 
4\Delta /\rho while the dual infeasibility can be reduced to \epsilon in \scrO (\rho \epsilon  - 2) iterations. Such

measures can be informative if different primal and dual tolerances are preferred.

3.3.2. Improve iteration complexity to \bfscrO (\bfitepsilon 
 - 3

) and \bfscrO (\bfitepsilon 
 - 2

). Next we
show that under an additional technical assumption, we can further improve the
iteration complexity of SDD-ADMM. Given r > 0 and i\in [p], define

X(r) := \{ x\in X | \| h(x)\| \leq r\} ,(3.20)

Xi(r) := \{ xi \in Xi | (x \not =i, xi)\in X(r) for some xj \in Xj , j \in [p] \setminus \{ i\} \} .(3.21)

By Assumption 3.8, we know that X(r) is nonempty for any r > 0 and thus its
projection Xi(r) is also nonempty. Now we further make the following assumption.

Assumption 3.13. There exist i\in [p], (r,\sigma )\in R2
++, and (Mg,\nabla f )\in R2

+ such that

\sigma \| \mu \| \leq dist( - \nabla hi(xi)\mu ,\partial gi(xi)) +Mg \forall \mu \in Rm, xi \in Xi(r), and(3.22)

sup
x\in X(r)

\| \nabla if(x)\| \leq \nabla f .(3.23)

Remark 3.14. We make some comments regarding Assumption 3.13.
1. Suppose that \nabla hi(xi) has full rank over Xi(r), and their smallest singular

values are bounded away from zero, i.e.,

inf
xi\in Xi(r)

\sigma min(\nabla hi(xi))> 0.(3.24)

In Appendix A, we show that broad classes of gi functions can ensure con-
dition (3.22) with the help of (3.24) or a similar constraint qualification. In
particular, gi can be (Example A.1) a possibly nonconvex Lipschitz function,
(Example A.2) a function of the form \delta Xi + \~gi, where Xi is a sufficiently
large full-dimensional closed convex set and \~gi is continuous and convex over
Xi, or (Example A.3) an indicator function of a set defined by continuously
differentiable constraints satisfying a constraint qualification.

2. Clearly, hi(xi) = Ax  - b with full row rank always implies (3.24) as \sigma min

(A)> 0. Even in this case, (3.22) is still weaker than conditions (a) and (b)
commonly adopted in existing ADMM works (reviewed in section 2.2) as we
allow the presence of some nonsmooth gi.

3. Condition (3.23) is rather mild and can be satisfied under the boundedness
of either \nabla if or X(r).

4. A reasonable direction to further weaken Assumption 3.13 is to restrict the
regions of xi and x on which (3.22) and (3.23) hold. For example, one can
directly assume (3.22) and (3.23) hold on all algorithmic iterates \{ xk+1\} k\in N.
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1692 KAIZHAO SUN AND XU ANDY SUN

We further comment on condition (3.24). As a concrete example, consider i =
p = 1 and h(x) = x\top x - R for some R > 0. Then given any 0 < r < R, it holds that
X(r)\subset \{ x\in Rn | R - r\leq x\top x\leq R+ r\} and, hence,

\sigma min(\nabla h(x)) = 2\| x\| \geq 2(R - r)1/2 > 0

for all x \in X(r). In nonlinear programs, this condition is closely related to the well-
known linearly independence constraint qualification (LICQ) commonly assumed on
KKT points. It is worth noting that our condition is primarily imposed on Xi(0), the
feasible region of xi, which is justified by Sard's theorem. Consequently, we extend
this condition to Xi(r) through the continuity of the rank of \nabla hi. In the context
of nonlinear and nonconvex constraints, existing algorithms such as those based on
ALM/penalty methods [31, 48, 56, 33], sequential quadratic programs (SQPs) [3, 8],
and proximal point methods (PPMs) [5, 35] all rely on specific regularity conditions
to control the behavior of dual variables. In contrast, our condition (3.24) differs from
those used in the literature. It not only generalizes the classic rank condition employed
for the convergence of affine-constrained ADMM but also enables us to derive a novel
first-order iteration complexity estimate of \scrO (\epsilon  - 2).

With Assumption 3.13, we can derive new bounds on dual variables.

Lemma 3.15. Suppose Assumptions 3.1, 3.8, and 3.13 hold. Further define con-
stants

\kappa 3 :=
(\theta + 1)\kappa 2

\sigma 

\sqrt{} 
2p\Delta 

(\theta  - 1)\kappa 1
, \kappa 4 :=

\kappa 3 + (1+ \tau )
\surd 
2\Delta \omega 

3
.(3.25)

Suppose that \rho \geq max\{ 1,Lf ,4\Delta /r2\} . For any positive integer K > 0, there exists an
index 0\leq \=k\leq K  - 1 such that

\| \~\mu \=k+1\| \leq \kappa 3

\sqrt{} 
\rho 

K
+
\nabla f +Mg

\sigma 
and \| \mu \=k\| \leq \kappa 4

\sqrt{} 
\rho 

K
+
\nabla f +Mg

3\sigma 
,(3.26)

where \~\mu 
\=k+1 = \mu 

\=k + \rho h(x
\=k+1).

Proof. By Lemma 3.10, the choice \rho \geq 4\Delta /r2 ensures that \{ xk+1\} k\in N \subset X(r),
and hence Assumption 3.13 can be applied. Let i \in [p] be the index specified in
Assumption 3.13. By Lemma 3.11, there exists \xi k+1

i \in Rni such that

\xi k+1
i \in \nabla if(x

k+1) +\nabla hi(x
k+1
i )\~\mu k+1 + \partial gi(x

k+1
i ),

\| \xi k+1
i \| \leq (\theta + 1)Lip(\mu k, \rho )

p\sum 
j=1

\| xk+1
j  - xk

j \| .

Hence, by Assumption 3.13 and the fact that Lip(\mu k, \rho )\leq \kappa 2\rho from (3.17), we have

\sigma \| \~\mu k+1\| \leq dist( - \nabla hi(xi)\~\mu 
k+1, \partial gi(x

k+1
i )) +Mg \leq \| \xi k+1

i \| + \| \nabla fi(xk+1)\| +Mg

\leq (\theta + 1)\kappa 2\rho 

p\sum 
j=1

\| xk+1
j  - xk

j \| +\nabla f +Mg.

By (3.19) and the above inequality, we have

\| \~\mu \=k+1\| \leq (\theta + 1)\kappa 2\rho 

\sigma 

\biggl( 
2p\Delta 

\rho (\theta  - 1)\kappa 1K

\biggr) 1/2

+
\nabla f +Mg

\sigma 
.(3.27)
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DUAL DESCENT ALM AND ADMM 1693

Hence the first inequality in (3.26) is proved for both dual updates (3.8) and (3.9).
Since in the penalty method we have \mu k = 0, it remains to prove the second inequality
in (3.26) under the SDD update (3.8). By the SDD update and the definition of \~\mu k+1,
we have

0 = \rho h(xk+1) + (1 + \tau )\omega \mu k+1  - \tau \omega \mu k = \~\mu k+1 + (1+ \tau )\omega (\mu k+1  - \mu k) + (\omega  - 1)\mu k,

which implies that

\| \mu k\| \leq 1

\omega  - 1
\| \~\mu k+1\| + (1+ \tau )\omega 

\omega  - 1
\| \mu k+1  - \mu k\| .(3.28)

Next we bound the two terms on the right-hand side of (3.28) at a specific index \=k.
By Lemma 3.6 and a similar argument as in the proof of Theorem 3.12, we have for
any positive integer K, it holds that

\Delta \geq K

\Biggl( 
(\theta  - 1)\kappa 1

2
\rho 

p\sum 
i=1

\| x\=k+1
i  - x

\=k
i \| 2 +

\omega 

2\rho 
\| \mu \=k+1  - \mu 

\=k\| 2
\Biggr) 
,

where

\=k := argmin
k\in \{ 0,\cdot \cdot \cdot ,K - 1\} 

\Biggl\{ 
(\theta  - 1)\kappa 1

2
\rho 

p\sum 
i=1

\| xk+1
i  - xk

i \| 2 +
\omega 

2\rho 
\| \mu k+1  - \mu k\| 2

\Biggr\} 
,

then we know that (3.19) holds and

\| \mu \=k+1  - \mu 
\=k\| \leq 

\biggl( 
2\rho \Delta 

\omega K

\biggr) 1/2

.(3.29)

Combining (3.27), (3.28), and (3.29), we have

\| \mu \=k\| \leq (\theta + 1)\kappa 2\rho 

(\omega  - 1)\sigma 

\biggl( 
2p\Delta 

\rho (\theta  - 1)\kappa 1K

\biggr) 1/2

+
(1+ \tau )\omega 

\omega  - 1

\biggl( 
2\rho \Delta 

\omega K

\biggr) 1/2

+
\nabla f +Mg

(\omega  - 1)\sigma 
.

This completes the proof in view of (\kappa 3, \kappa 4) defined in (3.25) and the fact that
\omega \geq 4.

Theorem 3.16. Suppose Assumptions 3.1, 3.8, and 3.13 hold, and let \epsilon > 0.
Recall (r,\sigma ,\nabla f ,Mg) is required in Assumption 3.13, (\kappa 3, \kappa 4) is defined in (3.25), and
K(\rho ) is defined in (3.16). Choose \rho \geq max\{ 1,Lf ,4\Delta /r2\} .

\bullet If \nabla f +Mg > 0, then further let

\rho \geq 
\biggl( 
\kappa 3 + \kappa 4 +

4(\nabla f +Mg)

3\sigma 

\biggr) 
\epsilon  - 1,(3.30)

and let x0 \in X be an initial point satisfying Assumption 3.8 with \alpha = \rho . Then
SDD-ADMM with input (x0, \rho ,\omega , \theta , \tau ) finds an \epsilon -stationary solution of (1.1)
in at most

K \prime (\rho ) :=max\{ \lceil \rho \rceil ,K(\rho )\} (3.31)

iterations. In particular, if we choose \rho =\Theta (\epsilon  - 1), then K \prime (\rho ) =\scrO (\epsilon  - 3).
\bullet If \nabla f = Mg = 0, let x0 \in X be an initial point satisfying Assumption 3.8
with \alpha = \rho . Then SDD-ADMM with input (x0, \rho ,\omega , \theta , \tau ) finds an \epsilon -stationary
solution of (1.1) in at most

K \prime \prime (\rho ) :=max\{ \lceil (\kappa 3 + \kappa 4)
2\epsilon  - 2\rceil ,K(\rho )\} (3.32)

iterations. In particular, if we choose \rho =\Theta (1), then K \prime \prime (\rho ) =\scrO (\epsilon  - 2).
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1694 KAIZHAO SUN AND XU ANDY SUN

Proof. By a similar argument as in the proof of Theorem 3.12, at the index \=k
specified in Lemma 3.15 with K =K(\rho ), the dual residual is bounded by \epsilon , i.e.,

max
i\in [p]

\Bigl\{ 
dist

\Bigl( 
 - \nabla if(x

\=k+1) - \nabla hi(x
\=k+1)\~\mu 

\=k+1, \partial gi(x
\=k+1
i )

\Bigr) \Bigr\} 
\leq \epsilon .

It remains to show \| h(x\=k+1)\| \leq \epsilon . By the definition of \~\mu 
\=k+1, we have

\| h(x\=k+1)\| \leq 1

\rho 
(\| \~\mu \=k+1\| + \| \mu \=k\| )\leq 1

\rho 

\biggl( 
(\kappa 3 + \kappa 4)

\sqrt{} 
\rho 

K
+

4(\nabla f +Mg)

3\sigma 

\biggr) 
,(3.33)

where the second inequality is due to Lemma 3.15. Next we consider the two cases
separately.

\bullet If \nabla f +Mg > 0, then (3.33) gives

\| h(x\=k+1)\| \leq 1

\rho 

\biggl( 
\kappa 3 + \kappa 4 +

4(\nabla f +Mg)

3\sigma 

\biggr) 
\leq \epsilon ,

where the first inequality holds with any K \geq \rho , and the second inequality is
due to the choice of \rho in (3.30).

\bullet If \nabla f =Mg = 0, then (3.33) gives

\| h(x\=k+1)\| \leq (\kappa 3 + \kappa 4)

\sqrt{} 
1

\rho K
\leq (\kappa 3 + \kappa 4)

\sqrt{} 
1

K
\leq \epsilon ,

which the second inequality is due to \rho \geq 1 and the last inequality holds with
any K \geq (\kappa 3 + \kappa 4)

2\epsilon  - 2.
This completes the proof.

Remark 3.17. In view of Examples A.2 and A.3, it is possible to have Mg = 0 with
gi being the indicator function of some proper sets. While the condition \nabla f = 0 is a
little restrictive as it means that f is constant with respect to xi, this is not impossible
as we work with multiblock problems. As a result, our \scrO (\epsilon  - 2) complexity estimate in
Theorem 3.16, if not stronger than, complements the previous ADMM works in the
sense that we do not rely on both conditions (a) and (b) discussed in section 2.2.

3.4. Adaptive SDD-ADMM. In Algorithm 3.1, we use a fixed penalty \rho ,
which is on the order of \Theta (\epsilon  - 2) in view of Theorem 3.12, or \Theta (\epsilon  - 1) and \Theta (1) in view
of Theorem 3.16. The exact value of \rho depends on the problem data, i.e., parameters
(Lf ,Mh,Kh, Jh,Lh) and (r,\sigma ,\nabla f ,Mg) required in Assumption 3.13, and may not be
straightforward to estimate for some applications. In this subsection, we show that
it is possible to find an \epsilon -stationary point of problem (1.1) through multiple calls of
SDD-ADMM with increasing \rho 's. Moreover, this adaptive version does not deteriorate
the iteration estimates established in Theorems 3.12 and 3.16.

The proposed adaptive version of SDD-ADMM is presented in Algorithm 3.2.
Essentially we start SDD-ADMMwith a relatively small penalty \rho t for some iterations,
and rerun SDD-ADMM with \rho t+1 = 2\rho t until an \epsilon -stationary solution is located. One
technical issue is that, we need to initialize the tth SDD-ADMM with a proper x0 \in X
satisfying Assumption 3.8 with \alpha = \rho t. Of course, if some x0 \in X \cap \{ x| h(x) = 0\} is
available, then we can set xt,0 = x0 for all index t\geq 1. Otherwise, any primal iterate
in the tth SDD-ADMM satisfying Assumption 3.8 with \alpha = \rho t+1 can serve as xt+1,0.

Though invoking a sequence of calls to SDD-ADMM, this adaptive version pre-
serves the same iteration complexities established in Theorems 3.12 and 3.16. To see
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DUAL DESCENT ALM AND ADMM 1695

Algorithm 3.2. Adaptive SDD-ADMM.
1: Input (\rho 0, \omega , \theta , \tau , \epsilon )\in (0,+\infty )\times [4,+\infty )\times (1,\infty )\times [0,+\infty )\times (0,+\infty );
2: initialize index t\leftarrow 0;
3: while an \epsilon -stationary solution of (1.1) is not found do
4: t\leftarrow t+ 1;
5: find xt,0 \in X satisfying Assumption 3.8 with \alpha = \rho t := 2t\rho 0;
6: run SDD-ADMM(xt,0, \rho t, \omega , \theta , \tau ) for at most K(\rho t) iterations;
7: end while

this, denote the total number of SDD-ADMM calls by T . Notice that in view of The-
orem 3.12, there exists a constant B > 0 such that K(\rho )\leq B\rho \epsilon  - 2. The total number
of SDD-ADMM iterations can be then bounded by

\scrT :=
T\sum 

t=1

K(\rho t)\leq B\epsilon  - 2 \times 
T\sum 

t=1

\rho 02
t =B\epsilon  - 2 \times 2\rho 0(2

T  - 1)\leq 2B\epsilon  - 2\rho 02
T .(3.34)

By Theorem 3.12, it suffices to find T such that \rho T = \rho 02
T =\Theta (\epsilon  - 2), plugging which

into (3.34) gives the same \scrT =\scrO (\epsilon  - 4) iteration complexity estimate. Similarly under
assumptions of Theorem 3.16, the orders of K \prime (\rho ) =\scrO (\epsilon  - 3) and K \prime \prime (\rho ) =\scrO (\epsilon  - 2) can
be preserved as well.

4. UDD ALM. The success of SDD motivates us to ask a natural question:
what if we skip the scaling step? In this section, we investigate the UDD update for
solving the following special case of problem (1.1), where p= 1, g is convex, and h is
affine:

min
x\in Rn

\{ f(x) + g(x) | h(x) :=Ax - b= 0\} .(4.1)

We note that the analysis in this section can be applied to a more general multiblock
setting, while focusing on p = 1 suffices to demonstrate the behavior of UDD. Dif-
ferently from SDD-ADMM, the convergence of UDD-ALM requires certain regularity
or constraint qualification to hold at the primal limit point, so that the sequence of
dual variables has a bounded subsequence and the augmented Lagrangian function
may then serve as a potential function. We focus on the structured setup (4.1) in
this section. In Appendix B, we generalize the analysis to handle a more challenging
setting with nonconvex g and nonlinear h by assuming a stronger subproblem oracle.

Formally, we adopt the following assumptions.

Assumption 4.1. We make the following assumptions regarding problem (4.1).
1. The function g : Rn \rightarrow R can be decomposed as g0 + \delta X , where X \subseteq Rn is

convex and compact, and g0 :Rn\rightarrow R is continuous and convex over X.
2. The function f :Rn\rightarrow R has an Lf -Lipschitz gradient over X.
3. The constraints h(x) = Ax  - b are affine with A \in Rm\times n and b \in Rm, and

X \cap \{ x| Ax= b\} \not = \emptyset .
Recall the definition of \scrK \rho in (3.5). We see \nabla x\scrK \rho (x,\mu ) = \nabla f(x) + A\top \mu +

\rho A\top (Ax  - b) is Lipschitz with modulus Lf +\rho \| A\top A\| , which is independent of \mu due
to the linearity of constraints. This fact allows us to use a single proximal gradient
step to update x. See Algorithm 4.1.
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1696 KAIZHAO SUN AND XU ANDY SUN

Algorithm 4.1. UDD-ALM for problem (4.1).
1: Initialize x0 \in X, \mu 0 \in Rm, \rho \geq 0, \varrho > 0, and \theta > 1; set L\scrK =Lf + \rho \| A\top A\| ;
2: for k= 0,1,2 \cdot \cdot \cdot do
3: perform a proximal gradient step:

xk+1= argmin
x\in Rn

g(x)+\langle \nabla f(xk)+A\top (\mu k+\rho (Axk - b)), x - xk\rangle + \theta L\scrK 

2
\| x - xk\| 2;

(4.2)

4: update \mu k+1 through a UDD update:

\mu k+1 = \mu k  - \varrho (Axk+1  - b);(4.3)

5: end for

First we establish the descent of the augmented Lagrangian function.

Lemma 4.2 (one-step progress of UDD-ALM). Suppose Assumption 4.1 holds.
For all k \in Z++, we have

L\rho (x
k, \mu k) - L\rho (x

k+1, \mu k+1)\geq 
\biggl( 
2\theta  - 1

2

\biggr) 
L\scrK \| xk+1  - xk\| 2 + \varrho \| Axk+1  - b\| 2.(4.4)

Proof. Similarly to (3.11) and using the fact that g is convex, the descent in
x is given as L\rho (x

k, \mu k)  - L\rho (x
k+1, \mu k) \geq 

\bigl( 
2\theta  - 1

2

\bigr) 
L\scrK \| xk+1  - xk\| 2. The change with

respect to \mu is given as L\rho (x
k+1, \mu k+1)  - L\rho (x

k+1, \mu k) = \langle \mu k+1  - \mu k,Axk+1  - b)\rangle =
 - \varrho \| Axk+1  - b\| 2, where the last equality is due to the UDD update. Combining the
inequality and the equality proves the claim.

We then bound the dual residuals of iterates produced by UDD-ALM.

Lemma 4.3 (bound on dual residual in UDD-ALM). Suppose Assumption 4.1
holds. For all k \in N, it holds that

dist
\bigl( 
\partial g(xk+1), - \nabla f(xk+1) - A\top \mu k+1

\bigr) 
\leq (\theta + 1)L\scrK \| xk+1  - xk\| + (\rho + \varrho )\| A\| \| Axk+1  - b\| .

Proof. The claim follows from the optimality of xk+1 in (4.2), the fact that \nabla x\scrK \rho 

is Lipschitz, and straightforward derivations.

Lemma 4.2 suggests that values of the augmented Lagrangian function form a
nonincreasing sequence. We aim to show that this sequence is actually bounded from
below if a certain regularity condition is satisfied.

Definition 4.4 (modified Robinson's condition). We say x\in X =dom g satisfies
the modified Robinson's condition if \{ Ad | d\in TX(x)\} =Rm, where TX(x) denotes the
tangent cone of X at x:

TX(x) =

\biggl\{ 
d\in Rn | d= lim

k\rightarrow \infty 

xk  - x

\tau k
, xk\rightarrow x, \tau k \downarrow 0,\{ xk\} k\in N \subseteq X

\biggr\} 
.

The above definition is slightly different from the standard Robinson's condition,
e.g., in [47, section 3.3.2]: we do not require x to satisfy Ax = b in Definition 4.4.
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DUAL DESCENT ALM AND ADMM 1697

Despite this difference, [47, Lemma 3.16] still gives a sufficient condition: A has full
row rank and x + Null(A) \cap int X \not = \emptyset , where Null(A) denotes the null space of A
and int X denotes the interior of X. This modified Robinson's condition has been
adopted to ensure a certain boundedness condition on the dual sequence and verified
in specific applications [18, 49, 50]. Since the techniques are not new, we present the
following lemma in the context of problem (4.1) while skipping the proof.

Lemma 4.5 (existence of dual limit point). Suppose Assumption 4.1 holds. Let
x\ast \in X be a limit point of the sequence \{ xk\} k\in N generated by UDD-ALM, and
\{ xkr\} r\in N be the subsequence convergent to x\ast . If x\ast satisfies the modified Robin-
son's condition, then \{ \mu kr\} r\in Rn has a bounded subsequence and hence a limit point
\mu \ast .

Theorem 4.6. Suppose Assumption 4.1 holds. Let x\ast be a limit point of the
sequence \{ xk\} k\in N generated by UDD-ALM that satisfies the modified Robinson's con-
dition. Then the following statements hold.

1. (asymptotic convergence) The point x\ast is a stationary point of problem (4.1).
2. (iteration complexity) Let \epsilon > 0. Define constants

\delta 1 :=min

\biggl\{ 
(2\theta  - 1)L\scrK 

2
, \varrho 

\biggr\} 
, \delta 2 := (\theta + 1)L\scrK + (\rho + \varrho )\| A\| .

UDD-ALM finds an \epsilon -stationary solution in at most K iterations, where

K \leq 
\biggl\lceil 
max\{ 1, \delta 2\} 2(L\rho (x

0, \mu 0) - f(x\ast ) - g(x\ast ))

\delta 1\epsilon 2

\biggr\rceil 
=\scrO (\epsilon  - 2).(4.5)

Proof. Let \{ xkr\} r\in N be the subsequence convergent to x\ast . By Lemma 4.5, we
may assume \mu kr \rightarrow \mu \ast \in Rm as r \rightarrow \infty without loss of generality. Consequently,
L\rho (x

kr , \mu kr )\rightarrow L\rho (x
\ast , \mu \ast ) due to the continuity of the augmented Lagrangian function

over X. By Lemma 4.2, the sequence \{ L\rho (x
k, \mu k)\} r\in N is nonincreasing, so the whole

sequence is bounded from below by L\rho (x
\ast , \mu \ast ). Summing the inequality claimed in

Lemma 4.2 from k= 0 to some positive integer K  - 1, we have

min

\biggl\{ 
(2\theta  - 1)L\scrK 

2
, \varrho 

\biggr\} K - 1\sum 
k=0

\| xk+1  - xk\| 2 + \| Axk+1  - b\| 2

\leq 
K - 1\sum 
k=0

(2\theta  - 1)L\scrK 

2
\| xk+1  - xk\| 2 + \varrho \| Axk+1  - b\| 2 \leq L\rho (x

0, \mu 0) - L\rho (x
\ast , \mu \ast ).(4.6)

Now we are ready to prove the two claims.
1. Let K \rightarrow \infty in (4.6) and focusing on the subsequence \{ xkr , \mu kr\} r\in N, we

see limr\rightarrow \infty max\{ \| xkr  - xkr - 1\| ,\| Axkr  - b\| \} = 0, from which it immediately
follows that \| Ax\ast  - b\| = limr\rightarrow \infty \| Axkr  - b\| = 0. Moreover, by Lemma 4.3,

dist
\bigl( 
 - \nabla f(x\ast ) - A\top \mu \ast , \partial g(x\ast )

\bigr) 
\leq lim

r\rightarrow \infty 
dist

\bigl( 
 - \nabla f(xkr ) - A\top \mu kr , \partial g(xkr )

\bigr) 
\leq lim

r\rightarrow \infty 
(\theta + 1)L\scrK \| xkr  - xkr - 1\| + (\rho + \varrho )\| A\| \| Axkr  - b\| = 0.

This suggests that x\ast is a stationary point of problem (4.1).
2. Since Ax\ast  - b= 0, we have L\rho (x

\ast , \mu \ast ) = f(x\ast ) + g(x\ast ). By (4.6), there exists
an index 0\leq \=k\leq K  - 1 such that

max\{ \| x\=k+1  - x
\=k\| ,\| Ax\=k+1  - b\| \} \leq 

\biggl( 
L\rho (x

0, \mu 0) - f(x\ast ) - g(x\ast )

\delta 1K

\biggr) 1/2

.
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1698 KAIZHAO SUN AND XU ANDY SUN

By Lemma 4.3 and the above inequality,

max
\Bigl\{ 
dist

\Bigl( 
\partial g(x

\=k+1), - \nabla f(x\=k+1) - A\top \mu 
\=k+1

\Bigr) 
,\| Ax

\=k+1  - b\| 
\Bigr\} 

\leq max\{ 1, \delta 2\} 
\biggl( 
L\rho (x

0, \mu 0) - f(x\ast ) - g(x\ast )

\delta 1K

\biggr) 1/2

\leq \epsilon ,

where the last inequality holds by the claimed upper bound of K in (4.5).

Remark 4.7. We make some remarks on UDD-ALM.
1. Different from the \scrO (\epsilon  - 2) established in [61, 60], Theorem 4.6 relies on the

modified Robinson's condition at the limit point of iterates produced by UDD-
ALM. Though assuming a certain constraint qualification at the limit point
is common in nonlinear programs, this specific condition may not be satisfied
by general instances of (4.1).

2. In Appendix B, we extend the iteration complexity result to handle nonconvex
g and nonlinear h by assuming a stronger subproblem oracle.

The value of \varrho deserves more attention in deriving the \scrO (\epsilon  - 2) complexity in
Theorem 4.6. We treat \varrho as a constant in our analysis and do not impose explicit
requirements. However, it is observed that a larger \varrho usually leads to iterates staying
on the boundary of X and, hence, the limit point is more likely to violate the modified
Robinson's condition. As we illustrate in section 5.3, the behavior of UDD-ALM is
very sensitive to the choice of \varrho . For certain instances, the numerical value of \varrho needs
to be even smaller than \epsilon in order for UDD-ALM to exhibit convergence. In this case,
the \scrO (\epsilon  - 2) complexity may not be practically informative. We share more empirical
observations in section 5.3.

5. Numerical experiments.

5.1. SDD-ALM for nonconvex QCQP. In this section, we consider the fol-
lowing nonconvex quadratically constrained QP (QCQP)

min
x\in Rn

\{ f(x) := x\top Qx+ q\top x | h(x) := x\top Bx - 1 = 0,\| x\| \leq r\} ,(5.1)

and compare it with the iALM proposed in [31]. Let g(x) = \delta \{ x| \| x\| \leq r\} (x), whose
projection operator can be computed explicitly. We generate data as follows: first
create \~Q \in Rn\times n with standard Gaussian entries, and set Q= 0.5( \~Q+ \~Q\top ); generate
\=B in the same way as Q, and set B = \=B+(\| \=B\| +1)In, where In denotes the identity
matrix; finally we set q to be the zero vector and r = n/10. For SDD-ADMM, we
choose (\omega , \theta , \tau ) = (4,2,1) and simply set \rho = 10n. For iALM, we limit the number
of outer-level updates by 10, and the penalty used in each outer level is \beta k = \beta 0\sigma 

k,
where \beta 0 = 1 and \sigma = 2(\rho /\beta 0)

1/10, so that \beta k in iALM should be able to quickly catch
up the SDD-ALM penalty \rho ; we set the input tolerance to the inner-level APG and
middle-level iPPM to be 1e-3. For both algorithms, we first generate a vector with
standard Gaussian entries, then scale it to get x0 so that \| h(x0)\| = 0.5/

\surd 
\rho .

For each run of an algorithm, we record the primal residual ``pres"" (measured
by \| h(xk+1)\| ), dual residual ``dres"" (measured by \| xk+1  - xk\| ), the iteration index
``iter"" when both pres and dres drop below 1e-3 for the first time, as well as the
wall clock time ``time"" over 100,000 proximal gradient iterations; if either pres or
dres does not drop below 1e-3, we record their values where the sum of pres and
dres is the minimum, and set iter=100,000. For n\in \{ 100,200,300\} , we generate 5
instances and report the average metrics in Table 1. For n \in \{ 100,200\} , SDD-ALM
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DUAL DESCENT ALM AND ADMM 1699

Table 1
Averaged metrics of SDD-ALM and iALM [31].

SDD-ALM iALM

n pres dres iter time pres dres iter time

100 1.00e-3 2.19e-8 16,158 13.97 1.03e-2 2.68e-10 100,000 25.73
200 1.00e-3 3.02e-8 81,729 37.08 1.03e-2 6.51e-13 100,000 73.37
300 3.11e-3 2.97e-9 100,000 69.43 8.86e-3 6.78e-13 100,000 147.29

(a) An instance with n = 200 (b) An instance with n = 300

Fig. 1. Objective trajectories of SDD-ALM and iALM [31]. Note: color appears only in the
online article.

reduces pres below 1e-3, while for n= 300, SDD-ALM achieves a slightly better pres.
In constrast, iALM maintains a smaller dres in all runs. On average, SDD-ALM takes
less time to perform 100,000 proximal gradient updates.

For the generated instances, we also observe that iALM usually reduces the ob-
jective value faster than SDD-ALM, while SDD-ALM seems to converge to solutions
with better qualities in the long run. The objective trajectories of two instances are
plotted in Figure 1.

5.2. SDD-ADMM for robust tensor PCA. In this section, we test SDD-
ADMM on the robust tensor PCA problem, and compare it with the ADMM-g algo-
rithm proposed in [27]. Given a tensor T ∈RI1×I2×I3 , the goal is to decompose T as
Z + E + B, where E has a low rank, E is sparse, and B represents a small noise. The
problem can be cast as the following multiblock problem:

min
A,B,C,Z,E,B

{‖Z − [[A,B,C]]‖2 + α‖E‖1 + αN‖B‖2F | Z + E +B= T },(5.2)

where A ∈ RI1×R,B ∈ RI2×R,C ∈ RI3×R, R is an estimate of the true CP-rank,
[[A,B,C]] denotes the summation of columnwise outer products of A, B, and C, and
‖ · ‖F denotes the Frobenius norm. See [27] and references therein for a detailed
background of the problem. Following standard notations, the Khatri–Rao product,
the Hadamard product, and the soft shrinkage operator are denoted by �, ◦, and
S, respectively; we use Z(i) to denote the mode-i unfolding of a tensor Z, and use
0I1×I2×I3 to denote the zero tensor. An adaptive SDD-ADMM tailored to problem
(5.2) performs the following updates.

Lines 4-9 are standard proximal ADMM updates, while we update the dual vari-
able in line 10 via an SDD step. Due to the linearity of constraints, each partial
proximal augmented Lagrangian subproblem in SDD-ADMM admits closed-form so-
lutions and, hence, we do not necessarily need to perform a proximal gradient step
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1700 KAIZHAO SUN AND XU ANDY SUN

Algorithm 5.1. Adaptive SDD-ADMM for problem (5.2).
1: Input ρ, p,ω, τ, γ, ρ, kinterval > 0;
2: Initialize A0,B0,C0,Z0 E0, B0; µ0 = 0I1×I2×I3 ;
3: for k= 0,1,2, . . . do
4: Ak+1 = [(Z)k(1)(C

k �Bk) + 0.5pAk][((Ck)�Ck) ◦ ((Bk)�Bk) + 0.5pIR]
−1;

5: Bk+1 = [(Z)k(2)(C
k �Ak) + 0.5pBk][((Ck)�Ck) ◦ ((Ak)�Ak) + 0.5pIR]

−1;s

6: Ck+1 = [(Z)k(3)(B
k �Ak) + 0.5pCk][((Bk)�Bk) ◦ ((Ck)�Ck) + 0.5pIR]

−1;

7: Ek+1
(1) = S

(
ρ

ρ+p (T(1) − µk
(1)/ρ−Bk

(1) −Zk
(1)) +

p
ρ+pE

k
(1),

α
ρ+p

)
;

8: Zk+1
(1) = 1

2+2p+ρ(2A
k+1

(
Ck+1�Bk+1

)�
+2pZk

(1)−µk
(1)−ρ

(
Ek+1
(1) +Bk

(1)−T(1)
)
);

9: Bk+1
(1) = 1

ρ+2αN+p

(
pBk

(1) − µk
(1) − ρ(Zk+1

(1) + Ek+1
(1) −T(1))

)
;

10: µk+1
(1) = 1

1+τ (τµ
k+1
(1) − ωρ−1(Zk+1

(1) + Ek+1
(1) +Bk+1

(1) −T(1)));
11: if (k+ 1)%kinterval = 0 then
12: ρ←min(ρ, (1 + γ)ρ);
13: end if
14: end for

(a) Geo. Mean of Primal Residual (b) Geo. Mean of Relative Error

Fig. 2. (I1, I2, I3,Rcp) = (30,50,70,40). Note: color appears only in the online article.

for each block variable. Moreover, motivated by the adaptive SDD-ADMM in sec-
tion 3.4, we simply increase the penalty ρ by some factor (1 + γ) after every fixed
number of iterations, until some upper bound ρ̄ is reached. We also acknowledge that
slow convergence of SDD-ADMM is observed with a fixed penalty.

Given a parameter Rcp > 0 and dimensions (I1, I2, I3), we guess the initial CP
rank by R=Rcp+ �0.2Rcp�, and generate all data in exactly the same way as in [27].
For adaptive SDD-ADMM, we choose γ = 1/3, τ = 1/(1 + γ), ω = (1 + γ)/γ, p = 1,
and the initial penalty ρ = 2; moreover, we set kinterval = 10 and ρ̄=1e6. For each
instance, we run ADMM-g with three different values of ρ: ρ= 2 (the initial penalty
passed to adaptive SDD-ADMM), ρ=1e6 (the maximum penalty used in adaptive
SDD-ADMM), and ρ=1e3 (an intermediate value). For all algorithms, we initialize
(A,B,C) with standard Gaussian entries, Z with the zero tensor, and (B,E) with the
tensors used to generate T .

For (I1, I2, I3,Rcp) = (30,50,70,40), we plot resk and errk as functions of iter-
ation index k in Figure 2: here resk is the geometric mean of the primal residual
‖Zk+Ek+Bk−T ‖F over 3 instances, and errk is the geometric mean of the relative
error ‖Zk−Z∗‖F /‖Z∗‖ over 3 instances, where Z∗ is the low-rank ground truth. The
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DUAL DESCENT ALM AND ADMM 1701

adaptive SDD-ADMM is able to reduce the primal residual close to zero, and recover
a Zk whose relative error is less than 1% or even close to 0.1%. In contrast, the
performance of ADMM-g is sensitive to the choice of ρ: a smaller ρ usually results in
a large primal residual, while a larger ρ leads to Zk with poor quality. Tests on other
problem scales exhibit similar behaviors and hence are omitted from presentation.

5.3. Observations for UDD-ALM. In this last subsection, we present some
experiments on UDD-ALM applied to weakly convex minimization over affine con-
straints. A key observation in our experiments is that, although the dual step size �
is chosen as a constant in our analysis, UDD-ALM is very sensitive to its numerical
value. In particular, UDD-ALM may indeed fail to converge when a relatively large �
is used, and the order of constraint violation ‖Ax− b‖ and the order of � are closely
related. We consider a simple consensus problem

min
x,z∈Rn

{f(x) + α‖z‖1 | x− z = 0,‖x‖ ≤ r},(5.3)

where f(x) = −x�(U�U)x and U ∈ Rn×n has standard Gaussian entries. We fix
α = r = 1, ρ = 1000, and test UDD-ALM with different dual scaling factors ds > 0:
the dual stepsize is chosen as � = ρ× 0.1ds. In all runs of UDD-ALM, x0 and z0 are
initialized with standard Gaussian entries. The objective values at the end of 2000
iterations are recorded in Table 2, and we plot the trajectories of the primal residuals
in Figure 3. We observe that for both instances, UDD-ALM converges to the zero
vector as ds gets smaller, which is indeed a stationary point of (5.3); moreover, the
order of constraint violation drops significantly as well.

We note that when ds = 24, the value of � can be orders-of-magnitude smaller
than ε and hence the theoretical O(ε−2) complexity in Theorem 4.6 is invalidated. In
particular, when we choose � to be close to zero, UDD becomes the limiting behavior of
SDD with τ →+∞, and the resulting algorithm resembles the penalty method, where
the dual variables stay close to zero. In other words, the empirical convergence of
UDD, to some extent, can be attributed to the penalty method. It is important to note

Table 2
Objective values obtained by UDD-ALM.

n ds=2 ds=4 ds=8 ds=12 ds=24

500 17.59 3.51e-2 2.89e-6 2.89e-10 2.89e-22
1000 25.43 6.68e-6 6.68e-6 6.68e-10 6.68e-22

(a) An instance with n = 500 (b) An instance with n = 1000

Fig. 3. UDD-ALM with different ds. Note: color appears only in the online article.
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1702 KAIZHAO SUN AND XU ANDY SUN

that despite the convergence results presented in Theorem 4.6, we acknowledge that
the dual step size \varrho might implicitly affect the fulfillment of the proposed regularity
condition at the primal limit point. In practical terms, a large value of \varrho often leads to
primal iterates approaching the boundary of X, which in turn increases the likelihood
of the regularity condition being violated. As a result, we do not claim that UDD-
ALM outperforms existing algorithms. Instead, our objective is to share our initial
observations on this seemingly counterintuitive scheme in order to stimulate further
exploration and understanding of its potential advantages and limitations.

6. Conclusions. This paper proposes two new algorithms based on the concept
of dual descent: SDD-ADMM and UDD-ALM.We apply SDD-ADMM to solve nonlin-
ear equality-constrained multiblock problems, and establish an \scrO (\epsilon  - 4) iteration com-
plexity upper bound, or \scrO (\epsilon  - 3) and \scrO (\epsilon  - 2) under additional technical assumptions.
When UDD-ALM is applied for weakly convex minimization over affine constraints,
we show that under a regularity condition, the algorithm asymptotically converges to
a stationary point and finds an approximate solution in \scrO (\epsilon  - 2) iterations. Our itera-
tion complexities for both algorithms either achieve or improve the best-known results
in the ADMM and ALM literature. Moreover, SDD-ADMM addresses a long-standing
limitation of existing ADMM frameworks.

Nevertheless, the behavior of UDD-ALM is somehow not fully understood. The-
oretically the dual stepsize \varrho is treated as a constant, while, as we illustrate numeri-
cally, the convergence of UDD-ALM can be very sensitive to its numerical value. We
conjecture that the modified Robinson's condition required on the limit point can
be implicitly affected by the dual step size. This issue seems to be highly problem
dependent, and we leave it as our future work.

Appendix A. Examples satisfying Assumption 3.13. We give some ex-
amples where Assumption 3.13 can be satisfied. Suppose i= p= 1 for simplicity. We
assume that for all x\in X(r), \nabla h(x) has full column rank, and their smallest singular
values are bounded away from zero, i.e., \sigma (r) := infx\in X(r) \sigma min(\nabla h(x))> 0.

Example A.1. Let g be a possibly nonconvex function with

Mg := sup\{ \| \xi g\| : \xi g \in \partial g(x), x\in X(r)\} <+\infty ,

i.e., g is Lipschitz over X(r). Then we have

dist( - \nabla h(x)\mu ,\partial g(x)) = inf
\xi g\in \partial g(x)

\| \nabla h(x)\mu + \xi g\| 

\geq \| \nabla h(x)\mu \| + inf
\xi g\in \partial g(x)

 - \| \xi g\| \geq \sigma \| \mu \|  - Mg.

Hence Assumption 3.13 is satisfied with \sigma = \sigma (r).

Example A.2. Let g = \delta X + \~g, where X is a full-dimensional compact convex set
and \~g is a convex function over X. By [43, Theorems 24.7 and 23.8],

Mg := sup\{ \| \xi \~g\| : \xi \~g \in \partial \~g(x), x\in X\} <+\infty and \partial g(x) = \partial \~g(x) +NX(x) \forall x\in X,

where NX(x) denotes the normal cone of X at x \in X. Further assume that X(r)
belongs to intX, the interior of X, so that NX(x) = \{ 0\} for all x\in X(r). As a result,

dist( - \nabla h(x)\mu ,\partial g(x)) = inf\{ \| \nabla h(x)\mu + \xi \~g + dg\| : \xi \~g \in \partial \~g(x), dg \in NX(x)\} 
\geq \| \nabla h(x)\mu \|  - Mg \geq \sigma (r)\| \mu \|  - Mg.
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DUAL DESCENT ALM AND ADMM 1703

So again Assumption 3.13 is satisfied with \sigma = \sigma (r).

Example A.3. Suppose g = \delta X and X := \{ x \in Rn | F (x) \in D\} , where F :Rn\rightarrow Rp

are continuously differentiable and D\subset Rp (p\leq n - m). Further suppose that for any
x \in X(r), the Jacobian matrix J(x) := [\nabla h(x),\nabla F (x)] \in Rn\times (m+p) has full column
rank, and \sigma :=minx\in X(r) \sigma min(J(x))> 0. Then by [46, Theorem 6.14], for all x\in X(r),
it holds that

\partial g(x) =NX(x)\subset \{ \nabla F (x)y | y \in ND(F (x))\} .

Denote u= [\mu \top , y\top ]\top ; since \| J(x)u\| \geq \sigma \| u\| \geq \sigma \| \mu \| , we have

dist( - \nabla h(x)\mu ,\partial g(x))\geq inf\{ \| \nabla h(x)\mu +\nabla F (x)y\| : y \in ND(F (x))\} 
=inf\{ \| J(x)u\| : y \in ND(F (x))\} \geq \sigma \| \mu \| .

In particular, consider h(x) =Ax - b and X = \{ x\in Rn | l\leq Cx\leq u\} , where C \in Rp\times n

and l, u \in Rp. Then Assumption 3.13 holds as long as rows of A and C are linearly
independent.

Appendix B. UDD-ALM with nonlinear constraints. In this section we
apply UDD-ALM to deal with nonlinear constraints and establish its convergence by
assuming a descent solution oracle of each augmented Lagrangian relaxation.

Assumption B.1. We make the following assumptions regarding problem (4.1).
1. The function g : Rn \rightarrow R can be decomposed as \~g + \delta X , where X \subseteq Rn is

compact and described by a finite number of inequality constraints, i.e., X =
\{ x \in Rn| ql(x) \leq 0,\forall l \in [L]\} , where ql : Rn \rightarrow R is continuously differentiable
for l \in [L], and \~g :Rn\rightarrow R is continuous and convex over X.

2. The function f :Rn\rightarrow R is continuously differentiable over X.
3. The constraints h : Rn\rightarrow Rm are given by h(x) = [h1(x), . . . , hm(x)]\top , where

hj :Rn\rightarrow R is continuously differentiable over X for j \in [m].

Denote \nabla h(x) = [\nabla h1(x), . . . ,\nabla hm(x)]\in Rn\times m in this subsection. We also define
an approximate KKT point for problem (4.1) under Assumption B.1 as follows.

Definition B.2. Let \epsilon > 0. We say x is an \epsilon -KKT point for problem (4.1) if

dist

\Biggl( 
 - \nabla f(x) - \nabla h(x)\mu  - 

L\sum 
l=1

\nabla ql(x)yl, \partial \~g(x)

\Biggr) 
\leq \epsilon , \| h(x)\| \leq \epsilon ,(B.1a)

ql(x)\leq 0, ylgl(x) = 0 \forall l \in [L](B.1b)

for some \mu \in Rm and y \in RL
+. We simply say x is a KKT point when \epsilon = 0.

The UDD-ALM with nonlinear constraints is almost the same as Algorithm 4.1,
except that we replace the primal update (4.2) by the following nonlinear program:

min
x\in X

L\rho (x,\mu 
k) +

c

2
\| x - xk\| 2,(B.2)

where L\rho (x,\mu ) = f(x)+\~g(x)+\langle \mu ,h(x)\rangle + \rho 
2\| h(x)\| 

2. Next we define a descent solution
oracle for problem (B.2).

Assumption B.3. Given xk \in X and \mu k \in Rm, we can find xk+1 such that

L\rho (x
k+1, \mu k)\leq L\rho (x

k, \mu k) - \nu \| xk+1  - xk\| 2(B.3)
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for some \nu > 0, and there exists yk+1 \in RL
+ such that

0\in \partial xL\rho (x
k+1, \mu k) + c(xk+1  - xk) +

L\sum 
l=1

\nabla ql(xk+1)yk+1
l ,(B.4a)

ql(x
k+1)\leq 0, yk+1

l ql(x
k+1) = 0 \forall l \in [L].(B.4b)

Remark B.4. Assumption B.3 requires xk+1 to be a KKT point of problem (B.2)
with an improved objective value compared to the previous iterate xk. Notice that
the sufficient descent condition (B.3) can be satisfied with \nu = c/2 if some global
solver for problem (B.2) is available. To this end, we also note that given xk \in X and
\mu k \in Rm, problem (B.2) is convex if X is convex, f and h1, . . . , hm have continuous
Hessians over X, and c is sufficiently large. We adopt (B.4) to avoid unnecessary
technicality, while it is possible to allow xk+1 to be an inexact KKT solution of (B.2).

Since X is assumed to be compact, the sequence \{ xk\} k\in N has at least one limit
point x\ast \in X. The next lemma shows that if x\ast satisfies the LICQ, then \{ \mu k\} k\in N has
a bounded subsequence.

Lemma B.5. Suppose Assumptions B.1 and B.3 hold. Let x\ast \in X be a limit point
of \{ xk\} k\in N generated by UDD-ALM, and \{ xkr\} r\in N be the corresponding convergent
subsequence. Denote I(x\ast ) = \{ l \in [L] | ql(x\ast ) = 0\} . Suppose that the matrix

H\ast := [\nabla h1(x
\ast ), . . . ,\nabla hm(x\ast ),\{ \nabla ql(x\ast )\} l\in I(x\ast )]\in Rn\times (m+| I(x\ast )| )(B.5)

has full column rank, then the sequence \{ \mu kr\} r\in N is bounded.

Proof. For l /\in I(x\ast ), we have gl(x
kr ) < 0 and thus ykr

l = 0 by (B.4b) for all
sufficiently large r \in N. Hence, (B.4a) becomes Hkr [(\mu 

kr )\top , (ykr

I(x\ast ))
\top ]\top = ekr , where

Hkr
:= [\nabla h1(x

kr ), . . . ,\nabla hm(xkr ),\{ \nabla ql(xkr )\} l\in I(x\ast )],

ekr
:= - \nabla f(xkr ) - \xi kr

\~g  - (\rho + \varrho )\nabla h(xkr )h(xkr ) - c(xkr  - xkr - 1),

ykr

I(x\ast ) \in R
| I(x\ast )| 
+ is the subvector of ykr specified by indices in I(x\ast ), and \xi kr

\~g \in \partial \~g(xkr ).

Since H\ast has full column rank, so does Hkr for sufficiently large r \in N, which suggests
that \| \mu kr\| \leq \| \mu kr\| + \| ykr

I(x\ast )\| \leq \| (H
\top 
kr
Hkr

) - 1H\top 
kr
\| \| ekr

\| . Due to the compactness of
X, the continuity of \~g, and the continuous differentiability of f , gl's, and hj 's, we
know that \| ekr

\| is bounded by some finite constant depending on the problem data
(f, \~g,X,h) as well as parameters (\rho , \varrho , c). As a result of the previous inequality, the
sequence \{ \mu kr\} r\in N is bounded.

Theorem B.6. Suppose Assumptions B.1--B.3 hold. Let x\ast \in X be a limit point
of \{ xk\} k\in N generated by UDD-ALM that satisfies the LICQ condition, i.e., H\ast defined
in (B.5) has full column rank. Then the following statements hold.

1. (asymptotic convergence) The point x\ast is a KKT point of problem (4.1).
2. (iteration complexity) Let \epsilon > 0. Define constants \sigma 1 := min\{ \nu , \varrho \} and \sigma 2 :=

c+(\rho + \varrho )maxx\in X \| \nabla h(x)\| . UDD-ALM finds an \epsilon -KKT point in at most K
iterations, where

K \leq 
\biggl\lceil 
max\{ 1, \sigma 2\} 2(L\rho (x

0, \mu 0) - f(x\ast ) - \~g(x\ast ))

\sigma 1\epsilon 2

\biggr\rceil 
=\scrO (\epsilon  - 2).
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Proof. First note that L\rho (x
k, \mu k) - L\rho (x

k+1, \mu k+1)\geq \nu \| xk+1 - xk\| 2+\varrho \| h(xk+1)\| 2
for all k \in N by (B.3) and the UDD update. Then with the help of Lemma B.5, the
claims can be proved via straightforward modification of the proof of Theorem 4.6.

Remark B.7. We note that the \scrO (\epsilon  - 2) complexity bound in Theorem 4.6 is
measured by first-order oracles of the problem data, whereas the iteration complexity
in Theorem B.6 is measured by the subproblem oracle defined in Assumption B.3.
Information including \| \mu k\| and \rho may affect the computation effort to evaluate the
subproblem oracle, which we do not consider explicitly in Theorem B.6.
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