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Abstract

Interplanetary magnetic flux ropes (MFRs) are commonly observed structures in the solar wind, categorized as
magnetic clouds (MCs) and small-scale MFRs (SMFRs) depending on whether they are associated with coronal
mass ejections. We apply machine learning to systematically compare SMFRs, MCs, and ambient solar wind
plasma properties. We construct a data set of 3-minute averaged sequential data points of the solar wind’s
instantaneous bulk fluid plasma properties using about 20 years of measurements from Wind. We label samples by
the presence and type of MFRs containing them using a catalog based on Grad—Shafranov (GS) automated
detection for SMFRs and NASA’s catalog for MCs (with samples in neither labeled non-MFRs). We apply the
random forest machine learning algorithm to find which categories can be more easily distinguished and by what
features. MCs were distinguished from non-MFRs with an area under the receiver-operator curve (AUC) of 94%
and SMFRs with an AUC of 89%, and had distinctive plasma properties. In contrast, while SMFRs were
distinguished from non-MFRs with an AUC of 86%, this appears to rely solely on the (B) > 5 nT threshold applied
by the GS catalog. The results indicate that SMFRs have virtually the same plasma properties as the ambient solar
wind, unlike the distinct plasma regimes of MCs. We interpret our findings as additional evidence that most
SMERs at 1 au are generated within the solar wind. We also suggest that they should be considered a salient feature

Youra Shin® ,

of the solar wind’s magnetic structure rather than transient events.
Unified Astronomy Thesaurus concepts: Solar wind (1534); Heliosphere (711); Random Forests (1935)

1. Introduction

Magnetic flux ropes (MFRs) are structures of plasma in
space characterized by their spiraling magnetic field lines
observed throughout the heliosphere with a wide range of
shapes and sizes. They are believed to be the core structure of
many phenomena in the atmosphere of the Sun, such as
prominences /filaments (Gibson 2018; Liu 2020). As observed
in the solar wind near Earth, MFRs are usually classified as
either magnetic clouds (MCs) or small-scale magnetic flux
ropes (SMFRs; Hu et al. 2018). Both MCs and SMFRs have
been detected in all locations of the heliosphere at which the
necessary measurements are available, from near the Sun (Chen
et al. 2020; Zhao et al. 2020), to near the Earth (Moldwin et al.
2000; Hu et al. 2018; Nieves-Chinchilla et al. 2018), and to
above the ecliptic plane (Chen et al. 2019) all the way out to
8 au (Chen & Hu 2020). Although they have similar magnetic
structures (hence they are both referred to as MFRs) and are
both observed in the solar wind near Earth, MCs and SMFRs
are very different and may have different origins. MCs are
larger and are the internal magnetic structure of interplanetary
coronal mass ejections (ICMEs; coronal mass ejections
traveling through the solar wind), whereas SMFRs are smaller,
found scattered throughout the bulk of the solar wind, and have
an uncertain origin (or multiple origins). MCs and SMFRs
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differ significantly in their plasma properties, e.g., MCs have
very low temperature and plasma beta, whereas SMFRs do not
always have these properties.

MCs were originally reported with a strict definition by
Burlaga et al. (1981), although the usage of the term has
become more general over time (Nieves-Chinchilla et al. 2018).
Typically observed a few times a month with durations on the
order of tens of hours at 1 au, they are widely accepted to
approximately be the internal magnetic structure of many, if not
all, interplanetary coronal mass ejections (ICMEs; Hu et al.
2014; Chen 2017; Nieves-Chinchilla et al. 2018), which are
coronal mass ejections departed from the Sun propagating
through interplanetary space (Howard & Tappin 2009; Kilpua
et al. 2017). ICMEs have a significant impact on space weather
(Baker et al. 2004), and thus there is much interest in their
study.

In contrast, SMFRs occur frequently near Earth, with a few
hundred observed monthly on average and a strong solar cycle
dependency (Hu et al. 2018). Unlike MCs, the origin of SMFRs
is not firmly established (Borovsky 2008; Rouillard et al.
2010, 2011; Sanchez-Diaz et al. 2017a, 2017b, 2019; Hu et al.
2018; Chen & Hu 2022). They are also much smaller, with a
typical duration of under an hour at 1 au (Hu et al. 2019).
Moreover, their scale sizes range multiple orders of magnitude
and their physical properties vary with size (Hu et al. 2018).
Furthermore, detecting SMFRs is challenging because the
observational signatures are not as clear as those of ICMEs.
Understanding SMFRs is important due to their ubiquitous
presence in the solar wind, potential significance for
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larger-scale phenomena such as solar wind acceleration, and
their close relationship with MCs. There has been increased
interest in detecting and analyzing SMFRs in recent years,
particularly near the Sun using new data from the Parker Solar
Probe (Chen & Hu 2022).

SMFRs were first presented by Moldwin et al. (1995, 2000),
who identified an SMFR from measurements of the Ulysses
spacecraft followed by six more SMFRs from Wind and IMP 8.
They found that SMFRs are very similar to MCs in magnetic
structure but much smaller and with some different plasma
properties. Multiple statistical studies were conducted in later
years, but they were typically limited to no more than a few
hundred samples (Hu et al. 2018). More recently, Zheng et al.
(2017) developed a novel automated detection algorithm based
on the Grad—Shafranov (GS) reconstruction technique that
could detect tens of thousands of SMFRs from about 20 years
of Wind observations. This event list was then formally
published by Hu et al. (2018). The GS-based automated
detection methodology has since been extended to various
spacecraft throughout the heliosphere, such as Ulysses and the
Parker Solar Probe (Chen et al. 2019, 2020; Chen & Hu 2022).

Machine learning is a part of artificial intelligence with
algorithms for fitting models to data that allow computers to
learn patterns in the data and produce predictions for new data
or provide insights about the current data (Alpaydin 2020).
Machine learning has seen increased use in a wide range of
disciplines, including space physics (e.g., Liu et al. 2020;
Roberts et al. 2020; Raheem et al. 2021; Richardson &
Cohen 2021; Vechm & Malaspina 2021; Zewdie 2021;
Abduallah et al. 2022), because machine learning is a versatile
tool useful when dealing with large amounts of data. However,
there have been limited attempts at applying machine learning
to studying MFRs in the solar wind. Recently, there have been
a few machine learning applications to MCs. For example, dos
Santos et al. (2020) used a deep convolutional neural network
to detect signatures of simple MCs in ICMEs and Narock et al.
(2022) also used a deep convolutional network to identify the
axis of a known MC. Nguyen et al. (2019) developed a deep
learning method to detect ICMEs in general. Reiss et al. (2021)
used machine learning algorithms to predict the B, component
of an ICME. However, there is still much room for further
application of machine learning to MCs. Furthermore, to our
knowledge, there have been no attempts to apply machine
learning to SMFRs.

In this paper, we apply a machine learning technique to
better understand the importance of various physical properties
during the presence (or lack thereof) of MCs and SMFRs. We
do this by using a machine learning algorithm (known as
random forests) to learn the probability distribution of a sample
corresponding to various MFR categorizations (e.g., SMFR,
MC, and non-MFR) based only on point-in-time physical
properties. We use the detected events in the existing catalogs
as training data. The purpose of our application of machine
learning is not to detect MFRs because point-in-time data is
insufficient to properly detect MFRs (e.g., detection algorithms
use multiple points in time to detect a rotation in the magnetic
field direction, not just looking at the direction at a single point
in time). Furthermore, both MC and SMFR catalogs and
detection algorithms are already available (see Section 2).
Instead, our machine learning approach makes it possible to
systematically compare the physical properties of the solar
wind under various MFR conditions.
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The contribution of our paper is different from previous
studies. Hu et al. (2018) compared the physical properties of
SMFRs in the fast and slow solar wind, and analyzed the
overall statistics of SMFR properties. However, a detailed and
systematic comparison of SMFR properties to the background
solar wind (when no SMFR is detected), as well as between
SMFRs and MCs, is still needed and addressed in this paper.
Although we use a machine learning algorithm to distinguish
between MFRs and non-MFRs, our ultimate purpose is not to
detect MFRs but to analyze the differences between MFR
categorizations. Previous machine learning-based studies (e.g.,
Camporeale et al. 2017 and Li et al. 2020) have introduced
various methods to accurately classify solar wind regimes
based on in situ measurements. However, our study differs in
its focus on MFR categorizations (especially SMFR) and its
focus on the strength of the physical properties of the solar
wind as probability estimators of the categorizations rather than
the overall accuracy of the classifier.

The rest of this paper is structured as follows. In Section 2,
we describe in detail the input data and MFR event lists that we
utilize. We also provide a brief statistical analysis of the data
set. We then describe the machine learning techniques that we
use in Section 3, including the classification algorithm and
feature selection procedure. Next, we present the results of our
experiment in Section 4. Finally, in Section 5, we discuss the
results and prospectives for future work.

2. Data
2.1. Input Features

The fundamental physical aspects of the solar wind that we
analyze are the magnetic field and plasma properties. The
magnetic field is the most relevant due to its fundamental role
in defining what an MFR is (i.e., a plasma structure with
twisted magnetic field lines), although the single timestamp
measurements that we use do not individually contain
information about the spatial structure or temporal change.
The atomic composition of the solar wind plasma is mostly of
protons and then of alpha particles, so we narrow down our
focus to those two. Since the data availability and count
statistics for protons (which dominate the solar wind) are
higher than those of alpha particles, we only use proton
parameters rather than alpha particle parameters, other than the
alpha/proton number ratio, to indicate the abundance of alpha
particles. Because of data gaps in the electron measurements,
we opted to leave the electron data out of this study.

All input features come from observations from the Wind
spacecraft provided by NASA’s Space Physics Data Facility.
The time period of the data is from 1996 to 2016. The magnetic
field parameters are retrieved from Wind’s magnetic field
instrument (MFI) (Lepping et al. 1995) at 1 minute cadence,
and the plasma parameters are retrieved from the Solar Wind
Experiment (SWE) (Ogilvie et al. 1995). We use vector
parameters in the Geocentric Solar Ecliptic (GSE) coordinate
system. The magnetic field parameters are the three components
of the magnetic field vector B (B,, By, and B,) converted to
altitude and azimuth (By and B,), as well as the magnetic field
strength B, which is provided by the MFI data averaged from
higher cadence measurements. The plasma parameters are the
three components of the proton bulk flow velocity vector u,
(Upx» Upy, and u, ) converted to altitude and azimuth (u, 4 and
up, ), proton bulk speed u,, proton number density 7,, and the
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alpha/proton ratio n,/n,. Rather than including the absolute
value of the proton temperature, we include the ratio between the
observed and expected temperatures based on the proton speed
(Richardson & Cane 1995). Although we ignore temporal
variations, we included the directional components of the vector
quantities because there may be an overall tendency to different
directions. We converted to spherical coordinates to separate the
magnitude from the direction. Since the SWE dataset has an
inconsistent cadence, all of the data is resampled to 3-minute
averages. We excluded all data points in which any of the
features had no data in the resampling bins.

In addition to the fundamental parameters, relevant derived
parameters are added to the data set in case they provide a
stronger relationship. Proton gas pressure is added because it is
an important property of the solar wind plasma:

Fyasp = npksT, (1)

where kg is the Boltzmann constant. Another form of plasma
pressure is the dynamic pressure from the motion of the
protons:

1
Faynp = E’””p”p”p2 ()

where my, is proton mass. The proton beta is a significant
parameter because one of the most important properties of
MEFRs, especially larger ones, is that they tend to have a low
beta (Klein & Burlaga 1982; Hu et al. 2018). The proton beta is
calculated using the gas pressure and magnetic field strength:

Feasp
= __B5P 3
Bp 5/ ) 3)

Finally, two other plasma properties important in the solar wind
are Alfvén velocity v, and Alfvén Mach number Ma = up/va.
va plays an important role in magnetohydrodynamic fluctuations
(Mullan & Smith 2006). It is conceivable that differences in the
density and magnetic field of MFRs may result in significant
differences in v,. This may also affect M, which is an important
indicator of the level of dominance of the magnetic field, plays
an important role in shocks (Sundberg et al. 2017), and has an
impact on the magnetosphere (Lavraud et al. 2013). We include
them both, calculating the Alfvén velocity with the equation:
- @

VA —
N 2mpnp g

2.2. Output Labels

The labels are based on separate sources for MCs and SMFRs.
MC labels come from the ICME catalog developed by
Nieves-Chinchilla et al. (2018), which is available at https://
wind.nasa.gov/ICME_catalog/ICME _catalog_viewer.php. This
catalog is based on previous catalogs, as well as additional visual
inspection. Most of the ICMEs have either well-defined MCs or
similar structures (Nieves-Chinchilla et al. 2018), so we simply
use the magnetic object start and end times provided by the
catalog, regardless of the magnetic object type.

SMFRs come from the event list on https://fluxrope.info
developed by Hu et al. (2018) using the GS automated
detection algorithm. We use this source because it is the most
comprehensive list of SMFRs detected by Wind. However, we
found that most MCs were observed as a series of shorter
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SMEFRs due to the limited window sizes employed by Hu et al.
(2018). Therefore, we exclude events overlapping with MCs
(approximately 5% of all SMFR events).

The SMFRs were identified by Hu et al. (2018) by trying to
identify flux rope structures using segments of the time series
observations of the solar wind from Wind. In contrast, this paper
focuses on the properties of individual data points, not structures
measured over time, to focus on the physical properties
associated with MFRs. However, there is a caveat—to avoid
detecting mere fluctuations as SMFRs, Hu et al. (2018) excluded
SMEFR candidates with an average magnetic field strength below
5nT. As will become apparent later, this poses an issue for
analyzing the physical properties of SMFRs.

We distinguish between SMFRs of durations under one hour
(labeled short SMFR or SSMFR) and over one hour (labeled
long SMFR or LSMFR). The reason for this distinction is that
most SMFRs are under an hour in duration, so long SMFRs are
unusual. It is possible that LSMFRs and SSMFRs have different
origins and impacts on the geospace system. Furthermore, Hu
et al. (2018) have noted physical differences between short
SMFRs and long SMFRs. Finally, long SMFRs may be
expected to have more in common with MCs than short SMFRs
due to their more comparable size. Therefore, it is interesting to
compare our results for short SMFRs and long SMFRs.

To generate the binary labels from the combined event lists,
we mark each timestamp contained within any MFR from
either list as positive and the rest as negative. We also add
categorical labels describing whether the MFR of a positive
timestamp was an SMFR or an MC and a duration label
providing the MFR’s duration. These labels are not directly
used by the machine learning models, but rather they are used
to generate the various binary classification tasks described in
Section 3 before being removed from the data set.

All of the samples that were not included in either catalog
were marked as non-MFRs. Therefore, a limitation of this study
is that we assume that the event lists that we use are
comprehensive and exclusive. In other words, we assume that
all of the events really were MFRs with correct and precise
time boundaries, and that all of the time periods with no events
in either list contained no MFR whatsoever. Nevertheless, the
overall differences in statistical properties should be reasonably
reliable assuming that the event lists are mostly correct and
complete. As we will see, the main impact is that the difference
between non-MFRs and SMFRs is difficult to determine.

Figure 1 (left-hand panels) shows SMFRs on the date 2016
January 18. The shaded regions contain SMFRs according to
the catalog. Each feature is plotted in its own subplot. Our data
set contains not entire regions but individual data points, which
are evenly spaced. For a given sample, there are 15 values
corresponding to the 15 features and the aforementioned labels
based on what region the sample’s timestamp falls under.
Figure 1 (right-hand panels) shows an MC that was observed
between dates 2016 January 19 and 2016 January 20 in the
blue-shaded region. Before and after the MC are SMFRs. In
between the MC and SMFRs are unshaded regions, which were
not included in either catalog. The samples falling under these
regions are assumed to contain no MFR and are thus marked
non-MFRs.

2.3. Statistical Analysis

The final data set contains 15 features (described previously)
and 2.8 x 10° samples. Of these, 1.9 x 10° (69%) contain
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Figure 1. (Left-hand panels) Data for the date 2016 January 18. Shaded regions are SMFR intervals. Data gaps in individual values are represented by breaks in the
line plots. (Right-hand panels) Data for dates 2016 January 19 and 2016 January 20. Same format as the left-hand panels, except that the region shaded blue contains

an MC.

no MFR, 7.7 x 10° (31%) contain any MFR, 7.3 x 10° (26% of
the full data set) contain an SMFR (including 3.0 x
10° SSMFR and 4.3 x 10° LSMFR), and 1.4 x 10° (5% of
the full data set) contain an MC. The total number of MFRs is
63807. In total, 63461 of them are SMFRs (from the GS-based
list, not overlapping with an MC) and the remaining 346 are
MCs (from the ICME list). Of the SMFRs, 51,574 are SSMFRs
and 11,887 are LSMFRs.

Considering correlations within the data set is important, both
for understanding the data and because correlations can impact
feature importance scores (since a machine learning model could
use a threshold on either of two variables that have a strong
correlation to get the same split of data samples). Figure 2 shows
a heatmap of the pairwise correlation matrix of all the features.
The correlations are calculated using the Spearman correlation
metric, which is similar to the Pearson correlation metric but
shows any monotonically increasing (positive correlation)/
decreasing (negative correlation) relationship rather than only
linear relationships. The correlation matrix is symmetric, and so
it is the same across the diagonal. The diagonal contains all ones
because each feature is perfectly correlated with itself. While
many feature pairs have almost no correlation, there are some
significant correlations. The strongest ones should be kept in
mind when interpreting the results.

3. Methodology
3.1. Classification Tasks

We define six binary classification tasks to be solved by our
model based on the data: SSMFR-NMFR, LSMFR-NMFR,

SSMFR-LSMFR, MC-NMFR, MC-SSMFR, and MC-LSMFR.
Each task consists of estimating the likelihood of a sample’s
true label being positive based on a subset of the data marked
as positive merged with another subset of the data marked as
negative. For example, SSMFR-NMFR has samples in SMFRs
of duration under 1hr as the positive class and non-MFR
samples as the negative class. Unmarked labels are excluded
from the data set for the corresponding task. The different tasks
extensively explore the MFR categorization of a point in time
and are defined so that every pair is compared.

3.2. Algorithm

We adopt the random forest classification algorithm
(Breiman et al. 1984) to generate our machine learning model.
This algorithm is well-suited because it tries random subsets of
the features on random subsets of the data to build an ensemble
model. The random sampling of features is used to thoroughly
explore different possible feature combinations to give them a
chance to demonstrate their predictive power and importance
with respect to the labels. Meanwhile, the random subsetting of
the data, or bootstrapping, is used to ensure that the trees are
more diverse. It is widely used in many domains and has been
used successfully for space weather science in particular. For
example, Liu et al. (2017) used a random forest in order to
forecast solar flares in solar active regions.

In simple terms, the random forest algorithm learns by using a
training set of input data vectors and corresponding output
categorizations, or labels, to generate an ensemble of randomized
decision trees that collectively vote on the correct label of a new
input. The model is trained as follows: Given a training set
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consisting of N vectors with M features X = x, x5, -*+, Xy_1, Xy
with labels Y=y, ¥, ---, Yn_1, Yn, generate B binary trees 77,
T», -+, Tg_1, Ty according to the following algorithm:

1. Sample N elements (with replacement) of the training set,
denoted (X, Y)).

2. Train binary decision tree 7; on (X;, Y;). At each split, a
subset of M features are selected to compare. The
optimal feature for splitting is selected by maximizing the
resulting information gain or minimizing the Gini
impurity measure.

In our case, we limit the number of trees to 64, the tree depth to
eight, and the maximum number of samples used for training
each tree to 10%. Tree splitting is based on the Gini impurity.
When training the model, we undersample the negative class,
i.e., we select a random subset of the negative samples to match
the number of positive samples so that the model is not biased
toward negative samples.

3.3. Hyperparameter Tuning

Several parameters must be set before training a random
forest model, otherwise known as hyperparameters. Although
random forests are generally not overly sensitive to the chosen
hyperparameters, the most important are the number of trees
and number of features used per tree. Furthermore, although
not quite a hyperparameter, a tradeoff between the model
complexity and preventing overfitting must be made. This is

done by limiting the size of the trees, such as by limiting the
tree depth. Lower tree depth also entails faster training.

To optimize the hyperparameters, we temporarily set aside
10% of the training sets as validation sets. We evaluated how
the varying parameters affected all of the tasks. We found that
the default recommendation for the number of features per tree
was optimal. Additionally, we experimented with numbers of
trees including 32, 64, and 128. We found that 64 trees
provided optimal performance without unnecessary computa-
tional overhead. Furthermore, we found that a maximum tree
depth of eight provided optimal performance without over-
fitting. Finally, we found that only 10% of the samples
(randomly selected with replacement) per tree were needed due
to the large size of our data set. Therefore, we applied this limit
to decrease the training time. An added benefit is that there is
more disparity between the samples used to train each tree of
the random forests, thus increasing their diversity.

3.4. Feature Importances

After building a model using the random forest algorithm,
we use Gini importance to rank the importance of each feature
for that model (Breiman et al. 1984). To calculate the
importance of each feature, we start by calculating the non-
normalized importance I ; of each feature f for each individual
tree i. We calculate the sum of the gain G; (calculated by the
random forest algorithm) weighted by the number of samples
n; reaching each node j out of the tree’s nodes that split on
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feature f:
Iri =3 nG;
J

We then normalize the feature importances by dividing them by
the sum of all of the importances:

~

If,l
Zil f.i
Finally, we take the mean of the normalized importances from

each tree to get the overall forest’s importance levels for each
feature:

Ir; =

1 A
Iy = EZ Iy,
1

3.5. Feature Selection

To evaluate the relevance of the features to each task, we
evaluate the model’s performance for each task on a subset of
the data set that was set aside for testing, which is not used for
training or hyperparameter tuning. An important consideration
is how to split the data set into testing and training sets. If we
use random sampling, then that results in the test set being
drawn from the same time period as the training set, which can
potentially allow the model to overfit to the time periods
without reducing the performance score on the test set.
Meanwhile, the solar wind properties and flux rope occurrence
rate change throughout the solar cycle, so the test set should
include samples from throughout the data set. Therefore, we
split the data into 20 sequential segments and take the first 20%
of each of those 20 segments for the test set, and use the
remainder to build the training set, which contains 80% of the
full data set.

Using the Gini metric of feature importance, we perform
feature selection by iteratively eliminating features in order of
least to most important, i.e., for each task, we remove the least
important feature from the data set, and we then re-train and re-
evaluate the model with the remaining features. The perfor-
mance is evaluated using the area under the receiver-operator
curve (AUC) score, which is equivalent to the probability that a
positive sample will receive a higher model output than a
negative sample (Hanley & McNeil 1982). We continue to do
this (without recalculating the feature importances) until only
the most important feature remains. We then plot this result to
show the AUC score for each number of features, demonstrat-
ing how the model's performance decreases when increasingly
important features are removed.

A well-known limitation of using Gini importance for
feature ranking is that if some of the features are correlated,
then all of the importance can be given to one of the features at
the expense of the other. A commonly used alternative is
permutation importance, which measures the decrease in the
model’s performance if a given feature’s values are shuffled
randomly. We have opted to use Gini importance for the
following reasons. First, permutation importance is only
meaningful if the model has high performance, but for some
of the cases in this paper the random forest classifier was
unable to distinguish between the two categories with good
performance. In contrast, Gini importance is still meaningful
for a poorly performing model because it measures the
relative information gained from a particular feature. Second,
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permutation performance can sometimes make the issue of
correlations even worse by reducing the importance of both
correlated features. Finally, by experimenting with the use of
permutation importance instead of Gini importance, we have
found that for the data used in this study the results do not
differ significantly and the conclusions are unaffected. While
more sophisticated methods exist to determine feature
importances for correlated features, the number of features in
our study is not that large and the correlations between them
can be understood physically and kept in mind when
interpreting the results. Therefore, we have opted not to
include the results with permutation importance in the paper.
Instead, we discuss the effect of the correlations by physical
reasoning and use them to reach conclusions about the most
significant features in Section 4.

One issue that may arise when interpreting the feature
selection results is determining how many features one needs to
avoid losing a statistically significant amount of performance. It
is difficult to evaluate this visually when the slope is not steep.
Our solution to this is as follows: We split the training set into
10 disjoint training folds of equal size using the same time
segmenting procedure as before. Furthermore, we split the test
set into 10 disjoint testing folds of equal size. We then iterate
10 times. For each iteration i, we train the model on the ith
training fold. Then, once the model is trained, we perform a
nested iteration 10 times. For each nested iteration j, we test the
model on the jth testing fold. We calculate the AUC score for
iteration ij and store it. At the end, there are 10> =100 AUC
scores. This is repeated with the top A features and top B
features, yielding two sets of 100 AUC scores for statistical
comparison. We begin with A=1 and B=2, then A =2 and
B =3, and so on. Each time, we perform a Wilcoxon signed-
rank test (Wilcoxon 1947) to determine whether there is a
statistically significant improvement in performance between
using the top A features and the top B features. We continue
doing this until we encounter a p-value of greater than 5%. For
example, if this occurs when comparing the top five versus the
top six features for a particular task, then the top five features
are considered significant for that task.

4. Results

We trained the classification model for each of the six tasks
using the random forest algorithm and their respective training
sets. The models themselves consist of many fairly deep trees,
so it would be very difficult to visualize them directly. In
Figure 3, we show an example of an individual decision tree
from task SSMFR-NMFR. This illustrates how the decision
tree process works for individual trees. The overall random
forest is, however, based on an ensemble of many trees. Hence,
we use statistical methods below to understand the results.

We present a detailed breakdown of the performance of each
task across the different MFR classes in the rest of Table 1. The
table is generated as follows. We first iterate through each class
(NMFR, SSMFR, LSMFR, SMFR, MC, MFR). Then, using
the initial models trained on the training sets with all of the
features, we predict the class of each sample in the test set

belonging to the current class. We calculate the average
predicted class (y') = 3y where )’ is 1 if the model
classifies a sample as positive and O if it classifies a sample as
negative. For tasks where the current class is a subset of the
positive class, we use (y’) as the accuracy. If the current class is

a subset of the negative class, then we use 1 — (y’) as the



THE ASTROPHYSICAL JOURNAL, 961:81 (11pp), 2024 January 20

Farooki et al.

B <=5.04
gini = 0.5
samples = 100.0%
value =[0.499, 0.501]
class = SSMFR
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EE NN

value = [0.871, 0.129]
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samples = 64.7%
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value =[0.315, 0.685] value = [0.231, 0.769]
class = SSMFR class = SSMFR

VAN
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Figure 3. Examples of a decision tree from SSMFR-NMFR. Only the first few levels of the tree are shown. Each task’s random forest has many trees, which was
selected because it started with the top feature for the respective test. The gini metric shows the impurity after the previous split. Branches to the left-hand result when
the condition is satisfied. The “value” shows the percentage of NMFRs (left-hand) and percentage of SMFRs (right-hand) assuming that the samples start off balanced.

Table 1

Cross-task Performance
Class SSMFR-NMFR LSMFR-NMFR SSMFR-LSMFR MC-NMFR MC-SSMFR MC-LSMFR
(%) (%) (%) (%) (%) (%) (%)
NMFR 66.8 66.5 88.2
SSMFR 97.0 64.0 87.6
LSMFR 93.1 63.9 79.0
MC 83.5 82.8 78.5
AUC Score 86.1 85.2 66.2 94.1 92.7 86.4

accuracy. If the current class is not a subset of either one, then
there is no meaningful accuracy, so we put dashed lines. The
results are recorded in Table 1. Additionally, the resulting AUC
scores on the test sets are displayed in the last row of Table 1
With the exception of SSMFR-LSMFR, all of them had around
90% AUC, with MC-NMFR exceeding 94%. The MC-related
tasks performed better than the SMFR-related tasks. Higher
AUC scores indicate that the model is able to assign a higher
prediction value to a true sample over a negative sample more
often, and thus the features given to it have more predictive
power. The baseline AUC score for random guessing is 0.5, so
in all cases, the model had significant (if not good)
performance. The fact that the model can give meaningful
probability estimates indicates that there is a significant
correspondence between the features that it found and the
labels of each task.

The poor performance of SSMFR-LSMFR is important. If
big SMFRs tended to be more similar to MCs, then there
should have been a big physical difference between LSMFR
and SSMFR, and SSMFR-LSMFR should have scored well. In
fact, MC-LSMFR does perform worse than MC-SSMFR, but
SSMFR-LSMFR performs worse than either one of them,
suggesting that big SMFRs have more in common with small
SMFRs than MCs. The physical properties exhibit only
slight differences, as we will see below. We will also

explore the reasons why MC-NMFR, SSMFR-NMFR, and
LSMFR-NMFR perform well.

After training each task’s model, we calculate the feature
importances for each task, and then use it to rank the features,
recorded in Table 2. Finally, we generate the feature selection
curves for each task. The least important feature is dropped
iteratively until only the most important feature remains, and the
model is re-trained with each subset of features and the AUC
score is calculated. Figure 4(a) shows the plot of the results for
each task. To determine which features were significant for each
task, we performed the Wilcoxon tests in the manner described
in Section 3.5. Using this information, we colored the significant
features bold in Table 2. We also sorted the features by their
average importance across tasks and then conducted the same
process except using this new cross-task ordering. The resulting
feature elimination plot is Figure 4(b). The top five features
across tasks were B, B3y, Tp/Texp, Ma, and Pgys.

The feature ranking tells us which features are significant for
distinguishing a sample’s class, but not what values correspond
to a higher probability. These can be understood with
histograms and partial dependency plots (PDPs), plotted in
Figure 5. To generate the PDPs, each model is trained with all
features using the task’s training set, and then 10,000 random
samples from the task’s test set are selected. Take magnetic
field strength B as an example. For each point on the PDP, the
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Figure 4. (a) Feature elimination results generated using each individual task’s feature ranking. (b) Same as (a), except rather than dropping features based on each

task’s ranking, we drop in order of average importance across tasks.

magnetic field strength B of each selected sample is changed to
a new value B, and then all of the samples are passed through
the task’s model. The mean resulting probability prediction is
represented by a point on the PDP. The change of the value of
the PDP shows how the model’s output depends on a given
parameter.

For both SSMFR-NMFR and LSMFR-NMFR, the top
feature is the magnetic field strength B. This implies that the
magnetic field strength stands out the most during the SMFRs
in the event list compared to other features. The comparison of
their distributions in Figure 5 reveals a sharp change centered at
5nT. Only 2.7% of samples with B < 5nT contain an SMFR,
whereas 47.6% of samples with B > 5nT contain an SMFR.
Apparently, this is due to the fact that Hu et al. (2018) excluded
any MFR event candidates with an average magnetic field
strength below a 5 nT threshold to exclude random fluctuations.
We have also included the distribution for the non-MFR
samples with the same threshold applied, which results in a
very similar distribution to the SMFR distribution. The PDP
shows a very sharp increase after 5 nT from approximately 0.1
or less to a nearly constant value for SMFR tasks. In contrast to
the PDP for the previously discussed tasks, the MC tasks have
a smooth increase of probability with magnetic field strength.
Interestingly, MC-SSMFR and MC-LSMFR have an increase
in probability below 5 nT. This suggests that at values below
the threshold, the model gives a higher chance of the sample
being an MC than an SMFR, even though MCs tend to have
higher magnetic field strength than SMFRs. Overall, it seems
that there may be many SMFRs with lower magnetic field
strength and that the threshold has imposed a selection bias.

For the MC-related tasks, the most important feature is proton
beta. In fact, judging by the PDP, 3, is the main factor in
distinguishing MCs from other categories. It is well-known that the
proton beta tends to be very low for ICMEs (e.g., Liu et al. 2005).
MC:s tend to have near-0 values, which only occur rarely in the
background solar wind. However, the tail of the distribution cannot
be ignored because observational studies show that not all MCs
have low proton beta for their entire duration (e.g., Pal et al. 2022).

SSMFRs and LSMFRs also tend to have lower proton beta
than NMFRs, although the difference is not nearly as
pronounced as in the case of MCs. The distribution of SMFR
proton beta has been analyzed by Hu et al. (2018). The smaller

Table 2
Feature Importances (Significant Features in Bold)

SSMFR- LSMFR-  SSMFR- MC- MC- MC-
Rank NMFR NMFR LSMFR NMFR SSMFR LSMFR
1 B B By By By By
2 My My T,/Tex B T,/Tex T,/T,.
3 Va Va Pgas,p MA Pgas,p MA
4 Poasp Paynp u, V4 My B
5 Paynp n, B T,/T. B Py
6 ny By n./n, Pgasp VA VA
7 T,/ Tex Poasp va np, Paynp ny
8 Gy Tp/Tex np Paynp np Payn.p
9 up up My up na/np e /Ny
10 By Up Paynp Na /Ny Uy Uy
11 Upo B.q B¢ Bg Up,p B({7
12 Up.g nu/np Upp By Upo Upg
13 /1y B Up,¢ Up,o B, Up,o
14 Bc‘) Mp_g Bg Llpﬁ Bg Bg

difference between MC and SMFR proton beta compared to
MC and non-MFR may explain the lower AUC score for
MC-SSMFR and MC-LSMFR. Likewise, it appears that
LSMFRs have slightly lower 3, than SSMFRs, so MC-LSMFR
performs worse than MC-SSMFR. However, the shape of the
distribution for LSMFRs, SSMFRs, and NMFRs is virtually the
same, whereas MC-LSMFR has a completely different
distribution shape, so this does not necessarily indicate a
similarity between the plasma properties of LSMFRs and MCs.
In fact, both SSMFRs and LSMFRs have almost the same [,
distribution as NMFRs that have B > 5 nT, suggesting that they
both share the distribution of the background solar wind.

Most features besides B do not appear to be significantly
different for SMFRs based on the histograms compared to NMFRs
(with the 5 nT threshold applied). M, was given high importance
for SMFR-related tasks, but does not appear to affect the PDP
much compared to B. Since it is highly correlated with B in
Figure 2, this is probably what resulted in its high ranking. In
contrast, MCs have significantly different shape of the My
distribution. However, since the overall distribution has too much
overlap in terms of the range of values, it was not ranked highly in
terms of Gini importance.
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Figure 5. Histogram and partial dependency plots for the top 5 most important features across tasks.
Beta, temperature, and gas pressure appear to play an smaller SMFRs have a wide range of temperatures, whereas
important role for distinguishing MCs from NMFRs and larger SMFRs have lower temperatures. This finding is

LSMFRs from SSMFRs. As Hu et al. (2018) pointed out, consistent with the PDP, which shows that SSMFRs are more
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likely to have higher temperatures than LSMFRs. But even
though LSMFRs have low temperature, their temperature
distribution is shaped completely differently from MCs. Unlike
MCs, the distribution of LSMFR temperature is similar to both
SSMFR and NSMFR temperature. Accordingly, temperature
only plays a very strong role for MC-related tasks in the PDP.
Gas pressure, related to temperature by P = nkgT, tends to be
very low for MCs compared to SMFRs, LSMFRs, or NMFRs,
which all have a similar distribution of gas pressure. However,
larger SMFRs appear to have slightly lower gas pressure.

5. Discussion and Conclusions

In this paper, we ranked the informativeness of various
physical properties of the solar wind properties with regards to
various MFR-related categorizations (SSMFR, LSMFR, MC,
and NMFR) using a machine learning feature selection
technique. We first generated a data set using measurements
from Wind. We then used six binary classifications to compare
the point-in-time physical properties of each unique pair of
categories. For each task, we used the random forest algorithm
to build an ensemble of decision trees to distinguish the
positive from negative samples and then used the normalized
average decrease in the impurity of each feature to rank the
features. After that, we applied feature selection by plotting the
change in model performance with increasingly reduced sets of
top features used for training and classification.

Our results demonstrate that MCs tend to have very
distinctive solar wind properties compared to the absence of
any MFR, such that an excellent probability estimate of a given
timestamp corresponding to an MC instead of a non-MFR can
be given based on plasma and magnetic field measurements
from a single point in time. The proton beta alone is able to
give an AUC score of over 0.9 for distinguishing MCs from
non-MFRs, whereas the top three features together (Bp, B, and
va) result in an AUC score of close to 0.94. This makes sense
because it is known that intervals of both low 3, and v, are
most common in the solar wind during ICMEs (Gosling &
Phan 2013), and that MCs tend to have elevated magnetic field
strength B (Nieves-Chinchilla et al. 2018).

We found that SMFRs in the catalog can be distinguished
from non-MFRs with significant performance. However, the
primary distinguishing feature is just the B > 5nT threshold
used by Hu et al. (2018) to make the catalog. As a result, the
plasma properties that differ significantly in distribution from
the non-MFRs—v,, My, and P, in particular, are strongly
correlated with B. Therefore, it seems that SMFRs share the
same distribution as the background solar wind in terms of
instantaneous physical properties. A potential area for future
research is to detect flux ropes from multiple-spacecraft
observations. This would eliminate the need for the threshold
because one can be more confident of a detected flux rope not
being a mere fluctuation.

Our comparison between SMFRs shorter or longer than an hour
in duration—corresponding to small and large: SMFRs tend to be
Parker spiral aligned (Hu et al. 2018), so duration is a good proxy
for size—suggests that there is almost no different between their
physical properties. Even though, as noted by Hu et al. (2018),
larger SMFRs have lower proton temperature, proton beta, and gas
pressure, the difference is small compared to how low the
temperature and beta of MCs is. Larger SMFRs have more in
common with smaller SMFRs and the background solar wind than
with MCs. The main difference in physical properties between

10

Farooki et al.

larger SMFRs and smaller SMFRs is that larger SMFRs have
slightly lower gas pressure, temperature, and proton Dbeta.
However, the distributions of these parameters have the same
shape as the distributions of smaller events, whereas both are very
different from MCs. Additionally, the magnetic field fluctuates
more in smaller flux ropes than larger ones, although that is due to
their structure’s size and not their plasma properties.

Based on our results, we hypothesize that most SMFRs at
1 au share the same plasma properties as the ambient solar
wind. This is in contrast to the typical description of SMFRs as
transient phenomena such as MCs, which are distinct plasma
regimes in the solar wind. This makes sense considering that
the SMFR events in the current catalog with the 5 nT threshold
applied already span 26% of the full time, i.e., SMFRs are
present at 1 au over one quarter of the time. In the context of
the flux-tube picture of the solar wind by Borovsky (2008), this
discussion suggests that the flux tubes filling the solar wind are
often twisted, which may have important ramifications for the
interaction between the solar wind and the magnetosphere. It
also provides further support for most SMFRs at 1 au having a
local origin within the solar wind, e.g., by turbulence (Hu et al.
2018). However, this study is based on the bulk fluid properties
of the solar wind. Analysis of the microscopic properties such
as particle distribution functions may yield different conclu-
sions regarding the origin of the SMFRs.

Future works may extend this feature ranking methodology
to data from other spacecraft in different parts of the
heliosphere and compare the change in results based on
variations in ecliptic latitude and distance from the Sun.
Furthermore, this methodology can be applied to other
phenomena with various in situ time series measurements of
which the relative importances are of interest.
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